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Abstract

Exploiting the full performance potential of distributed memory machines re-

quires a careful distribution of data across the processors. Vienna Fortran is a lan-

guage extension of Fortran which provides the user with a wide range of facilities

for such mapping of data structures. In contrast to current programming prac-

tice, programs in Vienna Fortran are written using global data references. Thus,

the user has the advantages of a shared memory programming paradigm while ex-

plicitly controlling the data distribution. In this paper, we present the language

features of Vienna Fortran for FORTRAN 77, together with examples illustrating

the use of these features.
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1 Introduction

The continued demand for increased computing power during the last decade has led

to the development of computing systems in which a large number of processors are

connected, so that their execution capabilities may be combined to solve a single problem.

Several distributed-memory processing systems (such as Intel's hypercube series and

the NCUBE) have come onto the market and are slowly gaining user acceptance. Other

systems are under development or have been announced in recent months. These ar-

chitectures are relatively inexpensive to build, and are potentially scalable to very large

numbers of processors. Hence their share of the market is likely to increase in the near

future.

The most important single difference between these and other computer architectures

is the fact that the memory is physically distributed among the processors; the time

required to access a non-Ioca! datum may be an order of magnitude higher than the time

taken to access locally stored data. This has important consequences for program per-

formance. In particular, the management of data, with the twin goals of both spreading

the computational workload and minimizing the delays caused when a processor has to

wait for non-local data, becomes of paramount importance.

A major difficulty with the current generation of distributed memory computing sys-

tems is that they generally lack programming tools for software development at a suitably

high level. The user is forced to deal with all aspects of the distribution of data and work

to the processors, and must control the program's execution at a very low level. This

results in a programming style which can be likened to assembly programming on a

sequential machine. It is tedious, time-consuming and error prone. This has led to par-

ticularly slow software development cycles and, in consequence, high costs for software.

Thus much research activity is now concentrated on providing suitable programming

tools for these architectures, One focus is on the provision of appropriate high-level

language constructs to enable users to design programs in much the same way as they

are accustomed to on a sequential machine. Several proposals (including ours) have been

put forth in recent months for a set of language extensions to achieve this [5, 16, 22, 8,

30], in particular (but not only) for Fortran, and current compiler research is aimed at

implementing them.

Research in compiler technology has so far resulted in the development of a number of

prototype systems, such as Kali [12], SUPERB [9, 34], and the MIMDizer [19]. In contrast

to the current programming paradigm, these systems enable the user to write code using

global data references, as on a shared memory machine, but require him or her to specify



the distribution of the program's data. This data distribution is then usedto guide the

processof restructuring the codeinto anSPMD (SingleProgram Multiple Data) program

for executionon the target distributed memory multiprocessor. The compiler analyzes

the sourcecode,translating global data referencesinto local andnon-localdata references

basedon the distributions specifiedby the user. The non-local referencesare satisfied

by inserting appropriate message-passingstatementsin the generatedcode. Finally, the

communication is optimized wherepossible,in particular by combiningmessagesand by

sendingdata at the earliest possiblepoint in time.

In this paper, wepresenta machine-independentlanguageextensionto FORTRAN 77,

Vienna Fortran, which allows the user to write programs for distributed-memory mul-

tiprocessor systems using global addresses. The Vienna Fortran language extension to

Fortran 90 is described in a separate paper [3]. Since the performance of an SPMD

program is profoundly influenced by the distribution of its data, most of the extensions

proposed here are geared towards allowing the user to explicitly control such distribution

of data. Vienna Fortran provides the flexibility and expressiveness needed to permit the

specification of parallel algorithms and to carry out the complex task of optimization.

Despite this fact, there are relatively few language extensions. A simple algorithm can

be parallelized by the addition of just a few constructs which distribute the program's

data across the machines.

This paper is organized as follows. In the next section we describe current program-

ming practice on distributed memory MIMD architectures by means of a simple example.

Then the programming model assumed by Vienna Fortran is introduced and an overview

of the language elements is provided. This paper does not attempt to give a systematic

introduction to the whole language, but rather describes some of the most important fea-

tures by way of simple example codes. These form the body of the subsequent section.

Section 5 outlines two more complex problems relevant to real applications, discusses the

features of Vienna Fortran which may be used to implement them, and briefly discusses

some important features of Fortran programs and how we handle them. touches on a

few other aspects of code expressed in Fortran. Finally, we conclude with a discussion of

related work and the implementation status of the Vienna Fortran Compilation System.

2 Programming Distributed Memory Systems: The

State of the Art

The current generation of distributed-memory multiprocessors is particularly difficult to

program: the time taken to adapt existing sequential codes and to develop new applica-



C SEQUENTIAL CODE

REAL UNEW(I:N,I:N), U(I:N,I:N), F(I:N,I:N)

CALL INIT (U, F, N)

,.,

DO 40 J=2, N-i

DO 40 I=2, N-I

UNEW(I,J) = 0.25 * (F(I,J)+ U(I-I, J) + U(I+l, J) +

& U(I, J-i) + U(I, J+l) )

40 CONTINUE

Figure 1: Sequential Jacobi relaxation code.

tions is prohibitive in comparison to conventional machines, including vector supercom-

puters. Further, the low level at which programs must be written is the source of both

frequent errors and of particularly inflexible codes. Consider the brief example described

below.

The Jacobi iterative procedure may be used to approximate the solution of a partial

differential equation discretized on a grid. At each step, it updates the current approxi-

mation at a grid point by computing a weighted average of the values at the neighboring

grid points. An excerpt from a Jacobi relaxation code for execution on a sequential

machine is shown in Figure 1.

When this code is paratlelized by hand, the programmer must distribute the program's

work and data to the processors which will execute it. One of the common approaches to

do so makes use of the regularity of most numerical computations. This is the so-called

SPMD (Single Program Multiple Data) or data parallel model of computation. With this

method, the data arrays in the original program are each partitioned and mapped to the

processors. This is known as distributing the arrays. The specification of the mapping of

the elements of the arrays to the set of processors is called the data distribution of that

program. A processor is then thought of as owning the data assigned to it; these data

elements are stored in its local memory. Now the work is distributed according to the

data distribution: computations which define the data elements owned by a processor



are performed by it - this is sometimesknown as the owner computes paradigm. The

processors then execute essentially the same code in parallel, each on the data stored

locally.

It is, however, unlikely that the code on one processor will run entirely without re-

quiring data which is stored on another processor. Accesses to non-local data must be

explicitly handled by the programmer, who has to insert communication constructs to

send and receive data at the appropriate positions in the code. This is called message

passing. The details of message passing can become surprisingly complex: buffers must

be set up, and the programmer must take care to send data as early as possible, and in

economical sizes. Several issues arise which do not have their counterpart in sequential

programming. New types of errors, such as deadlock and livelock, must be avoided. The

programmer must decide when it is advantageous to replicate computations across pro-

cessors, rather than send data. Moreover, for code which is explicitly parallel, debugging

is a serious problem.

A major characteristic of this style of programming is that the performance of the

resulting code depends to a very large extent on the data distribution selected by the

programmer. The data distribution determines not only where computation will take

place. It is also the main factor in deciding what communication is necessary. The total

cost incurred when non-local data is accessed involves not only the actual time taken

to send and receive data, but also the time delay when a processor must wait for non-

local data, or for other processors to reach a certain position in the code. Note that the

performance of a program can no longer be estimated solely by the amount of computation

it comprises: extra computation is not necessarily costly, and the communication delay

inherent in a particular data distribution could be prohibitive.

The message-passing programming style requires that the communication statements

be explicitly hardcoded into the program. But these statements are based upon the

chosen data distr_ution, and as a result, the data distribution is also implicitly hard-

coded. It will generally require a great deal of reprogramming if the user wants to try

out different data distributions.

