
Thesis for the Degree of Doctor of Engineering

Programming Language Techniques for

Natural Language Applications

Björn Bringert

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

SE-412 96 Göteborg

Sweden

Gothenburg, October 2008

Programming Language Techniques for Natural Language Applications
Björn Bringert

ISBN 978-91-628-7618-0

© Björn Bringert, 2008

Technical report 48D
Department of Computer Science and Engineering
Language Technology Research Group

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31 772 1000

Printed at Chalmers, Gothenburg, Sweden, 2008

Abstract

It is easy to imagine machines that can communicate in natural language. Con-
structing such machines is more difficult. The aim of this thesis is to demon-
strate how declarative grammar formalisms that distinguish between abstract
and concrete syntax make it easier to develop natural language applications.

We describe how the type-theorectical grammar formalism Grammatical
Framework (GF) can be used as a high-level language for natural language
applications. By taking advantage of techniques from the field of program-
ming language implementation, we can use GF grammars to perform portable
and efficient parsing and linearization, generate speech recognition language
models, implement multimodal fusion and fission, generate support code for
abstract syntax transformations, generate dialogue managers, and implement
speech translators and web-based syntax-aware editors.

By generating application components from a declarative grammar, we can
reduce duplicated work, ensure consistency, make it easier to build multilingual
systems, improve linguistic quality, enable re-use across system domains, and
make systems more portable.

i

ii

Table of Contents

Introduction 1
1 Interactive Natural Language Applications 1

1.1 Problems . 3
2 This work . 4

2.1 Advantages . 4
2.2 Limitations . 7

3 Grammatical Framework . 7
3.1 An Example Application Grammar 9

4 Paper I: Speech Recognition Grammar Compilation in Grammat-
ical Framework . 11
4.1 An Example . 11
4.2 Contribution . 13
4.3 Publication . 13

5 Paper II: Multimodal Dialogue System Grammars 13
5.1 An Example . 13
5.2 Contribution . 15
5.3 Publication . 15

6 Paper III: Rapid Development of Dialogue Systems by Grammar
Compilation . 15
6.1 An Example . 15
6.2 Contribution . 16
6.3 Publication . 16

7 Paper IV: Speech Translation with Grammatical Framework . . . 16
7.1 An Example . 17
7.2 Contribution . 17
7.3 Publication . 17

8 Paper V: Interactive Multilingual Web Applications with Gram-
matical Framework . 18
8.1 An Example . 18
8.2 Contribution . 18
8.3 Publication . 18

9 Paper VI: PGF: A Portable Run-Time Format for Type-Theoretical
Grammars . 18
9.1 An Example . 19
9.2 Contribution . 20
9.3 Publication . 20

iii

10 Paper VII: A Pattern for Almost Compositional Functions 20
10.1 An Example . 20
10.2 Contribution . 21
10.3 Publication . 21

11 Related Work . 21
11.1 GF in Interactive Speech Applications 21
11.2 Compiler-like Grammar Development 22
11.3 Embedded Languages . 22
11.4 Interactive Development Environments for Dialogue Sys-

tems . 23
12 Future work . 23
References . 24

Paper I: Speech Recognition Grammar Compilation in Grammat-
ical Framework 31
1 Introduction . 31
2 Speech Recognition Grammars 32
3 Grammatical Framework . 33

3.1 The Resource Grammar Library 33
3.2 An Example GF Grammar 33

4 Generating Context-free Grammars 35
4.1 Algorithm . 35
4.2 Discussion . 37

5 Finite-State Models . 38
5.1 Algorithm . 38
5.2 Discussion . 39

6 Semantic Interpretation . 40
6.1 Algorithm . 40
6.2 Discussion . 40

7 Related Work . 40
7.1 Unification Grammar Compilation 40
7.2 Generating SLMs from GF Grammars 41

8 Results . 41
9 Conclusions . 42
References . 42

Paper II: Multimodal Dialogue System Grammars 49
1 Introduction . 49
2 The Grammatical Framework and multilingual grammars 50
3 Extending multilinguality to multimodality 53
4 Proof-of-concept implementation 53

4.1 Transport network . 54
4.2 Multimodal input . 54
4.3 Multimodal output . 57

5 Related Work . 58
6 Conclusion . 58

iv

References . 59

Paper III: Rapid Development of Dialogue Systems by Grammar
Compilation 63

1 Introduction . 63

2 Grammatical Framework . 64

2.1 Abstract Syntax . 64

2.2 Concrete Syntax . 65

3 An Example Dialogue System . 66

3.1 Abstract Syntax . 66

3.2 Concrete Syntax . 67

3.3 Example Dialogues . 67

3.4 Extending the Example System 68

4 Implementation . 70

4.1 Dialogue Management . 70

4.2 Language Model and Semantic Interpretation 71

4.3 Generation . 71

5 Future Work . 71

5.1 Dialogue flexibility . 71

5.2 Automatically Generated Help 71

5.3 Context-dependent Prompts 72

5.4 Dependent Types . 72

5.5 Integrated Multimodality 72

5.6 Weighted Grammars . 72

6 Related Work . 73

6.1 Dialogue and Proof Editing 73

6.2 GUI Tools for Rapid Dialogue System Development . . . 73

6.3 GF and Dialogue Systems 73

7 Conclusions . 73

References . 74

Paper IV: Speech Translation with Grammatical Framework 79

1 Introduction . 79

2 Example Grammar . 80

3 Speech Translator Implementation 81

4 Evaluation . 82

5 Extensions . 83

5.1 Interactive Disambiguation 83

5.2 Bidirectional Translation 84

5.3 Larger Input Coverage . 84

6 Conclusions . 84

References . 84

v

Paper V: Interactive Multilingual Web Applications with Gram-
matical Framework 89
1 Introduction . 89
2 Grammatical Framework . 90

2.1 An Example Grammar . 90
3 Syntax Editing . 92
4 GF JavaScript Syntax Editor . 93

4.1 User Interface . 93
4.2 Syntax Editing Actions 95
4.3 Implementation . 96

5 Example Application: The Restaurant Review Wiki 97
5.1 Description . 97
5.2 Implementation . 98
5.3 Discussion . 98

6 Related Work . 100
7 Future Work . 100
8 Conclusions . 101
References . 101

Paper VI: PGF: A Portable Run-Time Format for Type-Theoretical
Grammars 105
1 Introduction . 105
2 The syntax and semantics of PGF 107

2.1 Multilingual grammar . 107
2.2 Abstract syntax . 107
2.3 Concrete syntax . 108
2.4 Examples of a concrete syntax 109
2.5 Linearization . 110

3 Properties of PGF . 111
3.1 Expressive power . 111
3.2 Extensions of concrete syntax 112
3.3 Extensions of abstract syntax 112

4 Parsing . 113
4.1 PMCFG definition . 113
4.2 PMCFG generation . 114
4.3 Common subexpression elimination in PMCFG 117
4.4 Parsing with PMCFG . 119
4.5 Parse trees . 119

5 Using PGF . 119
5.1 PGF operations . 120
5.2 PGF Interpreter API . 121
5.3 Compiling PGF to other formats 122
5.4 Compiling GF to PGF . 127

6 Results and evaluation . 129
6.1 Systems using PGF . 129

7 Related work . 130

vi

8 Conclusion . 131
References . 132

Paper VII: A Pattern for Almost Compositional Functions 139
1 Introduction . 139

1.1 Some motivating problems 139
1.2 The solution . 140
1.3 Article overview . 140

2 Abstract Syntax and Algebraic Data Types 141
3 Compositional Functions . 141

3.1 Monadic compositional functions 143
3.2 Generalizing composOp, composM and composFold 144

4 Systems of Data Types . 145
4.1 Several algebraic data types 145
4.2 Categories and trees . 146
4.3 Compositional operations 148
4.4 A library of compositional operations 148
4.5 Migrating existing programs 149
4.6 Examples . 149
4.7 Writing Compos instances 151
4.8 Properties of compositional operations 152

5 Almost Compositional Functions and the Visitor Design Pattern 155
5.1 Abstract syntax representation 155
5.2 ComposVisitor . 156
5.3 Using ComposVisitor . 157

6 Language and Tool Support for Compositional Operations 158
7 Related Work . 159

7.1 Scrap Your Boilerplate . 159
7.2 Catamorphisms and folds 165
7.3 Two-level types . 165
7.4 The Tree set constructor 166
7.5 Related work in object-oriented programming 168
7.6 Nanopass framework for compiler education 168

8 Conclusions . 169
References . 170

vii

viii

Acknowledgments

First and foremost, I want to thank my supervisor and co-author Aarne Ranta
for his friendship and constant support. Robin Cooper, Peter Ljunglöf, Krasimir
Angelov and Moisés Salvador Meza Moreno have also helped me write the arti-
cles in this thesis, thank you! Together with Aarne and Robin, Bengt Nordström
and Koen Claessen make up my PhD advisory committee, who have kept me on
track and going forward. The other members of the Chalmers Language Tech-
nology Group, the Centre for Language Technology, and the TALK project,
including Harald Hammarström, Markus Forsberg, Håkan Burden, Kristofer
Johannisson, Janna Khegai, K. V. S. Prasad, Muhammad Humayoun, David
Hjelm, Staffan Larsson, Stina Ericsson, Rebecca Jonson, Jessica Villing, Ann-
Charlotte Forslund, Andreas Wallentin, Mikael Sandin, Ali El Dada, Hans-
Joachim Daniels, Lars Borin, and Torbjörn Lager have all contributed to my
work in various ways and helped make this a creative research environment.
Rolf Carlson at KTH gave me access to speech data and kindly agreed to serve
as discussion leader at my licentiate seminar. Nuance Communications Inc.,
OptimSys s.r.o., Opera Software ASA, and ROBO Design have provided me
with software licenses and technical support. I have received data, suggestions
and bug reports from many people, including Glòria Casanellas at Maths for
More, Jordi Saludes at Universitat Politècnica de Catalunya, Wanjiku Ng’ang’a
at the University of Helsinki, Oliver Lemon and Xingkun Liu at the University
of Edinburgh, Manny Rayner at the University of Geneva, Nadine Perera at
BMW Group Research and Technology, Jochen Steigner at DFKI, Joel Rey-
mont at Wager Labs SA, Steve Legrand at the University of Jyväskylä, Sara
Stymne at Linköping University, and Howard Bartel at RadiSys Corporation.
There is an even wider circle of people with whom I have had the pleasure
to interact since I came to the Computer Science and Engineering department
as an undergraduate. Thanks are due to everyone at this outstanding depart-
ment. Wojciech Mostowski and Andres Löh have provided valuable help with
the LATEX and lhs2TeX wrangling required for typesetting this thesis. Angela,
thank you for your love and care. Thank you for bringing me happiness and for
helping me grow. My son Tor, seeing your face every day brings me incredible
joy. My parents Ebba and Gösta and my brother Klas, thank you for the loving
and intellectually stimulating home that I grew up in. In order to help the
reader continue past this page, there are further acknowledgments in some of
the included papers.

Björn Bringert Gothenburg
October 2008

ix

x

Introduction

This thesis shows how Grammatical Framework (GF, Ranta 2004) grammars
can be used to simplify development of interactive natural language applications.
This chapter provides some background on natural language applications and
GF, and introduces the seven articles that make up the bulk of the thesis.
The articles describe how GF grammars can be used for speech recognition
grammars, multimodality, semantic transfer, dialogue management, portable
parsing and generation, syntax-aware text editing, and speech translation.

The articles are presented in the context of interactive speech applications
since this is an area where the ideas can be used together. There are also
other applications of these results, which is perhaps most readily apparent in
Paper VII, where most of the examples are from programming language imple-
mentation rather than natural language processing.

1 Interactive Natural Language Applications

What do we mean by interactive natural language applications? By interactive,
we mean that the system gets input from a user, and delivers timely output as
a result of user input. There is some relation between the input and output.
A single task may be accomplished using one or more input/output interac-
tions. Most of the examples in this thesis concern speech applications, that is,
applications which get speech input from the user, and deliver speech output
to the user. In the case of a speech translator, one user produces the input,
and another receives the output. An interactive natural language application
may also be multimodal, that is, it may use multiple modes of communication,
or modalities. Gestures and drawings are possible examples of modalities other
than speech. Both the user input and the system output can be multimodal.
Systems which are not multimodal are called unimodal.

Interactive speech applications have long been a staple of science fiction.
Figures 1 and 2 illustrate two such applications: a speech translator, and a
dialogue system. Interactive speech applications are already in limited commer-
cial use. Examples of such applications include phone-based travel reservation
systems and speech-enabled phrase books. However, interactive speech appli-
cations have yet to have a significant impact on everyday life. There are three
major problems with current interactive speech applications:

1. They are not natural enough.

2. They are not usable enough.

1

2 Introduction

Figure 1. A speech translator, from the Uncle Scrooge story “Planet-planering”
(English title “Scrooge’s Space Show”) (Branca et al. 1987). Louie says “We
are friends! Release the prisoner!”, though in the original English version he
says “Our uncle is a mega-merchant come to trade with you guys!”. ©Disney.
Located with help from Sivebæk, Willot and Jensen (2007).

Figure 2. A dialogue system, from the Uncle Scrooge story “Operation Ha-
jön” (English title “Operation Gootchy-goo”) (Strobl and Steere 1985). Uncle
Scrooge says: “Stop babbling about the weather! I want to know if everything is
proceeding according to plan!”. Smedly, the computer, responds “Right! Well,
let me see. . . ”, quite like a GoDiS (Larsson 2002) dialogue system would. ©Walt
Disney Productions. Located with help from Sivebæk, Willot and Jensen (2007).

Interactive Natural Language Applications 3

3. They are not cheap enough.

According to Pieraccini (2005), academic dialogue system research is largely
focused on the problem of naturalness, whereas industrial dialogue system de-
velopment is more concerned with usability. Waibel (2004) considers high devel-
opment cost and limited domains to be the major problems in speech translation
research.

There are many applications where the current state of the art means that
it is not possible to build systems that are natural or usable enough. However,
there are also many applications which could benefit from use of even the current
state of interactive speech technology, but where it is not economically viable,
because of the high cost of implementing the systems.

1.1 Problems

The problems of naturalness, usability and cost are large and complex. This
thesis deals with the following sub-problems:

Duplicated work In current practice, multiple components are developed in-
dependently, with much duplicated effort. For example, speech recognition
grammars, semantic interpretation, and output generation all need to take
into account the linguistic and domain-specific coverage of the system.

Consistency It is difficult to modify a system which uses multiple hand-written
components. The problem is multiplied when the system is multilingual. The
developer then has to modify each of the components, such as speech recog-
nition grammars and semantic interpretation, manually for each language.
A simple change may require touching many parts of the system, and there
are no automatic consistency checks.

Localization With hand-written components, it is about as difficult to add
support for a new language as it is to write the grammar, semantic interpre-
tation, and generation components for the first language.

Linguistic quality Because of the lack of powerful language description tools,
achieving high syntactic and morphological quality of the system output
and the input language models can be costly. This is more pronounced for
languages with a richer morphology than English, since current methods are
often developed with English in mind.

Domain portability Components implemented for a given application do-
main can often not be easily reused in other domains.

Platform portability Systems implemented for a given platform (speech rec-
ognizer, operating system, programming language, etc.) can often not be
used on other platforms.

4 Introduction

2 This work

Our aim is to make the construction of interactive natural language applica-
tions easier by compiling high-level specifications to the low-level code used in
the running system. GF is “the working programmer’s grammar formalism”.
In this spirit, the approach that we have taken is to use techniques borrowed
from programming language implementation to automatically generate system
components from grammars.

In the early days of computer programming, programs were written in ma-
chine code or assembly languages, very low-level languages which give the pro-
grammer full control, but make programs hard to write, limited to a single
machine architecture, and difficult to maintain. Today, programs are written in
high-level languages which give less control, but make programs easier to write,
portable across different machines and operating systems, and easier to main-
tain. Programs written in high-level languages are compiled to code in low-level
languages, which can be run by machines.

The approach to development of interactive natural language applications
which we describe here is grammar-based, since we use high-level grammars to
define major parts of the functionality. Several different components used in
interactive natural language applications can be generated automatically from
the grammars. The systems which we generate are rule-based, rather than sta-
tistical. In an experiment by Rayner et al. (2005a), a rule-based speech under-
standing system was found to outperform a statistical one, and the advantage
of the rule-based system increased with the users’ familiarity with the system.

In our description of the components which we generate, we consider in-
teractive natural language applications which can be implemented as pipelines.
The system receives input, which is processed step by step, and in the end out-
put is produced. A multimodal dialogue system may have components such as
speech recognition, multimodal fusion, parsing, dialogue management, domain
resources, output generation, linearization, multimodal fission, and speech syn-
thesis. Figure 3 shows a schematic view of such a system. In a speech translator,
the dialogue management and domain resources may be replaced by a semantic
transfer component, as shown in Figure 4. Larger systems, such as the Spo-
ken Language Translator (Rayner et al. 2000), are more complex with more
components and an architecture which is not a simple pipeline. The individual
components that we generate can be used in more complex architectures, as has
been done in experimental dialogue systems (Ericsson et al. 2006) which use the
GoDiS (Larsson 2002) implementation of issue-based dialogue management.

2.1 Advantages

This work addresses the problems listed in Section 1.1 in the following ways:

Duplicated work The duplicated work involved in developing multiple com-
ponents is avoided by generating all the components from a single declarative
source, a GF grammar.

This work 5

Abstract

syntax

Abstract

syntax

Multimodal

output

Domain

resources

Multimodal

input

Dialogue

manager

GF Grammar

Multimodal

Grammars

(Paper II)

Portable Parsing

and Linearization

(Paper VI)

Dialogue Manager

Generation

(Paper III)

Abstract Syntax

Traversal Generation

(Paper VII)

Other

output
Other

input

Speech

synthesizer

Speech

output

Speech

input

Text

output

Text

input

Speech Recognition

Grammar Compilation

(Paper I)

Multimodal

fusion

Parser Linearizer

Multimodal

fission

User

Speech

recognizer

Figure 3. Architecture of a grammar-based multimodal dialogue system. In a
unimodal system, there would be no multimodal fission and fusion components.

6 Introduction

Abstract

syntax

Abstract

syntax

Speech

synthesizer

Speech

input

Text

output

Speech

output

Text

input

Semantic

transfer

GF Grammar

Speech Recognition

Grammar Compilation

(Paper I)

Portable Parsing

and Linearization

(Paper VI)

Abstract Syntax

Traversal Generation

(Paper VII)

Speech

recognizer

Parser Linearizer

User

Figure 4. Architecture of a grammar-based speech translator. Compared to
Figure 3, there is no multimodality, and the dialogue manager and domain
resources have been replaced by a semantic transfer engine.

Grammatical Framework 7

Consistency The strong typing of the GF language enforces consistency be-
tween the abstract syntax and the concrete syntaxes for each language. This
makes it easier to keep the semantics and the implementations for different
languages in sync.

Localization GF’s support for multilingual grammars and the common in-
terface implemented by all grammars in the GF resource grammar library
makes it easy to translate a system to a new language.

Linguistic quality GF’s powerful constructs and the multilingual resource
grammar library allows for high morphological and syntactic quality at a
low cost.

Domain portability A large portion of the grammar implementation effort
is in the resource grammar library. This library can be re-used in multiple
applications, instead of being re-implemented every time.

Platform portability In our approach, a GF grammar is used as the canonical
representation which the developer works with, and components in any of a
number of formats can be generated automatically from this representation.

2.2 Limitations

The goal is not mainly to allow more sophisticated applications, but rather to
reduce the development cost of medium complexity applications. Just like high-
level programming languages take away some of the control that the assembly
language programmer has, generating system components from grammars places
some limits on how systems can be implemented. These limits of course depend
on how sophisticated the generation is.

Taken together, the components that we generate fit best in systems with
pipeline architectures like the one shown in Figure 3. However, the individual
components could also be used as parts of systems with other architectures. For
example, a hybrid system could use our components to attempt a deep analysis,
and fall back to a separate statistical language model and shallow syntactic
analysis when that fails.

3 Grammatical Framework

We use Grammatical Framework (GF, Ranta 2004) as the source language for
our component generation. This section gives a short introduction to GF, with
a small example grammar for a dialogue system.

GF is a type theoretic grammar formalism based on Martin-Löf’s (1984) type
theory. GF makes a distinction between abstract syntax and concrete syntax,
corresponding to Curry’s (1961) division of grammar into tectogrammar and
phenogrammar. The abstract syntax declares what can be said in the language.
Figure 5 shows an example of a simple abstract syntax module. The concrete
syntax describes how to say it, by associating a concrete representation with

8 Introduction

abstract Agreement = {
cat S; NP; VP;
fun pred : NP→ VP→ S;

john : NP;
walk : VP;

}

Figure 5. An abstract syntax module. The only possible tree in the S category
is pred john walk.

concrete AgreementEng of Agreement = {
param Num = Sg | Pl;
lincat S = Str;

NP = {s : Str; n : Num};
VP = Num⇒ Str;

lin pred np vp = np.s ++ vp ! np.n;
john = {s = “John”; n = Sg};
walk = table {Sg⇒ “walks”; Pl⇒ “walk”};

}

Figure 6. A concrete syntax for the abstract syntax in Figure 5. The lineariza-
tion type of the NP category includes a number field, and the linearization type
of the VP category is an inflection table that takes a number argument. In the
linearization of pred, the form of the verb phrase is selected according to the
number of the noun phrase. In this concrete syntax, the abstract syntax tree
pred john walk is linearized to the string “John walks”.

each construct in the abstract syntax. In the simplest case, this concrete rep-
resentation is a single string. Records, tables and enumerations can be used to
implement more complex representations, for example with number agreement
between nouns and verbs. The process of generating a concrete syntax term
from an abstract syntax tree is called linearization. Figure 6 shows an example
of a concrete syntax module.

One of GF’s strong points is multilinguality. The division of grammar into
abstract and concrete syntax means that it is possible to have multiple concrete
syntaxes for one abstract syntax. We call this a multilingual grammar. In order
to avoid re-implementing the domain-independent linguistic details of a language
for each new application grammar, the GF Resource Grammar Library (Ranta
2008) has been created. It implements the morphological and syntactic details
of a number of languages, and presents a language-independent API to the
application grammar writer. This significantly reduces the effort involved in
translating grammars (Perera and Ranta 2007).

Grammatical Framework 9

abstract Pizza = {
flags startcat = Input;
cat Input;

Order;
Number;
Size;
Topping;
[Topping]{1};

fun order : Order→ Input;
pizza : Number→ Size→ [Topping]→ Order;
one, two : Number;
small, large : Size;
cheese, ham : Topping;

cat Output;
fun price : Order→ Number→ Output;
}

Figure 7. A GF abstract syntax module.

3.1 An Example Application Grammar

As an example of a GF grammar for an interactive natural language application,
Figure 7 shows the abstract syntax for a small pizza ordering dialogue system.
The Input category contains user input, such as “one large pizza with ham and
cheese”, which corresponds to the abstract syntax tree order (pizza one large

[ham, cheese]). The Output category describes system output, for example “one
large pizza with ham and cheese costs two euros”, for the abstract syntax tree
price (pizza one large [ham, cheese]) two.

Figure 8 shows a parametrized concrete syntax module (Ranta 2007) which
uses the language-independent part of the Resource Library API (Ranta 2008),
and a domain-specific lexicon interface. Each function mkX constructs a term
in the resource grammar category X. For example, the linearization category
of the Order category is the resource grammar category NP. This means that
an order is represented by a noun phrase in this concrete syntax. The mkNP

function is overloaded, and the version of it that is used in the linearization of
pizza takes two arguments, one of type Numeral (number word, the linearization
category of Number) and one of type CN (common noun, here constructed from
another common noun and an adverbial phrase). In the linearization of cheese,
a version of mkNP is used that takes a simple common noun (N) and returns a
mass expression. The linearization of ConsTopping, one of the two constructors
in the [Topping] category, uses a third version of mkNP that takes a conjunction
and two noun phrases as arguments.

