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Programming Language, Natural Language?

Supporting the Diverse Computational Activities of

Novice Programmers

Judith Good, Kate Howland

Department of Informatics, University of Sussex, United Kingdom

Abstract

Given the current focus on teaching computational concepts to all from an
early age, combined with the growing trend to empower end users to be-
come producers of technology rather than mere consumers, we consider the
issue of “computational notation”. Specifically, where the goal is to help
individuals develop their understanding of computation and/or use compu-
tation in real world settings, we question whether natural language might be
a preferred notation to traditional programming languages, given its famil-
iarity and ubiquity. We describe three empirical studies investigating the use
of natural language for computation in which we found that although nat-
ural language provides support for understanding computational concepts,
it introduces additional difficulties when used for coding. We distilled our
findings into a set of design guidelines for novice programming environments
which consider the ways in which different notations, including natural lan-
guage, can best support the various activities that comprise programming.
These guidelines were embodied in Flip, a bi-modal programming language
used in conjunction with the Electron toolset, which allows young people
to create their own commercial quality, narrative based role playing games.
Two empirical studies on the use of Flip in three different real world contexts
considered the extent to which the design guidelines support ease of use and
an understanding of computation. The guidelines have potential to be of use
both in analysing the use of natural language in existing novice programming
environments, and in the design of new ones.
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1. Introduction

1.1. Computation for All

Ten years ago, Wing (2006) published a paper promoting the term “com-
putational thinking”, defined as “solving problems, designing systems, and
understanding human behavior, by drawing on the concepts fundamental to
computer science” (p. 33). Wing noted that such a skill is not synonymous
with knowing how to program, rather it involves the ability to think “at mul-
tiple levels of abstraction” (p. 35). Dijkstra proposed a similar idea 30 years
earlier, noting that “it becomes clear what ‘programming’ really amounts to,
viz. designing algorithmic solutions, and that activity requires the ability to
think efficiently more than anything else.” (Dijkstra, 1976, p. 2).

Wing’s original article spawned numerous papers attempting to define the
concept (Hu, 2011; Selby and Woollard, 2014), and consider the best ways
to teach it (Guzdial, 2008; Hambrusch et al., 2009; Yadav et al., 2011), as
well as assess it (Brennan and Resnick, 2012; Moreno-León and Robles, 2015;
Zhong et al., 2015). Although computational thinking’s relationship to com-
puting, and to programming in particular, is not always clear, it has gained
considerable traction at school level, with countries such as England making
computing a mandatory part of the curriculum (Department for Education,
2013). More generally, there has been intense focus on developing children’s
computational thinking skills (Grover and Pea, 2013; Wohl et al., 2015), with
numerous countries introducing computational thinking initiatives, whether
part of a mandatory school curriculum or not (see the recent special issue of
ACM Transactions in Computing Education for a number of country specific
case studies (Tenenberg and McCartney, 2014)).

In parallel with this movement in education, computation has become
integral to almost every discipline (Bundy, 2007), and computational tech-
niques and methods are enriching both theory and research in multiple do-
mains. It follows that since domain experts are best placed to understand
the needs of their sector, they should have direct access to the computational
power that can help them achieve their aims. Outside of the professional
arena, there has been an intense surge of interest in “maker movements” and,
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more broadly, in the idea that the public should no longer content themselves
with being mere consumers of the digital devices that increasingly permeate
entertainment and leisure activities, but should also have the means to be
producers, or at least “customisers” of these technologies.

Given this focus on putting computational power into the hands of the
greatest number of users, and making computational understanding a goal
that is within reach of everyone, many have questioned whether traditional
programming languages are the best medium through which to achieve this
and, in the case of teaching computational thinking, whether programming
languages or even computers are actually required (see e.g. (Cortina, 2007;
Bell et al., 2009; Lu and Fletcher, 2009)).

Even if it is possible to sidestep the debate of whether programming lan-
guages are necessary for the acquisition of computational thinking skills, it
is clear that some form of notation is necessary for people to communicate
with digital devices and, in an educational context, demonstrate their un-
derstanding of computation. In this article, we consider whether natural
language might prove to be a suitable alternative to traditional program-
ming languages. It is well established that the unnatural and complex syntax
which is characteristic of many traditional programming languages is a major
stumbling block for novices (Kelleher and Pausch, 2005) and could effectively
act as a barrier to the use of computational techniques and understanding
of computation more generally. Therefore, one obvious question to ask is,
why can’t people simply program using natural language? Given that both
children and adults are already adept at using natural language to express
ideas and concepts, it could provide a simple solution to syntax problems,
while eliminating the need to learn a new language.

1.2. Developing Narrative and Computational Skills in Tandem

Although the question of using natural language for programming applies
to general purpose programming languages, it applies equally, and perhaps
even more so, to specialist programming languages. Within the broader
“programming for all” context, our motivation for investigating the use of
natural language for programming stems from our longstanding research into
game creation for young people (Robertson and Good, 2005a,b; Good and
Robertson, 2006; Howland and Good, 2015).

Game creation, and role-playing game creation in particular, provides a
unique environment which interweaves narrative skills with computational
skills. Good role-playing games have complex, interactive, branching plots,
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with richly developed characters and well thought out dialogue. As the com-
plexity of an interactive narrative increases, so too does the computational
complexity required to bring about the interactions. As such, as young peo-
ple’s narrative skills develop within this context, so too should their compu-
tational skills, and vice versa.

Game creation also have a very compelling motivational aspect: young
people find it highly motivating to create games which are similar in style
and appearance to the commercial games that they are used to playing,
and are willing to devote considerable time and effort to doing so. Much
of our research has focussed on how best to support them in their game
creation tasks, whilst at the same time fostering the development of both
their narrative and computational skills.

As the medium for our research on game creation, we used the Electron
toolset (Figure 1), which ships with the Neverwinter Nights 2 (NWN2) game.
The advantage of the Electron toolset is that it has a “low floor and high
ceiling”: specialist skills are not required to start creating a game with com-
mercial quality 3D graphics. At the same time, the toolset allows users to
produce games of substantial complexity: indeed it was used by the game
developers to create the NWN2 in-game tutorial.

Although the Electron toolset provides good support for the visual aspects
of game creation, and for the creation of character dialogue, the scripting
language incorporated in the toolset, NWScript, presents a significant barrier.
As young people progress with games development, they will find themselves
needing to script more complex events to make their game work in the way
they wish, and to create more interesting and interactive experiences for
the player. For example, scripts can be written to reward the player with
treasure when they slay the dragon, or cause a wizard to vanish when they
cast a spell. However, NWScript is based on C, with a similarly complex
syntax (see Figure 2 for an example).

We have run game making workshops with over 350 young people to date,
and have consistently observed that they are able to use natural language
quite accurately to describe what they want to happen in their games, for
example “this troll should attack the player if they refuse to pay the toll”.
Although generally correct, descriptions are sometimes underspecified, re-
quiring additional prompting from workshop staff before they are complete
(Howland et al., 2007). Unfortunately however, after correctly specifying
the rule verbally, none of the 350 participants were able to learn NWScript
sufficiently well to script their own events, and had to rely instead on the
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Figure 1: Neverwinter Nights 2 Electron Toolset Interface

Figure 2: An example of NWScript

5



workshop facilitators to translate their story ideas into scripts.
Therefore, although the toolset provided a motivating environment for

the development of narrative skills, NWScript’s complex syntax acted as a
barrier to coding, and to the underlying computational concepts. However,
we felt that young people’s existing narrative understanding of game events
and their ability to describe events in natural language was a good starting
point for designing a new language which would allow them to engage with
basic computational concepts.

Our initial aim was to develop a fully bi-modal programming environ-
ment to be incorporated into the Electron toolset. The environment would
use both a full sentence natural language representation and a blocks-based
representation. Both representations would be fully editable, with any code
written in one representation dynamically rendered in the other. Therefore,
users would be able to write scripts in natural language, similar to the way
they described game events to the workshop staff, and the system would cre-
ate and display the blocks-based equivalent of their script. As young people
developed their understanding of computation and became more proficient
at coding in the blocks-based language, the natural language equivalent gen-
erated by the system would allow users to check that their blocks-based
program was correct, and worked as they had intended.