To illustrate this, we reproduce in Figure 2 the above section of code, rewritten to

run on a set of p2 processors using message passing code of the kind described. We

have simplified matters by assuming that the processors have been organized into a two-

dimensional array PROC(P,P} and that the processor array elements may be addressed

for the purpose of exchanging data items: normally, a structure of this kind would have to

be set up by the user first, and references would have to be converted to those provided by

the environment. Further, we assume that the array sizes are multiples of P. Optimization
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C PROCESSOR STRUCTURE PROC(P,P) IS ASSUMED

C CODE FOR PROCESSOR (P1,P2)

PARAMETER ( P = ... N = ...)

PARAMETER( LEN = (N+P-1)/P)

C DECLARE LOCAL ARRAYS TOGETHER WITH OVERLAP AREA

C DATA OWNED LOCALLY IS U(I:LEN, I:LEN)

C AND SIMILARLY FOR UNEW AND F

REAL U(0:LEN+I,0:LEN+I), UNEW(I:LEN,I:LEN), F(I:LEN,I:LEN)

CALL LOCALINIT(U,F,LEN)

C SEND DATA TO OTHER PROCESSORS

IF (P1. GT.1) SEND (U(1,1:LEN)) TO PROC(PI-I,P2)]

IF (P1.LT.P) SEND (U(LEN,I:LEN)) TO PROC(PI+I,P2)

IF (P2. GT.1) SEND (U(I:LEN,1)) TO PROC(P1,P2-1)

If (P2. LT.P) SEND (U(I:LEN,LEN)) TO FROC(P1,P2+I)

C RECEIVE DATA FROM OTHER PROCESSORS, ASSIGN TO

C OVERLAP AREAS IN ARRAY U

IF (P1. GT.1) RECEIVE U(0,1:LEN) FROM PROC(PI-I,P2)

IF (P1. LT.P) RECEIVE U(LEN+I,I:LEN) FROM PROC(PI+I,P2)

IF (P2. GT.1) RECEIVE U(I:LEN,0) FROM PROC(P1,P2-1)

IF (P2. LT.P) RECEIVE U(I:LEN,LEN+I) FROM PROC(P1,P2+I)

C COMPUTE NEW VALUES ON LOCAL DATA

DO 40I= 1, LEN

DO 40J= 1, LEN

&

UNEW(I,J)= 0.25* (F(I,J) + U(I-1,J) + U(I+I, J) +
U(I, J-l) + U(I, J+l) )

40 CONTINUE

Figure 2: Jacobi relaxation code parallelized manually



of communication has been performed insomuch as messages have been extracted from

the loops and organized into vectors for sending and receiving. When communication and

computation are overlapped, as could be done here by carefully arranging the order in

which local data is updated, the resulting code is considerably longer. Note that SEND

and RECEIVE are assumed to be asynchronous.

In this version of the Jacobi relaxation, each processor has been assigned a square

subblock of the original arrays. The programmer has declared local space of the appro-

priate size for each array on every processor. Array U has been declared in such a way

that space is reserved not only for the local array elements, but also for those which are

used in local computations, but are actually owned by other processors. This extra space

surrounding the local elements is known as the overlap area. Values of UNEW on the

local boundaries require elements of U stored non-locally for their computation. These

must be received, and values from local boundaries must be sent to the processors which

need them. Care is taken that the processors whose segments of U are on the original

grid boundaries do not attempt to read from or send to non-existent processors.

The result of this low level style of programming is that the user spends a great deal

of time organizing the storage and communication of data. In consequence, the time

taken to produce a program is considerably longer than for comparable codes on shared-

memory machines. Moreover, once written, the code is hard to modify or improve to run

in some other way, even on the same machine. For example, if instead of dividing into

square subblocks, the user wanted to experiment with blocking in only dimension, e.g.,

blocks of rows or columns, most of the code dealing with specification and communication

would have to be modified. We will see below how easily this code can be parallelized in

Vienna Fortran.

3 The Vienna Fortran Language

3.1 The Programming Model

Vienna Fortran assumes that a program will be executed by a machine with one or more

processors according to the SPMD programming model as described above. This model

requires that each participating processor execute the same program; parallelism is ob-

tained by applying the computation to different parts of the data domain simultaneously.

The generated code will store the local parts of arrays and the overlap areas locally and

use message passing, optimized where possible, to exchange data. It will also map log-

ical processor structures declared by the user to the physical processors which execute

the program. These transformations are, however, transparent to the Vienna Fortran



programmer,

3.2 The Language Features

The Vienna Fortran language extensions provide the user with the following features:

• The processors which execute the program may be explicitly specified and referred

to. It is possible to impose one or more structures on them.

• The distributions of arrays can be specified using annotations. These annotations

may use processor structures introduced by the user.

- Intrinsic functions are provided to specify the most common distributions.

- Distributions may be defined indirectly via a map array.

- Data may be replicated to all or a subset of processors.

- The user may define new distribution functions.

An array may be aligned with another array, providing an implicit distribution.

Alignment functions may also be defined by the user.

The distribution of arrays may be changed dynamically. However, a clear dis-

tinction is made between arrays which are statically distributed and those whose

distribution may be changed at runtime.

In procedures, dummy array arguments may

- inherit the distribution of the actual argument, or

- be explicitly distributed, possibly causing some data motion.

• A forall loop permits explicitly parallel loops to be written. Intrinsic reduction

operations are provided, and others may be defined by the user. Loop iterations

may be executed

- on a specified processor,

- where a particular data object is stored, or

- as determined by the compiler.

• Arrays in common blocks may be distributed.
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• Allocatable arrays may be usedin much the sameway as in Fortran 90. Array

sectionsarepermitted asactual argumentsto procedures.

• Assertions about relationshipsbetweenobjects of the program may be inserted

into the program.

Vienna Fortran doesnot introduce a large number of new constructs, but those it

does have are supplementedby a number of options and intrinsic functions, each of

which servesa specificpurpose. They enablethe user to exert additional control over

the manner in which data is mappedor moved,or the codeis executed.An overviewof

the Vienna Fortran languageextensionsfor FORTRAN77 is given below.

We useterminology and conceptsfrom the definition of FORTRAN77 (and,occasion-

ally, Fortran 90) freely throughout.

3.3 The Language Extensions: An Overview

Vienna Fortran includes all of the following language extensions to FORTRAN 77. Many

of them will be discussed in the examples below, where their use is further described in

an informal manner. For a complete and precise description of the language, see [35].

The reader is also referred to [4] for further examples of the use of these extensions and

demonstration of their expressiveness.

The PROCESSORS statement The user may declare and name one or more proces-

sor arrays by means of the PROCESSORS statement. The first such array is called the

primary processor array; others are declared using the keyword RESHAPE. They refer

to precisely the same set of processors, providing different views of it: a correspondence

is established between any two processor arrays by the column-major ordering of array

elements defined in FORTRAN 77. Expressions for the bounds of processor arrays may

contain symbolic names, whose values are obtained from the environment at load time.

Assertions may be used to impose restrictions on the values that can be assumed by these

variables. This allows the program to be parameterized by the number of processors. This

statement is optional in each program unit. For example:

PROCESSORS MYP3(NP1, NP2, NP3) RESHAPE MYP2(NP1, NP2*NP3)

Processor References Processor arrays may be referred to in their entirety by spec-

ifying the name only. Array section notation, as introduced in Fortran 90, is used to



describesubsetsof processorarrays; individual processorsmay be referencedby the

usualarray subscript notation. Dimensionsof a processorarray may bepermuted.

Processor Intrinsics The numberof processors on which the program executes may be

accessed by the intrinsic function SNP. A one dimensional processor array, SP(I:$NP),

is always implicitly declared and may be referred to. This is the default primary array

if there is no processor statement in a program. The index of an executing processor in

SP is returned by the intrinsic function SMY._PROC.