The parametrized concrete syntax is instantiated for English as shown in
Figure 9. One noteworthy feature is that the lexicon entry for large_A uses

10 Introduction

incomplete concrete PizzaI of Pizza = open Syntax,PizzaLex in {
lincat Input = Utt;

Order = NP;
Number = Numeral;
Size = AP;
Topping = NP;
[Topping] = NP;

lin order o = mkUtt o;
pizza n s ts = mkNP n (mkCN (mkCN s pizza_N)

(mkAdv with_Prep ts));
one = n1_Numeral;
two = n2_Numeral;
small = mkAP small_A;
large = mkAP large_A;
cheese = mkNP cheese_N ;
ham = mkNP ham_N ;
BaseTopping t = t;
ConsTopping t ts = mkNP and_Conj t ts;

lincat Output = Utt;
lin price o p = mkUtt (mkCl o cost_V2 (mkNP p euro_N));
}

interface PizzaLex = open Cat in {
oper pizza_N : N;

small_A : A;
large_A : A;
cheese_N : N;
ham_N : N;
cost_V2 : V2;
euro_N : N;

}

Figure 8. Parametrized concrete syntax for the abstract syntax in Figure 7.

Paper I: Speech Recognition Grammar Compilation in Grammatical Framework 11

instance PizzaLexEng of PizzaLex = open CatEng,ParadigmsEng in {
oper pizza_N = mkN “pizza”;

small_A = mkA “small”;
large_A = mkA “large” | mkA “big”;
cheese_N = mkN “cheese”;
ham_N = mkN “ham”;
cost_V2 = mkV2 (mkV “cost”);
euro_N = mkN “euro” “euros”;

}

concrete PizzaEng of Pizza = PizzaI with (Syntax = SyntaxEng),
(PizzaLex = PizzaLexEng);

Figure 9. English concrete syntax for the abstract syntax in Figure 7, using
the parametrized concrete syntax in Figure 8.

variants, to allow alternative linearizations. This is used extensively in real-
istic dialogue system grammars, to handle variation in how input can be ex-
pressed without complicating the abstract syntax. Figure 10 shows how the
parametrized concrete syntax can be instantiated to create a German concrete
syntax.

4 Paper I: Speech Recognition Grammar Com-

pilation in Grammatical Framework

Speech recognizers use speech recognition grammars (also known as language
models) to limit the input language in order to achieve acceptable recogni-
tion performance. In the paper “Speech Recognition Grammar Compilation in
Grammatical Framework”, we show how speech recognition grammars in sev-
eral commonly used context-free and finite-state formalisms can be generated
from GF grammars. We also describe generation of semantic interpretation code
which can be embedded in speech recognition grammars.

4.1 An Example

For the Input category in the example grammar in Figure 7 and Figure 9, we can
generate the finite-state model shown in Figure 11. Finite-state models such as
this one are used to guide the HTK speech recognizer.

12 Introduction

instance PizzaLexGer of PizzaLex = open CatGer,ParadigmsGer in {
flags coding = utf8;
oper pizza_N = mkN “Pizza” “Pizzas” feminine;

small_A = mkA “klein”;
large_A = mkA “groß” “größer” “größte”;
cheese_N = mkN “Käse” “Käse” masculine;
ham_N = mkN “Schinken”;
cost_V2 = mkV2 (mkV “kostet”);
euro_N = mkN “Euro” “Euros” masculine;

}

concrete PizzaGer of Pizza = PizzaI with (Syntax = SyntaxGer),
(PizzaLex = PizzaLexGer);

Figure 10. German concrete syntax for the abstract syntax in Figure 7.

cheese

and

ham

with

one

small

large

big

pizzas

pizza

two

small

large

big

Figure 11. Finite-state language model generated from the English concrete
syntax in Figure 9.

Paper II: Multimodal Dialogue System Grammars 13

4.2 Contribution

I wrote the paper myself, and I implemented the various grammar translations
it describes.

4.3 Publication

This paper was published in the Proceedings of the ACL 2007 Workshop on
Grammar-Based Approaches to Spoken Language Processing, Prague, Czech Re-
public, June 29, 2007, pages 1–8, by the Association for Computational Linguis-
tics. This thesis includes an updated version of the paper, which describes a new
PMCFG-based conversion algorithm and a new non-recursive SRGS back-end.

5 Paper II: Multimodal Dialogue System Gram-

mars

The paper “Multimodal Dialogue System Grammars” describes how GF gram-
mars can be used to handle multimodality, that is, information presented using
multiple modes of communication. Multimodal systems can for example com-
bine speech and pointing gestures for input, or speech and graphics for output.
Multimodal fusion, the integration of information from multiple modalities into
a single semantic representation, and multimodal fission, the conversion of a sin-
gle semantic representation into information in multiple modalities, are handled
by using GF’s facilities for parsing and linearization, respectively.

5.1 An Example

We can extend the example grammar from Section 3 to make a multimodal
application. For example, we can write a new concrete syntax which gener-
ates drawing instructions instead of natural language utterances. We refer to
this as parallel multimodality, since the complete information is presented inde-
pendently in each of the modalities. Figure 12 shows a concrete syntax which
generates instructions in a simple drawing language. This can be used to draw
graphical representations of pizza orders. Figure 13 shows the graphical repre-
sentation of the order “two large pizzas with ham and cheese”. The abstract
syntax representation of this order is order (pizza two large [ham, cheese]) and
from this, the PizzaDraw concrete syntax generates the drawing instructions:
scale (1.0, replicate (2, above (above (image (“ham”), image (“cheese”)), image

(“pizza”)))).

Another possible multimodal extension is to allow spoken pizza orders to
contain non-speech parts. For example, we can allow the user to say “I want a
large pizza with cheese and that”, accompanied by a click on a picture of some
topping. We refer to this as integrated multimodality, and implement it by using
one record field per modality in the concrete syntax.

14 Introduction

concrete PizzaDraw of Pizza = {
lin order o = o;

pizza n s ts = {s = call2 “scale” s.s (call2 “replicate” n.s
(call2 “above” ts.s (image “pizza”)))};

one = {s = “1”};
two = {s = “2”};
small = {s = “0.5”};
large = {s = “1.0”};
cheese = {s = image “cheese”};
ham = {s = image “ham”};
BaseTopping t = {s = t.s};
ConsTopping t ts = {s = call2 “above” t.s ts.s};

oper call0 : Str→ Str = λf → f ++ “(” ++ “)”;
call1 : Str→ Str→ Str = λf , x → f ++ “(” ++ x ++ “)”;
call2 : Str→ Str→ Str→ Str = λf , x, y →

f ++ “(” ++ x ++ “,” ++ y ++ “)”;
image : Str→ Str = λx → call1 “image” (“\"” + x + “\"”);

}

Figure 12. A concrete syntax which generates drawing instructions from pizza
orders.

Figure 13. A graphical representation of the pizza order order (pizza two large

[ham, cheese]), drawn using instructions generated by the concrete syntax in
Figure 12.

Paper III: Rapid Development of Dialogue Systems by Grammar Compilation 15

5.2 Contribution

I designed and implemented the demonstration system, including the grammars,
and wrote the sections about the proof-of-concept implementation and related
work.

5.3 Publication

This paper was published in the Proceedings of DIALOR’05, Ninth Workshop
on the Semantics and Pragmatics of Dialogue, Nancy, France, June 9–11, 2005,
pages 53–60.

6 Paper III: Rapid Development of Dialogue Sys-

tems by Grammar Compilation

The paper “Rapid Development of Dialogue Systems by Grammar Compilation”
describes how complete dialogue systems can be generated from GF grammars.
It makes use of the speech recognition grammar compiler described in Paper I,
and adds two new compilers: one which compiles a GF abstract syntax along
with a question for each category to VoiceXML code, and one which compiles GF
linearization rules to JavaScript code. The generated VoiceXML code handles
the dialogue flow, using a generated speech recognition grammar to get input
from the user, and a generated JavaScript linearizer to produce output.

6.1 An Example

If we extend the grammar shown in Figures 7 and 9 with some linearization
variants that suppress some parts of the tree, and a question for each category
that the system may ask for, we can use it to generate a VoiceXML dialogue
system. These changes are shown in Figure 14.

To produce output after the input dialogue has been completed, the sys-
tem can construct abstract syntax trees and linearize them with the generated
JavaScript linearizer. For example, if we add code that calculates the price of
an order given an abstract syntax tree for the order, the system could produce
the abstract syntax tree price (pizza two large [ham, cheese]) two, which would
be linearized to “two large pizzas with ham and cheese cost two euros”. The
resulting system allows dialogues such as:

S: What would you like to order?
U: two pizzas
pizza two ? ?
S: What size pizzas do you want?
U: large
pizza two large ?
S: What toppings do you want?
U: ham and cheese

16 Introduction

printname cat Input = “What would you like to order?”;
Number = “How many pizzas do you want?”;
Size = “What size pizzas do you want?”;
[Topping] = “What toppings do you want?”;

lin pizza n s ts = mkNP n (mkCN sp (mkAdv with_Prep ts) | sp)
where {sp : CN = mkCN s pizza_N | mkCN pizza_N };

Figure 14. Changes to the English concrete syntax in Figure 9 to allow it to
be used to generate a VoiceXML dialogue system. GF’s printname judgement
is used for questions for each category that the dialogue system may want input
in, and the linearization of the pizza function now has several variants that
suppress parts of the tree.

pizza two large [ham, cheese]
S: two large pizzas with ham and cheese cost two euros

Making use of the the ideas from Paper II, we can add a second output
modality, as shown in Figure 12. If we add a small interpreter for the gener-
ated drawing instructions, we have a multimodal dialogue system, of which a
screenshot is shown in Figure 15.

6.2 Contribution

I am the sole author of this paper.

6.3 Publication

This thesis includes an extended version of a short paper published in the Pro-
ceedings of the 8th SIGdial Workshop on Discourse and Dialogue, Antwerp,
Belgium, September 1–2, 2007, pages 223–226, by the Association for Compu-
tational Linguistics.

7 Paper IV: Speech Translation with Grammat-

ical Framework

The paper “Speech Translation with Grammatical Framework” explains how
the speech recognition grammar compiler described in Paper I and the portable
grammar format presented in Paper VI can be used together to build high-
precision speech translation systems.

Since the speech recognition grammar compiler supports many speech recog-
nition grammar formats and the portable grammar format has implementations
in several programming languages, speech translators built with these compo-
nents can be used on a number of different platforms.

Paper IV: Speech Translation with Grammatical Framework 17

Figure 15. Multimodal output in a generated XHTML+Voice dialogue system.

7.1 An Example

Say that we want to build a small speech translator that translates pizza orders
from German to English. We can compile the German concrete syntax shown
in Figure 10 to a speech recognition grammar, and use that to guide an off-
the-shelf German speech recognizer. We then use the PGF interpreter to parse
the input with the German concrete syntax, and linearize the resulting abstract
syntax tree with the English concrete syntax shown in Figure 9. The English
text can then be fed to an English speech synthesizer. This system will allow
interactions such as the following:

U: zwei große Pizzas mit Schinken und Käse
order (pizza two large [ham, cheese])
S: two large pizzas with ham and cheese

7.2 Contribution

I am the sole author of this paper and the proof-of-concept systems.

7.3 Publication

This short paper was published in Coling 2008: Proceedings of the workshop on
Speech Processing for Safety Critical Translation and Pervasive Applications,
Manchester, UK, August 23, 2008, pages 5–8.

18 Introduction

8 Paper V: Interactive Multilingual Web Appli-

cations with Grammatical Framework

In the paper “Interactive Multilingual Web Applications with Grammatical
Framework”, we present a web-based syntax-aware editor based on JavaScript
code generated from a GF grammar, and describe how it can be used to build
interactive multilingual web applications. In contrast to existing multilingual
web applications where content is edited independently in each language, we
use a GF abstract syntax as a canonical language-independent content repre-
sentation. With multiple concrete syntaxes, the content can be linearized to any
supported language for viewing. The syntax editor lets users edit the content by
abstract syntax manipulation or by parsing strings in any supported language.

8.1 An Example

Figure 16 shows the web-based syntax editor being used to edit a tree in the
example pizza order grammar. The current abstract syntax tree is order (pizza

two small ?), and the meta-variable of type ListTopping is selected. A possible
next step for the user would be to refine the meta-variable with the function
ConsTopping : Topping→ ListTopping→ ListTopping.

8.2 Contribution

This paper is based on a part of Moisés Salvador Meza Moreno’s Master’s the-
sis (Meza Moreno 2008), which I supervised. I suggested the idea of a JavaScript
based syntax editor, and helped Moisés with the development and writing. The
article is the result of joint writing and editing, based on text from Moisés’
thesis.

8.3 Publication

This paper was published in Advances in Natural Language Processing, 6th
International Conference, GoTAL 2008, Gothenburg, Sweden, August 25–27,
2008, pages 336–347, volume 5221 of Lecture Notes in Computer Science, by
Springer.

9 Paper VI: PGF: A Portable Run-Time Format

for Type-Theoretical Grammars

The paper “PGF: A Portable Run-Time Format for Type-Theoretical Gram-
mars” describes a portable low-level format which can be used for a number of
language processing tasks, including parsing and linearization. The paper also
outlines how GF grammars are compiled to PGF, and how PGF grammars can
be compiled to other formats. The main goal of PGF is to make it possible to

Paper VI: PGF: A Portable Run-Time Format for Type-Theoretical Grammars 19

PizzaEng

 two small pizzas with ?

PizzaGer

 zwei kleine Pizzas mit ?

Abstract

(order (pizza two small ?))

Undo (Z)
Redo (Y)
Cut (X)
Copy (C)
Paste (V)
Delete (D)
Refine (R)
Replace (E)
Wrap (W)
Parse a string (P)
Refine the node at random (N)
Refine the tree at random (T)

English French Spanish Swedish

order : Input
pizza : Order

two : Number
small : Size
? : ListTopping

Figure 16. Web-based syntax editor for the grammar in Figures 7, 9, and
10. The top left panel contains the abstract syntax tree which is being edited.
The top right panel shows the linearizations in the available concrete syntaxes,
with the substrings that correspond to the selected abstract syntax subtree
highlighted.

create independent parsing and linearization implementations in any program-
ming language, in order to make it easier to use GF grammars in applications.
The new format (PGF, Portable Grammar Format) is much simpler than the
GF source language that grammar writers use, but it is still expressive enough
to capture all of GF’s functionality.

9.1 An Example

We can use the GF grammar compiler to translate the example grammar shown
in Figures 7, 9, and 10 to a PGF grammar. We can then load the Haskell PGF
interpreter into a Haskell interpreter, and read in the PGF grammar:

PGF> pgf ← readPGF “Pizza.pgf”

We can now use the grammar for parsing:

PGF> let trees = parse pgf “PizzaEng” “Input” “one large pizza with ham”
PGF>map showTree trees

[“order (pizza one large (BaseTopping ham))”]

20 Introduction

And for linearization:

PGF>map (linearize pgf “PizzaGer”) trees

[“eine große Pizza mit Schinken”]

9.2 Contribution

This paper is joint work with Krasimir Angelov and Aarne Ranta. I helped de-
sign the PGF language, and rewrote the existing compilers that produce speech
recognition grammars and VoiceXML to use PGF as the input language. In the
paper, I am responsible for the sections Using PGF, and Results and evaluation.

9.3 Publication

This paper has been submitted to the Journal of Logic, Language and Informa-
tion, Special Issue on New Directions in Type-theoretic Grammar.

10 Paper VII: A Pattern for Almost Composi-

tional Functions

The paper “A Pattern for Almost Compositional Functions” describes a method
for simplifying a common class of functions over rich tree-like data types, such as
abstract syntax trees in compilers or natural language applications. The method
uses a type-specific traversal function, which can be automatically generated
from the definition of the data type. This method helps reduce the amount of
repetitive traversal code in programs which process rich tree structures.

Dialogue managers and semantic transfer engines process abstract syntax
trees in various ways. There is a significant set of such transformations that
are only concerned with some of the constructs in the often quite rich abstract
syntax. This paper describes a way to express such transformations succinctly.

10.1 An Example

Figure 17 shows a small example function which transforms abstract syntax
trees. It goes through the tree, removing any duplicate toppings in pizza orders.
For example, the tree order (pizza two large [ham, cheese, ham]) (“two large
pizzas with ham and cheese and ham”) is transformed to order (pizza two

large [ham, cheese]) (“two large pizzas with ham and cheese”). Note that in
Figure 17, there is no case for order . Instead, this case is handled by the
composOp function, which applies the given function everywhere in a tree. In
this small example, not a lot of code is saved, but in a realistic system with
many abstract syntax constructors, the code savings can be significant.

Related Work 21

uniqueToppings :: ∀a.Tree a → Tree a

uniqueToppings t = case t of

pizza n s ts → pizza n s (nub ts)
→ composOp uniqueToppings t

Figure 17. Haskell-like pseudo-code for an abstract syntax transformation
function which removes duplicate toppings from trees in the abstract syntax in
Figure 7. The nub function removes duplicate elements from a list.

10.2 Contribution

Aarne Ranta used a first version of composOp in the GF implementation. He
then generalized this to constructive type theory and wrote a first version of
the paper, describing the single data-type Haskell versions of composOp and
composM , and a type family version of composOp in Agda.

I extended this first version to the full paper included here. Aarne’s original
paper represents about one fifth of the text of the final version. My contributions
include support for composOp over type families in extended Haskell, the general
compos function, the library of functions which use compos, the Java Visitor
version of the pattern, the description of the relationship to applicative functors,
including some identities with proofs, and descriptions of the relationships to
generic programming in Haskell, tree types in type theory, and other related
work.

10.3 Publication

This paper was first published in ICFP ’06: Proceedings of the Eleventh ACM
SIGPLAN International Conference on Functional Programming, Portland, Ore-
gon, September 18–20, 2006, pages 216–226, by ACM Press. The proceedings
were also published as ACM SIGPLAN Notices, volume 41, issue 9. An ex-
tended version has been accepted for publication in the Journal of Functional
Programming (JFP). This thesis includes a pre-print version of the JFP paper.

11 Related Work

11.1 GF in Interactive Speech Applications

Jonson (2006, 2007) shows how to generate statistical language models for dia-
logue systems from GF grammars, instead of the grammar-based models that are
described in Paper I. This was found to improve the recognition performance
on out-of-grammar utterances significantly, without any substantial negative
impact on in-grammar performance.

Ranta and Cooper (2004) show how a proof editor for type theory can be
used to implement information-seeking dialogue systems, by treating dialogue

22 Introduction

as the stepwise construction of an object of a given type. The work in Paper III
uses this idea to build complete spoken language dialogue systems.

Ljunglöf and Larsson (2008) build on the work by Ranta and Cooper (2004),
and describe how GF abstract syntax can be used to specify GoDiS (Larsson
2002) Information State Update dialogue systems. This makes the dialogue
management more sophisticated than that described in Paper III, but the re-
sulting systems cannot be run in standard VoiceXML interpreters.

11.2 Compiler-like Grammar Development

The Regulus grammar compiler (Rayner et al. 2006b) generates speech recogni-
tion grammars, with the possibility of embedding basic semantic interpretation,
from unification grammars. Regulus has been used in several interactive speech
applications, including the MedSLT (Bouillon et al. 2005; Rayner et al. 2006a)
speech translator, and the Clarissa (Rayner et al. 2005b,c) dialogue system.

UNIANCE (Bos 2002) is another system for compiling unification grammars
to speech recognition grammars. It includes interpretation code for composi-
tional semantics in the generated grammars.

The SGStudio (Wang and Acero 2005) grammar authoring tool uses a hybrid
model for development of speech recognition language models and semantic
interpretation. A library of parametrized grammars are used for slot-filling,
while a statistical model handles the non-slot-filling parts of user input.

ARIADNE (Denecke 2002) is a dialogue system architecture for rapid proto-
typing. To build a dialogue system, the developer creates an ontology, parsing
grammars, generation templates, database conversion rules, and a description
of the services offered by the system. In ARIADNE, the developer writes a set
of declarative specifications which together are used in a fixed dialogue system
architecture, whereas we generate a number of components, which can be used
separately, from a specification in a single formalism. Compared to ARIADNE,
we lack the generic dialogue management and database interface components.
On the other hand, we have support for multimodality, and GF is more linguis-
tically expressive than the context-free grammars and output templates that
ARIADNE uses.

11.3 Embedded Languages

One alternative to implementing a complete special-purpose language such as
GF is to create a domain-specific embedded language (DSEL) (Hudak 1996).
One view of a DSEL is as a complete special-purpose language that takes ad-
vantage of the existing infrastructure in an expressive general purpose language.
Another view is that a DSEL is simply a software library with an interface that
makes it appear to be a special-purpose language. The embedded language
approach allows rapid development of the language itself, makes it possible to
take advantage of the existing development tools for the host language, and
allows for very good integration with programs written in the host language.
On the other hand, it can be difficult to create alternative implementations of

Future work 23

embedded languages, to compile them to other formats, and to achieve good
performance. GF was initially an embedded language (first in ALF, see Ranta
1995, then in SML, then in Haskell), before it was implemented as a stand-alone
language. Most of the work in this thesis depends on it being possible to inspect
GF grammars and compile them to other formats, something which would be
much harder if GF were still an embedded language.

Prolog is a popular choice for creating embedded languages for natural lan-
guage applications. The Core Language Engine (CLE) (Alshawi 1992) is per-
haps the most ambitious such project. GF’s Resource Grammar Library has a
coverage comparable to that of CLE, but for a larger number of languages. In
contrast to GF, CLE does not have a shared abstract syntax level. Applica-
tions can use for CLE for a number of tasks, including parsing and generation.
One notable feature of the CLE that is still missing from GF is the support for
packed ambiguity representations.

11.4 Interactive Development Environments for Dialogue

Systems

There has been substantial work on graphical tools for semi-automatic con-
struction for dialogue systems. One example is the CSLU Rapid Application
Developer (McTear 1999), which has support for multilinguality (Cole et al.
1999). The Application Generation Platform (AGP) (Hamerich et al. 2004)
can generate multilingual and multimodal interfaces to existing databases semi-
automatically. DUDE (Lemon and Liu 2006) is an environment for dialogue
system development where the user can semi-automatically construct a dialogue
system based on a Business Process Model. DUDE generates GF grammars and
makes use of the work described in this thesis to generate speech recognition
grammars for the Nuance and HTK speech recognizers. DiaMant (Fliedner and
Bobbert 2003) is a GUI tool for rapid development of dialogue systems based
on finite state dialogue models extended with variables. Variant Transduction
(Alshawi and Douglas 2001) is an example-based approach to rapid spoken lan-
guage interface development. Interaction Builder (Katsurada et al. 2005) is a
GUI tool for constructing web-based multimodal applications.

These tools all use graphical user interfaces to construct complete dialogue
systems, whereas we use a grammar formalism as the user interface, and create
general components which can also be used in other kinds of interactive speech
applications, such as speech translators.

12 Future work

The overall goal is to make it easier to develop grammar-based natural language
applications by generating as much as possible from GF grammars. These are
some areas that could be explored further:

• A programming language for abstract syntax tree transformations, which
could be used to implement application specific functionality.

24 Introduction

• Robust parsing algorithms for GF grammars. This would allow us to take
advantage of the possibility of generating statistical language models from
GF grammars (Jonson 2006).

• Development of large-scale demonstration systems using our methods.

References

Hiyan Alshawi. The Core Language Engine. ACL-MIT Series in Natural Lan-
guage Processing. MIT Press, Cambridge, Mass., May 1992. ISBN 0262011263.

Hiyan Alshawi and Shona Douglas. Variant transduction: a method for
rapid development of interactive spoken interfaces. In Proceedings of the
Second SIGdial Workshop on Discourse and Dialogue, pages 1–9, Morris-
town, NJ, USA, 2001. Association for Computational Linguistics. doi:
10.3115/1118078.1118080.

Johan Bos. Compilation of unification grammars with compositional seman-
tics to speech recognition packages. In Proceedings of the 19th international
conference on Computational linguistics (COLING 2002), pages 1–7, Mor-
ristown, NJ, USA, 2002. Association for Computational Linguistics. doi:
10.3115/1072228.1072323.