Given that blocks-based languages are already well established and cur-
rently very popular (see, e.g. (Cooper et al., 2000; Resnick et al., 2009; Gray
et al., 2012)), our initial investigations focussed on the natural language as-
pect of the proposed environment. Specifically, we were interested in the
extent to which natural language could be used for all of the diverse activi-
ties that comprise programming, including code generation, comprehension,
debugging and, in many cases, collaboration.

In this paper, we present three design studies, each of which built upon
the findings of the former, and addressed the role of natural language for pro-
gramming. The results from our first study (Section 3) suggest that using
unconstrained natural language for code generation leads to confusion about
which specific natural language words and phrases are admissible, which in
turn leads to numerous syntax errors. Further confusion arises when try-
ing to ascertain where natural language is being used to issue commands
(i.e. for coding) or as natural language (e.g. as strings within the program).
In a second study (Section 4, and reported in full in (Good et al., 2010)),
the researchers effectively acted as the language interpreter: although this
reduced the number of incorrect programs, the number of incomplete pro-
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grams remained high. The best results were obtained in our third design
study, where we constrained the language by providing novices with a set of
language primitives with which to construct computational rules (Section 5).

Overall, the design studies suggested that full-sentence natural language
(at least in an unconstrained format) is not well suited to code generation,
however, it can provide helpful support for code comprehension, debugging
and collaboration tasks (Section 6). We distilled these findings into a set of
design guidelines (Section 7) and implemented them in a bi-modal language
called Flip (Section 8). A constrained blocks-based representation is used
for program generation, while a dynamically generated (non-editable) nat-
ural language representation of the code has been designed to be used for
comprehension, debugging and collaboration. Flip was evaluated in a series
of real world empirical studies, and we report on two such evaluations which
consider the extent to which the design guidelines embodied in Flip were able
to provide effective support for novices (Section 9).

This paper builds on work presented at VL/HCC 2015 ((Good and How-
land, 2015)), and includes a fuller discussion of previous work on natural
language programming languages (Section 2) and a consideration of the re-
lationship between programming tasks and notations (Section 6). It also
presents a refined set of design guidelines, organised by programming activ-
ity (Section 7), as well as an additional study not reported in the original
conference paper (the ‘school’ study reported in Section 9.2).

2. Previous Research on Natural Language for Coding

The question of whether it is possible to program in natural language is
by no means new: similar arguments have been made at least as far back
as 1966 (Sammet, 1966). Although sometimes conflated with the “natural
programming” movement, proponents of natural programming aim to make
programming more accessible by aligning it more closely to the ways in which
people naturally think about the problems they are trying to solve. However,
this does not imply that natural language is the appropriate notation for
doing so (Pane et al., 2001).

A number of empirical studies have examined the feasibility of program-
ming in natural language, and the results have been (unsurprisingly) mixed.
Biermann et al. (1983) found that participants with limited programming
experience were able to use a natural language programming system (NLC)
to solve two distinct problems, one involving linear equations and the other
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involving gradebook averaging, with an overall success rate of 73.9%. Of the
English sentences typed, 81% could be interpreted, and the authors suggest
that many of the errors that did occur were easily resolvable. Capindale and
Crawford (1990) also found that natural language is an effective means of
expressing database queries, particularly for users with prior knowledge of
the contents of the database, regardless of their aptitude with computers.

Miller carried out a number of studies investigating the potential for nat-
ural language to be used for programming (Miller, 1975, 1978, 1981). When
examining natural language descriptions of programs, he noted that they
contained many omissions. Similarly, when examining novice use of tables
to write programs, he found that the information which participants entered
was generally correct, but that the solutions were incomplete. Additionally,
he found that natural language descriptions tend to state the action first,
with conditions, when expressed, appearing in the form of qualifications to
the action (Miller, 1978). Miller suggested that these results may have been
due in part to the instructions given to participants: as they were asked to
write the instructions for another person, it may be that certain things were
left implicit, with the assumption that meticulous instructions were not re-
quired, a view shared by (Galotti and Ganong, 1985, p. 3), who note that
it is “. . . bad form to belabour the obvious”. Indeed, a subsequent study
by Galotti and Ganong (1985) suggested that non-programmers do in fact
include control statements in their instructions in situations where it seems
appropriate (i.e. where one cannot assume that the recipient has the ability
to go beyond the information given).

Capindale and Crawford (1990) provide a nice summary of the most suit-
able conditions for natural language interactions, suggesting that they are
most effective for “question answering tasks” in a limited domain, with users
who have prior knowledge of the domain and where the system provides
adequate feedback about any restrictions to the language.

These empirical studies have been complemented by the design of systems
which fall broadly into two categories. On the one hand, there are those
which aim to automatically convert natural language input into code written
in an existing programming language, even if not completely specified, for
example, Metafor (Liu and Lieberman, 2005a,b) and MOOIDE (Lieberman
and Ahmad, 2010). The code fragments which are generated can then be used
as scaffolds, giving the user a framework which can be completed or modified,
rather than having to write the code from scratch. On the other hand, there
have been attempts to develop natural language-like programming languages
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which are themselves executable, of which Inform 7 is probably the most
well known example (Nelson, 2006, 2011), and which we used as the basis for
a study into the feasibility of natural language for coding, described in the
following section.

3. Inform 7 Study

In order to gain an in-depth understanding of how programming lan-
guages based on natural language are used by novices, we conducted a design
study using Inform 7 (inform7.com). Inform 7 is a programming language
and environment for the creation of interactive fiction (digital text-based
adventures), designed to be accessible to non-programmers. Our decision
to use Inform 7 was motivated by the fact that, firstly, Inform 7 is one of
the few fully functional natural language programming languages and, sec-
ondly, its focus on interactive narrative shares similarities with our focus on
narrative-based interactive role-playing games.

Unlike previous versions of Inform, which used a C-like syntax, the Inform
7 programming language is very similar to natural language, and is designed
to ‘read like English’. Figure 3 shows the Inform 7 interface: the left-hand
pane shows a sample of Inform 7 code, while the right-hand pane shows the
interactive narrative from the player’s perspective.

In order to examine the ease of use, learnability and comprehension of a
natural language programming language, we ran a three hour workshop in
which we observed non- and novice programmers as they used Inform 7 to
create pieces of interactive fiction. Although our ultimate aim was to create
a programming language for young people aged 11-16, there were no natural
language programming languages in existence for this age group, therefore,
we conducted this initial study with adult users.

3.1. Method

Nine university students (8 female and 1 male, aged 18-42) took part in
the workshop. Participants were recruited via posters put up in the Univer-
sity’s English Department and by emailing various English course groups.
We specifically targeted students of courses with a composition element as
we wanted people with skills and an interest in creative writing, but without
much, if any, programming experience. We advertised the workshops as a
chance for participants to learn how to create their own piece of interactive
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Figure 3: Inform 7 Interface

fiction, and stated that no experience was required. A questionnaire admin-
istered at the start of the workshop confirmed that none of the participants
had any significant experience in programming.

On arrival, we explained to participants that they had the option of par-
ticipating in a research study during the workshop. Doing so would involve
collecting basic demographic information as well as the works of interac-
tive fiction created during the workshop, and taking a screen recording and
an audio recording of their comments as they worked on their stories. We
explained that we were interested in their thoughts and opinions on any
problems they encountered, along with suggestions on how we might build a
better language. We made it clear that participation was entirely voluntary
and that attendees were under no obligation to take part in the study in
order to participate in the workshop. We then obtained informed consent
from those who were interested in taking part.