Distribution Annotations Distribution annotations may be appended to array dec-

larations to specify direct and implicit distributions of the arrays to processors. Direct

distributions consist of the keyword DIST together with a parenthesized distribution ex-

pression, and an optional TO clause. The TO clause specifies the set of processors to

which the array(s) are distributed; if it is not present, the primary processor array is

selected by default. A distribution expression consists of a list of distribution functions.

There is either one function to describe the distribution of the entire array, which may

have more than one dimension, or each function in the list distributes the correspond-

ing array dimension to a dimension of the processor array. The elision symbol ":" is

provided to indicate that an array dimension is not distributed. If there are fewer dis-

tributed dimensions in the data array than there are in the processor array, the array

will be replicated to the remaining processor dimensions. Both intrinsic functions and

user-defined functions may be used to specify the distribution of an array dimension.

REAL A(L,N,M), B(M,M,M) DIST ( BLOCK, CYCLIC, BLOCK)

REAL C(1200) DIST (MYOWNFUNC) TO $P

Another way to specify a distribution is to prescribe that the same distribution func-

tion be employed as that which was used to distribute a dimension of another array. For

example,

REAL D(100,100) DIST(=A.1, =A.3) TO MYP2

will distribute D by BLOCK in both dimensions to the processor array MYPP. "A.I"

refers to dimension 1 of array A while "=A.I" extracts the distribution of the first

dimension of the array A. Note that both the extents of the array dimensions being

distributed and the set of processors may differ from those of A.

Implicit distributions begin with the keyword ALIGN and require both the target

array and a source array (so called because it is the source of the distribution). An



elementof the target array is distributed to the sameprocessoras the specifiedelement

of the source array, which is determined by evaluating the expressionsin the source

array description for eachvalid subscript of the target array. Here, H and JJ are bound

variables in the annotation, and range in value from 1 through 80.

INTEGER IM(80,80) ALIGN IM(II,JJ) WITH D(JJ,II+10)

As is the case with direct distributions, the user may define functions to describe more

complex alignments.

By default, an array which is not explicitly distributed is replicated to all processors.

Distribution Intrinsics Direct distributions may be specified by using the elision

symbol, as described above, and the BLOCK and CYCLIC intrinsic functions. The

BLOCK function distributes an array dimension to a processor dimension in evenly sized

segments. The CYCLIC (or scatter) distribution maps elements of a dimension of the

data array in a round-robin fashion to a dimension of the processor array. If a width

is specified, then contiguous segments of that width are distributed in a round-robin

manner.

The linear expressions which specify an alignment may contain, in addition to the

usual arithmetic operators "+", "-" and "*', the intrinsic functions MAX, MIN, MOD,

LBOUND, UBOUND, and SIZE. The latter three are intrinsic functions similar to For-

tran 90, and refer to the lower bound, upper bound and size of an array (dimension),

respectively.

The INDIRECT distribution intrinsic function enables the specification of a mapping

array which allows each array element to be distributed individually to a single processor.

The mapping array must be of the same size and shape as the array being distributed.

The values of the given array are processor numbers (in $P):

INTEGER IAPROCS(1000)

REAL A(1000) DIST(INDIRECT(IAPROCS))

Thus, for example, the value of IAPROCS(60) is the number of the processor to which

A (60) is to be mapped. Note that IAPROCS must be defined before it is used to specify

the distribution of A, and that each element of A can be mapped to only one processor.

Dynamic Distributions and the DISTRIBUTE Statement By default, the dis-

tribution of an array is static. Thus it does not change within the scope of the declaration

to which the distribution has been appended. The keyword DYNAMIC is provided to
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declarean array distribution to be dynamic. This permits the array to be the target of a

DISTRIBUTE statement. A dynamically distributed array may optionally be provided

with an initial distribution in the manner describedabovefor static distributions. A

rangeof permissibledistributions may be specifiedwhen the array is declaredby giving

the keyword RANGE and a set of explicit distributions. If this doesnot appear, the

arraymay take onany permitted distribution with the appropriatedimensionallty during

executionof the program. Finally, the distribution of suchan array may bedynamically

connectedto the distribution of anotherdynamically distributed array in a specifiedfixed

manner. This is expressedby meansof the CONNECT keyword. Thus, if the latter

array is redistributed, then the connectedarray will automatically alsobe redistributed.

REAL F(200,200) DYNAMIC,

& RANGE (( BLOCK, BLOCK ), (CYCLIC(5), BLOCK ))

The distribute statement begins with the keyword DISTRIBUTE and a list of the

arrays which are to be distributed at runtime. Following the separator symbol "::", a

direct, implicit or indirect distribution is specified using the same constructs as those for

specifying static distributions. It has an optional NOTRANSFER clause; if it appears,

then it specifies that the arrays to which it applies are to be distributed according to the

specification, but that old data (if there is any) is not to be transferred. Thus only the

access function is modified. For example:

DISTRIBUTE A, B :: (CYCLIC(IO) ) NOTRANSFER (B)

in the above statement, both arrays A and B are redistributed with the new distribution

CYCLIC(IO), however for the array B only the access function is changed, the old values

are not transferred to the new locations. Whenever an array is redistributed via a dis-

tribute statement, then any arrays connected to it are also automatically redistributed

to maintain the relationship between their distributions.

Distribution Queries and The DCASE Construct The DCASE construct en-

ables the selection of a block of statements for execution depending on the actual distri-

bution of one or more arrays. It is modeled after the CASE construct of Fortran 90. The

keywords "SELECT DCASE" are followed by one or more arrays whose distribution

functions are queried. The individual cases begin with the keyword "CASE" together

with a distribution expression for each of the selected arrays. The distribution expres-

sions consist of one or more distribution functions (which may contain arguments such

as a length), or a "*" which matches any distribution. The distribution of an array is

11



matched only if it is matchedin all dimensions.The first casewhich satisfiesthe actual

distributions of the selectedarrays is chosenand its statementsexecuted. No more than

one casemay be chosen.

SELECT DCASE (A, B)

CASE ( BLOCK),(BLOCK)

CALL BLOCKSUB(A,B,N,M)

CASE ( BLOCK),(CYCLIC)

CASE DEFAULT

END SELECT

The distributions of two different arrays may be compared in a similar manner within

an IF statement.

Allocatable Arrays An array may be declared with the allocatable attribute by spec-

ifying the keyword ALLOCATABLE as in Fortran 90. The declaration defines the rank

of the array, but not the bounds of any dimension. The array may be statically or dy-

namically distributed. The ALLOCATE statement is provided to allocate an instance of

the array with specified bounds in each dimension. This instance is deallocated by means

of the DEALLOCATE statement. An allocatable array may not be accessed unless it

is currently allocated and a distribution has been associated with it. The allocatable

attribute should be used wherever the size of an array is not known at compile time; the

user is thus able to distribute the array with its actual bounds, rather than distributing

the largest array which is permitted. Further, it may remove the need for work arrays in

some situations.

Common Blocks Common blocks in which no data is explicitly distributed have the

same semantics as in FORTRAN 77. The common block storage sequence is defined for

them. Individual arrays which occur in a named common block may also be explicitly and

individually distributed just as other arrays are. However, they may not be dynamically

distributed. Once storage space has been determined for a named common block, then

it may not change during program execution. Note that, in accordance with Fortran 90,

allocatable arrays may not be in common blocks.

12



Procedures Dummy array argumentsmay be distributed in the sameway as other

arrays. If the given distribution differs from that of the actual argument, then redistri-

bution will take place. If the actual argument is dynamically distributed, then it may

be permanently modified in a procedure; if it is statically distributed, then the original

distribution must be restored on procedure exit. This can always be enforced by the key-

word RESTORE. While argument transmission is generally call by reference, there are

situations in which arguments must be copied. The user can suppress this by specifying

a NOCOPY.