P. Bouillon, M. Rayner, N. Chatzichrisafis, B. A. Hockey, M. Santaholma,
M. Starlander, H. Isahara, K. Kanzaki, and Y. Nakao. A generic Multi-
Lingual Open Source Platform for Limited-Domain Medical Speech Transla-
tion. In Proceedings of the tenth Conference on European Association of Ma-
chine Translation (EAMT 2005), Budapest, Hungary, pages 5–58, May 2005.
URL http://www.issco.unige.ch/pub/MedSLT_demo_EAMT05_final.pdf.

Daniel Branca, Patsy Trench, and Dave Angus. Planet-planering. Kalle Anka
& C:o, 1987(31), July 1987. ISSN 0345-6048. Disney story code D 8560.

Ronald A. Cole, Ben Serridge, John-Paul Hosom, Andrew Cronk, and
Ed Kaiser. A Platform for Multilingual Research in Spoken Dialogue
Systems. In Proceedings of the Workshop on Multi-Lingual Interoperabil-
ity in Speech Technology (MIST), pages 43–48, Leusden, The Netherlands,
September 1999. URL http://www.cslu.ogi.edu/people/hosom/pubs/

cole_MIST-platform_1999.pdf.

Haskell B. Curry. Some Logical Aspects of Grammatical Structure. In Ro-
man O. Jakobson, editor, Structure of Language and its Mathematical Aspects,
volume 12 of Symposia on Applied Mathematics, pages 56–68. American Math-
ematical Society, Providence, 1961.

Matthias Denecke. Rapid prototyping for spoken dialogue systems. In Proceed-
ings of the 19th international conference on Computational linguistics (COL-
ING 2002), pages 1–7, Morristown, NJ, USA, 2002. Association for Computa-
tional Linguistics. doi: 10.3115/1072228.1072375.

http://dx.doi.org/10.3115/1118078.1118080
http://dx.doi.org/10.3115/1072228.1072323
http://www.issco.unige.ch/pub/MedSLT_demo_EAMT05_final.pdf
http://www.cslu.ogi.edu/people/hosom/pubs/cole_MIST-platform_1999.pdf
http://www.cslu.ogi.edu/people/hosom/pubs/cole_MIST-platform_1999.pdf
http://dx.doi.org/10.3115/1072228.1072375

References 25

Stina Ericsson, Gabriel Amores, Björn Bringert, Håkan Burden, Ann-Charlotte
Forslund, David Hjelm, Rebecca Jonson, Staffan Larsson, Peter Ljunglöf, Pi-
lar Manchón, David Milward, Guillermo Pérez, and Mikael Sandin. Software
illustrating a unified approach to multimodality and multilinguality in the in-
home domain. deliverable 1.6, 2006. URL http://www.talk-project.org/

fileadmin/talk/publications_public/deliverables_public/D1_6.pdf.

Gerhard Fliedner and Daniel Bobbert. DiaMant: A Tool for Rapidly De-
veloping Spoken Dialogue Systems. In Proceedings of the 7th Workshop
on the Semantics and Pragmatics of Dialogue (DiaBruck), Wallerfangen,
Germany, 2003. URL http://www.coli.uni-saarland.de/conf/diabruck/

submission_finals/abstracts/320/demo_320.pdf.

Stefan Hamerich, Volker Schubert, Volker Schless, Ricardo de Córdoba, José M.
Pardo, Luis F. d’Haro, Basilis Kladis, Otilia Kocsis, and Stefan Igel. Semi-
Automatic Generation of Dialogue Applications in the GEMINI Project.
In Michael Strube and Candy Sidner, editors, Proceedings of the 5th SIG-
dial Workshop on Discourse and Dialogue, pages 31–34, Cambridge, Mas-
sachusetts, USA, 2004. Association for Computational Linguistics. URL http:

//acl.ldc.upenn.edu/hlt-naacl2004/sigdial04/pdf/hamerich.pdf.

Paul Hudak. Building domain-specific embedded languages. ACM Computing
Surveys, 28(4es), 1996. doi: 10.1145/242224.242477.

Rebecca Jonson. Generating Statistical Language Models from Interpretation
Grammars in Dialogue Systems. In EACL 2006, 11st Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, 2006. URL
http://acl.ldc.upenn.edu/E/E06/E06-1008.pdf.

Rebecca Jonson. Grammar-based context-specific statistical language mod-
elling. In Proceedings of the Workshop on Grammar-Based Approaches to Spo-
ken Language Processing, pages 25–32, Prague, Czech Republic, June 2007.
Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W/W07/W07-1804.

K. Katsurada, H. Adachi, K. Sato, H. Yamada, and T. Nitta. Interaction
builder: A rapid prototyping tool for developing web-based MMI applications.
IEICE Trans Inf Syst, E88-D(11):2461–2467, 2005. doi: 10.1093/ietisy/e88-
d.11.2461.

Staffan Larsson. Issue-based Dialogue Management. PhD thesis, Göteborg
University, Göteborg, Sweden, 2002.

Oliver Lemon and Xingkun Liu. DUDE: a Dialogue and Understanding De-
velopment Environment, mapping Business Process Models to Information
State Update dialogue systems. In EACL 2006, 11st Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, 2006. URL
http://www.aclweb.org/anthology-new/E/E06/E06-2004.pdf.

http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/D1_6.pdf
http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/D1_6.pdf
http://www.coli.uni-saarland.de/conf/diabruck/submission_finals/abstracts/320/demo_320.pdf
http://www.coli.uni-saarland.de/conf/diabruck/submission_finals/abstracts/320/demo_320.pdf
http://acl.ldc.upenn.edu/hlt-naacl2004/sigdial04/pdf/hamerich.pdf
http://acl.ldc.upenn.edu/hlt-naacl2004/sigdial04/pdf/hamerich.pdf
http://dx.doi.org/10.1145/242224.242477
http://acl.ldc.upenn.edu/E/E06/E06-1008.pdf
http://www.aclweb.org/anthology/W/W07/W07-1804
http://www.aclweb.org/anthology/W/W07/W07-1804
http://dx.doi.org/10.1093/ietisy/e88-d.11.2461
http://dx.doi.org/10.1093/ietisy/e88-d.11.2461
http://www.aclweb.org/anthology-new/E/E06/E06-2004.pdf

26 Introduction

Peter Ljunglöf and Staffan Larsson. A Grammar Formalism for Specifying
ISU-Based Dialogue Systems. In Advances in Natural Language Processing,
6th International Conference, GoTAL 2008, Gothenburg, Sweden, volume 5221
of Lecture Notes in Computer Science, pages 303–314. Springer, August 2008.
doi: 10.1007/978-3-540-85287-2_29.

Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

Michael F. McTear. Software to support research and development of spoken
dialogue systems. In Proceedings, Sixth European Conference on Speech Com-
munication and Technology (EUROSPEECH’99), Budapest, Hungary, pages
339–342. ISCA Archive, September 1999. URL http://www.cslu.ogi.edu/

toolkit/pubs/pdf/mctear_EUROSPEECH_99.pdf.

Moisés S. Meza Moreno. Implementation of a JavaScript Syntax Editor and
Parser for Grammatical Framework. Master’s thesis, Chalmers University of
Technology, 2008.

Nadine Perera and Aarne Ranta. Dialogue System Localization with the GF
Resource Grammar Library. In Proceedings of the Workshop on Grammar-
Based Approaches to Spoken Language Processing, Prague, Czech Republic,
pages 17–24. Association for Computational Linguistics, 2007. URL http:

//www.aclweb.org/anthology/W/W07/W07-1803.

Roberto Pieraccini and Juan Huerta. Where do we go from here? Re-
search and commercial spoken dialog systems. In Proceedings of the 6th
SIGdial Workshop on Discourse and Dialogue, Lisbon, Portugal, September
2005. URL http://www.sigdial.org/workshops/workshop6/proceedings/

pdf/65-SigDial2005_8.pdf.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004. ISSN
0956-7968. doi: 10.1017/S0956796803004738.

Aarne Ranta. Modular Grammar Engineering in GF. Research on Language
and Computation, 5(2):133–158, June 2007. doi: 10.1007/s11168-007-9030-6.

Aarne Ranta. Grammars as software libraries. In Yves Bertot, Gérard
Huet, Jean-Jacques Lévy, and Gordon Plotkin, editors, From semantics
to computer science: essays in honor of Gilles Kahn. Cambridge Univer-
sity Press, 2008. URL http://www.cs.chalmers.se/~aarne/articles/

libraries-kahn.pdf.

Aarne Ranta. Syntactic categories in the language of mathematics. In Peter
Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs and Pro-
grams, International Workshop TYPES ’94, Båstad, Sweden, June 6-10, 1994,
volume 996 of Lecture Notes in Computer Science, pages 162–182, Heidelberg,
1995. Springer. doi: 10.1007/3-540-60579-7_9.

http://dx.doi.org/10.1007/978-3-540-85287-2_29
http://www.cslu.ogi.edu/toolkit/pubs/pdf/mctear_EUROSPEECH_99.pdf
http://www.cslu.ogi.edu/toolkit/pubs/pdf/mctear_EUROSPEECH_99.pdf
http://www.aclweb.org/anthology/W/W07/W07-1803
http://www.aclweb.org/anthology/W/W07/W07-1803
http://www.sigdial.org/workshops/workshop6/proceedings/pdf/65-SigDial2005_8.pdf
http://www.sigdial.org/workshops/workshop6/proceedings/pdf/65-SigDial2005_8.pdf
http://dx.doi.org/10.1017/S0956796803004738
http://dx.doi.org/10.1007/s11168-007-9030-6
http://www.cs.chalmers.se/~aarne/articles/libraries-kahn.pdf
http://www.cs.chalmers.se/~aarne/articles/libraries-kahn.pdf
http://dx.doi.org/10.1007/3-540-60579-7_9

References 27

Aarne Ranta and Robin Cooper. Dialogue Systems as Proof Editors. Journal
of Logic, Language and Information, 13(2):225–240, 2004. ISSN 0925-8531.
doi: 10.1023/B:JLLI.0000024736.34644.48.

Manny Rayner, David Carter, Pierrette Bouillon, Vassilis Digalakis, and Mats
Wirén, editors. The Spoken Language Translator. Studies in Natural Language
Processing. Cambridge University Press, Cambridge, UK, November 2000. doi:
10.2277/0521770777.

Manny Rayner, Pierrette Bouillon, Nikos Chatzichrisafis, Beth A. Hockey,
Marianne Santaholma, Marianne Starlander, Hitoshi Isahara, Kyoko Kanzaki,
and Yukie Nakao. A Methodology for Comparing Grammar-Based and Ro-
bust Approaches to Speech Understanding. In Proceedings of Interspeech 2005,
2005a. URL http://www.issco.unige.ch/pub/RaynerEAInterspeech2005.

pdf.

Manny Rayner, Beth A. Hockey, Nikos Chatzichrisafis, Kim Farrell, and Jean-
Michel Renders. A voice enabled procedure browser for the International
Space Station. In Proceedings of the ACL Interactive Poster and Demon-
stration Sessions (ACL 2005), Ann Arbor, Michigan, pages 29–32, Morris-
town, NJ, USA, June 2005b. Association for Computational Linguistics. doi:
10.3115/1225753.1225761.

Manny Rayner, Beth A. Hockey, Jean-Michel Renders, Nikos Chatzichrisafis,
and Kim Farrell. Spoken Language Processing in the Clarissa Procedure
Browser. Technical report, International Computer Science Institute, Berke-
ley, California, April 2005c. URL ftp://ftp.icsi.berkeley.edu/pub/

techreports/2005/tr-05-005.pdf.

Manny Rayner, Pierrette Bouillon, Nikos Chatzichrisafis, Marianne Santa-
holma, Marianne Starlander, Beth A. Hockey, Yukie Nakao, Hitoshi Isahara,
and Kyoko Kanzaki. MedSLT: A Limited-Domain Unidirectional Grammar-
Based Medical Speech Translator. In Proceedings of the First International
Workshop on Medical Speech Translation, pages 40–43, New York, New York,
2006a. Association for Computational Linguistics. URL http://acl.ldc.

upenn.edu/W/W06/W06-3707.pdf.

Manny Rayner, Beth A. Hockey, and Pierrette Bouillon. Putting Linguis-
tics into Speech Recognition: The Regulus Grammar Compiler. CSLI Publi-
cations, Ventura Hall, Stanford University, Stanford, CA 94305, USA, July
2006b. ISBN 1575865262.

Anders Christian Sivebæk, François Willot, and Lars Jensen. IRC conversation,
March 2007. irc://irc.inducks.org:6667/dcml.

Tony Strobl and Steve Steere. Operation Hajön. Musse Pigg & C:o, 1985(5),
May 1985. ISSN 0349-1463. Disney story code S 81111.

http://dx.doi.org/10.1023/B:JLLI.0000024736.34644.48
http://dx.doi.org/10.2277/0521770777
http://www.issco.unige.ch/pub/RaynerEAInterspeech2005.pdf
http://www.issco.unige.ch/pub/RaynerEAInterspeech2005.pdf
http://dx.doi.org/10.3115/1225753.1225761
ftp://ftp.icsi.berkeley.edu/pub/techreports/2005/tr-05-005.pdf
ftp://ftp.icsi.berkeley.edu/pub/techreports/2005/tr-05-005.pdf
http://acl.ldc.upenn.edu/W/W06/W06-3707.pdf
http://acl.ldc.upenn.edu/W/W06/W06-3707.pdf
irc://irc.inducks.org:6667/dcml

28 Introduction

Alex Waibel. Speech Translation: Past, Present and Future. In
INTERSPEECH-2004, pages 353–356, October 2004.

Ye-Yi Wang and Alex Acero. SGStudio: Rapid Semantic Grammar Develop-
ment for Spoken Language Understanding. In Proceedings of the Interspeech
Conference, Lisbon, Portugal, September 2005. URL http://research.

microsoft.com/srg/papers/2005-yeyiwang-eurospeech.pdf.

http://research.microsoft.com/srg/papers/2005-yeyiwang-eurospeech.pdf
http://research.microsoft.com/srg/papers/2005-yeyiwang-eurospeech.pdf

Paper I Speech Recognition Grammar

Compilation in Grammatical

Framework

SPEECHGRAM 2007, Prague

Speech Recognition Grammar Compilation in

Grammatical Framework

Björn Bringert

Department of Computer Science and Engineering

Chalmers University of Technology

and University of Gothenburg

SE-412 96 Göteborg, Sweden

bringert@chalmers.se

Abstract

This paper describes how grammar-based language models for speech
recognition systems can be generated from Grammatical Framework (GF)
grammars. Context-free grammars and finite-state models can be gener-
ated in several formats: GSL, SRGS, JSGF, and HTK SLF. In addition,
semantic interpretation code can be embedded in the generated context-
free grammars. This enables rapid development of portable, multilingual
and easily modifiable speech recognition applications.

1 Introduction

Speech recognition grammars are used for guiding speech recognizers in many
applications. However, there are a number of problems associated with writing
grammars in the low-level, system-specific formats required by speech recog-
nizers. This work addresses these problems by generating speech recognition
grammars and semantic interpretation components from grammars written in
Grammatical Framework (GF), a high-level, type-theoretical grammar formal-
ism. Compared to existing work on compiling unification grammars, such as
Regulus (Rayner et al. 2006), our work uses a type-theoretical grammar formal-
ism with a focus on multilinguality and modular grammar development, and
supports multiple speech recognition grammar formalisms, including finite-state
models.

We first outline some existing problems in the development and maintenance
of speech recognition grammars, and describe how our work attempts to address
these problems. In the following two sections we introduce speech recognition
grammars and Grammatical Framework. The bulk of the paper then describes
how we generate context-free speech recognition grammars, finite-state language
models and semantic interpretation code from GF grammars. We conclude by

31

32 Bringert

giving references to a number of experimental dialogue systems which already
use our grammar compiler for generating speech recognition grammars.

Expressivity Speech recognition grammars are written in simple formalisms
which do not have the powerful constructs of high-level grammar formalisms.
This makes speech recognition grammar writing labor-intensive and error prone,
especially for languages with more inflection and agreement than English.

This is solved by using a high-level grammar formalism with powerful con-
structs and a grammar library which implements the domain-independent lin-
guistic details.

Duplicated work When speech recognition grammars are written directly
in the low-level format required by the speech recognizer, other parts of the
system, such as semantic interpretation components, must often be constructed
separately.

This duplicated work can be avoided by generating all the components from
a single declarative source, such as a GF grammar.

Consistency Because of the lack of abstraction mechanisms and consistency
checks, it is difficult to modify a system which uses hand-written speech recogni-
tion grammars. The problem is multiplied when the system is multilingual. The
developer has to modify the speech recognition grammar and the semantic inter-
pretation component manually for each language. A simple change may require
touching many parts of the grammar, and there are no automatic consistency
checks.

The strong typing of the GF language enforces consistency between the
semantics and the concrete representation in each language.

Localization With hand-written grammars, it is about as difficult to add
support for a new language as it is to write the grammar and semantic inter-
pretation for the first language.

GF’s support for multilingual grammars and the common interface imple-
mented by all grammars in the GF resource grammar library makes it easier to
translate a grammar to a new language.

Portability A grammar in any given speech recognition grammar format can-
not be used with a speech recognizer which uses another format.

In our approach, a GF grammar is used as the canonical representation which
the developer works with, and speech recognition grammars in many formats
can be generated automatically from this representation.

2 Speech Recognition Grammars

To achieve acceptable accuracy, speech recognition software is guided by a lan-
guage model which defines the language which can be recognized. A language

Speech Recognition Grammar Compilation in Grammatical Framework 33

model may also assign different probabilities to different strings in the language.
A language model can either be a statistical language model (SLM), such as an
n-gram model, or a grammar-based language model, for example a context-free
grammar (CFG) or a finite-state automaton (FSA). In this paper, we use the
term speech recognition grammar (SRG) to refer to all grammar-based language
models, including context-free grammars, regular grammars and finite-state au-
tomata.

3 Grammatical Framework

Grammatical Framework (GF) (Ranta 2004) is a grammar formalism based on
constructive type theory. In GF, an abstract syntax defines a semantic rep-
resentation. A concrete syntax declares how terms in an abstract syntax are
linearized, that is, how they are mapped to concrete representations. GF gram-
mars can be made multilingual by having multiple concrete syntaxes for a single
abstract syntax.

3.1 The Resource Grammar Library

The GF Resource Grammar Library (Ranta et al. 2006) currently implements
the morphological and syntactic details of 10 languages. This library is intended
to make it possible to write grammars without caring about the linguistic details
of particular languages. It is inspired by library-based software engineering,
where complex functionality is implemented in reusable software libraries with
simple interfaces.

The resource grammar library is used through GF’s facility for grammar
composition, where the abstract syntax of one grammar is used in the imple-
mentation of the concrete syntax of another grammar. Thus, an application
grammar writer who uses a resource grammar uses its abstract syntax terms to
implement the linearizations in the application grammar.

The resource grammars for the different languages implement a common in-
terface, i.e. they all have a common abstract syntax. This means that grammars
which are implemented using resource grammars can be easily localized to other
languages. Localization normally consists of translating the application-specific
lexical items, and adjusting any linearizations which turn out to be unidiomatic
in the language in question. For example, when the GoTGoDiS (Ericsson et al.
2006) application was localized to Finnish, only 3 out of 180 linearization rules
had to be changed.

3.2 An Example GF Grammar

Figure 1 contains a small example GF abstract syntax. Figure 2 defines an
English concrete syntax for it, using the resource grammar library. We will use
this grammar when we show examples of speech recognition grammar generation
later.

34 Bringert

abstract Food = {
flags startcat = Order;
cat Order;

Items;
Item;
Number;
Size;

fun order : Items→ Order;
and : Items→ Items→ Items;
items : Item→ Number→ Size→ Items;
pizza, beer : Item;
one, two : Number;
small, large : Size;

}

Figure 1. Food.gf: A GF abstract syntax module.

In the abstract syntax, cat judgements introduce syntactic categories, and
fun judgements declare constructors in those categories. For example, the items

constructor makes an Items term from an Item, a Number and a Size. The term
items pizza two small is an example of a term in this abstract syntax.

In the concrete syntax, a lincat judgement declares the type of the con-
crete terms generated from the abstract syntax terms in a given category. The
linearization of each constructor is declared with a lin judgement. In the con-
crete syntax in Figure 2, library functions from the English resource grammar
are used for the linearizations, but it is also possible to write concrete syn-
tax terms directly. The linearization of the term items pizza two small is
{s = “two small pizzas”}, a record containing a single string field.

By changing the imports and the four lexical items, this grammar can be
translated to any other language for which there is a resource grammar. For
example, in the German version, we replace (regN “beer”) with (reg2N “Bier”
“Biere” neuter) and so on. The functions regN and reg2N implement paradigms
for regular English and German nouns, respectively. This replacement can be
formalized using GF’s parametrized modules, which lets one write a common
implementation that can be instantiated with the language-specific parts. Note
that the application grammar does not deal with details such as agreement, as
this is taken care of by the resource grammar.

Speech Recognition Grammar Compilation in Grammatical Framework 35

concrete FoodEng of Food = open TryEng in {
lincat Order = Utt;

Items = NP;
Item = CN;
Number = Det;
Size = AP;

lin order x = mkUtt x;
and x y = mkNP and_Conj x y;
items x n s = mkNP n (mkCN s x);
pizza = mkCN (regN “pizza”);
beer = mkCN (regN “beer”);
one = mkDet n1_Numeral;
two = mkDet n2_Numeral;
small = mkAP (regA “small”);
large = mkAP (regA “large”);

}

Figure 2. FoodEng.gf: English concrete syntax for the abstract syntax in
Figure 1.

4 Generating Context-free Grammars

4.1 Algorithm

GF grammars are converted to context-free speech recognition grammars in a
number of steps. An overview of the compilation pipeline is show in Figure 3.
The figure also includes compilation to finite-state automata, as described in
Section 5. Each step of the compilation is described in more detail in the
sections below.

PGF compilation The linearization rules in the GF grammar are first com-
piled to PGF (Portable Grammar Format, Angelov et al. 2008) linearization
rules.

PMCFG compilation The PGF linearization rules are then compiled to a
Parallel Multiple Context-Free Grammar (PMCFG) (Angelov et al. 2008).

CFG conversion The PMCFG is approximated with a CFG by converting
each PMCFG category-field pair to a CFG category.

Cycle elimination All directly and indirectly cyclic productions are removed,
since they cannot be handled gracefully by the subsequent left-recursion elim-
ination. Such productions do not contribute to the coverage to the grammar,
only to the set of possible semantic results.

36 Bringert

GF grammar

CFG conversion

Cycle elimination

Bottom-up filtering

Top-down filtering

Left-recursion

elimination

Identical category

elimination

EBNF compaction

SRGS/JSGF/GSL

Regular

approximation

FSA compilation

FSA minimization

SLF
Regexp

conversion

Regexp

minimization

SRGS (non-recursive)

PMCFG

compilation

PGF compilation

Figure 3. Grammar compilation pipeline.

Bottom-up filtering Productions whose right-hand sides use categories for
which there are no productions are removed, since these will never match any
input.

Top-down filtering Only productions for categories which can be reached
from the start category are kept. This is mainly used to remove parts of the
grammar which are unused because of the choice of start category. One example
where this is useful is when a speech recognition grammar is generated from a
multimodal grammar (Bringert et al. 2005). In this case, the start category is
different from the start category used by the parser, in that its linearization
only contains the speech component of the input. Top-down filtering then has
the effect of excluding the non-speech modalities from the speech recognition
grammar.

Left-recursion elimination All direct and indirect left-recursion is removed
using the LCLR transform described by Moore (2000). We have modified the
LCLR transform to avoid adding productions which use a category A−X when
there are no productions for A−X.

Identical category elimination In this step, the categories are grouped into
equivalence classes by their right-hand sides and semantic annotations. The

Speech Recognition Grammar Compilation in Grammatical Framework 37

categories A1 . . . An in each class are replaced by a single category A1+. . .+An
throughout the grammar, discarding any duplicate productions. This has the
effect of replacing all categories which have identical sets of productions with
a single category. Concrete syntax parameters which do not affect inflection is
one source of such redundancy; the LCLR transform is another.