The workshop was designed in such a way as to give participants a gentle
introduction to Inform 7, while also providing them with the skills to cre-
ate their own piece of interactive fiction. After introducing the session, the
facilitators gave a whole group demonstration of Inform 7. We started by
showing participants how to play a game created with Inform 7 to introduce
them to the idea of interactive fiction from the “reader/player’s” point of
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view, and to show the common commands a player might use. Following
this, we went on to create a new Inform 7 story from scratch to introduce
participants to the commands they would need to create their first piece of
interactive fiction.

Participants were then asked to use Inform 7 to create a story, working
in pairs or threes so that we could capture their discussions when coding and
debugging their stories. Participants were provided with a worksheet which
gave broad instructions for a simple game which they had to create. This was
written in language which did not mimic the required syntax for implement-
ing the story, so as to allow us to examine the way participants translated
from everyday language to Inform 7 syntax. At the same time, we chose
to start with a structured and constrained task so we could analyse partici-
pants’ use of the language with some knowledge of what they were trying to
achieve. Participants were also given two “cheat sheets” to remind them of
what was covered in the demonstrations: one with common commands for
playing the game and one with helpful syntax for writing a game.

Once they had finished this task, participants wrote a freeform piece of
interactive fiction as a group. We encouraged them to discuss and plan out
ideas on a whiteboard first, and then to try implementing those ideas. We
finished with a debriefing session and an informal whole group discussion in
which we invited any additional comments or thoughts.

The audio recordings made during the session were transcribed, paired
with the screen recordings, and then coded to identify errors and participant
misconceptions with respect to the Inform 7 language.

3.2. Results

To support reader understanding of the errors and misconceptions de-
scribed, Figure 4 shows an annotated sample of Inform 7 code. The first line
is a standalone phrase, and the following two lines are a rule consisting of
a rule preamble and a phrase that executes when the rule preamble is met.
Phrases and rules must follow a specific syntax, or ‘pattern’. In Figure 4,
the first phrase has the following pattern, in which the articles are optional:
(The) [object] is (a) [description].

All participants found Inform 7 very challenging, and struggled to im-
plement their story ideas and develop a working piece of interactive fiction.
Program code must be written using very particular sentence structures and
precise keywords and, although the syntax is documented in help files and
online manuals, there is no dynamic syntax support when typing in code. As
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Figure 4: Annotated Inform 7 Phrase and Rule

a result, syntax errors frequently stopped games from compiling, and hence
prevented users from being able to test their games.

An analysis of the audio and screen recordings allowed us to identify
frequently occurring errors (resulting in a failure to compile or undesired be-
haviour) and misconceptions (conceptual problems which could potentially
lead to an error). This led to the development of the error/misconception
taxonomy shown below (note that in a further stage of research, the tax-
onomy could be applied to other datasets to determine relative frequency
counts, etc.):

1. Confusion between natural language as a programming language and
‘free’ natural language (strings)

1a) Placing rule and phrase keywords within strings
1b) Placing descriptive text outside of strings
1c) Wrongly assuming string rules that do not exist

2. Errors using natural language as a programming language

2a) Using synonyms in place of rule and phrase keywords
2b) Incorrect syntax of rules and phrases

2b.i) Incorrect ordering
2b.ii) Adding additional words
2b.iii) Omitting rule and phrase keywords

2c) Using one keyword in place of another
2d) Problems with object names

2d.i) Typographical errors
2d.ii) Inconsistent typing of object names

2e) Wrongly assuming syntax rules that do not exist
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A primary source of errors resulted from confusion about when natural
language was being used as a programming language (i.e. Inform 7 com-
mands) and when it was ‘unconstrained’ natural language (i.e. strings). Par-
ticipants sometimes placed rule keywords and phrases within strings rather
than outside them (1a). For example, one participant included the keyword
‘say’, used to print to screen, within the string to be printed, i.e. ’Instead of

asking the pilot about scotch: “The pilot says ‘hands off’ and grips on to the

bottle tightly”’(the correct rule syntax is shown in Figure 4).
The other main category of errors concerned the use of natural language

as a programming language. Semantically similar words were frequently used
in place of the correct keyword (2a). For example, a participant who wanted
players in the ‘Crash Site’ area to be able to enter the plane fuselage by typing
“go inside” wrote ’the Crashed Plane Interior is in the Crash Site’ whereas the
correct code is ’the Crashed Plane Interior is inside from the Crash Site’, admit-
tedly, a not very English-like syntax. Participants also inserted extraneous
words into rules and phrases (2b.ii). A participant who wanted a player who
was currently ‘somewhere in the desert’ to enter an oasis by typing “go west”
wrote ‘the oasis is to the west of somewhere in the desert’ whereas the correct
syntax is ‘the oasis is west of somewhere in the desert’.

When compilation errors occur, Inform 7 tries to offer helpful feedback.
Although designed to simulate a conversation, many participants found the
verbose style of these error messages confusing rather than helpful. The error
message in Figure 5, generated in response to the error identified above (i.e.
writing ‘to the west of’ rather than ‘west of’), was of no use in helping the
authors identify their small syntax error. In cases where the error message
did help participants identify the problem, they were often unsure how to
fix it. In a few cases, the pseudo-conversational style of the error messages
led to feelings of frustration at not being able to reply, with one participant
asking her group members, “So how do you say ‘Yes, actually, you have
misunderstood me!!!’?”.

3.3. Discussion

Overall, the use of a natural language programming language did not
seem to benefit novices: paradoxically, the errors and misunderstandings
observed seemed to have stemmed from the very features designed to provide
support, i.e. program code that ‘reads like English’. Users struggled with the
distinction between “natural language as natural language” and “natural
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Figure 5: Inform 7 Verbose Error Message

language as programming language”, and were unsure when the language
must be constrained, and when syntactic variations were allowable.

Many of these issues reflect essential differences in the way that humans
and computers typically “use language”. Languages allow for dialogue be-
tween two entities, typically humans (although in this case, between a human
and a computer). Natural languages have inbuilt redundancy, affording mul-
tiple ways of expressing a single idea, and humans are adept at using natural
language to generate synonyms at word and phrase levels. Similarly, humans
can correctly interpret multiple syntactic variations of a semantic idea. Pro-
gramming languages, however, lack this redundancy, and compilers are not
designed to deal with it: a synonym of a keyword means absolutely nothing.

Using natural language for code generation (i.e. for communication from
human to computer) highlights this mismatch between the human ability to
generate syntactic variations of a semantic idea, and the computer’s ability
to understand only one of these. Furthermore, having to write Inform 7 code
from scratch, rather than by selecting from a set of words/phrases that the
interpreter can understand, multiplies the possibility of syntactic variations.

Communication in the opposite direction, from computer to human, raises
other issues. Given the human ability to correctly interpret syntactic vari-
ations, the actual phrasing of a communication, such as an error message,
is less important as long as it is comprehensible (which is, admittedly, hard
to operationalise). However, “human-like” compiler messages set up a false
expectation that more extensive human-like exchanges are possible. Indeed,
such a situation may exacerbate the formation of “superbugs”, where learn-
ers believe there is a “hidden mind somewhere in the programming language
that has intelligent, interpretive powers” (Pea, 1986, p. 25).

The difficulties experienced by Inform 7 users could potentially be ad-
dressed by increasing the levels of constraint and scaffolding. For example,
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constraint could be achieved by allowing users to select from a set of key-
words. Alternatively, a more advanced system could potentially interpret
natural language more generously, e.g. not throwing up a compiler error
when a user types “description for” rather than “description of”. Further
problems might be avoided by ensuring that messages from the computer are
comprehensible, and do not set up false expectations.

At the same time, a fully functional natural language programming lan-
guage seems unattainable given that the computer’s “knowledge” of natural
language will always be limited compared to that of a human. As Rich notes
in his paper, Natural language understanding: How natural can it be?, natural
language in such contexts requires users to “learn not the interface language
itself, from scratch, but rather the boundaries that sit within a language
that they already know and that divide the recognizable sublanguage from
the rest of the natural language.” (as cited in (Nardi, 1993)).