Dummy array arguments may also inherit the distribution of the actual argument:

this is specified by using an "*" as the distribution expression:

CALL EX(A,B(I:N,10),N,3)

SUBROUTINE EX(X,Y,N,J)

REAL X(N,N)DIST(*)

REAL Y(N) DIST(BLOCK) TO MYP2(I:N,J)

Array sections may be passed as arguments to subroutines using the syntax of For-

tran 90.

Intrinsic Functions A number of intrinsic functions from Fortran 90 are very useful

for writing programs on distributed memory machines. They include the functions SIZE,

LBOUND, UBOUND, COUNT, ANY, and ALL, which may be used in Vienna Fortran

programs.

The FORALL Loop The FORALL loop enables the user to assert that the itera-

tions of a loop are independent and can be executed in parallel. A precondition for the

correctness of this loop is that a value written in one iteration is neither read nor written

in any other iteration. There is an implicit synchronization at the beginning and end of

such a loop. Private variables are permitted within forall loops; they are known only in

the forall loop in which they are declared and each loop iteration has its own copy. The

iterations of the loop may be assigned explicitly to processors if the user desires, or they

may be performed by the processor which owns a specified datum. Only tightly nested

forall loops are permitted.

13



FOR.ALL I = 1, NPI*NP2*NP3 ON

INTEGER. K

END FOR.ALL

SP (NOP(I))

A reduction statement may be used within forall loops to perform such operations

as global sums (of. ADD below); the result is not available until the end of the loop.

The user may also define reduction functions for operations which are commutative and

associative in the mathematical sense. The intrinsic reduction operators provided by

Vienna Fortran are ADD, MULT, MAX and MIN. The following statement results

in the values of the array A being summed and the result being placed in the variable X.

REDUCE( ADD, X, A(I) )

Input/Output Files read/written by parallel programs may be stored in a distributed

manner or on a single storage device. We provide a separate set of I/O operations to

enable individual processor access to data stored across several devices.

4 Writing Programs in Vienna Fortran

In this section we introduce many of the language extensions of Vienna Fortran by show-

ing how they may be used to produce parallel code for some simple problems. We discuss

several different issues related to programming in general. The ideas in this section could,

in principle, be applied to other programming languages which use similar data struc-

tures.

4.1 Distributing Data to Processors

In Section 2 above, we saw how a Jacobi relaxation might be parallelized manually, under

certain simplifying assumptions. We present two versions of this same code in Vienna

Fortran. The first version tends to run faster on machines with a high communication

latency, whereas the second version will often be preferred for its overall communication

behavior.

All that has been added to the sequential code to produce the first parallel Jacobi

relaxation, shown in Figure 3, is an annotation which tells the compiler to distribute the

second dimension of all three arrays by block to all processors: the compiler will generate
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C PARALLEL CODE VERSION 1

REAL UNEW(I:N,I:N), U(I:N,I:N),F(I:N,I:N) DIST (:,

CALL INIT (U, F, N)

DO 4O J=2, N-1

DO 40 I=2, N-1

&

UNEW(I,J) = 0.25 * (F(I,J) + U(I-1, J) + U(I+I, J) +

U(I, J-l) + U(I, J+l) )

40 CONTINUE

BLOCh 0

Figure 3: Jacobi relaxation code in Vienna Fortran.

code to place the data accordingly. It is also responsible for inserting the necessary

communication.

Note that no reference has been made to the processors executing the program in

this example. Thus the data is mapped implicitly to a one-dimensional processor array

consisting of the processors available at run time. The elision symbol was used to ensure

that only one dimension of the arrays is distributed.

An alternative implementation of the Jacobi relaxation requires that the arrays be

mapped to a two-dimensional processor grid. It begins with the following declarations:

C Jacobi relaxation code in Vienna Fortran: version 2

ASSERT (NP. GE. 4)

PROCESSORS P(NP,NP)

REAL UNEW(I:N,I:N), U(I:N,I:N), F(I:N,I:N) DIST ( BLOCK, BLOCK)

The rest of the code is the same as shown in Figure 3. This Vienna Fortran pro-

gram first declares a square processor array, whose size will be determined at load time.

The programmer requires at least four processors in each dimension and expresses this
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by making an appropriate assertion. The array declaration includes an annotation to

distribute the arrays by block in both dimensions: this maps them in square blocks to

the processors. The code has been written so as to be independent of the number of

processors it will execute on, and does not need to be recompiled each time it runs on

a different configuration. (But, if it is to be run on a fixed number of processors every

time, then a processor array may naturally be declared with fixed bounds - it is likely to

result in faster code). This is the data distribution used in manually parallelized version

of the code and the compiler must distribute the data and organize the communication

to produce the code similar to that shown in Figure 2.

This version of the code will thus result in compiled code which is markedly different

from the first version and may exhibit different behavior at run time. When the first

version is executed, the data is to be distributed in blocks of columns to the processors.

To compute local values of UNEW, a processor will require a vector of values from the

two neighboring processors. The second version distributes data in squares. As a result,

a processor will require values from four neighboring processors to compute its local

values. In general, the second version requires fewer data items to be sent and received,

however the number of messages per iteration increases from two to four. Thus, the

actual performance of the codes will be dependent not only on the message latency of

the underlying hardware but also on the start-up time per message. It is an easy matter

to implement both versions in Vienna Fortran and compare their performance.

Other Ways to Distribute Arrays

We have already seen the intrinsic functions provided by Vienna Fortran to specify the

most common kinds of distributions: BLOCK and CYCLIC map a dimension of an array

to a dimension of a processor array. The following are further examples of Vienna Fortran

array declarations annotated by a distribution:

PROCESSORS P2(NP,MP)

REAL XX(1000,100) DIST(CYCLIC(50), BLOCK)

REAL YY(10000) DIST(BLOCK) TO $P

INTEGER KK(500,50,5) DIST( BLOCK, CYCLIC,: ) TO P2/2,1/

Arrays XX and KK are distributed to P2: however, the dimensions have been per-

muted in the second case, so that the the first dimension of KK is distributed by block

to the second dimension of P2, and the second dimension of KK is scatter distributed to

the first dimension of P2. YY is distributed to SP, which has NP*MP elements in this

case. Remember that the standard ordering of array elements defined in FORTRAN 77
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may be applied to processor arrays, so that there is a well-defined relationship between

the elements of $P and those of P2.

Implicit distribution, or alignment might be used, for example, to parallelize the

following kernel as shown:

11

PARAMETER ( N = ...)

REAL ZX(N+12) DIST ( BLOCK )

REAL X(N),Y(N) ALIGN $(I) WITH ZX(I + 10)

REAL Q, R, T

DO 11 K = 1, N

X(K) = Q + Y(K)* (R*ZX(K+10) + T* ZX(K+11))

CONTINUE

The elements of arrays X and Y are aligned with the elements of array ZX in the

example above: for each I from 1 through N, X(I) is mapped to the processor that owns

element ZX(I+IO). The $ symbol is merely a placeholder, indicating that multiple arrays

are being aligned. Note that the scalar variables are replicated.

In practice, alignments can be used whenever there is a fixed relationship between

two arrays that is of a very specific nature. In other situations it will generally suffice,

or be more appropriate, to specify that data items are to be distributed "in the same

way". In the above, for example, the distribution of X and Y could have been expressed

by giving them the same distribution function as ZX:

REAL X(N), Y(N) DIST(=ZX)

This distributes X and Y by block, with the appropriate block sizes. In this case, X

and Y would be distributed evenly by block across the processors. Since they have fewer

elements than ZX, the length of their blocks may be slightly smaller than the length of

the blocks of ZX. When they are aligned with ZX as above, then the lengths of the first

blocks of X and Ywill be identical to those of ZX. However, the last processor will contain

fewer elements of these arrays. For example, if N = 100 and the data is distributed to 4

processors, then the second distribution would distribute 25 elements of X and Y to each

processor, whereas the alignment with ZX would result in the mapping of 28 elements

of X and Yto the first three processors, and only 16 elements to the last of them. Thus

the elements of X and Y are not spread evenly over the processors. It will depend very

much on the nature of our computation which of these distributions performs better.