EBNF compaction The resulting context-free grammar is compacted into
an Extended Backus-Naur Form (EBNF) representation. This reduces the size
and improves the readability of the final grammar. The compaction is done by,
for each category, grouping all the productions which have the same semantic
interpretation, and the same sequence of non-terminals on their right-hand sides,
ignoring any terminals. The productions in each group are merged into one
EBNF production, where the terminal sequences between the non-terminals are
converted to regular expressions which are the unions of the original terminal
sequences. These regular expressions are then minimized.

Conversion to output format The resulting non-left-recursive grammar is
converted to SRGS, JSGF or Nuance GSL format.

A fragment of a SRGS ABNF grammar generated from the GF grammar
in Figure 2 is shown below. The left-recursive and rule was removed from
the grammar before compilation, as the left-recursion elimination step makes it
difficult to read the generated grammar. The fragment shown here is for the
singular part of the items rule.

$FE1 = $FE6 $FE9 $FE4;

$FE6 = one;

$FE9 = large | small;

$FE4 = beer | pizza;

The corresponding fragment generated from the German version of the gram-
mar is more complex, since the numeral and the adjective must agree with the
gender of the noun.

$FG1 = $FG10 $FG13 $FG6 | $FG9 $FG12 $FG4;

$FG9 = eine;

$FG10 = ein;

$FG12 = große | kleine;

$FG13 = großes | kleines;

$FG4 = Pizza;

$FG6 = Bier;

4.2 Discussion

The generated grammar is an overgenerating approximation of the original GF
grammar. This is inevitable, since the GF formalism is stronger than context-
free grammars, for example through its support for reduplication. GF’s support
for dependently typed and higher-order abstract syntax is also not yet carried
over to the generated speech recognition grammars. This could be handled

38 Bringert

in a subsequent semantic interpretation step. However, that requires that the
speech recognizer considers multiple hypotheses, since some may be discarded
by the semantic interpretation. Currently, if the abstract syntax types are
only dependent on finite types, the grammar can be expanded to remove the
dependencies. This appears to be sufficient for many realistic applications.

In some cases, empty productions in the generated grammar could cause
problems for the cycle and left-recursion elimination, though we have yet to
encounter this in practice. Empty productions can be removed by transforming
the grammar, though this has not yet been implemented.

For some grammars, the initial CFG generation can generate a very large
number of productions. While the resulting speech recognition grammars are of
a reasonable size, the large intermediate grammars can cause memory problems.
Further optimization is needed to address this problem.

5 Finite-State Models

5.1 Algorithm

Some speech recognition systems use finite-state automata rather than context-
free grammars as language models. GF grammars can be compiled to finite-
state automata using the procedure shown in Figure 3. The initial part of
the compilation to a finite-state model is shared with the context-free SRG
compilation, and is described in Section 4.

Regular approximation The context-free grammar is approximated with a
regular grammar, using the algorithm described by Mohri and Nederhof (2001).

Compilation to finite-state automata The regular grammar is converted
into a set of non-deterministic finite automata (NFA) using a modified version of
the make_fa algorithm described by Nederhof (2000). For realistic grammars,
applying the original make_fa algorithm to the whole grammar generates a very
large automaton, since a copy of the sub-automaton corresponding to a given
category is made for every use of the category.

Instead, one automaton is generated for each category in the regular gram-
mar. All categories which are not in the same mutually recursive set as the
category for which the automaton is generated are treated as terminal symbols.
This results in a set of automata with edges labeled with either terminal symbols
or the names of other automata.

If desired, the set of automata can be converted into a single automaton
by substituting each category-labeled edge with a copy of the corresponding
automaton. Note that this always terminates, since the sub-automata do not
have edges labeled with the categories from the same mutually recursive set.

Speech Recognition Grammar Compilation in Grammatical Framework 39

Minimization Each of the automata is turned into a minimal deterministic
finite automaton (DFA) by using Brzozowski’s (1962) algorithm, which mini-
mizes the automaton by performing two determinizations and reversals.

Conversion to output format The resulting finite automaton can be output
in HTK Standard Lattice Format (SLF). SLF supports sub-lattices, which allows
us to convert our set of automata directly into a set of lattices. Since SLF uses
labeled nodes, rather than labeled edges, we move the labels to the nodes. This is
done by first introducing a new labeled node for each edge, and then eliminating
all internal unlabeled nodes. Figure 4 shows the SLF model generated from the
example grammar. For clarity, the sub-lattices have been inlined.

ENDSTART

and one

two

pizzas

beers

pizza

beer

small

large

small

large

Figure 4. SLF model generated from the grammar in Figure 2.

Regular expression conversion and minimization Some speech recogniz-
ers, such as Nuance Recognizer 9.0, only support non-recursive SRGS grammars.
We build such grammars by starting from the DFAs produced for each mutually
recursive set in the previous step. Each DFA is converted to a regular expres-
sion which is then minimized. The end result is an EBNF grammar without
any recursion, which can be printed in SRGS format.

5.2 Discussion

Finite-state models are even more restrictive than context-free grammars. This
problem is handled by approximating the context-free grammar with an over-
generating finite-state automaton. This may lead to failure in a subsequent
parsing step, which, as in the context-free case, is acceptable if the recognizer
can return all hypotheses.

40 Bringert

6 Semantic Interpretation

Semantic interpretation can be done as a separate parsing step after speech
recognition, or it can be done with semantic information embedded in the speech
recognition grammar. The latter approach resembles the semantic actions used
by parser generators for programming languages. One formalism for semantic
interpretation is the proposed Semantic Interpretation for Speech Recognition
(SISR) standard. SISR tags are pieces of JavaScript code embedded in the
speech recognition grammar.

6.1 Algorithm

The GF system can include SISR tags when generating speech recognitions
grammars in SRGS and JSGF format. The SISR tags are generated from the
tree building information in the PMCFG. The result of the semantic interpre-
tation is an abstract syntax term.

The left-recursion elimination step makes it somewhat challenging to pro-
duce correct abstract syntax trees. We have extended Moore’s (2000) LCLR
transform to preserve the semantic interpretation. The LCLR transform intro-
duces new categories of the form A−X where X is a proper left corner of a
category A. The new category A−X can be understood as “the category A, but
missing an initial X”. Thus the semantic interpretation for a production in A−X
is the semantic interpretation for the original A-production, abstracted (in the
λ-calculus sense) over the semantic interpretation of the missing X. Conversely,
where-ever a category A−X is used, its result is applied to the interpretation of
the occurrence of X.

6.2 Discussion

As discussed in Section 4.2, the semantic interpretation code could be used to
implement the non-context-free features of GF, but this is not yet done.

The slot-filling mechanism in the GSL format could also be used to build se-
mantic representations, by returning program code which can then be executed.
The UNIANCE grammar compiler (Bos 2002) uses that approach.

7 Related Work

7.1 Unification Grammar Compilation

Compilation of unification grammars to speech recognition grammars is well
described in the literature (Moore 1999; Dowding et al. 2001). Regulus (Rayner
et al. 2006) is perhaps the most ambitious such system. Like GF, Regulus
uses a general grammar for each language, which is specialized to a domain-
specific one. Ljunglöf (Ljunglöf 2007) relates GF and Regulus by showing how
to convert GF grammars to Regulus grammars. We carry compositional se-
mantic interpretation through left-recursion elimination using the same idea as

Speech Recognition Grammar Compilation in Grammatical Framework 41

the UNIANCE grammar compiler (Bos 2002), though our version handles both
direct and indirect left-recursion.

The main difference between our work and the existing compilers is that we
work with type-theoretical grammars rather than unification grammars. While
the existing work focuses on GSL as the output language, we also support
a number of other formats, including finite-state models. By using the GF
resource grammars, speech recognition language models can be produced for
more languages than with previous systems. One shortcoming of our system is
that it does not yet have support for weighted grammars.

7.2 Generating SLMs from GF Grammars

Jonson (2006) has shown that in addition to generating grammar-based lan-
guage models, GF can be used to build statistical language models (SLMs).
It was found that compared to our grammar-based approach, use of generated
SLMs improved the recognition performance for out-of-grammar utterances sig-
nificantly.

8 Results

Speech recognition grammars generated from GF grammars have already been
used in a number of research dialogue systems.

GOTTIS (Bringert et al. 2005; Ericsson et al. 2006), an experimental multi-
modal and multilingual dialogue system for public transportation queries, uses
GF grammars for parsing multimodal input. For speech recognition, it uses
GSL grammars generated from the speech modality part of the GF grammars.

DJ-GoDiS, GoDiS-deLUX, and GoTGoDiS (Ericsson et al. 2006) are three
applications which use GF grammars for speech recognition and parsing together
with the GoDiS implementation of issue-based dialogue management (Larsson
2002). GoTGoDiS has been translated to 7 languages using the GF resource
grammar library, with each new translation taking less than one day (Ericsson
et al. 2006).

The DICO (Villing and Larsson 2006) dialogue system for trucks has recently
been modified to use GF grammars for speech recognition and parsing (Ljunglöf
2007).

DUDE (Lemon and Liu 2006) and its extension REALL-DUDE (Lemon
et al. 2006) are environments where non-experts can develop dialogue systems
based on Business Process Models describing the applications. From keywords,
prompts and answer sets defined by the developer, the system generates a GF
grammar. This grammar is used for parsing input, and for generating a language
model in SLF or GSL format.

The Voice Programming system by Georgila and Lemon (2006) uses an SLF
language model generated from a GF grammar.

Perera and Ranta (2007) have studied how GF grammars can be used for
localization of dialogue systems. A GF grammar was developed and localized

42 Bringert

to 4 other languages in significantly less time than an equivalent GSL grammar.
They also found the GSL grammar generated by GF to be much smaller than
the hand-written GSL grammar.

9 Conclusions

We have shown how GF grammars can be compiled to several common speech
recognition grammar formats. This has helped decrease development time, im-
prove modifiability, aid localization and enable portability in a number of ex-
perimental dialogue systems.

Several systems developed in the TALK and DICO projects use the same
GF grammars for speech recognition, parsing and multimodal fusion (Ericsson
et al. 2006). Using the same grammar for multiple system components reduces
development and modification costs, and makes it easier to maintain
consistency within the system.

The feasibility of rapid localization of dialogue systems which use GF
grammars has been demonstrated in the GoTGoDiS (Ericsson et al. 2006) sys-
tem, and in experiments by Perera and Ranta (2007).

Using speech recognition grammars generated by GF makes it easy to sup-
port different speech recognizers. For example, by using the GF grammar
compiler, the DUDE (Lemon and Liu 2006) system can support both the ATK
and Nuance recognizers.

Implementations of the methods described in this paper are freely available
as part of the GF distribution1.

Acknowledgments

Aarne Ranta, Peter Ljunglöf, Rebecca Jonson, David Hjelm, Ann-Charlotte
Forslund, Håkan Burden, Xingkun Liu, Oliver Lemon, and the anonymous ref-
erees have contributed valuable comments on the grammar compiler implemen-
tation and/or this article. We would like to thank Nuance Communications,
Inc., OptimSys, s.r.o., and Opera Software ASA for software licenses and tech-
nical support. The code in this paper has been typeset using lhs2TeX, with
help from Andres Löh. This work has been partly funded by the EU TALK
project, IST-507802.

References

Krasimir Angelov, Björn Bringert, and Aarne Ranta. PGF: A Portable Run-
Time Format for Type-Theoretical Grammars. Journal of Logic, Language
and Information, submitted, 2008.

1 http://www.cs.chalmers.se/~aarne/GF/

http://www.cs.chalmers.se/~aarne/GF/

Speech Recognition Grammar Compilation in Grammatical Framework 43

Johan Bos. Compilation of unification grammars with compositional seman-
tics to speech recognition packages. In Proceedings of the 19th international
conference on Computational linguistics (COLING 2002), pages 1–7, Mor-
ristown, NJ, USA, 2002. Association for Computational Linguistics. doi:
10.3115/1072228.1072323.

Björn Bringert, Robin Cooper, Peter Ljunglöf, and Aarne Ranta. Multimodal
Dialogue System Grammars. In Proceedings of DIALOR’05, Ninth Workshop
on the Semantics and Pragmatics of Dialogue, Nancy, France, pages 53–60,
June 2005. URL http://dialor05.loria.fr/Papers/07-BjornBringert.

pdf.

Janusz A. Brzozowski. Canonical regular expressions and minimal state graphs
for definite events. In Mathematical theory of Automata, Volume 12 of MRI
Symposia Series, pages 529–561. Polytechnic Press, Polytechnic Institute of
Brooklyn, N.Y., 1962.

John Dowding, Beth A. Hockey, Jean M. Gawron, and Christopher Culy. Prac-
tical issues in compiling typed unification grammars for speech recognition. In
ACL ’01: Proceedings of the 39th Annual Meeting on Association for Compu-
tational Linguistics, pages 164–171, Morristown, NJ, USA, 2001. Association
for Computational Linguistics. doi: 10.3115/1073012.1073034.

Stina Ericsson, Gabriel Amores, Björn Bringert, Håkan Burden, Ann-Charlotte
Forslund, David Hjelm, Rebecca Jonson, Staffan Larsson, Peter Ljunglöf, Pi-
lar Manchón, David Milward, Guillermo Pérez, and Mikael Sandin. Software
illustrating a unified approach to multimodality and multilinguality in the in-
home domain. deliverable 1.6, 2006. URL http://www.talk-project.org/

fileadmin/talk/publications_public/deliverables_public/D1_6.pdf.

Kallirroi Georgila and Oliver Lemon. Programming by Voice: enhancing adap-
tivity and robustness of spoken dialogue systems. In BRANDIAL’06, Pro-
ceedings of the 10th Workshop on the Semantics and Pragmatics of Dialogue,
pages 199–200, 2006. URL http://www.ling.uni-potsdam.de/brandial/

Proceedings/brandial06_georgila_etal.pdf.

Rebecca Jonson. Generating Statistical Language Models from Interpretation
Grammars in Dialogue Systems. In EACL 2006, 11st Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, 2006. URL
http://acl.ldc.upenn.edu/E/E06/E06-1008.pdf.

Staffan Larsson. Issue-based Dialogue Management. PhD thesis, Göteborg
University, Göteborg, Sweden, 2002.

Oliver Lemon and Xingkun Liu. DUDE: a Dialogue and Understanding De-
velopment Environment, mapping Business Process Models to Information
State Update dialogue systems. In EACL 2006, 11st Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, 2006. URL
http://www.aclweb.org/anthology-new/E/E06/E06-2004.pdf.

http://dx.doi.org/10.3115/1072228.1072323
http://dialor05.loria.fr/Papers/07-BjornBringert.pdf
http://dialor05.loria.fr/Papers/07-BjornBringert.pdf
http://dx.doi.org/10.3115/1073012.1073034
http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/D1_6.pdf
http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/D1_6.pdf
http://www.ling.uni-potsdam.de/brandial/Proceedings/brandial06_georgila_etal.pdf
http://www.ling.uni-potsdam.de/brandial/Proceedings/brandial06_georgila_etal.pdf
http://acl.ldc.upenn.edu/E/E06/E06-1008.pdf
http://www.aclweb.org/anthology-new/E/E06/E06-2004.pdf

44 Bringert

Oliver Lemon, Xingkun Liu, Daniel Shapiro, and Carl Tollander. Hierarchi-
cal Reinforcement Learning of Dialogue Policies in a development environ-
ment for dialogue systems: REALL-DUDE. In BRANDIAL’06, Proceedings of
the 10th Workshop on the Semantics and Pragmatics of Dialogue, pages 185–
186, September 2006. URL http://www.ling.uni-potsdam.de/brandial/

Proceedings/brandial06_lemon_etal.pdf.

Peter Ljunglöf. Converting Grammatical Framework to Regulus. In Pro-
ceedings of the Workshop on Grammar-Based Approaches to Spoken Lan-
guage Processing, pages 9–16, Prague, Czech Republic, 2007. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/

W/W07/W07-1802.

Peter Ljunglöf. Personal communication, March 2007.

Mehryar Mohri and Mark J. Nederhof. Regular Approximation of Context-Free
Grammars through Transformation. In Jean C. Junqua and Gertjan van No-
ord, editors, Robustness in Language and Speech Technology, volume 17 of Text,
Speech and Language Technology, pages 153–163. Kluwer Academic Publish-
ers, Dordrecht, 2001. URL http://www.coli.uni-sb.de/publikationen/

softcopies/Mohri:2001:RAC.pdf.

Robert C. Moore. Removing left recursion from context-free grammars. In
Proceedings of the first conference on North American chapter of the Associa-
tion for Computational Linguistics, pages 249–255, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc. doi: 10.1145/321250.321254.

Robert C. Moore. Using Natural-Language Knowledge Sources in Speech
Recognition. In K. M. Ponting, editor, Computational Models of Speech Pat-
tern Processing, pages 304–327. Springer, 1999. URL http://research.

microsoft.com/users/bobmoore/nato-asi.pdf.

Mark J. Nederhof. Regular Approximation of CFLs: A Grammatical View.
In Harry Bunt and Anton Nĳholt, editors, Advances in Probabilistic and other
Parsing Technologies, volume 16 of Text, Speech and Language Technology,
pages 221–241. Kluwer Academic Publishers, 2000. URL http://www.dcs.

st-and.ac.uk/~mjn/publications/2000d.pdf.

Nadine Perera and Aarne Ranta. Dialogue System Localization with the GF
Resource Grammar Library. In Proceedings of the Workshop on Grammar-
Based Approaches to Spoken Language Processing, Prague, Czech Republic,
pages 17–24. Association for Computational Linguistics, 2007. URL http:

//www.aclweb.org/anthology/W/W07/W07-1803.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004. ISSN
0956-7968. doi: 10.1017/S0956796803004738.

http://www.ling.uni-potsdam.de/brandial/Proceedings/brandial06_lemon_etal.pdf
http://www.ling.uni-potsdam.de/brandial/Proceedings/brandial06_lemon_etal.pdf
http://www.aclweb.org/anthology/W/W07/W07-1802
http://www.aclweb.org/anthology/W/W07/W07-1802
http://www.coli.uni-sb.de/publikationen/softcopies/Mohri:2001:RAC.pdf
http://www.coli.uni-sb.de/publikationen/softcopies/Mohri:2001:RAC.pdf
http://dx.doi.org/10.1145/321250.321254
http://research.microsoft.com/users/bobmoore/nato-asi.pdf
http://research.microsoft.com/users/bobmoore/nato-asi.pdf
http://www.dcs.st-and.ac.uk/~mjn/publications/2000d.pdf
http://www.dcs.st-and.ac.uk/~mjn/publications/2000d.pdf
http://www.aclweb.org/anthology/W/W07/W07-1803
http://www.aclweb.org/anthology/W/W07/W07-1803
http://dx.doi.org/10.1017/S0956796803004738

Speech Recognition Grammar Compilation in Grammatical Framework 45

Aarne Ranta, Ali El Dada, and Janna Khegai. The GF Resource Gram-
mar Library, June 2006. URL http://www.cs.chalmers.se/~aarne/GF/doc/

resource.pdf.

Manny Rayner, Beth A. Hockey, and Pierrette Bouillon. Putting Linguistics
into Speech Recognition: The Regulus Grammar Compiler. CSLI Publications,
Ventura Hall, Stanford University, Stanford, CA 94305, USA, July 2006. ISBN
1575865262.

Jessica Villing and Staffan Larsson. Dico: A Multimodal Menu-based
In-vehicle Dialogue System. In BRANDIAL’06, Proceedings of the 10th
Workshop on the Semantics and Pragmatics of Dialogue, pages 187–188,
2006. URL http://www.ling.uni-potsdam.de/brandial/Proceedings/

brandial06_villing_etal.pdf.

http://www.cs.chalmers.se/~aarne/GF/doc/resource.pdf
http://www.cs.chalmers.se/~aarne/GF/doc/resource.pdf
http://www.ling.uni-potsdam.de/brandial/Proceedings/brandial06_villing_etal.pdf
http://www.ling.uni-potsdam.de/brandial/Proceedings/brandial06_villing_etal.pdf

46 Bringert

Paper II Multimodal Dialogue System

Grammars

DIALOR 2005, Nancy

Multimodal Dialogue System Grammars∗

Björn Bringert, Peter Ljunglöf, Aarne Ranta

Department of Computer Science and Engineering

Chalmers University of Technology

and University of Gothenburg

{bringert,peb,aarne}@chalmers.se

Robin Cooper

Department of Linguistics

University of Gothenburg

cooper@ling.gu.se

Abstract

We describe how multimodal grammars for dialogue systems can be
written using the Grammatical Framework (GF) formalism. A proof-of-
concept dialogue system constructed using these techniques is also pre-
sented. The software engineering problem of keeping grammars for dif-
ferent languages, modalities and systems (such as speech recognizers and
parsers) in sync is reduced by the formal relationship between the abstract
and concrete syntaxes, and by generating equivalent grammars from GF
grammars.

1 Introduction

We are interested in building multilingual multimodal grammar-based dialogue
systems which are clearly recognisable to users as the same system even if they
use the system in different languages or in different domains using different
mixes of modalities (e.g. in-house vs in-car, and within the in-house domain
with vs without a screen for visual interaction and touch/click input). We wish
to be able to guarantee that the functionality of the system is the same under
the different conditions.

Our previous experience with building such multilingual dialogue systems
is that there is a software engineering problem keeping the linguistic coverage
in sync for different languages. This problem is compounded by the fact that
for each language it is normally the case that a dialogue system requires more
than one grammar, e.g. one grammar for speech recognition and another for

∗ This project is supported by the EU project TALK (Talk and Look, Tools for Ambient
Linguistic Knowledge), IST-507802.

49

50 Bringert, Ljunglöf, Ranta, Cooper

interaction with the dialogue manager. Thus multilingual systems become very
difficult to develop and maintain.

In this paper we will explain the nature of the Grammatical Framework
(GF) and how it may provide us with a solution to this problem. The system
is oriented towards the writing of multilingual and multimodal grammars and
forces the grammar writer to keep a collection of grammars in sync. It does
this by using computer science notions of abstract and concrete syntax. Es-
sentially abstract syntax corresponds to the domain knowledge representation
of the system and several concrete syntaxes characterising both natural lan-
guage representations of the domain and representations in other modalities are
related to a single abstract syntax.

GF has a type checker that forces concrete syntaxes to give complete coverage
of the abstract syntax and thus will immediately tell the grammar writer if the
grammars are not in sync. In addition the framework provides possibilities for
converting from one grammar format to another and for combining grammars
and extracting sub-grammars from larger grammars.

2 The Grammatical Framework and multilin-

gual grammars

The main idea of Grammatical Framework (GF) is the separation of abstract
and concrete syntax. The abstract part of a grammar defines a set of abstract
syntactic structures, called abstract terms or trees; and the concrete part defines
a relation between abstract structures and concrete structures.

As an example of a GF representation, the following abstract syntax tree
represents a possible user input in our example dialogue system.

GoFromTo (PStop Chalmers) (PStop Valand)

The English concrete syntax relates the query to the string

“I want to go from Chalmers to Valand”

The Swedish concrete syntax relates it to the string

“Jag vill åka från Chalmers till Valand”

The strings are generated from the tree in a compositional rule-to-rule fashion.
The generation rules are automatically inverted to parsing rules.

The abstract theory of Grammatical Framework (Ranta 2004) is a version
of dependent type theory, similar to LF (Harper et al. 1993), ALF (Magnusson
and Nordström 1994) and COQ (Coq). What GF adds to the logical framework
is the possibility of defining concrete syntax. The expressiveness of the concrete
syntax has developed into a functional programming language, similar to a
restricted version of programming languages like Haskell (Peyton Jones 2003)
and ML (Milner et al. 1997).

Multimodal Dialogue System Grammars 51

Abstract linguistic description
Language specific details

(inflection, word order)

Figure 1. Higher-level language descriptions

Abstract linguistic
description

Language
1

...

Language
n

Figure 2. Multilingual grammars

The separation between abstract and concrete syntax was suggested for lin-
guistics in (Curry 1961), using the terms “tectogrammatical” and “phenogram-
matical” structure. Since the distinction has not been systematically exploited
in many well-known grammar formalisms, let us summarize its main advantages.