4. Natural Expression of Game Rules

To further investigate the extent to which the difficulties experienced by
Inform 7 novices were due to the limited subset of language that was under-
stood by the compiler, we conducted a second study examining the ways in
which our target users naturally described events and behaviours occurring
in a computer game. This study was designed to investigate whether a hypo-
thetical system with a level of natural language understanding similar to that
of a human could allow novices to program effectively. More specifically, we
were interested in whether, with no programming language syntax to worry
about, novice programmers were able to write correct and complete rules.

4.1. Method

The participants were 64 pupils aged 11 and 12 years old (35 female and
29 male), spread across 3 IT classes, all taught the same material by the same
teacher. The school was located in the south of England, and consistently
performed below the national average in standardised tests.

The study used a game, created specifically for the study using the Elec-
tron toolset, which contained seven scripted encounters, each embodying
a particular computational structure (e.g. conditionals, Boolean operators),
and which increased in complexity. A worksheet was developed to accompany
the game which contained seven questions, one for each scripted encounter.
The first two questions required pupils to choose from a set of rules the one
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which they felt correctly captured the behaviour they had observed in the
game, while the remaining five questions asked them to write the rule that
would produce the behaviour (an example question is shown below):

There are two archers standing on top of a hill overlooking a pass,

as various creatures run through the pass towards their town. The

archers have been given specific instructions on what they should

do with these creatures. What do their instructions seem to be?

Remember, answer in full sentences, and take careful note of how

the archers react to different creatures.

The activity took place during the pupils’ usual IT lesson, which lasted 50
minutes. The same procedure was used in all three classes. Before starting
to play the game, pupils were given the following instructions: “Find the
village at the heart of the forest. Follow the path to explore the game world
and reach the village”. The worksheet was distributed to pupils, and the
game was available to the pupils throughout the activity so that they could
replay the encounters and explore different options if they desired.

4.2. Results

In order to analyse the frequency and type of errors contained in pupils’
rule descriptions, a coding scheme was developed, based on the error analysis
used in (Good and Oberlander, 2002). An additional analysis considered the
linguistic structure of the rules, based on work by Pane et al. (2001). Given
the focus of the current paper, only a summary of the error analysis results
is presented: a full account of the study can be found in (Good et al., 2010).

The overall rate of rule correctness was low: only 21% of attempted an-
swers were fully correct, while 35% had one element (either trigger/condition
or outcome) correct. Errors of omission, in other words, failing to include
part of the rule, were by far the most common category, accounting for 74%
of all errors. The most common error made with triggers/conditions was to
miss this element out entirely (27%), with the second most common error
being partially missing triggers/conditions (12%). For outcomes, the most
common error was a partially missing outcome (27%), followed by a com-
pletely missing outcome (19%). Errors of commission, where participants
included incorrect or vague information in their answers, accounted for a
relatively small number of errors in both triggers and outcomes (7%).

Overall then, rules were much more likely to be incomplete than inaccu-
rate. The low proportion of inaccurate rules is likely due to the impossibility
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of syntax errors: because the rules were “interpreted” by humans, multiple
syntactic variations were acceptable, provided they were semantically cor-
rect. On the other hand, because the exercise was paper-based, pupils were
unable to test their rules, meaning they received no feedback on whether
their rules functioned as they had intended.

4.3. Discussion

The findings from this study suggest that natural language is perhaps
not the most appropriate notation for code generation: although it elimi-
nates syntax errors, it led to a surprisingly high number of omissions in the
rules, a finding which is in line with much earlier work on natural language
descriptions of code (Miller, 1975, 1978).

From a programming language design perspective, these findings suggest
that support designed to minimise syntax issues is insufficient on its own.
The environment should also provide robust support for errors of omission,
ideally before compiling and testing. For example, rules which contain miss-
ing elements could be highlighted, and a “read back” function could allow
users to check that their code matches with their intentions.

The following section describes a design study which tested developing
hypotheses about the use of natural language for computation. We then
synthesise the implications of all three studies into a set of design guidelines
for the use of natural language in novice programming environments.

5. Low-Fidelity Card Prototype Study

Findings from the previous two studies indicated that when novice pro-
grammers use natural language to specify computational rules in a free-form
manner, a surprisingly high number of errors result. However, we hypoth-
esised that the problems arose not because of the natural language aspect
per se, but because of the lack of language constraint and support during
the code generation process. We therefore wanted to explore whether giving
target users a restricted set of language primitives with which to assemble
computational rules would result in greater accuracy. Providing this form
of syntactical support would avoid the problems of multiple semantically
correct, but syntactically uninterpretable, rules seen in the Inform 7 study.

We opted to use natural language for computational keywords, in part
because of the known difficulty inherent in expressing abstract concepts,
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such as disjunction, using graphical representations (Stenning and Oberlan-
der (1995)). However, for specifying objects and characters within a script,
it was decided that images would provide a more accurate and easier to use
method of picking the correct item and adding it to a script given that they
are represented graphically in the NWN2 environment. The aim was to pro-
vide the most direct mapping for users, eliminating the need to translate
between a visual representation of a character or object, and its name.

5.1. Method

The study was conducted in two different contexts: a classroom setting
and an out-of-school holiday workshop setting. In total, 20 young people
took part in the study. The participants in the school part of the study were
8 young people aged 11 and 12 (2 female, 6 male), who were taking part in a
game making project in their IT class. In the workshop context, participants
were 12 young people aged 11-15 (all male), who had elected to attend a
game making workshop during their school holidays. The same procedure
was used in both contexts.

The study used four types of laminated cards: action cards, thing cards

(objects and characters), connecting cards (representing control logic such as
‘if’, ‘until’), and description cards (representing object state). The thing cards
graphically depicted common characters and objects in the game world, while
the words used on the other three card types were drawn from the corpus
of natural language rule descriptions generated from our study on young
people’s expressions of rules in natural language (Section 4). A number of
blank cards were also included should participants wish to create new cards.

We were interested in determining the ease of both language comprehen-
sion and code generation. Participants were therefore first asked to read out
the meaning of rules that had been constructed using the cards. There were
25 rules, which increased in complexity. This was followed by a program gen-
eration activity in which we read out a statement such as “The wolf attacks
the player, but only if the player is carrying the treasure” (15 in total, again
increasing in complexity) and asked participants to use the cards to write
the corresponding rule, as shown in Figure 6.

5.2. Results

Overall, the majority of participants were able to construct correct rule
descriptions using the cards. For the composition task, the percentage of
fully correct rules was 77% in the school study, and 76% at the holiday
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Figure 6: Constructing Rules with Paper Prototype Cards

workshop. There did, however, seem to be some confusion between different
computational categories, particularly states and actions. A state ‘is open’
was often used instead of the action ‘opens’. Similarly, ‘when’ and ‘if’ were
often used interchangeably.

5.3. Discussion

In comparison to the study in which pupils wrote rules in unconstrained
natural language (Section 4), the percentage of correct rules was considerably
higher, indicating that choosing from a limited vocabulary reduced errors
substantially. This is not surprising in and of itself, however, it is interesting
to note that while graphical languages require users to choose from a set of
pre-existing blocks by necessity, most text-based languages do not, instead
requiring them to type code from scratch, which introduces syntax errors in
the process. While some suggest that graphical languages are superior to
textual languages for novices (see (Whitley, 1997) for an early discussion of
this debate), it may be that any ease of use results from the constrained
nature of graphical languages, rather than their graphicacy per se. Finally,
the confusion between different types of computational constructs suggests
that support should be provided to help users differentiate between them.
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6. Summary of Design Studies: The Role of Natural Language for
Computation

In our study investigating the use of a natural language programming lan-
guage for code generation (Section 3), we found that unconstrained natural
language introduces a number of significant issues. Some of these stem from
confusion as to how language is being used in any given instance (i.e. is this
“real” natural language, or “programming” natural language?). Even when
the user is aware of the distinction, the human ability to generate multiple
semantically equivalent phrasings comes up against the compiler’s ability to
understand only one of these phrasings. Finally, more “natural” commu-
nicative utterances from the computer, rather than helping, exacerbate the
problem by suggesting to the user that it is possible to engage in a dialogue
with the system when it is not in fact the case.