Note that if we choose to distribute X and Yin the same way as ZX, we could actually

distribute them all by one single declaration in this case. But that would not be true in
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a subroutinewhen, say,ZX is a dummy argument whose distribution is not known. Both

alignment and the referral to the distribution of other arrays are important in subroutines

where information on the distribution of dummy arguments is incomplete.

Rather more complex distributions and alignments are required in many real appli-

cations. Many of them, such as arbitrary rectilinear block distributions are useful to the

programmer and can be efficiently implemented. We will see an example of a user-defined

distribution function in Section 5.

4.2 Using Subroutines in Vienna Fortran

We discuss the main issues which arise when subroutines" are invoked with distributed

arguments by, again, looking at a very simple example. This permits us to ignore the

computational problem and concentrate on the situations a programmer will need to be

able to deal with.

It is common practice to write subroutines for such operations as matrix multiplica-

tion, which are used frequently. In this section we consider how this is done in Vienna

Fortran.

When a distribution annotation is appended to a declaration in Vienna Fortran,

then that distribution has the same scope as the declaration itself. In a subroutine,

both local arrays and dummy array arguments may be given an explicit distribution

when they are declared. As we will see below, this makes the mechanism of appending

distribution annotations to array declarations a very powerful tool, enabling a controlled

redistribution of data.

One version of a subroutine to multiply matrices in Vienna Fortran is as follows:

SUBROUTINE MATMUL(A,B,C,N,M,L)

REAL A(N,M),B(M,L), C(N,L) DIST(*)

DO 30 I = 1, N

DO 30 J = 1, L

C(I,J) = 0.0

DO 30 K = 1, M

C(I,J) = C(I,J) + A(I,K)*B(K,J)

30 CONTINUE

RETURN

END

*We will not examine functions separately; they can be written similarly.
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In this routine we employ the additional method for specifyingdistributions which

canbeusedfor dummy array argumentsonly. If a "*" is used to specify the distribution,

then the dummy argument inherits the distribution of the actual array. This means that

each time the above routine is called, the actual arguments may be distributed differently

to the processors. Interprocedural distribution analysis will often reveal the distribution

functions which reach the subroutine, and the compiler is then able to generate code based

on that information. This is a flexible way to write subroutines. But an unfortunate

consequence of using inherited distributions is that the compiler may not always have

precise (or, if it is separately compiled, any) information on the actual distributions which

may reach the dummy arguments. In cases where this analysis fails, there is a way of

providing extra help. If the user knows that only a few distributions will occur, then this

information may be provided in a RANGE clause which is appended to the distribution.

For example, the specification:

REAL A(N,M) DIST(*),

&: RANGE(( BLOCK, BLOCK ), ( BLOC[(, CYCL[C(IO0) ))

declares that only the distributions, (BLOCK, BLOCK) and (BLOCK, CYCLIC(IO0)) are

allowed for the dummy argument A.

Further, the efficiency of the computation within the subroutine may depend very

heavily on the actual distributions of the arguments, thus yielding good performance in

some cases and very poor performance in others.

An alternative implementation might distribute the dummy array arguments explic-

itly. We may write, for example:

SUBROUTINE MATMUL(A,B,C,N,M,L)

REAL A(N,M), C(N,L) DIST(BLOCK) TO

REAL B(M,L)

SP

DO 30 I = 1, N

Now this subroutine als0 has three dummy argument arrays, two of which, A and

C, are distributed by block in the first dimension to all available processors whereas

the third, B, is replicated. The dummy arguments are explicitly distributed in order

to eliminate communication during the computation of the result. However, the actuM

arguments may not have the same distribution as the dummy arguments with which they

are associated. When their distributions differ, they must be redistributed on entry to
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the subroutine to match the specifieddistribution. In general,their original distribution

must also be restoredon exit from the subroutine. Thus the efficient implementation of

the computationwithin the subroutinehasaprice: the redistribution of actual arguments

may sometimesbe very costly.

We haveseenthe apparentdifficulty in resolvingtwo legitimate demandsof a general

purposesubroutine: that it handlea variety of different arguments,which may bediffer-

ently distributed, on the onehand, and that it handlethem efficientlyon the other hand.

Redistribution may be costly, yet wemay want to implement the routine in a way that

is handled optimally on the target machine.Vienna Fortran providesa construct which

may be used in this situation: the DCASE construct, which is modeledalong the lines

of the CASE construct in Fortran 90. It enablesthe selectionof a block of statements

accordingto the actual distribution of one or more arrays.

The third subroutine for matrix multiplication beginsasfollows:

SUBROUTINE MMUL(A,B,C,N,M,L)

REAL A(N,M),B(M,L), C(N,L) DIST(*)

INTEGER LEN, LSUB

SELECT DCASE (C,A):

45

CASE( BLOCK,: ),( BLOCK,: )

IF (M*L .LE. MAXSIZE) THEN

CALL MATMUL(A,B,C,N,M,L)

ELSE LEN=L/ SNP

DO 45J-- I, SNP

CALL MATMULI (A,B,C,N,M,L,LEN,J)

CONTINUE

ENDIF

CASE( BLOCK, BLOCK ),( BLOCK, * )

,o,

CASE DEFAULT

END SELECT

In the above, the matrix operation is handled in a specific way depending on how

the actual argument arrays are distributed. In this way, we can insert appropriate code
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or call further subroutines as required. The compiler has precise information on the

distribution functions of the selectedarrays for the block of statementswithin the cases.

Only one of the casealternatives is executed;if noneof the other specificationsmatch,

then the default (if present) is selected. Here, the cases are examined in the order in

which they occur textually. The first distribution expression is compared with the actual

distribution of C, and the second with that of A. If 6' is distributed by block in the first

dimension and not at all in the second, and A likewise, then the first case is selected and

its code executed. Otherwise, the distribution of 6' is then compared with the next case:

if it is distributed by block in both dimensions, then if A is distributed by block in the

first dimension, this case is selected. An "*" matches any distribution whatsoever.

5 Applications in Vienna Fortran

In this section we look at the structure of two frequent kinds of codes that are used to

handle a variety of applications. The first of them shows how a particular numerical

method might be expressed in Vienna Fortran; the second code shows how one could

approach problems which cannot be efficiently distributed at compile time. We then

briefly discuss some issues which arise with certain Fortran constructs and programming

styles.

5.1 ADI Iteration

One well known and effective method for solving partial differential equations in two

or more dimensions is known as ADI (Alternating Direction Implicit) [17]. It is widely

used in computational fluid dynamics, and other areas of computational physics. The

name ADI derives from the fact that "implicit" equations, usually tridiagonal systems,

are solved in both the x and y directions at each step. In terms of data structure access,

one step of the algorithm can be described as follows: an operation (a tridiagonal solve

here) is performed independently on each x-line of the array and the same operation is

then performed, again independently, on each y-line of the array.

We present two versions of a step of the ADI algorithm here. The first version is shown

in Figure 4. Here, the current solution, U, the right hand sides, F, and the temporary

array, V, are all distributed by blocks of columns to the implicit one-dimensional array

of processors, SP.