Higher-level language descriptions The grammar writer has a greater
freedom in describing the syntax for a language. As illustrated in Figure 1, when
describing the abstract syntax he/she can choose not to take certain language
specific details into account, such as inflection and word order. Abstracting away
smaller details can make the grammars simpler, both to read and understand,
and to create and maintain.

Multilingual grammar writing It is possible to define several different con-
crete syntax mappings for one particular abstract syntax. The abstract syntax
could e.g. give a high-level description of a family of similar languages, and each
concrete mapping gives a specific language instance, as shown in Figure 2.
This kind of multilingual grammar can be used as a model for interlingual
translation between languages. But we do not have to restrict ourselves to only
multilingual grammars; different concrete syntaxes can be given for different
modalities. As an example, consider a grammar for displaying time table infor-
mation. We can have one concrete syntax for writing the information as plain
text, but we could also present the information in the form of a table output as a
LATEX file or in Excel format, and a third possibility is to output the information
in a format suitable for speech synthesis.

Several descriptional levels Having only two descriptional levels is not a
restriction; this can be generalized to as many levels as is wanted, by equating
the concrete syntax of one grammar level with the abstract syntax of another

52 Bringert, Ljunglöf, Ranta, Cooper

Semantics Syntax Morphology Phonology

Figure 3. Several descriptional levels

Controlled
syntax

Resource
syntax

Object
language

Figure 4. Using resource grammars

level. As an example we could have a spoken dialogue system with a semantical,
a syntactical, a morphological and a phonological level. As illustrated in Fig-
ure 3, this system has to define three mappings; i) a mapping from semantical
descriptions to syntax trees; ii) a mapping from syntax trees to sequences of
lexical tokens; and iii) a mapping from lexical tokens to lists of phonemes.

This formulation makes grammars similar to transducers (Karttunen et al. 1996;
Mohri 1997) which are mostly used in morphological analysis, but have been
generalized to dialogue systems by (Lager and Kronlid 2004).

Grammar composition A multi-level grammar as described above can be
viewed as a “black box”, where the intermediate levels are unknown to the user.
Then we are back in our first view as a grammar specifying an abstract and a
concrete level together with a mapping. In this way we can talk about grammar
composition, where the composition G2 ◦G1 of two grammars is possible if the
abstract syntax of G2 is equal to the concrete syntax of G1.

If the grammar formalism supports this, a composition of several grammars
can be pre-compiled into a compact and efficient grammar which doesn’t have to
mention the intermediate domains and structures. This is the case for e.g. finite
state transducers, but also for GF as has been shown by Ranta (2007).

Resource grammars The possibility of separate compilation of grammar
compositions opens up for writing resource grammars (Ranta 2007). A resource
grammar is a fairly complete linguistic description of a specific language. Many
applications do not need the full power of a language, but instead want to use a
more well-behaved subset, which is often called a controlled language. Now, if we
already have a resource grammar, we do not even have to write a concrete syntax
for the desired controlled language, but instead we can specify the language by
mapping structures in the controlled language into structures in the resource
grammar, as shown in Figure 4.

Multimodal Dialogue System Grammars 53

3 Extending multilinguality to multimodality

Parallel multimodality Parallel multimodality is a straightforward instance
of multilinguality. It means that the concrete syntaxes associated with an ab-
stract syntax are not just different natural languages, but different representa-
tion modalities, encoded by language-like notations such as graphic representa-
tion formalisms. An example of parallel multimodality is given below when a
route is described, in parallel, by speech and by a line drawn on a map. Both
descriptions convey the full information alone, without support from the other.

This raises the dialogue management issue of whether all information should
be presented in all modalities. For example, in the implementation described
below all stops are indicated on the graphical presentation of a route whereas
in the natural language presentation only stops where the user must change
are presented. Because GF permits the suppression of information in concrete
syntax, this issue can be treated on the level of grammar instead of dialogue
management.

Integrated multimodality Integrated multimodality means that one con-
crete syntax representation is a combination of modalities. For instance, the
spoken utterance “I want to go from here to here” can be combined with two
pointing gestures corresponding to the two “here”s. It is the two modalities in
combination that convey the full information: the utterance alone or the clicks
alone are not enough.

How to define integrated multimodality with a grammar is less obvious than
parallel multimodality. In brief, different modality “channels” are stored in
different fields of a record, and it is the combination of the different fields that
is sent to the dialogue system parser.

4 Proof-of-concept implementation

We have implemented a multimodal route planning system for public transport
networks. The example system uses the Göteborg tram/bus network, but it can
easily be adapted to other networks. User input is handled by a grammar with
integrated speech and map click modalities. The system uses a grammar with
parallel speech and map drawing modalities. The user and system grammars are
split up into a number of modules in order to simplify reuse and modification.

The system is also multilingual, and can be used in both English and Swedish.
For every English concrete syntax module shown below, there is a corresponding
Swedish module. The system answers in the same language as the user made
the query in.

In addition to the grammars shown below, the application consists of a
number of agents which communicate using OAA (Martin et al. 1999). The
grammars are used by the Embedded GF Interpreter (Bringert 2005) to parse
user input and generate system output.

54 Bringert, Ljunglöf, Ranta, Cooper

4.1 Transport network

The transport network is represented by a set of modules which are used in
both the query and answer grammars. Since the transport network is described
in a separate set of modules, the Göteborg transport network may be replaced
easily. We use cat judgements to declare categories in the abstract syntax.

abstract Transport = {
cat Stop;
}

The Göteborg transport network grammar extends the generic grammar with
constructors for the stops. Constructors for abstract syntax terms are declared
using fun judgements.

abstract Gbg = Transport ∗∗ {
fun Angered : Stop;

AxelDahlstromsTorg : Stop;
Bergsjon : Stop;
...

}

4.2 Multimodal input

User input is done with integrated speech and click modalities. The user may
use speech only, or speech combined with clicks on the map. Clicks are expected
when the user makes a query containing “here”.

Common declarations The QueryBase module contains declarations com-
mon to all input modalities. The Query category is used to represent the se-
quentialization of the multimodal input into a single value. The Input category
contains the actual user queries, which will have multimodal representations.
The Click category is also declared here, since it is used by both the click modal-
ity and the speech modality, as shown below.

abstract QueryBase = {
cat Query;

Input;
Click;

fun QInput : Input→ Query;
}

Since QueryBase is language neutral and common to the different modalities,
it has a single concrete syntax. In a concrete module, lincat judgements are
used to declare the linearization type of a category, i.e. the type of the concrete
representations of values in the category. Note that different categories may have

Multimodal Dialogue System Grammars 55

different linearization types. The concrete representation of abstract syntax
terms is declared by lin judgements for each constructor in the abstract syntax.

Values in the Input category, which are intended to be multimodal, have
records with one field per modality as their concrete representation. The s1

field contains the speech input, and the s2 field contains the click input. Terms
constructed using the QInput constructor, that is sequentialized multimodal
queries, are represented as the concatenation of the representations of the indi-
vidual modalities, separated by a semicolon.

concrete QueryBaseCnc of QueryBase = {
lincat Query = {s : Str};

Input = {s1 : Str; s2 : Str};
Click = {s : Str};

lin QInput i = {s = i.s1 ++ “;” ++ i.s2 };
}

Click modality Click terms contain a list of stops that the click might refer
to:

abstract Click = QueryBase ∗∗ {
cat StopList;
fun CStops : StopList→ Click;

NoStop : StopList;
OneStop : String→ StopList;
ManyStops : String→ StopList→ StopList;

}

The same concrete syntax is used for clicks in all languages:

concrete ClickCnc of Click = QueryBaseCnc ∗∗ {
lincat StopList = {s : Str};
lin CStops xs = {s = “[” ++ xs.s ++ “]”};

NoStop = {s = “”};
OneStop x = {s = x.s};
ManyStops x xs = {s = x.s ++ “,” ++ xs.s};

}

Speech modality The Query module adds basic user queries and a way to
use a click to indicate a place.

abstract Query = QueryBase ∗∗ {
cat Place;
fun GoFromTo : Place→ Place→ Input;

GoToFrom : Place→ Place→ Input;

56 Bringert, Ljunglöf, Ranta, Cooper

PClick : Click→ Place;
}

This module has a concrete syntax using English speech. Like terms in the
Query category, Place terms are linearized to records with two fields, one for
each modality.

concrete QueryEng of Query = QueryBaseCnc ∗∗ {
lincat Place = {s1 : Str; s2 : Str};
lin GoFromTo x y = {

s1 = [“i want to go from”] ++ x.s1 ++ “to” ++ y.s1;
s2 = x.s2 ++ y.s2
};
GoToFrom x y = {

s1 = [“i want to go to”] ++ x.s1 ++ “from” ++ y.s1;
s2 = x.s2 ++ y.s2
};
PClick c = {s1 = “here”; s2 = c.s};

}

Indexicality To refer to her current location, the user can use “here” without
a click, or omit either origin or destination. The system is assumed to know
where the user is located. Since “here” may be used with or without a click,
inputs with two occurrences of “here” and only one click are ambiguous. A
query might also be ambiguous even if it can be parsed unambiguously, since
one click can correspond to multiple stops when the stops are close to each other
on the map.

These are the abstract syntax declarations for this feature (in the Query

module):

fun PHere : Place;
ComeFrom : Place→ Input;
GoTo : Place→ Input;

The English concrete syntax for this is added to the QueryEng module. Note
that the click (s2) field of the linearization of an indexical “here” is empty, since
there is no click.

lin PHere = {s1 = “here”; s2 = []};
ComeFrom x = {

s1 = [“i want to come from”] ++ x.s1;
s2 = x.s2
};
GoTo x = {

s1 = [“i want to go to”] ++ x.s1;
s2 = x.s2
};

Multimodal Dialogue System Grammars 57

Tying it all together The TransportQuery module ties together the transport
network, speech modality and click modality modules.

abstract TransportQuery = Transport,Query,Click ∗∗ {
fun PStop : Stop→ Place;
}

4.3 Multimodal output

The system’s answers to the user’s queries are presented with speech and draw-
ings on the map. This is an example of parallel multimodality as the speech
and the map drawings are independent. The information presented in the two
modalities is however not identical, as the spoken output only contains infor-
mation about where to change trams/buses. The map output shows the entire
path, including intermediate stops.

Abstract syntax for routes The abstract syntax for answers (routes) con-
tains the information needed by all the concrete syntaxes. All concrete syntaxes
might not use all of the information. A route is a non-empty list of legs, and a
leg consists of a line and a list of at least two stops.

abstract Route = Transport ∗∗ {
cat Route;

Leg;
Line;
Stops;

fun Then : Leg→ Route→ Route;
OneLeg : Leg→ Route;
LineLeg : Line→ Stops→ Leg;
NamedLine : String→ Line;
ConsStop : Stop→ Stops→ Stops;
TwoStops : Stop→ Stop→ Stops;

}

Concrete syntax for drawing routes The map drawing language contains
sequences of labeled edges to be drawn on the map. The string

drawEdge (6, [Chalmers, Vasaplatsen]); drawEdge (2, [Vasaplatsen,
Gronsakstorget, Brunnsparken]);

is an example of the map drawing language described by the RouteMap con-
crete syntax. The TransportLabels module extended by this module is a simple
concrete syntax for stops.

concrete RouteMap of Route = TransportLabels ∗∗ {
lincat Route, Leg, Line,Stops = {s : Str};

58 Bringert, Ljunglöf, Ranta, Cooper

lin Then l r = {s = l.s ++ “;” ++ r .s};
OneLeg l = {s = l.s ++ “;”};
LineLeg l ss =
{s = “drawEdge” ++ “(” ++ l.s ++ “,” ++ “[” ++ ss.s ++ “]” ++ “)”};

NamedLine n = {s = n.s};
ConsStop s ss = {s = s.s ++ “,” ++ ss.s};
TwoStops x y = {s = x.s ++ “,” ++ y.s};

}

English concrete syntax for routes In the English concrete syntax we wish
to list only the first and last stops of each leg of the route. The TransportNames

module gives English representations of the stop names by replacing all non-
English letters with the corresponding English ones in order to give the speech
recognizer a fair chance.

concrete RouteEng of Route = TransportNames ∗∗ {
lincat Route, Leg, Line = {s : Str};

Stops = {start : Str; end : Str};
lin Then l r = {s = l.s ++ “.” ++ r .s};

OneLeg l = {s = l.s ++ “.”};
LineLeg l ss =
{s = “Take” ++ l.s ++ “from” ++ ss.start ++ “to” ++ ss.end };

NamedLine n = {s = n.s};
ConsStop s ss = {start = s.s; end = ss.end };
TwoStops s1 s2 = {start = s1.s; end = s2.s};

}

5 Related Work

Johnston (1998) describes an approach to multimodal parsing where chart pars-
ing is extended to multiple dimensions and unification is used to integrate infor-
mation from different modalities. The approach described in this paper achieves
a similar result by using records along with the existing unification mechanism
for resolving discontinuous constituents. The main advantages of our approach
are that it supports both parsing and generation, and that it does not require
extending the existing formalism.

6 Conclusion

GF provides a solution to the problems named in the introduction to this pa-
per. Abstract syntax can be used to characterise the linguistic functionality of
a system in an abstract language and modality independent way. The system
forces the programmer to define concrete syntaxes which completely cover the

Multimodal Dialogue System Grammars 59

abstract syntax. In this way, the system forces the programmer to keep all the
concrete syntaxes in sync. In addition, since GF is oriented towards creating
grammars from other grammars, our philosophy is that it should not be neces-
sary for a grammar writer to have to create by hand any equivalent grammars
in different formats. For example, if the grammar for the speech recogniser
is to be the same as that used for interaction with dialogue management but
the grammars are needed in different formats, then there should be a compiler
which takes the grammar from one format to the other. Thus, for example, we
have a compiler which converts a GF grammar to Nuance’s format for speech
recognition grammars. The idea of generating context-free speech recognition
grammars from grammars in a higher-level formalism has been described by
Dowding et al. (2001), and implemented in the Regulus system (Rayner et al.
2003).

Another reason for using GF grammars has to do with the use of resource
grammars and cascades of levels of representation as described in section 2.
This allows for the hiding of grammatical detail from language and the pre-
cise implementation of modal interaction for other modalities. This enables
the dialogue system developer to reuse previous grammar or modal interaction
implementations without herself having to reprogram the details for each new
dialogue system. Thus the dialogue engineer need not be a grammar engineer
or an expert in multimodal interfaces.

References

Björn Bringert. Embedded Grammars. Master’s thesis, Chalmers Univer-
sity of Technology, Göteborg, Sweden, February 2005. URL http://www.cs.

chalmers.se/~bringert/publ/exjobb/embedded-grammars.pdf.

Coq. The Coq Proof Assistant Reference Manual. The Coq Development Team,
1999. Available at http://pauillac.inria.fr/coq/

Haskell B. Curry. Some Logical Aspects of Grammatical Structure. In Ro-
man O. Jakobson, editor, Structure of Language and its Mathematical Aspects,
volume 12 of Symposia on Applied Mathematics, pages 56–68. American Math-
ematical Society, Providence, 1961.

John Dowding, Beth A. Hockey, Jean M. Gawron, and Christopher Culy. Prac-
tical issues in compiling typed unification grammars for speech recognition. In
ACL ’01: Proceedings of the 39th Annual Meeting on Association for Compu-
tational Linguistics, pages 164–171, Morristown, NJ, USA, 2001. Association
for Computational Linguistics. doi: 10.3115/1073012.1073034.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. J. ACM, 40(1):143–184, January 1993. ISSN 0004-5411. doi:
10.1145/138027.138060.

http://www.cs.chalmers.se/~bringert/publ/exjobb/embedded-grammars.pdf
http://www.cs.chalmers.se/~bringert/publ/exjobb/embedded-grammars.pdf
http://dx.doi.org/10.3115/1073012.1073034
http://dx.doi.org/10.1145/138027.138060

60 Bringert, Ljunglöf, Ranta, Cooper

Michael Johnston. Unification-based multimodal parsing. In Proceedings of the
36th annual meeting on Association for Computational Linguistics, pages 624–
630, Morristown, NJ, USA, 1998. Association for Computational Linguistics.
URL http://portal.acm.org/citation.cfm?id=980949.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne
Schiller. Regular expressions for language engineering. Natural Language En-
gineering, 2(4):305–328, 1996.

Torbjörn Lager and Fredrik Kronlid. The Current platform: Building conver-
sational agents in Oz. In 2nd International Mozart/Oz Conference, October
2004.

Lena Magnusson and Bengt Nordström. The Alf proof editor and its proof
engine, volume 806 of Lecture Notes in Computer Science, pages 213–237.
Springer, 1994. doi: 10.1007/3-540-58085-9_78.

David L. Martin, Adam J. Cheyer, and Douglas B. Moran. The open agent
architecture: A framework for building distributed software systems. Applied
Artificial Intelligence, 13(1-2):91–128, 1999. doi: 10.1080/088395199117504.

Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The Defini-
tion of Standard ML - Revised. The MIT Press, May 1997. ISBN 0262631814.

Mehryar Mohri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23(2):269–312, 1997.

Simon Peyton Jones. The Haskell 98 Language. Journal of Functional Pro-
gramming, 13(1):1–146, 2003.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004. ISSN
0956-7968. doi: 10.1017/S0956796803004738.

Aarne Ranta. Modular Grammar Engineering in GF. Research on Language
and Computation, 5(2):133–158, June 2007. doi: 10.1007/s11168-007-9030-6.

Manny Rayner, Beth A. Hockey, and John Dowding. An open source envi-
ronment for compiling typed unification grammars into speech recognisers. In
EACL ’03: Proceedings of the tenth conference on European chapter of the As-
sociation for Computational Linguistics, pages 223–226, Morristown, NJ, USA,
2003. Association for Computational Linguistics. ISBN 1111567890. URL
http://portal.acm.org/citation.cfm?id=1067790.

http://portal.acm.org/citation.cfm?id=980949
http://dx.doi.org/10.1007/3-540-58085-9_78
http://dx.doi.org/10.1080/088395199117504
http://dx.doi.org/10.1017/S0956796803004738
http://dx.doi.org/10.1007/s11168-007-9030-6
http://portal.acm.org/citation.cfm?id=1067790

Paper III Rapid Development of Dialogue

Systems by Grammar Compilation

SIGDIAL 2007, Antwerp (Extended version)

Rapid Development of Dialogue Systems by

Grammar Compilation

Björn Bringert

Department of Computer Science and Engineering

Chalmers University of Technology

and University of Gothenburg

SE-412 96 Göteborg, Sweden

bringert@chalmers.se

Abstract

We propose a method for rapid development of dialogue systems where
a Grammatical Framework (GF) grammar is compiled into a complete
VoiceXML application. This makes dialogue systems easy to develop,
maintain, localize, and port to other platforms, and can improve the lin-
guistic quality of generated system output. We have developed compilers
which produce VoiceXML dialogue managers and JavaScript linearization
code from GF grammars. Along with the existing GF speech recognition
grammar compiler, this makes it possible to produce a complete mixed-
initiative information-seeking dialogue system from a single GF grammar.

1 Introduction

In current industrial practice, dialogue systems are often constructed using
VoiceXML for dialogue management, context-free speech recognition grammars
for input, with semantic tags for interpretation, and concatenation of canned
text and output data for system responses. Developing several components
which all need to cover the same concepts increases development costs. Having
multiple interdependent components in formalisms with few automatic correct-
ness and consistency checks also complicates maintenance, since any change in
the coverage of one component may require changes in the others. Since all the
components are language-specific, much effort is needed to port the system to a
new language, and to keep the implementations for different languages in sync.
The lack of a powerful method for output realization makes it hard to generate
high-quality output, especially for languages with a more complex morphology
than English.

This is analogous to the developments in programming languages. Com-
puter machine languages are designed to be easy to implement in hardware, but

63

64 Bringert

it is tedious for humans to write programs in machine or assembly code. One
approach to solving this problem was to add more and more powerful instruc-
tions to the assembly and machine languages. However, there is a limit to how
complex a machine language can be, and there are many inherent limitations
in machine languages. A partly parallel, and much more successful, trend has
been the development of high-level programming languages, which are trans-
lated automatically by a compiler to the low-level languages. Thus, we have
a division of programming languages into low-level languages, which are close
to the concrete workings of the machine, and high-level languages, which are
easier for humans to write programs in. A high-level programming language can
be compiled to several different low-level languages, for example machine code
for different machine architectures. They may also be interpreted rather than
compiled.

We propose that the formalisms used for the construction of dialogue sys-
tems, and other related natural language applications, could benefit from a
similar development. We specify systems in a single high-level formalism, which
is then compiled into the existing lower-level formalisms. The developer writes
a GF abstract syntax module which defines the user input and system output
semantics, and a concrete syntax module which describes how each construct
in the semantics is represented in natural language. The GF grammar is then
compiled to a complete VoiceXML application. The dialogue flow is determined
by the abstract syntax (ontology) of the grammar. This is based on the idea by
Ranta and Cooper (2004) that a proof editor for constructive type theory can
be used to implement the information gathering phase of information-seeking
dialogue systems. Figure 1 illustrates the compilation. In addition to the gener-
ated components, the developer writes JavaScript code to connect the dialogue
system to any domain-specific resources, such as databases or other external
systems.

We start by giving an introduction to the GF formalism. In the following sec-
tion we show how to write a GF grammar for a small example dialogue system,
and outline how this system can be extended. We then describe the compilation
process in some more detail. We conclude by presenting some possible future
extensions to our compilers, and related work on dialogue system engineering.

2 Grammatical Framework

Grammatical Framework (GF) (Ranta 2004) is a grammar formalism based
on constructive type theory. GF separates grammar into abstract syntax and
concrete syntax, corresponding to Curry’s (1961) division of grammar into tec-
togrammar and phenogrammar.

2.1 Abstract Syntax

The abstract syntax defines the ontology of the application, that is, what can be
said. An abstract syntax contains category (cat) and function (fun) definitions.