Our study of the ways in which young people use natural language to
convey computational concepts (Section 4) suggested that eliminating syntax
and compiler issues did not completely eliminate errors, however, the errors
took the form of errors of omission, rather than errors of commission.

In our language design study (Section 5), we found that constraining the
programming language results in far fewer errors. As noted earlier, although
perhaps unsurprising, it suggests that visual languages may derive some of
their cognitive tractability from the limited power of expression inherent
in graphical representations, e.g. their difficulty in representing alternative
possibilities (Stenning and Oberlander, 1995). Finally, when language is used
for computational keywords, novices appear to require support not only for
understanding a particular computational concept, but also for determining
the computational category to which it belongs (e.g. trigger, state, condition).

The starting point for this series of studies was a question about how
young people’s narrative understanding of computational events, expressed
using natural language, might be used as a basis for fostering the develop-
ment of their computational skills (through computational activities which
encompass not just program generation, but comprehension, debugging and,
in many cases, collaboration).Considering the range of computational activ-
ities broadens the scope of enquiry and allows us to consider their common
requirements. For example, all of these activities require some form of no-
tation which can be used by the actors involved (both human and machine
‘actors’) in order to communicate with each other. At the same time, the
specifics of each activity differ and by not focussing solely on determining
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the most appropriate notations for coding, we can consider whether different
activities might require different notations. We concluded that natural lan-
guage does not appear to be well suited to program generation, however, it is
well suited to the activities of comprehension, debugging and collaboration,
perhaps more so than programming languages themselves.

In the case of program generation, using natural language as the base
notation leads to difficulties in that humans are asked to use a language
with which they are familiar in a very different way, and for very different
purposes. At the same time, computers require more computational sophis-
tication to interpret natural language (as compared to a traditional program-
ming language), and to respond appropriately: although substantial progress
continues to be made in this area, misinterpretation and miscommunication
on the part of the system can have serious consequences on a learner’s ability
to progress, as we found in our study of Inform 7.

Unlike code generation, activities such as comprehension, debugging and
collaboration require notations that are optimised for human ease of use, as
these activities typically involve communication with oneself (in the case of
reading back the source code, or other notation, to try and understand and/or
debug one’s code) and with others (in the case of programmer collaboration,
or where a teacher or peer may be trying to understand a student’s program
in order to provide support).

In keeping with our focus on using natural language to support computa-
tional activities, the next section presents a series of design guidelines, derived
from the studies described above, and organised according to whether they
focus on code generation, or on comprehension, debugging and collaboration.

7. Design Guidelines

Our three studies showed that full-sentence natural language remains
problematic for program generation, but can be very useful for supporting
comprehension, collaboration and debugging. We have synthesised our find-
ings into a set of design guidelines for the effective use of natural language in
novice programming environments. Our focus is on how such environments
can support young people to 1) create correct and complete computational
rule specifications and 2) develop an understanding of computational
concepts, and the skills to use them. The design guidelines are separated
into those supporting the use of natural language in program generation,
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and those supporting its use for comprehension, debugging and collabo-
ration. The guidelines are described below, along with a reference to the
study (or studies) from which they arose (indicated as “S1” for study 1, etc.).

For program generation:

1. Constrain expression during program generation: in novice pro-
gramming environments, expression should be constrained to prevent
syntax errors. This can be achieved by using draggable blocks with
text for code composition, or through an through autocomplete func-
tionality in the case of purely textual languages (S1, S2, S3);

2. Clearly distinguish ‘code’ from free-text: it should be clear to the
user whether the language is true natural language (e.g. a conversation
line in a story) or is being used as code. For example, computational
constructs should appear in a different font/colour in textual languages,
while in blocks-based languages, strings and code blocks should be
clearly separated (S1, S3);

3. Highlight distinctions between different computational cate-
gories: make phrases from different computational categories visu-
ally distinct to avoid confusion, particularly when the natural language
phrases are similar (e.g. the action “opens” vs. the state check “open”).
Colour and shape can also be used to provide additional cues (S3);

4. Make underlying structure visible to avoid errors of omission
or commission: when composing code it should be clear where a
particular construct requires completion by another element (and of
what type), and how constructs can be combined to make well-formed
statements. Colour-coding, shape-matching and the use of prompts
can help to avoid errors before they occur (S1, S2, S3);

For comprehension, debugging and collaboration:

5. Provide a full-sentence natural language description of the
code: the programming environment should allow the user, and other
users, to easily understand and review the code they have written. A
full-sentence natural language representation of the program can allow
users to more easily understand the behaviour the code will bring about,
making it easier to identify semantic errors in their own code, and get
up to speed with someone else’s code (S1);
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6. Use ‘natural’ natural language: where full-sentence natural lan-
guage is used, it should be consistent with typical everyday use, as far
as possible, avoiding unnatural syntax or phrasing. Any error messages
should be brief and understandable (S1);

7. Do not suggest the system can engage in dialogue when it
cannot: care should be taken to avoid giving the impression that the
system is able to engage in a dialogue with the user when it cannot, or
more broadly, is more “intelligent” than it actually is. An environment
that encourages a conversational style without being able to achieve it
may actually exacerbate the formation of superbugs (S1).

These empirically derived guidelines can be used in the design of new
languages, and to analyse the properties of existing novice programming
environments that make use of natural language. The guidelines were imple-
mented in Flip, a bi-modal language for game creation, described below.

8. The Flip Language

8.1. An Overview of Flip

Flip is a language for scripting game events, and is designed to replace
the need for NWScript when creating games using NWN2’s Electron toolset.
Novice programmers can create scripts by dragging and dropping blocks into
a workspace and then connecting them together on a spine. The Flip in-
terface also features a full natural language description of the script under
construction: as the user adds blocks to their program, the natural language
description updates dynamically. Figure 7 shows the basic Flip interface,
while the points below describe each numbered feature (note that a full de-
scription of Flip can be found in (Howland and Good, 2015)) .

1. The Block Box contains the blocks used to create scripts, organised
by computational category and object type. Selecting a category from
the top panel highlights it, and displays all of the blocks in that cat-
egory. Blocks represent computational concepts (actions, conditions,
states), and are colour-coded by type. Blocks have slots that must be
filled by objects of a certain type. The slots are similarly colour-coded
to indicate which types of objects they can receive, and empty slots
indicate, in natural language, the type of slot filler required.

2. The Event Slot takes a single event block, which dictates when the
script will execute.
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Figure 7: The Flip Interface

3. The Spine is where the script is composed, by attaching blocks to the
silver pegs. The spine can be extended indefinitely to accommodate
additional actions, and scripts execute in a top down manner.

4. The Natural Language (or ‘plain English’) Box shows a natural
language description of the script under creation. It is automatically
generated, and dynamically updated each time the user makes a change
to their script. The natural language box gives a full description of the
script meaning, explaining in detail what will happen and under what
conditions. Whilst the words on the blocks are designed for brevity,
and to reflect the most common way of describing the underlying com-
putational concepts, the natural language description is more complete.

By using the blocks available in Flip, game designers can quickly create
some fairly complex behaviours. In Figure 8 we show how the designer can
set up a locked gate which can only be opened if the player has discovered
the key, or if they have purchased a lock pick.

The event chosen for this script is someone walking into a trigger. The
designer has marked out a trigger area in front of the gate within the game
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Figure 8: Conditional Script Example

world, selected it from the Triggers panel within Flip, and added it to the
empty slot in the event block. An If . . . Then . . . Else block has been chosen
from the Control panel to create the desired conditional behaviour.