In this version, the sweep over the columns (representing x-lines) is performed by the

first loop while the sweep over the rows (representing y-lines) is performed via a call

to the routine YSWEEP. In each case, the subroutine sequential TRIDIAG (not shown
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C

10

3O

C

2O

PARAMETER (NX = 100, NY = 100)

REAL U(NX, NY), F(NX, NY), V(NX, NY) DIST ( :,

CALL RESID( V, U, F, NX, NY)

Sweep over x-lines

DO 10J= 1, NY

CALL TRIDIAG( V(:, J), NX)

CONTINUE

CALL YSWEEP(V,NX,NY)

DO 30J= 1, NY

DO 30I= 1, NX

U(I, J) = V(I, J)

CONTINUE

SUBROUTINE YSWEEP (V,NX,NY)

REAL V(NX,NY) DIST( BLOCK, :)

Sweep over y-lines

DO 20I= 1, NX

CALL TRIDIAG( V(I, :), NY)

CONTINUE

BLOCIO

Figure 4: An ADI iteration: Version 1

here) is given a right hand side and overwrites it with the solution of a constant coefficient

tridiagonal system.

The array V is redistributed when subroutine YSWEEP is invoked; thus it is dis-

tributed in blocks of columns when the first loop is executed, and is distributed in blocks

of rows when the second loop is performed. This makes it possible to use a sequential

tridiagonal solver in each of these since neither x-lines in the first loop nor the y-lines

in the second loop cross processor boundaries. Note that the redistribution of V is a

"transpose" of the array with respect to the set of processors and requires each pro-

cessor to exchange data with each of the other processors. The communication here is

contained implicitly in the subroutine call and the tridiagonal solves themselves do not

require interprocessor communication.
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C

10

C

10

3O

PARAMETER (NX = 100, NY = 100)

REAL U(NX, NY), F(NX, NY) DIST (:, BLOCI_

REAL V(NX, NY) DYNAMIC, RANGE( (:, BLOCIO, ( BLOCK, :)),

& DIST (:, BLOCI 0

CALL RESID( V, U, F, NX, NY)

Sweep over x-lines

DO 10J= 1, NY

CALL TRIDIAG( V(:, J), NX)

CONTINUE

DISTRIBUTE V :: ( BLOCK, : )

Sweep over y-lines

DO 10I= 1, NX

CALL TRIDIAG( V(I, :), NY)

CONTINUE

DO 30 J = 1, NY

DO 30 I = 1, NX

U(I, J) = V(I, J)

CONTINUE

Figure 5: An ADI iteration: Version 2

Since the distribution of a statically distributed array has to be restored on return

to the calling unit, the array V is redistributed at subroutine exit to be distributed by

columns. Hence, the assignment of the values of V to U in the last loop does not cause

any communication.

We had presented another version of this algorithm in our earlier paper [4]; we re-

produce the code here in Figure 5. In this second version, we do not call a subroutine

to enforce a redistribution of V. Instead, V is declared to have a dynamic distribution,

and is initially distributed by block in the second dimension. The range attribute spec-

ifies that the only distributions allowed for V are blocks of rows or columns. Thus, the

situation for the first loop remains the same, i.e., the columns do not cross processor

boundaries and hence the sequential tridiagonal solver can be employed. After the first

loop we explicitly redistribute the array V to be blocked by rows via a DISTRIBUTE

statement. Now, the second loop ranges over the rows of V again using the sequential
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tridiagonal solver. In this code, the final assignmentof the array V to the array U will

also induce communication similar to the "transpose" at the subroutine boundary above

since U and V are distributed in different dimensions. Thus in the first case we performed

the communication implicitly, by passing the array to a subroutine where the dummy

argument has an explicit distribution, and in the second case we executed a statement

to do the same work.

There are many ways in which the ADI algorithm may be formulated. For example,

another formulation would declare array V with a static distribution and not redistribute

it at all. A parallel tridiagonal solver would then be called in the second loop; the

communication would take place within the solver. Similarly, one could declare a two-

dimensional processor structure and distribute the arrays by block in both dimensions:

a parallel tridiagonal solver would then be used for both the x- and the y-lines.

All versions of this algorithm are equally easy to express in Vienna Fortran, which of

these performs the best may be dependent on various factors including message startup

and latency times of the underlying architectures. The point is that it is a trivial matter

to change the distributions, or to substitute the calls to the sequential tridiagonal solver

used here by calls to a parallel tridiagonal solver and thus experiment with the different

versions. In marked contrast, such changes will typically induce weeks of reprogramming

in a message-passing language.

5.2 Irregular Distributions

There are a number of scientific codes where an efficient distribution of some of the

major data structures is not possible at compile time. The distribution of an array may

depend, for example, on the values of another array - or even on its own values, as in the

example given below. Examples of such codes include, but are not limited to, particle-in-

cell methods, sparse linear algebra, and PDE solvers using unstructured and/or adaptive

meshes.

Here, we look at an abstraction of a two-dimensional unstructured mesh Euler solver.

The mesh is represented by triangles and the flow variables are stored at the vertices of the

mesh. We reproduce only one part of the computation, which consists of accumulating

at each node the contribution from each of the edges incident upon it. The computation

is implemented as a loop over the edges: the contribution of each edge is subtracted from

the value at one node and added to the value at the other node.

Figure 6 shows one way in which this computation may be specified in Vienna Fortran.

The mesh is represented by the array EDGE, where EDGE(I, 1) and EDGE(I, 2) are

the node numbers at the two ends of the Ith edge. The arrays X and Y represent the
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valuesat eachof the NNODE nodes.

Consider the distribution of the data across the (implicit) one-dimensional array of

processors. Since the mesh must be distributed at runtime, in order to balance the

computational load across the processors, each of the arrays has to be dynamically dis-

tributed.

The array X, representing a data value at each node, is declared to be dynamically

distributed with an initial block distribution. Further below, this array is explicitly

distributed via the indirect distribution mechanism provided by Vienna Fortran. The

indirection is based on the mapping array MAP, whose values are dependent on the

structure of the mesh and are defined in the user specified routine PARTITION (the

code for PARTITION has not been shown here). The value of the Ith element of the

array MAP, which must be declared with the same size as X, is the number of the

processor in $P to which the Ith element of the array X is distributed.

Y is also declared with the keyword DYNAMIC and is assigned the same distribution

as X; its distribution is, however, connected with that of X by the CONNECT attribute.

This means that when X is redistributed, Y is automatically redistributed with exactly

the same distribution function. The DISTRIBUTE statement for array X specifies

the NOTRANSFER attribute for array Y. This means that when the two arrays are

redistributed, only the values of X are to be transferred to the new locations; the old

values of Y are not moved.

The array EDGE is also declared with a dynamic distribution and is initially dis-

tributed by block. Given the structure of the computation, it would be useful to distribute

EDGE in such a way that the values at one or both of its nodes are on the same proces-

sor. We have chosen to distribute the elements of EDGE to the processor which owns the

values for the first of its nodes. Such a distribution cannot be described by the intrinsic

functions, so it is specified by the user-defined distribution function (DFUNCTION)

FDIST in Figure 6.

DFUNCTIONs are similar to regular Fortran functions, but have a special implicit

argument declared with the keyword TARGET. It represents the array that is being

distributed. Here, the distribution function FDIST takes as arguments the arrays MAP

and EDGE and the special argument A. The function body then specifies that the

Ith row of the array A is to be distributed to the processor whose number is given

by MAP(EDGE(I, 1)). Thus, when the distribution function FDIST is accessed in

the distribute statement, the special argument A is associated with the array being

distributed, i.e., EDGE, so that EDGE is distributed as required.