Rapid Development of Dialogue Systems by Grammar Compilation 65

<?xml version="1.0" encoding="utf-8"?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">
 <form>
 <subdialog name="sub" src="#Order_cat">
 <param name="old" expr="{ name : '?' }" />
 </subdialog>
 </form>
 <!-- Number category. -->
 <form id="Number_cat">
 <var name="old" />
 <block cond="old.name != '?'">
 <assign name="term" expr="old" />
 </block>
 <field name="term">
 <prompt>Number</prompt>
 <grammar src="PizzaEng.gram#Number_cat" />
 </field>
 <!-- one : () Number -->
 <!-- two : () Number -->
 <block>
 <return namelist="term" />
 </block>
 </form>
 <!-- Order category. -->
 <form id="Order_cat">
 <var name="old" />
 <block cond="old.name != '?'">
 <assign name="term" expr="old" />
 </block>
 <field name="term">
 <prompt>What would you like to order?</prompt>
 <grammar src="PizzaEng.gram#Order_cat" />
 </field>
 <!-- pizza : (Number, Size, Topping) Order -->
 <subdialog name="pizza_0" src="#Number_cat" cond="term.name == 'pizza'">
 <param name="old" expr="term.args[0]" />
 <filled>
 <assign name="term.args[0]" expr="pizza_0.term" />
 </filled>
 </subdialog>
 <subdialog name="pizza_1" src="#Size_cat" cond="term.name == 'pizza'">
 <param name="old" expr="term.args[1]" />
 <filled>
 <assign name="term.args[1]" expr="pizza_1.term" />
 </filled>
 </subdialog>
 <subdialog name="pizza_2" src="#Topping_cat" cond="term.name == 'pizza'">
 <param name="old" expr="term.args[2]" />
 <filled>
 <assign name="term.args[2]" expr="pizza_2.term" />
 </filled>
 </subdialog>
 <block>
 <return namelist="term" />
 </block>
 </form>
 <!-- Size category. -->
 <form id="Size_cat">
 <var name="old" />
 <block cond="old.name != '?'">
 <assign name="term" expr="old" />
 </block>
 <field name="term">
 <prompt>What size pizzas do you want?</prompt>
 <grammar src="PizzaEng.gram#Size_cat" />
 </field>
 <!-- large : () Size -->
 <!-- small : () Size -->
 <block>
 <return namelist="term" />
 </block>
 </form>
 <!-- Topping category. -->
 <form id="Topping_cat">
 <var name="old" />
 <block cond="old.name != '?'">
 <assign name="term" expr="old" />
 </block>
 <field name="term">
 <prompt>What topping do you want?</prompt>
 <grammar src="PizzaEng.gram#Topping_cat" />
 </field>
 <!-- cheese : () Topping -->
 <!-- ham : () Topping -->
 <block>
 <return namelist="term" />
 </block>
 </form>
</vxml>

#ABNF 1.0 UTF-8;
meta "description" is "Speech recognition grammar for PizzaEng";
meta "generator" is "Grammatical Framework";
tag-format <semantics/1.0>;
root $Order_cat;

$Number_1 = (one)
 {!{ $ ={"name": "one", "args":[]} }!} ;

$Number_2 = (two)
 {!{ $ ={"name": "two", "args":[]} }!} ;

public $Number_cat = { var a =[] }
 ($Number_1 { a[0] = $Number_1 }
 | $Number_2 { a[0] = $Number_2 })
 { $ = a[0] } ;

$Order_1 = { var a =[] }
 ($Number_1 { a[0] = $Number_1 }
 $Size_1 { a[1] = $Size_1 } pizza with
 $Topping_1 { a[2] = $Topping_1 }
 | $Number_2 { a[0] = $Number_2 }
 $Size_1 { a[1] = $Size_1 } pizzas with
 $Topping_1 { a[2] = $Topping_1 })
 {!{ $ ={"name": "pizza", "args":[a[0], a[1], a[2]]} }!}
 | { var a =[] }
 ($Number_1 { a[0] = $Number_1 }
 $Size_1 { a[1] = $Size_1 } pizza
 | $Number_2 { a[0] = $Number_2 }
 $Size_1 { a[1] = $Size_1 } pizzas)
 {!{ $ ={"name": "pizza", "args":[a[0], a[1],{"name": "?", "type": "Topping"}]} }!}
 | { var a =[] }
 ($Number_1 { a[0] = $Number_1 } pizza with
 $Topping_1 { a[1] = $Topping_1 }
 | $Number_2 { a[0] = $Number_2 } pizzas with
 $Topping_1 { a[1] = $Topping_1 })
 {!{ $ ={"name": "pizza", "args":[a[0],{"name": "?", "type": "Size"}, a[1]]} }!}
 | { var a =[] }
 ($Number_1 { a[0] = $Number_1 } pizza
 | $Number_2 { a[0] = $Number_2 } pizzas)
 {!{ $ ={"name": "pizza", "args":[a[0],{"name": "?", "type": "Size"},{"name": "?", "type": "Topping"}]} }!} ;

public $Order_cat = { var a =[] }
 ($Order_1 { a[0] = $Order_1 })
 { $ = a[0] } ;

$Size_1 = (large)
 {!{ $ ={"name": "large", "args":[]} }!}
 | (small)
 {!{ $ ={"name": "small", "args":[]} }!} ;

public $Size_cat = { var a =[] }
 ($Size_1 { a[0] = $Size_1 })
 { $ = a[0] } ;

$Topping_1 = (cheese)
 {!{ $ ={"name": "cheese", "args":[]} }!}
 | (ham) {!{ $ ={"name": "ham", "args":[]} }!} ;

public $Topping_cat = { var a =[] }
 ($Topping_1 { a[0] = $Topping_1 })
 { $ = a[0] } ;var Pizza = new GFGrammar(new GFAbstract("Order",{cheese: new Type([], "Topping"), ham: new

Type([], "Topping"), large: new Type([], "Size"), one: new Type([], "Number"), pizza: new Type
(["Number", "Size", "Topping"], "Order"), small: new Type([], "Size"), two: new Type([], "Number")}),
{PizzaEng: new GFConcrete({coding: "latin1"},{cheese: function(cs){return new Arr(new Str
("cheese"));}, ham: function(cs){return new Arr(new Str("ham"));}, large: function(cs){return new Arr
(new Str("large"));}, one: function(cs){return new Arr(new Str("one"), new Int(0));}, pizza: function(cs)
{return new Arr(new Seq(cs[0].sel(new Int(0)), new Variants(cs[1].sel(new Int(0)), new Seq()),(new Arr
(new Str("pizza"), new Str("pizzas"))).sel(cs[0].sel(new Int(1))), new Variants(new Seq(new Str
("with"), cs[2].sel(new Int(0))), new Seq())));}, small: function(cs){return new Arr(new Str("small"));},
two: function(cs){return new Arr(new Str("two"), new Int(1));}, _13: function(cs){return new Arr(cs[0]);},
Number: function(cs){return new Arr(cs[0], new Int(0));}, Order: function(cs){return Pizza.concretes
["PizzaEng"].rule("_13", cs);}, Size: function(cs){return Pizza.concretes["PizzaEng"].rule("_13", cs);},
Topping: function(cs){return Pizza.concretes["PizzaEng"].rule("_13", cs);}, "Int": function(cs){return
new Arr(cs[0]);}, "Float": function(cs){return new Arr(cs[0]);}, "String": function(cs){return new Arr(cs
[0]);}}, new Parser("Order",[new Rule(5, new FunApp("two",[]),[],[[new Terminal("two")]]), new Rule(2,
new FunApp("small",[]),[],[[new Terminal("small")]]), new Rule(4, new FunApp("pizza",[new Arg(0),
new MetaVar(), new MetaVar()]),[5],[[new ArgProj(0, 0), new Terminal("pizzas")]]), new Rule(4, new
FunApp("pizza",[new Arg(0), new Arg(1), new MetaVar()]),[5, 2],[[new ArgProj(0, 0), new ArgProj(1,
0), new Terminal("pizzas")]]), new Rule(4, new FunApp("pizza",[new Arg(0), new MetaVar(), new
MetaVar()]),[3],[[new ArgProj(0, 0), new Terminal("pizza")]]), new Rule(4, new FunApp("pizza",[new
Arg(0), new Arg(1), new MetaVar()]),[3, 2],[[new ArgProj(0, 0), new ArgProj(1, 0), new Terminal
("pizza")]]), new Rule(4, new FunApp("pizza",[new Arg(0), new MetaVar(), new Arg(1)]),[5, 1],[[new
ArgProj(0, 0), new Terminal("pizzas"), new Terminal("with"), new ArgProj(1, 0)]]), new Rule(4, new
FunApp("pizza",[new Arg(0), new Arg(1), new Arg(2)]),[5, 2, 1],[[new ArgProj(0, 0), new ArgProj(1, 0),
new Terminal("pizzas"), new Terminal("with"), new ArgProj(2, 0)]]), new Rule(4, new FunApp("pizza",
[new Arg(0), new MetaVar(), new Arg(1)]),[3, 1],[[new ArgProj(0, 0), new Terminal("pizza"), new
Terminal("with"), new ArgProj(1, 0)]]), new Rule(4, new FunApp("pizza",[new Arg(0), new Arg(1), new
Arg(2)]),[3, 2, 1],[[new ArgProj(0, 0), new ArgProj(1, 0), new Terminal("pizza"), new Terminal("with"),
new ArgProj(2, 0)]]), new Rule(3, new FunApp("one",[]),[],[[new Terminal("one")]]), new Rule(2, new
FunApp("large",[]),[],[[new Terminal("large")]]), new Rule(1, new FunApp("ham",[]),[],[[new Terminal
("ham")]]), new Rule(1, new FunApp("cheese",[]),[],[[new Terminal("cheese")]])],{Float:[-3], Int:[-2],
Number:[3, 5], Order:[4], Size:[2], String:[-1], Topping:[1], _Var:[-4]}))});

abstract Pizza = {
flags startcat = Order;

cat Order;Number;Size;Topping;

fun pizza :Number→ Size→ Topping→ Order;

one, two :Number;

small, large :Size;

cheese,ham :Topping;

}
concrete PizzaEng of Pizza = {

lincat Number = {s :Str;n :Num};

Order,Size,Topping = {s :Str};

param Num = Sg | Pl;

printname cat Order = “What would you like to order?”;

Size = “What size pizzas do you want?”;

Topping = “What topping do you want?”;

lin pizza n s ts = {s = n.s++(s.s | [])++pizza N.s ! n.n

++(“with”++ ts.s | [])};

one = {s = “one”; n = Sg};

two = {s = “two”;n = Pl};

small = {s = “small”};

large = {s = “large”};

cheese = {s = “cheese”};

ham = {s = “ham”};

oper pizza N = {s = table{Sg⇒ “pizza”;Pl⇒ “pizzas”}};

}

Compilation

GF abstract syntax

GF concrete syntax

Dialogue manager
(VoiceXML)

Speech recognition grammar
and semantic interpretation
(SRGS+SISR)

Output realizer
(JavaScript)

Figure 1. Dialogue system generation.

This is an example of a small abstract syntax:

cat Order; Size;
fun pizza : Size→ Order;

small : Size;

This allows us to construct an abstract syntax term pizza small of type Order.
In addition to functions, abstract syntax terms can also contain metavariables,
written ?. For example, the term pizza ? contains a metavariable of type Size.
As we will see later, metavariables are essential to our dialogue management
implementation.

2.2 Concrete Syntax

A concrete syntax defines how each abstract syntax construct is realized in a
particular language. From a concrete syntax, the GF system can derive both
parsing and realization components. A concrete syntax contains linearization

66 Bringert

type (lincat) and linearization (lin) definitions. The linearization type of a
category is the type of the concrete syntax terms produced for abstract syntax
terms in the given category. A linearization definition is a function from the
linearizations of the arguments of an abstract syntax term to a concrete syntax
term. Terms in concrete syntax can be records, strings, tables, and parameters.
This is an example of a concrete syntax for the abstract syntax above:

lincat Order,Size = {s : Str};
lin pizza x = {s = “a” ++ x.s ++ “pizza”};

small = {s = “small”};

3 An Example Dialogue System

A spoken language dialogue system requires at least the following components:
a speech recognizer, guided by a language model, some form of semantic inter-
pretation component, output realization, speech synthesis, dialogue management
and domain resources such as databases or other external systems.

Of these components, speech recognizers and speech synthesizers for many
languages are available as commercial off-the-shelf products. The domain re-
sources are normally domain-specific and somewhat outside the dialogue system
itself. The remaining components: language model, semantic interpretation,
output realization, and dialogue management are often developed as separate
components. This leads to duplicated effort in developing many components
which all need to cover the same concepts. Having multiple interdependent
components also complicates maintenance, since any change in the coverage of
one component may require changes in the others. Furthermore, the low-level
formalisms often have little automatic correctness and consistency checking.
The resulting components are also often language specific, which makes makes
porting to new languages difficult.

This section shows a GF grammar from which a complete dialogue system
(excluding the domain resources) can be derived automatically. For reasons of
brevity, this system is very small. An extended version of this system is available
online1.

3.1 Abstract Syntax

The abstract syntax in Figure 2 describes the possible things that the user can
say, in a semantic form. There is one category for each kind of input. In this
application, the main input object is an Order. An order can in this small
example only be for a number of pizzas, all of the same size and with the same
topping. A number is “one” or “two”, the sizes are “small” and “large”, and
the toppings are “ham” and “cheese”. An example abstract syntax term in the
Order category is: pizza two small cheese.

1 http://www.cs.chalmers.se/~bringert/xv/pizza/

http://www.cs.chalmers.se/~bringert/xv/pizza/

Rapid Development of Dialogue Systems by Grammar Compilation 67

abstract Pizza = {
flags startcat = Order;
cat Order; Number; Size; Topping;
fun pizza : Number→ Size→ Topping→ Order;

one, two : Number;
small, large : Size;
cheese, ham : Topping;

}

Figure 2. Abstract syntax for the example system.

3.2 Concrete Syntax

The concrete syntax in Figure 3 defines how the terms in the abstract syntax
are realized (and inversely, how concrete syntax terms can be interpreted as
representations of abstract syntax terms). For example, the linearization type
of Topping is {s : Str}, that is, a record with a single field s which contains a
string. The linearization for cheese is the concrete syntax term {s = “cheese”}.
When parsing and realizing, the s field is used as the textual representation of
the term, as it would be input by a user, or output by the system.

The linearization type of Number contains a field n, which is used for agree-
ment. The type of n is Num, defined by a param definition to be either Sg or
Pl. In the linearization of pizza, the n field of the Number is used to inflect the
noun “pizza”.

An important feature of this grammar is that it allows partially specified
input. While the utterance “two small pizzas with cheese” results in the abstract
syntax term pizza two small cheese, the partial versions “two pizzas with cheese”
(pizza two ? cheese), “two small pizzas” (pizza two small ?), and “two pizzas”
(pizza two ? ?) are also allowed. The intention is that the system will ask follow-
up questions to replace all metavariables with complete terms. This process is
type-directed: the system asks for a subterm of the appropriate type. The user
can give complete input, or some parts can be omitted. The system will then
prompt for any omitted parts. Partial input, implemented with suppression, is
thus used to achieve a mixed-initiative dialogue. An interesting special case is
when no suppression is used in the grammar. This gives a user-driven dialogue,
where the system will not ask follow-up questions.

The printname definitions are used as prompts for each category.

3.3 Example Dialogues

The system generated from the grammar in the previous section allows dialogues
such as the examples below. After each user action we show the information
state, i.e. the current state of the abstract syntax term that we are constructing.

S: What would you like to order?

68 Bringert

concrete PizzaEng of Pizza = {
lincat Number = {s : Str; n : Num};

Order,Size,Topping = {s : Str};
param Num = Sg | Pl;
printname cat Order = “What would you like to order?”;

Size = “What size pizzas do you want?”;
Topping = “What topping do you want?”;

lin pizza n s ts = {s = n.s ++ (s.s | []) ++ pizza_N .s ! n.n
++ (“with” ++ ts.s | [])};

one = {s = “one”; n = Sg};
two = {s = “two”; n = Pl};
small = {s = “small”};
large = {s = “large”};
cheese = {s = “cheese”};
ham = {s = “ham”};

oper pizza_N = {s = table {Sg⇒ “pizza”; Pl⇒ “pizzas”}};
}

Figure 3. Concrete syntax for the example system.

U: two pizzas
pizza two ? ?
S: What size pizzas do you want?
U: small
pizza two small ?
S: What topping do you want?
U: ham
pizza two small ham

Here, more information is given in the first answer:

S: What would you like to order?
U: two pizzas with ham
pizza two ? ham

S: What size pizzas do you want?
U: small
pizza two small ham

3.4 Extending the Example System

Recursive structures One possible extension to the example system is to
use a recursive structure to allow more complex orders:

cat Order; Item; [Item];
fun order : [Item]→ Order;

pizza : Number→ Size→ Topping→ Item;

Rapid Development of Dialogue Systems by Grammar Compilation 69

printname cat [Item] = “Anything else?”;
lin order is = {s = is.s};
ConsItem x xs = {s = x.s ++ (“and” ++ xs.s | [])};
BaseItem = {s = “nothing” ++ “else”};

Here, BaseItem : [Item] and ConsItem : Item → [Item] → [Item] are the two
functions in the new category [Item]. While recursive structures can be imple-
mented with subdialogues and scripting in VoiceXML (by essentially writing by
hand the code that we generate), it appears to be beyond the scope of stan-
dard practice. If we also add drinks as a kind of Item, the system will support
dialogues such as this one:

S: What would you like to order?
U: one large pizza
order [pizza one large ?, ?]
S: What topping would you like?
U: cheese
order [pizza one large cheese, ?]
S: Anything else?
U: one beer
order [pizza one large cheese, drink one beer , ?]
S: Anything else?
U: nothing else
order [pizza one large cheese, drink one beer]

System output At the end of the dialogue, we would like the system to give
a response based on the output of some domain resource. For example, the
pizza ordering system might return the price of the order. This could be used
to construct a confirmation using an addition to the grammar:

cat Output;
fun confirm : Order→ Number→ Output;

lin confirm o p = {s = o.s ++ “costs” ++ p.s ++ “euros”}

Multilinguality To port a dialogue system to a new language, all that needs
to be done is to write a new concrete syntax. For many languages, writing
speech recognition grammars and realization functions is more complicated than
for English. For example, Swedish adjectives agree with the gender and number
of the noun they modify. GF’s expressive concrete syntax makes it possible to
implement such features with little effort, and if the GF Resource Grammar
Library is used, it is as easy to write the Swedish grammar as the English.

Multimodality GF can be used to write multimodal grammars (Bringert
et al. 2005). The extended online version (see screenshot in Figure 4) of the
example system uses a concrete syntax which linearizes pizza and drink orders
to vector drawings to display graphical representations of the completed orders.

70 Bringert

Figure 4. A screenshot of a multimodal XHTML+Voice dialogue system gen-
erated from an extended version of the grammar shown above.

4 Implementation

This section describes how the different dialogue system components are gener-
ated from a GF grammar.

4.1 Dialogue Management

We have implemented a compiler which produces VoiceXML code which im-
plements the kind of dialogue management shown in the examples above. The
input to the compiler is the abstract syntax definition and the prompts defined
in the concrete syntax.

The generated VoiceXML document contains one form for each category in
the GF grammar. Each form takes an argument, which the caller sets to the
currently known abstract syntax term. In the top-level call this argument is
?. If the given term is a metavariable, speech input is requested in the speech
recognition grammar category that corresponds to the GF category that the
form is for. Function arguments which are not specified in the recognized phrase
result in metavariables in the abstract syntax tree returned by the semantic
interpretation code. The form then traverses the abstract syntax tree, and
refines any metavariables by subdialogue calls to the forms for the appropriate
categories.

Dialogue systems built using our approach can be run in standard VoiceXML

Rapid Development of Dialogue Systems by Grammar Compilation 71

interpreters, and in web browsers which support XHTML+Voice (Axelsson et al.
2004). Such web browsers are currently available for both personal and hand-
held computers. This means that all that is needed to very rapidly develop and
deploy a relatively sophisticated dialogue system to a very large number of users
is the GF grammar compiler and a web server.

4.2 Language Model and Semantic Interpretation

The GF grammar is also compiled (Bringert 2007) to a speech recognition gram-
mar in JSGF or SRGS format, with embedded semantic interpretation code in
SISR format. The generated grammar has one top-level category for each cate-
gory in the GF abstract syntax. The embedded semantic information constructs
abstract syntax terms represented as JavaScript objects.

4.3 Generation

GF’s linearization rules are essentially a simple functional programming lan-
guage which can be interpreted directly, compiled to a simpler language and
interpreted, or compiled to code in some other programming language. We have
implemented a compiler which translates GF linearization rules to JavaScript
code. The generated code be used with VoiceXML implementations, since they
include JavaScript interpreters, or as a stand-alone component in web pages.
The generated code implements a linearization function which produces a string
from an abstract syntax term.

This makes it possible to generate output of a high linguistic quality in
VoiceXML applications, something which is difficult to achieve using hand-
written VoiceXML code.

5 Future Work

5.1 Dialogue flexibility

We have explained how to implement simple task-oriented mixed-initiative dia-
logues. However, there are still many possibilities for more flexible dialogue left
to be investigated. It would be interesting to see, for example, what additional
items from the Trindi tick list (Bohlin et al. 1999) can be elegantly implemented
by using GF grammars.

5.2 Automatically Generated Help

When the user asks for help in a given form, or if the user’s input cannot be
recognized, an example utterance in the corresponding category could be out-
put. For each category, GF could produce an example utterance by linearizing
a randomly generated abstract syntax term of the right type. The random gen-
eration may have to be guided to produce examples that are not too simple
or too complex. A more sophisticated approach would be to use a statistical

72 Bringert

language model to make a guess at what the user wanted to say, and let that
guide the generation of the example utterance. Hockey et al. (2003) have found
such feedback to significantly improve the performance of dialogue systems for
naive users.

5.3 Context-dependent Prompts

In the approach described here, there can only be one system question for each
category. This means that if the same category is used in multiple positions,
extra categories may have to be added. Perhaps it could be possible to have
the prompt depend on what argument position it is for, rather than just on the
category. However, the prompt sometimes need to depend not only on what the
result is used for, but also on the already given information. For example, in
the pizza system, we would like the prompt for size to depend on the number
of pizzas ordered, instead of the current:

U: I would like one pizza with ham
S: What size pizzas do you want?

5.4 Dependent Types

As Ranta and Cooper (2004) have shown, dependently typed abstract syntax can
be used to guide refinement with more precision. Support for generating speech-
recognition grammar from dependently typed grammars has been implemented.
However, this only supports grammars where the dependencies are on finite
types, and the generated VoiceXML and semantic interpretation code does not
yet support dependent types.

5.5 Integrated Multimodality

In addition to the parallel multimodality described in Section 3.4, where the com-
plete information is represented independently in multiple modalities, GF gram-
mars (Bringert et al. 2005) can also be used for integrated multimodality, where
information in multiple modalities together convey meaning. The fact that we
use semantic information embedded in the speech recognition grammar to build
abstract syntax trees makes it difficult to handle integrated multimodality with
GF grammars. The recently developed JavaScript GF parser (Meza Moreno
and Bringert 2008) could be used to instead perform parsing as a separate step,
which would allow integrated multimodality.

5.6 Weighted Grammars

GF grammars can be annotated with weights for each function in the abstract
syntax. These weights could be carried over to the generated speech recognition
grammars. Rayner et al. (2006) found that weighted rules can significantly
improve recognition performance for generated grammars.

Rapid Development of Dialogue Systems by Grammar Compilation 73

6 Related Work

6.1 Dialogue and Proof Editing

Ranta and Cooper (2004) introduced the idea of using a proof editor for con-
structive type theory as a dialogue system. Our dialogue manager generation
implements this idea by compiling GF abstract syntax to VoiceXML, rather
than the more direct interpretation outlined in the original article.

6.2 GUI Tools for Rapid Dialogue System Development

The CSLU Rapid Application Developer (McTear 1999) is a toolkit for rapid
development of dialogue systems. Systems are built using a graphical interface
with a focus on the dialogue flow.

The Application Generation Platform (AGP) (Hamerich et al. 2004) devel-
oped in the GEMINI project can generate multilingual and multimodal inter-
faces to existing databases semi-automatically. The developer is guided through
the database-centric process by GUI assistants.

In contrast to these toolkits, we use a compiler-like model, rather than a
graphical design environment. In addition, our development model is focused
on the specification and realization of the inputs and outputs of the system,
rather than on the dialogue flow or the underlying database.

6.3 GF and Dialogue Systems

GF has already been used in the implementation of a number of dialogue sys-
tems (Ericsson et al. 2006). Those systems make use of the same speech recog-
nition grammar compiler as in the approach described here. However, where
we based the dialogue management on the structure of the GF grammar, they
rely on an external dialogue manager with dialogue plans separate from the
grammar.

7 Conclusions

The distinction between abstract and concrete syntax is well established in the
field of compiler technology, but not within computational linguistics. There are
now a number of type theoretic grammar formalisms, including Abstract Cate-
gorial Grammar (de Groote 2001), Lambda Grammar (Muskens 2001), Higher
Order Grammar (Pollard 2004) and Grammatical Framework (Ranta 2004).
Our work demonstrates a practical application of type theoretic grammars, and
exploits the abstract syntax–concrete syntax dichotomy in an essential way.

The GF source for the basic version of the example application shown above
consists of 24 lines (1065 characters). From this, our compilers generate three
different components, which together contain 151 lines (7690 characters) of code.

We have shown that GF grammars can be used to implement mixed-initiative
information-seeking dialogue systems. From the declarative and linguistically

74 Bringert

powerful specification that a GF grammar is, we generate the interconnected
components needed to run dialogue systems using industry standard infrastruc-
ture. Hopefully, this method can reduce the development and maintenance costs
for dialogue systems, and at the same time improve their linguistic quality. The
methods described in this paper are implemented as part of the open source GF
system2.

Acknowledgments

While any errors in the article are solely the responsibility of the author, we
would like to thank Aarne Ranta, Håkan Burden, and Robin Cooper for com-
ments on this work. We would also like to thank OptimSys, s.r.o., for providing
us with their OptimTalk VoiceXML interpreter, and for their support in making
sure that it runs our generated code. The developers at Opera Software ASA
and ROBO Design have helped with XHTML+Voice issues. The code in this pa-
per has been typeset using lhs2TeX, with help from Andres Löh. This work has
been partly funded by the EU TALK project, IST-507802, and Library-Based
Grammar Engineering, Swedish Research Council project dnr 2005-4211.