To create the conditional check, the user has used a Boolean Or block
within the If slot, and filled the two sides of the Or block with the conditions
under which the actions on the Then spine should be run: If the player is
carrying a certain key, or if the player is carrying a set of lock picks. The
Then spine contains one action the unlocking of a gate which will happen
if either of the conditions placed in the Or block are true. If the condition
within the If slot evaluates as false, that is if the player is not carrying either
the key or the lock pick, the Else spine will run and the player will be shown
a message explaining what they need to do to exit.

The natural language box gives a full description of the script meaning,
explaining in detail what will happen and under what conditions. The natural
language box automatically generates a description of all blocks attached to
the spine, and is dynamically updated every time a change is made.
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8.2. Design Guidelines as Embodied in Flip

For program generation:

1. Constrain expression during program generation: achieved
through the use of a set of graphical code blocks, eliminating the need to
type code from scratch. Also achieved by making the natural language
component of the language non-editable, thus preventing the user from
inadvertently introducing syntax errors;

2. Clearly distinguish ‘code’ from free-text: code appears in Flip’s
graphical code composition interface, while its natural language equiv-
alent appears in the plain English box. Natural language used in the
script (e.g. messages to be displayed to the player) is shown as a sepa-
rate, colour-coded block within the graphical language, and in quotes
in the plain English box. Furthermore, Flip uses correct computational
terms to represent the underlying concepts on all interface menus and
graphical programming blocks, allowing young people to begin to learn
and use the “language of computation”. These computational key-
words are automatically translated into fuller, everyday language in
the plain English box, further distinguishing computational language
from natural language;

3. Highlight distinctions between different computational cate-
gories: blocks are visually organised and colour coded by computa-
tional category (actions, conditions) to avoid confusion between terms
that are similar from a natural language perspective (“opens” vs. “is
open”) but computationally distinct (action vs. state);

4. Make underlying structure visible to avoid errors of omission
or commission: blocks and slot fillers are differentiated by colour and
shape, with colour used to link blocks with their corresponding slot
fillers. This feature aims to support users’ understanding of differing
types of command, and to help them avoid errors of commission. A
further feature prevents blocks of the wrong type from snapping into
place, thus preventing type errors. Errors of omission that prevent the
script from compiling trigger a short error message (see point 7);

For comprehension, debugging and collaboration:

5. Provide a full-sentence natural language description of the
code: in addition to the code blocks used for program generation,
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Flip’s “plain English” box provides novices with a description of the
code they have written (whether complete or not) in full-sentence nat-
ural language. This allows them to not only read their code back to
themselves (and identify any errors or omissions), but allows others to
quickly get up to speed with their code.

6. Use ‘natural’ natural language: Flip’s “plain English” box is de-
signed to be as similar as possible to spoken English (e.g. when de-
scribing one’s script to another person), avoiding any unusual turns of
phrase. Phrasings were derived, as much as possible, from the corpus
of rule descriptions gathered from target users (Section 4);

7. Do not suggest the system can engage in dialogue when it
cannot: written error messages from the system to the user are rare, as
syntax errors are prevented. The few error messages that are necessary
(when a crucial element has been omitted) have been kept very short,
in order to avoid suggesting that the compiler possesses a human-like
capacity for language comprehension and dialogue.

9. Evaluating the Design Guidelines in Flip

Flip has been evaluated in a number of empirical studies in different
settings, including an investigation focussing on whether its use led to an
improvement in young people’s computational abilities overall (Howland and
Good, 2015). Here we describe two evaluations that considered the extent to
which Flip is usable by young people for program generation, and supports
their understanding of computation. We were also interested in how the
design guidelines embodied in Flip contributed to the above two points, i.e.
whether they contribute to Flip’s usability and provide support for program
generation and computational understanding.

The two evaluation studies described here were carried out in three dif-
ferent real-world game creation contexts. Study one was an observational
study that took place in a secondary school classroom over the course of a 2
hour lesson. The study focussed, in detail, on the ways in which users inter-
acted with the Flip interface. In our analysis we looked at how the range of
features our design process implemented were used by our target users.

The second study was longitudinal, and looked at the use of Flip over the
course of two complete game creation projects, one taking place in a school
context, and the other taking place in a holiday workshop context. We
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examined the scripts created over the course of the projects, and conducted
end of project interviews and surveys.

9.1. Flip observation study

9.1.1. Participants

Twenty-one pupils aged 11-12 (9 male, 12 female) took part in a two hour
session in an IT suite at a secondary school in Scotland. All but one of the
pupils had taken part in an 8 week game creation project in the previous
year as part of their IT lessons. That project had used the Electron toolset,
so pupils had prior knowledge of all other aspects of game creation, but had
not previously used the Flip language.

9.1.2. Method

Pupils were told that they would be testing Flip, a new language de-
signed to work with the game creation toolset they had previously used.
We explained that we valued their previous experience with the toolset, and
particularly wanted honest feedback on how Flip might be improved. We
emphasised that Flip was designed to make it easier for them to make more
complex events happen within their games. After this background, all pupils
were shown an initial introductory video which demonstrated how to add a
script which would execute when a conversation line is said.

Pupils worked in pairs (with one group of three), and were asked to try
adding a script in the way demonstrated. After 20 minutes, pupils were called
back for a second demonstration in which they were shown how to use event
types other than conversation lines to trigger their scripts. After a further 20
minutes working on their games, the pupils were given a final demonstration
on how to use control blocks to add conditionals to their scripts.

Four researchers were present in the classroom along with the classroom
teacher. One researcher gave the demonstrations and took primary responsi-
bility for answering questions from pupils, whilst the other three researchers
acted primarily as observers. A number of video recordings of onscreen in-
teractions were made, and log files and scripts were collected for analysis.
Researcher notes were collected and written up after the session, and the
video footage was transcribed and analysed.

9.1.3. Results

Flip usage, usability and understanding
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All of the participants succeeded in creating at least one full script with
an event and action(s), while seven of the ten pairs successfully added con-
ditionals to their scripts. Pupils commented that Flip represented a definite
improvement in terms of allowing them to write their own scripts, with one
pair noting excitedly that Flip was “really good”.

Action blocks were well understood, with no observed instances of confu-
sion. Participants were also able to make use of the extending spine to create
sequences of action which were much longer than the default spine length.

Events seemed to cause problems for a few pupils. Although event blocks
were a different shape and colour to other types of block, the four instances
of incomplete scripts that we observed were due to the lack of an event block.
In one case, a user tried to save a script without an event, and received an
error message, then quickly added an event and successfully saved it. In
another case when trying to save with a missing event the pair in question
did not understand what to put in the event block, but after consulting the
pair sitting next to them they were successful in filling it out and saving the
script. Two similar cases were observed where one user thought the script
was ready to save, but their partner pointed out the missing event. There
were no observed cases of users trying to save their script when missing other
elements such as objects in actions or conditions.

There were some instances of initial confusion around the distinction be-
tween different computational categories, similar to the design study, but this
appeared to be limited to instances involving the conditional slot of control
blocks. A few users tried to drag the wrong type of block into the conditional
slot, but could tell that something was wrong, as the block would not snap
into place. This caused momentary frustration for one or two users, but in
each case it appeared to alert them to the fact that the block was not of the
right type to fit. In most cases this led to them trying another block type,
with eventual success, and in one case it led them to ask for an explanation
and help from a researcher. In another case, after attempting to add an
action to a slot requiring a condition, one participant said to her partner
“We need something that’s that colour”, pointing to the pink colour of the
empty slot. On switching to the Conditions menu, they immediately noted
that condition blocks were similarly pink, and successfully completed their
control block. The same issue was observed with another pair, with a similar
method of resolution, but without an explicit discussion of colour. Overall,
the difficulties related to conditionals suggested an interface issue in relation
to the distinction between different types of computational categories, rather

29



than a more general misunderstanding around the use of conditionals.
Use of the natural language box

There were numerous examples of the natural language description being
used as a sense checking mechanism, with ten recorded cases of participants
reading the natural language aloud, before deciding whether it described
their intentions accurately. In two of these cases, the reading of the natural
language led to a revision of the script as the participants realised it would
not do what they intended, and in the remaining cases it gave participants
the confidence to move on to the next stage: testing the event in game.