The computation is specified using a FORALL loop, with an ON clause to specify
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PARAMETER (NNODE = ... )
PARAMETER (NEDGE = ... )

REAL X(NNODE) DYNAMIC, DIST( BLOCIO

REAL Y(NNODE) DYNAMIC, CONNECT (--X)

INTEGER MAP(NNODE) DIST( BLOCI 0

REAL EDGE(NEDGE,2) DYNAMIC, DIST( BLOCIO

,q,

CALL PARTITION( MAP, EDGE )

DISTRIBUTE X ::(INDIRECT(MAP)) NOTRANSFER (Y)

DISTRIBUTE EDGE :: ( FDIST(MAP, EDGE, NEDGE, NNODE) )

FORALL I = 1, NEDGE ON OWNER(EDGE(I,1) )

INTEGER N1, N2

REAL DELTAX

N1 --- EDGE(I,1)

N2 = EDGE(I,2)

DELTAX = F(X(N1), X(N2))

REDUCE( ADD, Y(N1),- DELTAX)

REDUCE( ADD, Y(N2), DELTAX)

END FORALL

END

10

DFUNCTION FDIST(MAP, EDGE, N, M)

TARGET A(N,*)

REAL MAP(M) DIST(*)

INTEGER EDGE(N,2) DIST(*)

DO 10 I = 1, N

A(I,:) DIST

CONTINUE

END

TO SP (MAP(EDGE(I,1)))

Figure 6: Code for Unstructured Mesh
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whereeachiteration is to be performed. Thus the iterations of the loop, over the edges

in this case,canbeexecutedin parallel. In Figure 6, the ON clausespecifiesthat the Ith

iteration should be performed on the processor that owns the (I, 1)th element of EDGE.

Non-local values which are read can be gathered before the execution commences.

The variables N1, N2 and DELTAX declared within the FORALL loop are private

variables. Thus assignments to these variables do not cause flow dependencies between

iterations of the loop. For each edge, the X values at the two incident nodes are read

and used to compute the contribution DELTAX for the edge. This contribution is then

accumulated into the values of Y for the two nodes.

Since multiple iterations will accumulate Y values at each node, different iterations

write to the same array elements, which is not permitted within a FORALL. So that this

situation does not prevent parallel execution, Vienna Fortran provides special reduction

statements which allow accumulations across the iterations of a FORALL loop. The

reduction operator ADD is used here to accumulate the contribution of the edge to the

values at the nodes on which it is incident. The results cannot be accessed within the

FORALL loop, and hence the accumulations can be easily performed by the system after

all iterations are completed. This code makes use of the reduction operator ADD.

The most important feature of this code as far as its compilation is concerned is

that the values of X and Y are accessed via the edges, hence a level of indirection is

involved. We distributed the arrays in such a way that the values at the first node of an

edge are always local to a loop iteration, but the values at the second node may not be.

The data distribution of each of the arrays is determined at run time; thus the compiler

cannot detect which references are local and which are not. In such situations, runtime

techniques such as those developed in [12, 28] are needed to generate and exploit the

communication pattern.

5.3 Some Fortran Issues

There are several important features of Fortran codes which have not been dealt with in

the sections above. We discuss just a few of them.

Common Blocks Common blocks are used in FORTRAN 77 to enable different pro-

gram units to define and reference the same data without using arguments, and to share

storage units. In Vienna Fortran, the user may retain full FORTRAN 77 semantics for

a common block by not explicitly distributing any of the objects within it at any place

in the program. In this case, there is conceptually one copy of the common block, and

conventional storage association holds for it. Note that, in accordance with the rules of

27



Fortran 90,allocatablearraysmay not be in commonblocks.ViennaFortran alsopermits

explicit distribution of arrayswithin namedcommonblocks. However,their distribution

may not be dynamic. If distributions are given at more than oneplace in the program

for objects in commonblocks with the samename, then they must be identical except

for the namesof the objects. The commonblock storagesequenceholdsfor thoseparts

of a commonblock which are not explicitly distributed - we refer to theseasreplicated

sectionsbelow. For example:

PROGRAM MAIN

C

COMMON /COM1/X, Y(12), B(12,30), A, AZ, AX

NONE OF THESE ITEMS ARE DECLARED

The above common block does not contain any data explicitly distributed by the user.

As a consequence, these data may be used in common blocks with the same name in the

usual Fortran77 manner. In contrast, several objects in the following common block are

explicitly distributed:

PROGRAM MAIN

REAL A(12) DIST(BLOCK)

REAL B(4,5) DIST( CYCLIC,: )

COMMON /COM2/CC, DD, EE, FF, GG, HH, A, B

Arrays A and B are distributed explicitly and thus determine the distribution of these

two storage areas in the common block. The variables in the common block before them

comprise a replicated section of the common block and they will be stored contiguously.

In a subroutine of the same program, a common block with the same name may be de-

clared with:

REAL S(4,3) DIST(*)

REAL T(2,5,2) DIST(*)

C THIS IS PERMITTED

COMMON /COM2/ R(6), S(4,3), T(2,5,2)
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The array R is not declared separately in the subprogram; it will be associated with

the six variables of the replicated section above. The arrays S and T are declared such

that they inherit their distributions from the distributed common objects, named A and

B above, respectively, with whom they are associated by storage.

However, the following declaration of COM2 in a subroutine is not permitted:

REAL E(6) DIST (BLOCK)

REAL Z(2,5,2) DIST(:, CYCLIC,:)

C THIS IS NOT PERMITTED

COMMON /COM2/E, X(8), Y(4), Z

Here, the replicated section of COM2 has been associated with an explicitly dis-

tributed object. Secondly, an attempt has been made to associate both arrays X and Y

with the first distributed common object. Finally, the second distributed common object

of COM2 is redistributed by the explicit distribution of array Z. All three manipulations

are not permitted.

Equivalence Association Some restrictions should be placed on the use of the Fortran

EQUIVALENCE statement when data objects are distributed. In Vienna Fortran, we

do not permit an implicit distribution by equivalencing. Further, no distributed array

may be associated by equivalence with any other distributed object. Thus equivalence

association is permitted between replicated data only.

Work Arrays FORTRAN 77 does not permit dynamic storage allocation. It is thus

common programming practice to declare arrays with a maximum size and use them

with some other, smaller, size during the computation. Further, a large work array is

often declared, parts of which are then used as individual arrays with the size and shape

required by the computation. So that arrays may be declared as they are used, Vienna

Fortran includes the concept of allocatable arrays as defined in Fortran 90. An individual

array with unknown size may be declared with the ALLOCATABLE attribute. Once its

bounds are known, it can be allocated using the ALLOCATE statement. An allocatable

array may also be annotated with distribution expressions to specify the distribution

of the array. This distribution expression can be completely evaluated only after the

allocation of the array. For example:
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REAL A(:) ALLOCATABLE

, ,o

READ (*,*)LEN

ALLOCATE (A(LEN) )

DIST ( BLOCK )

Here we have declared A to be a one-dimensional allocatable array. Thus the distri-

bution expression (BLOCK in this case) will be evaluated for A with length LEN, and

the LEN elements of A distributed evenly across the processors. Without allocatable

arrays, A would have to be declared with some maximum size (greater than LEAr) and

distributed by BLOCK with respect to this maximum size. Since only the first LEN

elements of A are to be used, some of the processors might not have any of the elements

of A which are actually used in the computation. By using allocatable arrays, we make

sure that all processors are involved in the computation.

As noted above, many Fortran applications are characterized by the fact that runtime

data determines the size of the underlying data objects. In many applications, the

actual number of objects involved is also unknown at compile time or may vary during

computation. Such situations require the work array to be distributed dynamically, since

the actual distribution of the objects may be dependent on runtime data. Such an array

is declared with the ALLOCATABLE and DYNAMIC attributes. One strategy for

distributing such a work array is to distribute each of these objects independently to all

processors, by BLOCK for example. Another strategy would be to distribute each of

these objects to a subset of processors. This kind of distribution must be handled by a

user-defined distribution function in Vienna Fortran.

6 Related Work

We discuss some of the related research in both language development for parallel ma-

chines and compilation techniques briefly below.

A number of parallel programming languages have been proposed, both for use on

specific machines and as general languages supporting some measure of portability (e.g.

OCCAM [23]). Languages for coordinating individual threads of a parallel program, such

as LINDA [1] and STRAND [7], have been introduced to enable functional parallelism.