References

Jonny Axelsson, Chris Cross, Jim Ferrans, Gerald McCobb, T. V. Raman, and
Les Wilson. XHTML+Voice profile 1.2. Specification, VoiceXML Forum, 2004.
URL http://www.voicexml.org/specs/multimodal/x+v/12/.

Peter Bohlin, Johan Bos, Staffan Larsson, Ian Lewin, Colin Matheson,
and David Milward. Survey of Existing Interactive Systems. Deliv-
erable 1.3, TRINDI, 1999. URL http://www.ling.gu.se/~peb/pubs/

BohlinBosLarsson-1999a.pdf.

Björn Bringert. Speech Recognition Grammar Compilation in Grammatical
Framework. In Proceedings of the Workshop on Grammar-Based Approaches to
Spoken Language Processing, Prague, Czech Republic, pages 1–8. Association
for Computational Linguistics, June 2007. URL http://www.aclweb.org/

anthology/W/W07/W07-1801.

Björn Bringert, Robin Cooper, Peter Ljunglöf, and Aarne Ranta. Multimodal
Dialogue System Grammars. In Proceedings of DIALOR’05, Ninth Workshop
on the Semantics and Pragmatics of Dialogue, Nancy, France, pages 53–60,
June 2005. URL http://dialor05.loria.fr/Papers/07-BjornBringert.

pdf.

Haskell B. Curry. Some Logical Aspects of Grammatical Structure. In Ro-
man O. Jakobson, editor, Structure of Language and its Mathematical Aspects,

2 See http://www.digitalgrammars.com/gf/

http://www.voicexml.org/specs/multimodal/x+v/12/
http://www.ling.gu.se/~peb/pubs/BohlinBosLarsson-1999a.pdf
http://www.ling.gu.se/~peb/pubs/BohlinBosLarsson-1999a.pdf
http://www.aclweb.org/anthology/W/W07/W07-1801
http://www.aclweb.org/anthology/W/W07/W07-1801
http://dialor05.loria.fr/Papers/07-BjornBringert.pdf
http://dialor05.loria.fr/Papers/07-BjornBringert.pdf
http://www.digitalgrammars.com/gf/

Rapid Development of Dialogue Systems by Grammar Compilation 75

volume 12 of Symposia on Applied Mathematics, pages 56–68. American Math-
ematical Society, Providence, 1961.

Philippe de Groote. Towards abstract categorial grammars. In Proceedings
of 39th Annual Meeting of the Association for Computational Linguistics,
Toulouse, France, pages 252–259, Morristown, NJ, USA, July 2001. Associ-
ation for Computational Linguistics. doi: 10.3115/1073012.1073045.

Stina Ericsson, Gabriel Amores, Björn Bringert, Håkan Burden, Ann-Charlotte
Forslund, David Hjelm, Rebecca Jonson, Staffan Larsson, Peter Ljunglöf, Pi-
lar Manchón, David Milward, Guillermo Pérez, and Mikael Sandin. Software
illustrating a unified approach to multimodality and multilinguality in the in-
home domain. deliverable 1.6, 2006. URL http://www.talk-project.org/

fileadmin/talk/publications_public/deliverables_public/D1_6.pdf.

Stefan Hamerich, Volker Schubert, Volker Schless, Ricardo de Córdoba, José M.
Pardo, Luis F. d’Haro, Basilis Kladis, Otilia Kocsis, and Stefan Igel. Semi-
Automatic Generation of Dialogue Applications in the GEMINI Project.
In Michael Strube and Candy Sidner, editors, Proceedings of the 5th SIG-
dial Workshop on Discourse and Dialogue, pages 31–34, Cambridge, Mas-
sachusetts, USA, 2004. Association for Computational Linguistics. URL http:

//acl.ldc.upenn.edu/hlt-naacl2004/sigdial04/pdf/hamerich.pdf.

Beth A. Hockey, Oliver Lemon, Ellen Campana, Laura Hiatt, Gregory Aist,
James Hieronymus, Alexander Gruenstein, and John Dowding. Targeted help
for spoken dialogue systems: intelligent feedback improves naive users’ perfor-
mance. In EACL ’03: Proceedings of the tenth conference on European chapter
of the Association for Computational Linguistics, pages 147–154, Morristown,
NJ, USA, 2003. Association for Computational Linguistics. ISBN 1333567890.
doi: 10.3115/1067807.1067828.

Michael F. McTear. Software to support research and development of spoken
dialogue systems. In Proceedings, Sixth European Conference on Speech Com-
munication and Technology (EUROSPEECH’99), Budapest, Hungary, pages
339–342. ISCA Archive, September 1999. URL http://www.cslu.ogi.edu/

toolkit/pubs/pdf/mctear_EUROSPEECH_99.pdf.

Moisés S. Meza Moreno and Björn Bringert. Interactive Multilingual Web
Applications with Grammatical Framework. In Bengt Nordström and Aarne
Ranta, editors, Advances in Natural Language Processing, 6th International
Conference, GoTAL 2008, Gothenburg, Sweden, volume 5221 of Lecture Notes
in Computer Science, pages 336–347, Heidelberg, August 2008. Springer. doi:
10.1007/978-3-540-85287-2_32.

Reinhard Muskens. Categorial Grammar and Lexical-Functional Grammar. In
Miriam Butt and Tracy H. King, editors, Proceedings of the LFG01 Conference,
University of Hong Kong, Hong Kong. CSLI Publications, 2001. URL http:

//let.uvt.nl/general/people/rmuskens/pubs/cglfg.pdf.

http://dx.doi.org/10.3115/1073012.1073045
http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/D1_6.pdf
http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/D1_6.pdf
http://acl.ldc.upenn.edu/hlt-naacl2004/sigdial04/pdf/hamerich.pdf
http://acl.ldc.upenn.edu/hlt-naacl2004/sigdial04/pdf/hamerich.pdf
http://dx.doi.org/10.3115/1067807.1067828
http://www.cslu.ogi.edu/toolkit/pubs/pdf/mctear_EUROSPEECH_99.pdf
http://www.cslu.ogi.edu/toolkit/pubs/pdf/mctear_EUROSPEECH_99.pdf
http://dx.doi.org/10.1007/978-3-540-85287-2_32
http://let.uvt.nl/general/people/rmuskens/pubs/cglfg.pdf
http://let.uvt.nl/general/people/rmuskens/pubs/cglfg.pdf

76 Bringert

Carl Pollard. Higher-Order Categorial Grammar. In Proceedings of Cate-
gorial Grammars 2004, pages 340–361, June 2004. URL http://www.ling.

ohio-state.edu/~hana/hog/pollard2004-CG.pdf.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004. ISSN
0956-7968. doi: 10.1017/S0956796803004738.

Aarne Ranta and Robin Cooper. Dialogue Systems as Proof Editors. Journal
of Logic, Language and Information, 13(2):225–240, 2004. ISSN 0925-8531.
doi: 10.1023/B:JLLI.0000024736.34644.48.

Manny Rayner, Pierrette Bouillon, Beth A. Hockey, and Nikos Chatzichrisafis.
REGULUS: A Generic Multilingual Open Source Platform for Grammar-Based
Speech Applications. In Proceedings of LREC, May 2006. URL http://www.

issco.unige.ch/pub/RaynerEA_LREC2006.pdf.

http://www.ling.ohio-state.edu/~hana/hog/pollard2004-CG.pdf
http://www.ling.ohio-state.edu/~hana/hog/pollard2004-CG.pdf
http://dx.doi.org/10.1017/S0956796803004738
http://dx.doi.org/10.1023/B:JLLI.0000024736.34644.48
http://www.issco.unige.ch/pub/RaynerEA_LREC2006.pdf
http://www.issco.unige.ch/pub/RaynerEA_LREC2006.pdf

Paper IV Speech Translation with

Grammatical Framework

Coling 2008 Workshop on Speech Processing for
Safety Critical Translation and Pervasive
Applications, Manchester

Speech Translation with Grammatical Framework

Björn Bringert

Department of Computer Science and Engineering

Chalmers University of Technology

and University of Gothenburg

bringert@chalmers.se

Abstract

Grammatical Framework (GF) is a grammar formalism which sup-
ports interlingua-based translation, library-based grammar engineering,
and compilation to speech recognition grammars. We show how these
features can be used in the construction of portable high-precision domain-
specific speech translators.

1 Introduction

Speech translators for safety-critical applications such as medicine need to offer
high-precision translation. One way to achieve high precision is to limit the
coverage of the translator to a specific domain. The development of such high-
precision domain-specific translators can be resource intensive, and require rare
combinations of developer skills. For example, consider developing a Russian–
Swahili speech translator for the orthopedic domain using direct translation
between the two languages. Developing such a system could require an ortho-
pedist programmer and linguist who speaks Russian and Swahili. Such people
may be hard to find. Furthermore, developing translators for all pairs of N
languages requires O(N2) systems, developed by an equal number of bilingual
domain experts.

The language pair explosion and the need for the same person to possess
knowledge about the source and target languages can be avoided by using an
interlingua-based approach. The requirement that developers be both domain
experts and linguists can be addressed by the use of grammar libraries which
implement the domain-independent linguistic details of each language.

Grammatical Framework (GF) (Ranta 2004) is a type-theoretic grammar
formalism which is well suited to high-precision domain-specific interlingua-
based translation (Khegai 2006), and library-based grammar engineering (Ranta
2008). GF divides grammars into abstract syntax and concrete syntax. The
abstract syntax defines what can be said in the grammar, and the concrete
syntax defines how it is said in a particular language. If one abstract syntax

79

80 Bringert

syntax is given multiple concrete syntaxes, the abstract syntax can be used
as an interlingua. Given an abstract and a concrete syntax, GF allows both
parsing (text to abstract syntax) and linearization (abstract syntax to text).
This means that interlingua-based translation is just a matter of parsing in one
language and linearizing to another.

The GF resource grammar library (Ranta 2008) implements the domain-
independent morphological and syntactic details of eleven languages. A gram-
mar writer can use functions from a resource grammar when defining the con-
crete syntax of an application grammar. This is made possible by GF’s support
for grammar composition, and frees the grammar writer from having to imple-
ment linguistic details such as agreement, word order etc.

In addition to parsing and linearization, the declarative nature of GF gram-
mars allows them to be compiled to other grammar formats. The GF speech
recognition grammar compiler (Bringert 2007) can produce context-free gram-
mars or finite-state models which can be used to guide speech recognizers.

These components, interlingua-based translation, grammar libraries, and
speech recognition grammar compilation, can be used to develop domain-specific
speech translators based on GF grammars. Figure 1 shows an overview of a min-
imal unidirectional speech translator which uses these components. This is a
proof-of-concept system that demonstrates how GF components can be used
for speech translation, and as such it can hardly be compared to a more com-
plete and mature system such as MedSLT (Bouillon et al. 2005). However,
the system has some promising features compared to systems based on unifi-
cation grammars: the expressive power of GF’s concrete syntax allows us to
use an application-specific interlingua without any transfer rules, and the wide
language support of the GF Resource Grammar library makes it possible to
quickly port applications to new languages.

In Section 2 we show a small example grammar for a medical speech trans-
lator. Section 3 briefly discusses how a speech translator can be implemented.
Section 5 describes some possible extensions to the proof-of-concept system, and
Section 6 offers some conclusions.

2 Example Grammar

We will show a fragment of a grammar for a medical speech translator. The
example comes from Khegai’s (2006) work on domain-specific translation with
GF, and has been updated to use the current version of the GF resource library
API.

The small abstract syntax (interlingua) shown in Figure 2 has three cate-
gories (cat): the start category Prop for complete utterances, Patient for identi-
fying patients, and Medicine for identifying medicines. Each category contains a
single function (fun). There are the nullary functions ShePatient and PainKiller,
and the binary NeedMedicine, which takes a Patient and a Medicine as argu-
ments, and produces a Prop. This simple abstract syntax only allows us to
construct the term NeedMedicine ShePatient PainKiller. A larger version could

Speech Translation with Grammatical Framework 81

Grammar development

Resource grammar library

Application grammar

Speech translator

PGF interpreter

Speech

recognizer

(L
1
)

Speech

synthesizer

(L
2
)

Parser

(L
1
)

Linearizer

(L
2
)

Speech

(L
1
)

Text

(L
2
)

Text

(L
1
)

Speech recognition

grammar (L
1)

Speech recognition

grammar compiler

Grammar

compiler
PGF

Speech

(L
2
)

User

(L
1
)

User

(L
2
)

Abstract

syntax term

PGF

Abstract syntax Concrete syntax

(L
1
)

Concrete syntax

(L
2
)

Resource grammar

(L
1
)

Resource grammar

(L
2
)

Figure 1. Overview of a GF-based speech translator. The developer writes
a multilingual application grammar using the resource grammar library. This
is compiled to a PGF (Portable Grammar Format) grammar used for parsing
and linearization, and a speech recognition grammar. Off-the-shelf speech rec-
ognizers and speech synthesizers are used together with a PGF interpreter in
the running system.

for example include categories for body parts, symptoms and illnesses, and more
functions in each category. An example of a term in such an extended grammar
could be And (Injured TheyPatient Foot) (NeedMedicine HePatient Laxative).

For this abstract syntax we can use the English resource grammar to write
an English concrete syntax, as shown in Figure 3. The resource grammar cat-
egory NP is used as the linearization type (lincat) of the application grammar
categories Patient and Medicine, and S is used for Prop. The linearizations (lin)
of each abstract syntax function use overloaded functions from the resource
grammar, such as mkCl and mkN which create clauses and nouns, respectively.

Figure 4 shows a Swedish concrete syntax created in the same way. Note that
PainKiller in Swedish uses a mass noun construction rather than the indefinite
article.

3 Speech Translator Implementation

The GF grammar compiler takes grammars in the GF source language used by
programmers, and produces grammars in a low-level language (Portable Gram-

82 Bringert

abstract Health = {
flags startcat = Prop;
cat Patient;

Medicine;
Prop;

fun ShePatient : Patient;
PainKiller : Medicine;
NeedMedicine : Patient→ Medicine→ Prop;

}

Figure 2. Example abstract syntax.

concrete HealthEng of Health = open TryEng in {
flags language = en_US ;
lincat Patient,Medicine = NP;

Prop = S;
lin ShePatient = mkNP she_Pron;

PainKiller = mkNP a_Art (mkN “painkiller”);
NeedMedicine p m = mkS (mkCl p (mkV2 (mkV “need”)) m);

}

Figure 3. English concrete syntax.

mar Format, PGF (Angelov et al. 2008)) for which interpreters can be easily and
efficiently implemented. There are currently PGF implementations in Haskell,
Java and JavaScript. The GF speech recognition grammar compiler (Bringert
2007) targets many different formats, including Nuance GSL, SRGS, JSGF and
HTK SLF. This means that speech translators based on GF can easily be im-
plemented on almost any platform for which there is a speech recognizer and
speech synthesizer. We have run Java-based versions under Windows using Nu-
ance Recognizer and RealSpeak or FreeTTS, Haskell-based versions under Linux
using Nuance Recognizer and RealSpeak, and JavaScript-based prototypes in
the Opera XHTML+Voice-enabled web browser on Zaurus PDAs and Windows
desktops.

The speech translation system itself is domain-independent. All that is re-
quired to use it in a new domain is an application grammar for that domain.

4 Evaluation

Since we have presented a proof-of-concept system that demonstrates the use
of GF for speech translation, rather than a complete system for any particular
domain, quantitative translation performance evaluation would be out of place.

Speech Translation with Grammatical Framework 83

concrete HealthSwe of Health = open TrySwe in {
flags coding = utf8;

language = sv_SE ;
lincat Patient,Medicine = NP;

Prop = S;
lin ShePatient = mkNP she_Pron;

PainKiller = mkNP (mkN “smärtstillande”);
NeedMedicine p m = mkS (mkCl p (mkV2 (mkV “behöver”)) m);

}

Figure 4. Swedish concrete syntax.

Rather, we have evaluated the portability and speed of prototyping. Our basic
speech translators written in Java and Haskell, using existing speech components
and PGF interpreters, require less than 100 lines of code each. Developing a
small domain for the translator can be done in under 10 minutes.

5 Extensions

5.1 Interactive Disambiguation

The concrete syntax for the source language may be ambiguous, i.e. there may
be sentences for which parsing produces multiple abstract syntax terms. The
ambiguity can sometimes be preserved in the target language, if all the abstract
syntax terms linearize to the same sentence.

In cases where the ambiguity cannot be preserved, or if we want to force dis-
ambiguation for safety reasons, we can use a disambiguation grammar to allow
the user to choose an interpretation. This is a second concrete syntax which
is completely unambiguous. When the user inputs an ambiguous sentence, the
system linearizes each of the abstract syntax terms with the disambiguation
grammar, and prompts the user to select the sentence with the intended mean-
ing. If only some of the ambiguity can be preserved, the number of choices can
be reduced by grouping the abstract syntax terms into equivalence classes based
on whether they produce the same sentences in the target language. Since all
terms in a class produce the same output, the user only needs to select the
correct class of unambiguous sentences.

Another source of ambiguity is that two abstract syntax terms can have
distinct linearizations in the source language, but identical target language lin-
earizations. In this case, the output sentence will be ambiguous, even though
the input was unambiguous. This could be addressed by using unambiguous
linearizations for system output, though this may lead to the use of unnatural
constructions.

84 Bringert

5.2 Bidirectional Translation

Since GF uses the same grammar for parsing and linearization, the grammar
for a translator from L1 to L2 can also be used in a translator from L2 to L1,
provided that the appropriate speech components are available. Two unidirec-
tional translators can be used as a bidirectional translator, something which is
straightforwardly achieved using two computers. While PGF interpreters can
already be used for bidirectional translation, a single-device bidirectional speech
translator requires multiplexing or duplicating the sound hardware.

5.3 Larger Input Coverage

GF’s variants feature allows an abstract syntax function to have multiple repre-
sentations in a given concrete syntax. This permits some variation in the input,
while producing the same interlingua term. For example, the linearization of
PainKiller in the English concrete syntax in Figure 3 could be changed to:

lin PainKiller = mkNP a_Art (mkN “painkiller” | mkN “analgesic”);

6 Conclusions

Because it uses a domain-specific interlingua, a GF-based speech translator
can achieve high precision translation and scale to support a large number of
languages.

The GF resource grammar library reduces the development effort needed to
implement a speech translator for a new domain, and the need for the developer
to have detailed linguistic knowledge.

Systems created with GF are highly portable to new platforms, because of
the wide speech recognition grammar format support, and the availability of
PGF interpreters for many platforms.

With additional work, GF could be used to implement a full-scale speech
translator. The existing GF components for grammar development, speech
recognition grammar compilation, parsing, and linearization could also be used
as parts of larger systems.

References

Krasimir Angelov, Björn Bringert, and Aarne Ranta. PGF: A Portable Run-
Time Format for Type-Theoretical Grammars. Journal of Logic, Language
and Information, submitted, 2008.

P. Bouillon, M. Rayner, N. Chatzichrisafis, B. A. Hockey, M. Santaholma,
M. Starlander, H. Isahara, K. Kanzaki, and Y. Nakao. A generic Multi-
Lingual Open Source Platform for Limited-Domain Medical Speech Transla-
tion. In Proceedings of the tenth Conference on European Association of Ma-

Speech Translation with Grammatical Framework 85

chine Translation (EAMT 2005), Budapest, Hungary, pages 5–58, May 2005.
URL http://www.issco.unige.ch/pub/MedSLT_demo_EAMT05_final.pdf.

Björn Bringert. Speech Recognition Grammar Compilation in Grammatical
Framework. In Proceedings of the Workshop on Grammar-Based Approaches to
Spoken Language Processing, Prague, Czech Republic, pages 1–8. Association
for Computational Linguistics, June 2007. URL http://www.aclweb.org/

anthology/W/W07/W07-1801.

Janna Khegai. Grammatical Framework (GF) for MT in sublanguage domains.
In Proceedings of EAMT-2006, 11th Annual conference of the European Asso-
ciation for Machine Translation, Oslo, Norway, pages 95–104, June 2006. URL
http://www.mt-archive.info/EAMT-2006-Khegai.pdf.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004. ISSN
0956-7968. doi: 10.1017/S0956796803004738.

Aarne Ranta. Grammars as software libraries. In Yves Bertot, Gérard
Huet, Jean-Jacques Lévy, and Gordon Plotkin, editors, From semantics
to computer science: essays in honor of Gilles Kahn. Cambridge Univer-
sity Press, 2008. URL http://www.cs.chalmers.se/~aarne/articles/

libraries-kahn.pdf.

http://www.issco.unige.ch/pub/MedSLT_demo_EAMT05_final.pdf
http://www.aclweb.org/anthology/W/W07/W07-1801
http://www.aclweb.org/anthology/W/W07/W07-1801
http://www.mt-archive.info/EAMT-2006-Khegai.pdf
http://dx.doi.org/10.1017/S0956796803004738
http://www.cs.chalmers.se/~aarne/articles/libraries-kahn.pdf
http://www.cs.chalmers.se/~aarne/articles/libraries-kahn.pdf

86 Bringert

Paper V Interactive Multilingual Web

Applications with Grammatical

Framework

GoTAL 2008, Gothenburg

Interactive Multilingual Web Applications with

Grammatical Framework

Moisés Salvador Meza Moreno

Björn Bringert

Department of Computer Science and Engineering

Chalmers University of Technology

and University of Gothenburg

meza@student.chalmers.se, bringert@chalmers.se

Abstract

We present an approach to multilingual web content based on multilin-
gual grammars and syntax editing for a controlled language. Content can
be edited in any supported language and it is automatically kept within a
controlled language fragment. We have implemented a web-based syntax
editor for Grammatical Framework (GF) grammars which allows both
direct abstract syntax tree manipulation and text input in any of the
languages supported by the grammar. With this syntax editor and the
GF JavaScript API, GF grammars can be used to build multilingual web
applications. As a demonstration, we have implemented an example ap-
plication in which users can add, edit and review restaurants in English,
Spanish and Swedish.

1 Introduction

Current multilingual web applications store a separate version of their content
for each language. It is difficult to keep the information consistent and, in some
cases, content available in one language is not provided in another. Adding a
new language to the application requires translation of the available content
from one of the existing languages to the new language.

We suggest a different approach to multilingual web applications, where the
content is defined by a multilingual grammar and is created through syntax
editing or parsing. Content created by a user who uses one language is auto-
matically available in all the other languages supported by the grammar, and
the content is consistent at all times. When the grammar is extended to cover
a new language, all existing content is automatically available in that language.

To demonstrate this approach to multilinguality, we have implemented “The
Restaurant Review Wiki”, a web-based multilingual application in which users

89

90 Meza Moreno, Bringert

can add, edit and review restaurants in English, Spanish and Swedish. It uses
GF grammars and the GF JavaScript API to provide multilinguality.

2 Grammatical Framework

Grammatical Framework (GF) (Ranta 2004) is a type-theoretical grammar for-
malism. GF grammars can describe both formal and natural languages and
consist of an abstract syntax and at least one concrete syntax. The abstract
syntax defines the scope of the grammar, i.e. all the expressions that can be built
from it. The concrete syntax defines how the constructs in the abstract syntax
are represented in a particular language. GF grammars can be multilingual,
each language in the grammar having a separate concrete syntax. For any given
grammar, GF provides parsing (going from a concrete to the abstract syntax)
and linearization (going from the abstract to a concrete syntax). GF supports
dependently typed and higher-order abstract syntax. These features are used,
for example, to express conditions of semantic well-formedness. However, they
are not used in this article since they are not supported in the implementations
described.

GF includes a Resource Grammar Library (Ranta 2008) which defines the
basic grammar of (currently) eleven languages. For each language, the Resource
Grammar Library provides the complete morphology, a lexicon of approximately
one hundred of the most important structural words, a test lexicon of approx-
imately 300 content words, a list of irregular verbs and a substantial fragment
of the syntax. The Resource Grammar Library has an API (Application Pro-
gramming Interface) which allows the user to implement grammars for these
languages easily. The API also provides tools to extend the resource grammars,
for example, new words can be added to the lexicon. GF is freely available1 and
is distributed under the GNU General Public License (GPL).