There were two examples of pupils reading the natural language descrip-
tion and paraphrasing it in order to explain their code to either a researcher
or a peer. There are likely to have been a number of other cases where pupils
read the natural language description silently to themselves, but we were
unable to capture these instances through observation only.

Overall, there were many examples of pupils confidently discussing com-
putational concepts, including conditionals, by the end of the session. This
observation is supported by teacher comments from a study reported in (How-
land and Good, 2015) in which the teacher noted that Flip provides pupils
with a language in which they can express computational concepts.

9.2. Flip longitudinal studies

Further to the small-scale observation study described above, we con-
ducted two longitudinal studies in which Flip was used over the course of
two game making projects: one taking place in a local secondary school, and
the other in a voluntary holiday workshop.

9.2.1. Participants

In the school project, 56 young people aged 11-12 (30 female, 26 male)
took part in a game creation project as part of their IT lessons. The pupils
were spread over two classes; both were taught the same material by the
same IT teacher. The school’s most recent inspection report noted a wide
spread of ability, with fewer higher attaining students compared to the na-
tional average. The school also had higher proportions of pupils with special
educational needs, and pupils from lower socioeconomic backgrounds. The
pupils in the study had not previously learnt any programming languages
(textual or visual), or taken part in any game creation activities at school.

The project ran over one half-term (7 weeks), with 11 fifty minute lessons
scheduled for each class (although both classes missed two lessons due to last
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minute timetable changes and end of term activities). As a result, pupils
across both classes spent approximately 7.5 hours on the game creation
project. Thirteen of the 56 school pupils were interviewed at the end of
the project (7 girls and 6 boys, representing a range of ability levels), while
40 of the 56 pupils completed an end of project survey.

In the holiday workshop setting, 14 young people aged 11-15 (1 female
and 13 males) took part in a game creation project for four days over half
term. Participation was voluntary, in response to web and email adver-
tisements. Three participants had experience of the Electron toolset (but
without Flip): two from previous workshops run by the authors, and one
from an unconnected workshop. Upon arrival, participants completed a sur-
vey on their prior programming experience: ten reported no programming
experience, three reported ‘minimal’ experience, while one was unsure.

Participants attended the workshop over four days from 10am to 4pm.
With a 45 minute lunch break per day, and one hour spent on related ac-
tivities at the beginning and end of the workshop respectively, participants
spent approximately 19 hours on the game creation project.

9.2.2. Method

In both settings participants were given demonstrations by the authors,
introducing them to the key tools and functionality of the Electron toolset
and the Flip language. These demonstrations took the form of instructional
videos which presenters explained as they went along and included basic
toolset features (using the terrain editor; adding objects and characters and
playtesting; conversation writing; interior areas and area transitions) and
creating scripts with Flip (using Flip to add actions to conversations; using
events and conditionals). In addition, the workshop participants received an
additional tutorial on more complex conditionals (using Boolean elements
And, Or and Not) as they had more time on the game creation project.

At the end of the school project, semi-structured interviews were carried
out with thirteen of the 56 pupils. Screenshots of the Flip interface were used
as prompts during the interview, and interviews were audio recorded and
later transcribed. Additionally, all pupils were asked to complete an online
survey at the end of the project, which asked a range of questions about
their experiences over the course of the game creation project, including 11
questions about Flip. As the survey was carried out at the end of term when
normal classes were disrupted, only 40 of the 56 pupils completed the survey.

At the end of the holiday workshop all fourteen young people were in-
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terviewed using the same question framework as that used in the school.
Again, all interviews were audio recorded and later transcribed. Addition-
ally, in both settings, log files were collected for all participants as well as all
modules created and scripts written.

9.2.3. Results

Flip usage stats

In the school project, 70% of pupils (39 of 56) successfully created working
scripts. 202 complete and correct scripts were written and saved, however,
some of these saves accounted for revisions to scripts a pupil had already
worked on. Considering unique scripts only, a total of 132 scripts were written
(a mean of 2.36 scripts across all participants, and a mean of 3.38 amongst
those who created scripts).

At the holiday workshop, all 14 participants successfully created fully
functional scripts. There were 410 script saves recorded, with 260 individual
scripts written (a mean of 18.57 scripts per participant). Overall, participants
at the workshop wrote considerably more scripts than those in the school
project. This is unsurprising given that they spent over twice as much time
on the project, and furthermore that they self-selected to attend a game
making workshop during their school holidays.

In the school setting, a total of 132 events were used in the scripts (as
every script is triggered by an event) while 252 actions were used (a mean
of 3 actions per script). 71% of participants (10 of 14) included conditionals
in their scripts, with 73 conditionals used in total. Only 15% of the school
pupils (6 of 39) added a conditional to their scripts, and between them they
added 12 conditionals in total.

In the workshop setting, 260 events were used in the scripts, along with
780 actions (a mean of 1.9 actions per script). 71% of participants (10 of 14)
included conditionals in their scripts, with 73 conditionals used in total.
Flip usability

As noted above, during the interviews, we asked participants to discuss
their usage of Flip and explain various components of the Flip interface in
order to gauge their understanding.

Of the thirteen school pupils interviewed, eight noted that they had man-
aged to make things happen in their game using Flip, three noted that they
had used Flip but had not been able to create a working script, while two
had not had time to use Flip as a result of missing lessons. Of the pupils
who had used Flip, three said that their scripts always worked as expected,
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while five said that although their scripts did not initially work as expected,
they had managed to fix them or find workarounds. Two pupils reported
problems with their scripts that they hadn’t yet resolved, and one person
had not yet been able to test their scripts.

When the eleven pupils who had used Flip were asked about ease of use,
one described it as “really easy” to use, and two said it was “pretty easy”.
Two people stated that it was between hard and easy, and a further three
explained that there were both hard and easy bits. The three remaining
participants said that they found Flip hard, although one said that after
asking her friend for help it made more sense.

The interviews were supplemented by the school survey data, where 12 of
the 40 respondents noted that creating Flip scripts was “hard”. At the same
time however, 20 or the 40 respondents noted that they “enjoyed” creating
Flip scripts. The survey also asked pupils about their general understanding
of Flip: 32% felt that they understood all aspects of Flip, 63% felt that they
understood some of Flip, while only 5% felt that they didn’t understand Flip
at all.

Figure 9 shows the responses to survey questions on specific activities
within Flip. Pupils were asked to express how easy or hard they found each
activity on a 5-point Likert scale ranging from Very Easy to Very Hard.
There was a relatively small proportion of responses of ‘Very Hard’ or ‘Quite
Hard’ for all activities, while ‘Finding the right blocks’, ‘Knowing what to
put in the When box’ and ‘Knowing when your script was correct’ had the
highest number of such responses. The activities with the highest number
of ‘Very Easy’ and ‘Quite Easy’ ratings were ‘Placing the blocks in the right
slots’ and ‘Knowing what action blocks to choose’.

All of the workshop participants interviewed stated that they found Flip
easy to use, with one participant stating that it was because “it was very
straightforward and the words aren’t too complicated to understand”, and
another noting that “. . . it’s easier than the proper one that came with the
toolset”.
Flip usage and understanding

When asked about the event block, four of the pupils in the school setting
were able to give a full explanation of its purpose. These were mostly in non-
technical language, but expressed the correct meaning, for example: “if you
put something there then it means . . . erm, that at a certain time, when that
particular thing happens, erm, everything else in the script will run.” One
person knew that it needed to be “something that happens in the game”,
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Figure 9: School Survey Results - Relative Difficulty of Flip Features

but was not able to elaborate further. Five pupils understood that the user
needs to drag a block into the event slot, but did not realise that it had to
be a When block, one of whom said “I think you put one of [the blocks] in
there and then you base all of [the rest of the script] on it.”