Most manufacturers have extended sequential languages, such as Fortran and C, with

library routines to manage processes and communication. In most explicitly parallel

languages, the user performs many of the tasks which a compiler is expected to handle

for a Vienna Fortran program.

3O



The concept of defining processor arrays and distributing data to them was first in-

troduced in the programming language BLAZE [13] in the context of shared memory

systems with non-uniform access times. This research was continued in the Kali pro-

gramming language [18] for distributed memory machines, which requires that the user

specify data distributions in much the same way that Vienna Fortran does. It permits

both standard and user-defined distributions; a forall statement allows explicit user spec-

ification of parallel loops. The design of Kali has greatly influenced the development of

Vienna Fortran.

Other languages have taken a similar approach: the language DINO [26, 27], for ex-

ample, requires the user to specify a distribution of data to an environment, several of

which may be mapped to one processor. The programmer does not specify communica-

tion explicitly, but must mark non-local accesses. In Booster [20, 21], data distributions

are specified separately from the algorithm in an annotation module; a distinction is made

between work and data partitions.

More recently, the Yale Extensions, currently being developed by Chen et al. [5],

specify the distribution of arrays in three stages: alignment, partition and a physical

map. Because all these stages are modeled as bijective functions between index domains,

data replication is not possible. By restricting the scope of layout directives to phases, a

block structure is imposed on Fortran 90.

The programming language Fortran D [8], under development at Rice University,

proposes a Fortran language extension in which the programmer specifies the distribution

of data by aligning each array to a virtual array, known as a decomposition, and then

specifying a distribution of the decomposition to a virtual machine. These are executable

statements, and array distributions are dynamic only. While the general use of alignment

enables simple specification of some of the relationships between items of program data,

we believe that it is often simpler and more natural to specify a direct mapping. We

further believe that many problems will require more complete control over the way in

which data elements are mapped to processors at run time. Fortran90D [33], proposed

by researchers at Syracuse University, is based upon CM Fortran [31].

Digital Equipment Corporation has proposed language extensions [16] for data dis-

tribution conformant with both FORTRAN 77 and Fortran 90. These include directives

for statically aligning data with decompositions. They are specified when the array is

declared. The user may explicitly distribute dummy array arguments; if the distribution

differs from that of the actual argument, redistribution occurs. The original distribution

is restored at subroutine exit. It is assumed that the compiler will implement a default

distribution for those arrays which are not explicitly distributed by the user. A forall
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statement is provided.

Cray Research Inc. has announced a set of language extensions to Cray Fortran

(cf77) [22] which enable the user to specify the distribution of data and work. They

provide intrinsics for data distribution and permit redistribution at subroutine bounds.

Further, they permit the user to structure the executing processors by giving them a

shape and weighting the dimensions. Several methods for distributing iterations of loops

are provided.

The Cray programming model assumes that initial execution is sequential and the

user specifies the start and end of parallel execution explicitly. Many of the features

of shared memory parallel languages have been retained: these include critical sections,

events and locks. New instructions for node I/O are provided. In addition, there are a

number of intrinsic functions to access parts of arrays local to a processor, and reduction

and parallel prefix operations are included.

The implementation of Vienna Fortran and similar languages requires a particularly

sophisticated compilation system, which not only performs standard program analysis

but also, in particular, analyzes the program's data dependences [36]. In general, a

number of code transformations must be performed if the target code is to be efficient.

The compiler must, in particular, insert all messages - optimizing their size and their

position wherever possible.

The compilation system SUPERB (University of Vienna) [34] takes, in addition to a

sequential Fortran program, a specification of the desired data distribution and converts

the code to an equivalent program to run on a distributed memory machine, inserting

the communication required and optimizing it where possible. The user is able to specify

arbitrary block distributions. It can handle much of the functionality of Vienna Fortran

with respect to static arrays.

The Kali compiler [12] was the first system to support both regular and irregular

computations, using an inspector/executor strategy to handle indirectly distributed data.

It produces code which is independent of the number of processors.

The MIMDizer [19] and ASPAR [11] (within the Express system) are two commercial

systems which support the task of generating parallel code. The MIMDizer incorporates

a good deal of program analysis, and permits the user to interactively select block and

cyclic distributions for array dimensions. ASPAR performs relatively little analysis, and

instead employs pattern-matching techniques to detect common stencils in the code, from

which communications are generated.

Pandore [2] takes a C program annotated with a user-declared virtual machine and

data distributions to produce code containing explicit communication. Compilers for
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severalfunctional languagesannotated with data distributions (Id Nouveau[25], Crys-

tal [15]) havealso beendevelopedwhich are targeted to distributed memory machines.

Quinn and Hatcher [10], and Reeveset al. [6, 24] compilelanguagesbasedon SIMD

semantics. These attempt to minimize the interprocessor synchronizations inherent in

SIMD execution. The AL compiler [32], targeted to one-dimensional systolic arrays,

distributes only one dimension of the arrays. Based on the one dimensional distribution,

this compiler allocates the iterations to the cells of the systolic array in a way that

minimizes inter-cell communications.

The PARTI primitives, a set of run time library routines to handle irregular com-

putations, have been developed by Saltz and coworkers [28, 29]. These primitives have

been integrated into a compiler and are also being implemented in the context of the

FORTRAN D Programming environment being developed at Rice University. Similar

strategies to preprocess DO loops at runtime to extract the communication pattern have

also been developed within the context of the Kali language by Koelbel and Mehro-

tra [12, 14]. Explicit run-time generation of messages is also considered by [6, 15, 25],

however, these do not save the extracted communication pattern to avoid recalculation.

7 Implementation Status

The Vienna Fortran Compilation System is currently being developed at the University

of Vienna. It is based upon previous work performed by several groups, but, in particular,

upon the experience gained with the parallelization system SUPERB ([34]). It currently

generates code for the Intel iPSC/860, the GENESIS architecture, and SUPRENUM.

The implementation of a substantial subset of Vienna Fortran has already been com-

pleted. This includes

• Static array distributions

• Arbitrary rectilinear block distributions

• Inherited distributions for dummy array arguments

• Forall loops

Special consideration has been given to optimizing the generated code. In particular,

the following analysis and optimization methods have been implemented:

• Interprocedural communication analysis
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• Communicationoptimization: matching accesspatterns to aggregatecommunica-

tion routines, elimination of redundant communication, fusion of communication

statements

• Interprocedural dynamic distribution analysis

• Interprocedural distribution propagation

• ProcedureCloning

• Optimization of parallel loop scheduling

• Optimization of irregular accesspatterns, basedon the PARTI routines ([28])

The current compilation system is a full implementation of FORTRAN77. Among

other things, it permits the user to distribute work arrays,sectionsof whichmay be indi-

vidually distributed; it alsohandlesequivalencing.It performsextensivedatadependence

analysisand interproceduralanalysisto determinethe correctnessof all transformations

applied to the program code.

Implementation of further featuresof ViennaFortran, in particular the dynamicdis-

tributions, is under way. There is still an amount of researchto be done in this area,

including methods for the efficient handling of userdefineddistribution and alignment

functions.

8 Conclusions

In view of the increasing importance of distributed memory parallel computing systems,

it is vital that the task of writing new programs and converting existing (sequential) code

to these machines be greatly simplified. An approach which may substantially reduce the

cost of developing codes is to provide a set of language extensions for existing sequential

languages (in particular, Fortran and C) that are not bound to any specific existing

system but can be used across a wide range of architectures. These extensions should

be as simple as possible, but they should also be broad enough to permit the expression

of a wide variety of algorithms at a high level. In particular, since the data distribution

has a critical impact on the performance of the program at runtime, tight programmer

control of the mapping of data to the system's processors must be possible.

We believe that Vienna Fortran is a significant step on the path towards a standard

in this area.
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