In the workshop setting, 12 participants gave a clear explanation of its
purpose, while two were able to provide example of events, but could not pro-
vide a more generic explanation. When asked about control blocks, specifi-
cally an If . . . Then . . . block, 10 participants gave a clear explanation of its
function, with some able to describe it in computational terms, and others
expressing the meaning in more non-standard ways: “. . . It’s an If . . . err,
equation, so like . . . if whatever variable you specify is . . . is one way, then it
will do . . . do whatever it is in the script, but if it isn’t, then it won’t.” The
remaining four participants seemed to understand the purpose generally, but
could not find the language to express it unambiguously.
Use of the natural language box

When pupils interviewed in the school setting were asked to explain the
purpose of the natural language box, five gave full and clear explanations,
although one mistakenly thought that the description only appeared after
the script had been saved. Two pupils thought it only described what had
been put on the spine (although the Event box shown in the screenshot was
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empty, which may have led to confusion). One pupil thought that it only
told the user what they had put in the event box, while another said that
it “tells the computer what to do”, suggesting that he thought this was a
translation for the computer rather than the user. The two remaining people
who had used Flip said that they did not understand the purpose of the
natural language description.

In contrast, in the workshop setting, eleven of the fourteen participants
gave clear, high-level explanations of the natural language box, while the
remaining three appeared to understand its purpose, but focussed on specific
examples. Seven people noted that they considered the natural language
description to be a simplified explanation for when they did not understand
the blocks above, with some mentioning that it was particularly useful for
complex scripts. Three people described it as a way of checking that the script
would work as intended, and spotting where corrections were necessary.

9.3. Evaluation Discussion: Novice Support and Design Guidelines

The evaluation studies showed that novice programmers found Flip fairly
easy to use, and that most were able to use it to create scripts for their games.
Although the figures indicate that a relatively small number of conditionals
were used, particularly in the school setting, this relates to the way that Flip
overlays the existing scripting language. Flip provides a trigger-action rule
interface for the underlying scripting language, and the variety of custom
triggers provided takes away the need for the explicit use of conditionals,
except in particularly complex cases. For example, within the scripting lan-
guage, writing a script which fires when the player enters an area would
require a conditional to check whether the person entering the room is the
player, as it fires when anyone enters the room. With Flip the user can fill
the trigger with a player block and avoid the need for the explicit check.

When looking at the Flip evaluation findings in light of the design guide-
lines, the main benefits seemed to stem from the constraints built into the
language, a clear separation between code and natural language, support for
errors, and the use of natural language for comprehension and debugging. In
brief, syntax errors were not observed due to the highly constrained nature
of the language (DG1), with support built in to the graphical language and
the environment as a whole (DG3, DG4). The use of a non-editable natural
language representation for code comprehension, rather than code genera-
tion, also prevented the introduction of syntax errors (DG5). Pupils seemed
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to understand the distinction between free-text and code (DG2), with no
attempts to edit the natural language code description (DG2).

The natural language representation seemed to be comprehensible to
pupils (DG6) and to successfully support individual code comprehension and
debugging (DG5). It also acted as a support for communication about com-
putation, with pupils using it to explain their code to others (DG5). Finally,
where errors in the scripts could either not be prevented or rectified prior
to compiling the code, succinct and clearly worded error messages seemed
effective at directing learners to the issue at hand (DG6, DG7).

Some users were observed having initial difficulty distinguishing between
blocks of different computational categories, particularly conditionals, sug-
gesting that improvements could be made to the colour and shape cues for
this. Notably, this was an issue the design guidelines specifically highlight
as a danger, and participants were able to resolve their confusion thanks to
cues within the interface designed to tackle confusion of this sort.

Overall, the empirically derived design guidelines allowed us, in the first
instance, to determine how to best incorporate natural language into the
environment in a way that would be helpful to novice programmers, rather
than hindering their progress or even leading to further misconceptions. In
turn, reviewing the empirical evaluations of Flip in light of the design guide-
lines allowed us to see which features were having an impact on program
generation, comprehension and debugging, and in what ways.

10. Conclusions and Future Work

This paper re-examined the use of natural language in novice program-
ming environments, investigating whether it is a viable option for program
generation, comprehension and debugging. We presented three design stud-
ies, the results of which suggested that full-sentence natural language is not
well suited to code generation, but can provide helpful support for code com-
prehension, debugging and collaboration tasks. The paper contributes a set
of seven design guidelines, empirically derived from our findings, and imple-
mented in Flip, a bi-modal programming language designed for use by young
people in the context of game creation. The findings from the empirical eval-
uation studies highlight the extent to which the design guidelines embodied
in Flip were able to provide effective support for novices.

Although it was not appropriate to use these guidelines to evaluate gen-
eral purpose languages designed without specific goals regarding the use of
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natural language, it is useful to briefly discuss the extent to which the guide-
lines are met by features of existing languages. The are many examples of
environments that use a form of constrained natural language for program
generation, in line with guidelines 1-4. For example, popular blocks-based
languages such as Scratch (Resnick et al., 2009) and Alice (Cooper et al.,
2000) use draggable blocks for code composition, make strings easily dis-
tinguishable from code, and use colour and shape to make visible different
computational categories and the way in which blocks can be combined.
However, our studies also suggest that a bi-modal representation of code,
one of which takes the form of full-sentence natural language, can support
novice comprehension, debugging and collaboration, in line with guidelines
5-7. Natural language is not used in this way by other existing novice pro-
gramming environments. Our future work will investigate whether including
a natural language view in established novice programming environments
such as Scratch can provide additional support to novice users, and improve
their understanding of and communication about their code.

Although the investigations described in this paper have focussed on the
use of natural language for programming, and in a specific context, we believe
that the findings and guidelines are of broader relevance to those considering
notations in novice programming environments. In the current climate of
“computation for all”, discussed in Section 1, there has been a renewed focus
on determining the “best” language for novices, with comparisons between
blocks-based and text-based languages (Price and Barnes, 2015; Weintrop
and Wilensky, 2015b)) which are reminiscent of the textual vs. visual pro-
gramming language debates of the 1990s (Whitley, 1997; Green et al., 1991).

In parallel with this is an implicit assumption that blocks-based languages
are a stepping stone to more “serious” text-based languages, a view shared
by the learners themselves (Weintrop and Wilensky, 2015a). A number of
recent initiatives are looking at how best to facilitate this transition, with
systems such as PencilCode (Bau et al., 2015) and DrawBridge (Stead and
Blackwell, 2014) allowing learners to move back and forth between the two.

However, whatever the notation used, there is a need to examine them
from a finely-grained, cognitive perspective, considering the specific affor-
dances of each one. The well-known ‘match-mismatch conjecture’ (Gilmore
and Green, 1984) suggests that if a language (or notation) highlights a given
type of information, then a task requiring that type of information should be
easier to perform than one requiring a different type. This conjecture also
seems to hold true at the higher level of programming activities such as code
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generation, comprehension, debugging and collaboration, and when consid-
ering the actors involved in the activities (human and machine). Therefore,
while a programming language (whether blocks or text based) may repre-
sent the most effective means of interacting with a computer, it may not be
the best notation for communicating about the program to other users or
programmers.

Finally, although our studies showed that natural language descriptions
of programs were helpful when communicating and collaborating with others,
this is not to suggest in any way that natural language will be “best” in all
such cases. As (Nardi, 1993, p. 24) notes, “Conversational communication
can be quite constricting and unnatural when what is needed is fundamen-
tally graphic”, and research by Guo et al. (2015) similarly highlights the role
of visualisations as a basis for communication and collaboration.

Therefore, when thinking about how to design environments for novice
programmers, the focus should not be solely on the specifics of the notation
used for code generation. Instead, an awareness of the multiple and varied
tasks and activities that comprise computation should lead, in turn, to a
careful consideration of the notations which can best support each task. By
developing notations that help learners to write code, understand it, debug it,
and share their knowledge and understanding with others, we hope to create
novice programming environments that lower the barriers to computation for
all.
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