2.1 An Example Grammar

To better explain GF grammars, consider a very small grammar that describes
simple restaurant reviews. The abstract syntax defines what can be said in
the grammar in terms of categories (cat) and functions (fun). In the example
grammar, the abstract syntax (Figure 1) has four categories: Phrase (the start
category), Item, Demonym and Quality. It also has some functions that construct
terms in these categories. For example, the function itemIs takes an Item and a
Quality as arguments and produces a Phrase, and an Item can be either restaurant

or food. Examples of abstract terms produced by this abstract syntax are itemIs

(qualItem mexican food) (very good) and itemIs restaurant expensive.
The concrete syntax specifies how the different abstract syntax terms are

expressed in a particular language. There is a linearization type (lincat) for
every category in the abstract syntax. The linearization type is the type of the
concrete syntax terms produced for the abstract syntax terms in a category.

1 http://digitalgrammars.com/gf/

http://digitalgrammars.com/gf/

Interactive Multilingual Web Applications with Grammatical Framework 91

abstract Restaurant = {
flags startcat = Phrase;
cat Phrase; Item; Demonym; Quality;
fun itemIs : Item→ Quality→ Phrase;

restaurant, food : Item;
qualItem : Demonym→ Item→ Item;
italian,mexican : Demonym;
very : Quality→ Quality;
good, bad, cheap, expensive : Quality;

}

Figure 1. Abstract syntax for the example grammar.

Similarly, there is a linearization definition (lin) for every function in the ab-
stract syntax. A linearization definition is a function from the linearizations of
the arguments of an abstract syntax function to a concrete syntax term.

Figure 2 shows the English concrete syntax for the example grammar. The
linearization type for all categories is {s : Str}, that is, a record with a single
field s of type Str (string). The linearization of the function restaurant is the
concrete syntax term {s = “restaurant”}. The linearization of itemIs makes
use of the linearizations of its argument terms of type Item and Quality. The
linearization of the abstract syntax term itemIs restaurant expensive is the
string “the restaurant is expensive”.

Figure 3 shows the Spanish concrete syntax for the example grammar. This
concrete syntax is more complex because Spanish nouns have an inherent gender
(masculine or feminine). Adjectives are inflected according to the gender of the
noun they modify and the form of the definite article depends on the gender of
the noun it modifies. Thus the category Item has a linearization type {s : Str; g :
Gender}. In addition to the string field s, the record has a field g of type Gender,
either Masc or Fem. The categories Demonym and Quality have a linearization
type {s :Gender⇒ Str}. The field s is here a function from Gender to Str. Some
helper functions (oper) are also defined. For example, the function adjective

takes a Str and returns a record of type {s : Gender ⇒ Str}. The abstract
syntax term itemIs (qualItem mexican food) (very good) is linearized to “la
comida mexicana es muy buena”. If we replace the feminine noun food with the
masculine noun restaurant the linearization changes to “el restaurante mexicano
es muy bueno”.

To write the Spanish concrete syntax, the grammar writer had to take into
account the morphological and syntactic features of the Spanish language. Even
in this simple example, gender had to be considered; imagine a grammar in
which number plus case is also involved, or polarity, or verb conjugation, or
all of them at once. The larger the scope of the grammar, the harder it gets
to properly handle the features of a language. That is why GF’s Resource

92 Meza Moreno, Bringert

concrete RestaurantEng of Restaurant = {
lincat Phrase, Item,Demonym,Quality = {s : Str};
lin itemIs i q = {s = “the” ++ i.s ++ “is” ++ q.s};

restaurant = {s = “restaurant”};
food = {s = “food”};
qualItem d i = {s = d.s ++ i.s};
italian = {s = “Italian”};
mexican = {s = “Mexican”};
very q = {s = “very” ++ q.s};
good = {s = “good”};
bad = {s = “bad”};
cheap = {s = “cheap”};
expensive = {s = “expensive”};

}

Figure 2. English concrete syntax for the example grammar.

Grammar Library was implemented: to define the low-level morphological and
syntactic rules of languages and allow grammar writers to focus on the domain-
specific semantic and stylistic aspects. The idea is that if a grammar uses the
Resource Grammar Library in a type correct way, it will produce grammatically
correct output. The grammar writer still has to know the target language and
the application domain in order to get the semantics and pragmatics right,
since the grammar library only handles syntax and morphology. Figure 4 shows
a Spanish concrete syntax for the example grammar which uses the Resource
Grammar Library. The categories Phrase, Item, Demonym and Quality have the
linearization types Phr (phrase), CN (common noun), A (one-place adjective)
and AP (adjectival phrase), respectively. All linearizations use functions from
the resource grammar, such as mkN :Str→ N, mkA :Str→ A and mkNP :Det→
N→ NP.

3 Syntax Editing

A syntax editor (also known as syntax-directed editor, language-based editor, or
structure editor) lets the user edit documents by manipulating their underlying
structure. Such editors can be constructed for any type of structured document,
for example computer programs (Teitelbaum and Reps 1981), or structured text
documents (Furuta et al. 1988).

In the context of GF, a syntax editor lets the user manipulate abstract syntax
terms for a particular grammar, while displaying its linearization(s). Syntax
editing with GF grammars is described in more detail by Khegai et al. (2003).
To explain GF syntax editing we will make use of the grammar described in
Section 2.1. There are two kinds of abstract syntax terms: complete terms,

Interactive Multilingual Web Applications with Grammatical Framework 93

concrete RestaurantSpa of Restaurant = {
lincat Phrase = {s : Str};

Item = {s : Str; g : Gender};
Demonym,Quality = {s : Gender⇒ Str};

lin itemIs i q = {s = defArt ! i.g ++ i.s ++ “es” ++ q.s ! i.g};
restaurant = {s = “restaurante”; g = Masc};
food = {s = “comida”; g = Fem};
qualItem d i = {s = i.s ++ d.s ! i.g; g = i.g};
italian = adjective “italiano”;
mexican = adjective “mexicano”;
very qual = {s = \\g ⇒ “muy” ++ qual.s ! g};
good = adjective “bueno”;
bad = adjective “malo”;
cheap = adjective “barato”;
expensive = adjective “caro”;

param Gender = Masc | Fem;
oper defArt : Gender⇒ Str = table {Masc⇒ “el”; Fem⇒ “la”};

adjective : Str→ {s : Gender⇒ Str} =
λx → {s = table {Masc⇒ x; Fem⇒ Predef.tk 1 x + “a”}};

}

Figure 3. Spanish concrete syntax for the example grammar.

e.g. itemIs restaurant good and incomplete terms, e.g. itemIs food ?. A question
mark in an incomplete term is a metavariable, i.e. a non-instantiated term. The
metavariable in the incomplete term itemIs food ? is of type Quality. Syntax
editing starts with a single metavariable and it is refined step-by-step until the
desired complete term is constructed.

4 GF JavaScript Syntax Editor

This is a syntax editor written in JavaScript that can be used in any JavaScript
enabled web browser. This allows the syntax editor to be embedded into web
applications. It can also be used as a complete application by itself, for example,
to explore, debug or test GF grammars interactively.

4.1 User Interface

The editor interface contains six panels (Figure 5):

Abstract syntax tree panel Shows a tree representation of the abstract syn-
tax term being edited. Selecting a node will highlight both the node in
this panel and its corresponding linearization(s) in the linearization panel.

94 Meza Moreno, Bringert

concrete RestaurantSpaRes of Restaurant = open TrySpa in {
lincat Phrase = Phr; Item = CN; Demonym = A; Quality = AP;
lin itemIs i q = mkPhr (mkCl (mkNP the_Art i) q);

restaurant = mkCN (mkN “restaurante”);
food = mkCN (mkN “comida”);
qualItem d i = mkCN d i;
italian = mkA “italiano”;
mexican = mkA “mexicano”;
very qual = mkAP very_AdA qual;
good = mkAP (mkA “bueno”);
bad = mkAP (mkA “malo”);
cheap = mkAP (mkA “barato”);
expensive = mkAP (mkA “caro”);

}

Figure 4. Spanish concrete syntax using the resource grammar library.

RestaurantEng

 the restaurant is very ?

RestaurantSpa

 el restaurante es muy ?

Abstract

(itemIs restaurant (very ?))

Undo (Z)
Redo (Y)
Cut (X)
Copy (C)
Paste (V)
Delete (D)
Refine (R)
Replace (E)
Wrap (W)
Parse a string (P)
Refine the node at random (N)
Refine the tree at random (T)

Select a refinement at random (0)
bad : Quality (1)
cheap : Quality (2)
expensive : Quality (3)
good : Quality (4)
very : Quality -> Quality (5)

English French Spanish Swedish

itemIs : Phrase
restaurant : Item
very : Quality

? : Quality

Linearization

panel

Abstract syntax

tree panel

GUI languages

panel

Actions panel

Refinements

panel

Clipboard

panel

Figure 5. GF JavaScript syntax editor.

Interactive Multilingual Web Applications with Grammatical Framework 95

Linearization panel Shows the linearizations of the current abstract syntax
term in all the available concrete syntaxes. A string representation of the
abstract syntax term is also shown. Clicking on a word in a linearization
will select the corresponding node in the tree shown in the abstract syntax
tree panel. Metavariables are linearized as question marks.

Actions panel Used to show the actions available for the selected node (see
Section 4.2). Actions not available for the selected node are grayed out.

Refinements panel Used to show the available refinements or wrappers for
the selected node whenever the “Refine” or “Wrap” action is selected.

GUI languages panel Used to show and select the different languages avail-
able for the GUI (Graphical User Interface). Currently, three languages
are supported: English, Spanish and Swedish. The goal is to support all
the languages in GF’s Resource Grammar Library. This interface local-
ization is implemented using the approach described in Section 5.2.

Clipboard panel Used to show the name and type of the term currently stored
in the clipboard. The clipboard only holds one term at any given time.

4.2 Syntax Editing Actions

There are a number of actions that can be performed on abstract syntax terms.
Some of the actions require no further explanation, among those we find: Undo,
Redo, Cut, Copy and Paste. Some of the actions can be easily explained: Delete
replaces an instantiated term with a metavariable, Replace is equivalent to
Delete followed by Refine, except that it is treated as a single action in the
edit history and Refine the node at random and Refine the tree at random re-
spectively instantiate every metavariable in the subtree rooted at the selected
node and the entire abstract syntax tree with type-correct objects selected at
random. Finally, the following actions deserve a more in depth description:

Refine Replaces a metavariable with a function of the appropriate type. The
arguments of the function will all be metavariables. To refine a metavari-
able of type Phrase (Figure 6(a)) we need to choose one function from
those that have the return type Phrase. Only the function itemIs : Item→
Quality → Phrase fits this requirement. This refinement will yield a term
of the form itemIs ? ? where the metavariables are of type Item and Quality

(Figure 6(b)).

Wrap Replaces an instantiated term of type T with a function which has at
least one argument of type T and a return type T. The original term is used
as the child corresponding to the first argument of type T ; the remaining
children will be metavariables. In the example grammar, any term of
type Quality can be wrapped with the function very : Quality → Quality.
Wrapping the term good of type Quality, shown in Figure 7(a), with the
function very (Figure 7(b)) results in the term very good of type Quality

96 Meza Moreno, Bringert

? : Phrase

(a)

itemIs : Phrase

? : Item ? : Quality

(b)

Figure 6. Refining a metavariable of type Phrase.

itemIs

food good : Quality

(a)

very : Quality

? : Quality

(b)

itemIs

food very : Quality

good : Quality

(c)

Figure 7. Wrapping the abstract term good.

(Figure 7(c)). There is one exception: the top level node can be wrapped
by any function which has at least one argument of type T regardless of
its return type.

Parse a string Prompts the user for a string and tries to generate a type-
correct subtree by parsing it. On success, the node is instantiated with
the resulting subtree. GF grammars can be ambiguous, i.e. two abstract
terms can have the same linearization. When parsing an ambiguous string,
GF returns a list of abstract terms. In the syntax editor, the different
trees produced when parsing an ambiguous string are displayed in the
refinements panel so that the user can select one.

4.3 Implementation

We have implemented a GF JavaScript API that allows parsing, linearization,
type-annotation of meta-variables, and abstract syntax tree serialization and
deserialization to be done in JavaScript applications. This code is based on the
existing GF JavaScript linearization implementation, which was originally used
for output generation in GF-generated VoiceXML applications (Bringert 2007).
We have extended it with parsing functionality, by using the active MCFG pars-
ing algorithm described by Burden and Ljunglöf (Burden and Ljunglöf 2005).

The GF JavaScript API is now essentially an interpreter for PGF (Portable
Grammar Format) (Angelov et al. 2008). PGF is a low-level format for type-
theoretical grammars, and the main target of the GF grammar compiler. The
GF grammar compiler has been extended to translate the PGF grammars it
produces into a JavaScript representation, which is used by the GF JavaScript
API. The JavaScript representation, which is isomorphic to the subset of PGF

Interactive Multilingual Web Applications with Grammatical Framework 97

needed for type-checking, parsing and linearization, is used instead of the stan-
dard PGF form in order to avoid the extra computation needed to read PGF
files directly in JavaScript.

On top of this API, the syntax editor implements the syntax editing actions,
and facilities for supporting the editor user interface. One interesting addition
is the support for associating parts of the linearization output with the abstract
syntax sub-terms which generated them. Each node in the abstract syntax
tree is given an identifier which encodes the path from the root of the tree
to the given node. The linearization algorithm has been modified to tag each
token that results from linearizing a node with that node’s identifier. As a
consequence, each token in the sequence of tokens produced by linearizing an
abstract syntax tree will be tagged with the identifier of the node that produced
it, and the identifiers of all its parent nodes. When the user selects a node in
the tree, all tokens tagged with that node’s identifier are highlighted. When
a token is selected, the deepest node (i.e. longest identifier) which it is tagged
with is highlighted.

5 Example Application: The Restaurant Review

Wiki

The GF JavaScript API and the syntax editor described in Section 4 can be
used together to build a multilingual web application. This section describes
the Restaurant Review Wiki, a small demo application developed using these
tools.

5.1 Description

The Restaurant Review Wiki is a restaurant database that allows users to add
restaurants and reviews and view and edit the information in three languages
(English, Swedish and Spanish). It is available online2.

Users can add new restaurants and edit the information about existing
restaurants. For each restaurant there is some basic information, such as address
and cuisine, entered using standard HTML forms, and reviews which are cre-
ated and edited by using the syntax editor as shown in Figure 8. The restaurant
review grammar used in this application is an extended version of the grammar
described in Section 2.1.

When adding a new review, the abstract syntax term in the syntax editor
is initially a single metavariable of type Paragraph. The user edits a review
by stepwise refining the tree, by parsing a string or by some combination of
these. For example, the user may parse a simple sentence such as “the food is
delicious”, and then use syntax editing commands to elaborate parts of it.

2 http://csmisc14.cs.chalmers.se/~meza/restWiki/wiki.cgi/

http://csmisc14.cs.chalmers.se/~meza/restWiki/wiki.cgi/

98 Meza Moreno, Bringert

Save the review CancelLaBamba

RestaurantEng

 the food is delicious. I recommend the restaurant.

RestaurantSpa

 la comida es deliciosa. recomiendo el restaurante.

RestaurantSwe

 maten är läcker. jag rekommenderar restaurangen.

Undo (Z)
Redo (Y)
Cut (X)
Copy (C)
Paste (V)
Delete (D)
Refine (R)
Replace (E)
Wrap (W)
Parse a string (P)
Refine the node at random (N)
Refine the tree at random (T)

English French Spanish Swedish

Sentence : Paragraph
The_Item_Is : Phrase

The_Food : Item
Delicious : Quality

Sentence : Paragraph
I_Recommend : Phrase

NoAdverb : Adverb
The_Restaurant : Item

Empty_Sentence : Paragraph

Figure 8. Review editing page.

5.2 Implementation

Instead of storing the text in any language, the abstract syntax representation of
the information is stored on the server and it is linearized by the client’s browser
upon request. The algorithms to linearize abstract syntax trees are efficient and
with today’s computing power the user should not be affected by delays caused
by the linearization of the different multilingual elements of a page. Whenever
a page is loaded, a linearizing function is called for every multilingual element
in the page. This function takes the HTML element to linearize, a reference to
the currently selected language and a grammar as arguments. It extracts the
string representation of the abstract syntax term from the element, converts it
into an abstract syntax tree, linearizes the tree using the concrete syntax for
the currently selected language and stores the linearization in the element.

Two GF grammars are used by this application, one that describes the ele-
ments of web pages such as headers, field names, country names, cuisines, etc.,
and another that describes restaurant reviews.

5.3 Discussion

Advantages

Since the multilingual information is stored as its abstract syntax representation,
all new content created by users is available for all languages immediately, and
it is thereby consistent in all languages. In existing multilingual applications

Interactive Multilingual Web Applications with Grammatical Framework 99

such as Wikipedia, multilingual content is created in parallel. This means that
there is a different version of the information for each language and there is
no guarantee that the information available for a particular language will be
available in another nor that they will be consistent.

Having all the information in an abstract representation of a controlled lan-
guage makes it possible to perform operations such as querying precisely and
efficiently. For example, it should be easy to implement functionality that would
let the user search for “cheap Thai restaurants close to the university”.

Adding a language to the application means adding a concrete syntax for
that language to the grammar. Once the concrete syntax is added, all existing
information is automatically available in the new language. There is no need to
translate the existing information by hand.

Disadvantages

The content that can be created using this approach is limited by the coverage
of the grammar. This may be too restrictive and it may prevent users from
effectively conveying their ideas through the content they create.

In this version of the application, new content is created by using the syntax
editor, either by stepwise refining the abstract syntax tree or by parsing a string.
The syntax editor has the advantage of generating content within the coverage of
the grammar. The problem is that the editor is not very intuitive and it could
be hard to use without training, a situation that could discourage potential
users. Creating content by parsing is simple, but, if the user is not familiar with
the grammar, producing valid content through parsing might be a difficult task
unless the grammar has a very wide coverage.

Multilingual processing is done in the client rather than on the server. A
JavaScript GF grammar may be larger than 1 MB, which could be a problem
for devices with limited bandwidth or memory, such as PDAs or mobile phones.
Also, devices with limited processing power may experience delays caused by
the linearization of the multilingual elements in pages. Since the current ver-
sion does linearization in the client even when viewing existing content, search
engines may not be able to index the page using the linearized content.

If an abstract syntax used in an application is changed and the new version
is not backwards compatible, it may no longer be possible to linearize the stored
abstract syntax terms. If the coverage of the new grammar is a superlanguage
of the old one, this problem can be solved by linearizing each stored term with
the old grammar and parsing it with the new one.

Doing natural language processing client-side tends to stress the web browser
implementations. The current state of web standards compatibility in browsers
may lead to inconsistent behavior or performance in some web browsers.

100 Meza Moreno, Bringert

6 Related Work

The Grammatical Framework (GF) provided, up until this point, two different
syntax editors. The first provides the full functionality of GF but can only be
used in machines that have the full GF system installed (Ranta 2004). One use
of this editor is as an integral component of the KeY formal program verifica-
tion system (Beckert et al. 2007). The second, Gramlets (Johannisson et al.
2003), provides no parsing and no support for dependent types or higher-order
functions but can be run on any machine that has a Java Virtual Machine
(JVM) installed or in web browsers which have a JVM plug-in. Our syntax
editor is more portable than the previous GF syntax editors, can be more eas-
ily integrated into web applications, and compared to Gramlets, it offers more
functionality, most notably parsing. The syntax editor does not support the full
GF language yet, as it only allows grammars which have no dependent types
and no higher-order abstract syntax.

WYSIWYM (Power et al. 1998) is a structure editor which displays natural
language representations during editing. It now also has a JavaScript imple-
mentation3. Our editor is driven by a declarative specification of the language
structure and generation rules. In WYSIWYM these components are built into
the editor, which appears to make it more difficult to use the editor for new
applications.

7 Future Work

Dependently Typed and Higher-order Abstract Syntax For the syntax
editor to support more advanced grammars, the GF JavaScript API should
be extended to implement parsing, type-checking and linearization for
grammars with dependently typed and higher-order abstract syntax.

Syntax Editor User Interface New content is created using the syntax edi-
tor and, as mentioned before, this is too restrictive and could make users
lose interest in the application. There is a need for a more intuitive in-
terface which still guarantees that the content is within the domain of
the grammar. One way to make the interface more easy to use is to add
completion. The idea is to make the editor display a list of possible ways
to complete the input that the user is typing, as is done in the GF-based
WebALT exercise editor for multilingual mathematical exercises (Cohen
et al. 2006).

Server-side Processing Instead of doing the multilingual processing in the
client, it could be done on the server. This would be beneficial for de-
vices with limited processing power, memory or bandwidth. Especially
linearization of existing content should be off-loaded to the server, as this
will also help search engines index the content.

3 http://www.itri.brighton.ac.uk/projects/WYSIWYM/javademo.html

http://www.itri.brighton.ac.uk/projects/WYSIWYM/javademo.html

Interactive Multilingual Web Applications with Grammatical Framework 101

8 Conclusions

We have implemented a syntax editor which provides the basic functionality
of the Grammatical Framework (GF) in web browsers. It allows the user to
stepwise create the abstract syntax trees described by a GF grammar through
the use of special purpose editing actions, while showing linearizations of the
trees in multiple languages. It can be used to test and debug GF grammars, or
as a component in multilingual web-based applications.

To demonstrate how the syntax editor can be used to implement multilingual
web applications, we also implemented “The Restaurant Review Wiki”. It is
a multilingual restaurant database in which users can add, edit and review
restaurants in three different languages. The approach to multilinguality that we
suggest makes all information available simultaneously and consistently for all
the supported languages, and adding a new language is only a matter of adding
a concrete syntax for that language to the application grammar. Additional
work is required to make syntax editing more usable for untrained users, and to
ensure that the technique works well in resource-constrained computing devices.

References

Krasimir Angelov, Björn Bringert, and Aarne Ranta. PGF: A Portable Run-
Time Format for Type-Theoretical Grammars. Journal of Logic, Language
and Information, submitted, 2008.

Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification
of Object-Oriented Software: The KeY Approach, volume 4334 of Lecture Notes
in Computer Science. Springer, Heidelberg, April 2007. doi: 10.1007/978-3-
540-69061-0.

Björn Bringert. Rapid Development of Dialogue Systems by Grammar Com-
pilation. In Simon Keizer, Harry Bunt, and Tim Paek, editors, Proceed-
ings of the 8th SIGdial Workshop on Discourse and Dialogue, Antwerp, Bel-
gium, pages 223–226. Association for Computational Linguistics, September
2007. URL http://www.sigdial.org/workshops/workshop8/Proceedings/

SIGdial39.pdf.

Håkan Burden and Peter Ljunglöf. Parsing Linear Context-Free Rewrit-
ing Systems. In Proceedings of the Ninth International Workshop on Pars-
ing Technology, pages 11–17, Vancouver, British Columbia, 2005. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/W/

W05/W05-1502.

Arjeh Cohen, Hans Cuypers, Karin Poels, Mark Spanbroek, and Rikko Ver-
rĳzer. WExEd - WebALT Exercise Editor for Multilingual Mathematical
Exercises. In Mika Seppälä, Sebastian Xambo, and Olga Caprotti, editors,
WebALT 2006, First WebALT Conference and Exhibition, Eindhoven, The

http://dx.doi.org/10.1007/978-3-540-69061-0
http://dx.doi.org/10.1007/978-3-540-69061-0
http://www.sigdial.org/workshops/workshop8/Proceedings/SIGdial39.pdf
http://www.sigdial.org/workshops/workshop8/Proceedings/SIGdial39.pdf
http://www.aclweb.org/anthology/W/W05/W05-1502
http://www.aclweb.org/anthology/W/W05/W05-1502

102 Meza Moreno, Bringert

Netherlands, pages 141–145, January 2006. URL http://www.win.tue.nl/

~amc/pub/wexed.pdf.

R. Furuta, V. Quint, and J. Andre. Interactively Editing Structured Docu-
ments. Electronic Publishing, 1(1):19–44, 1988. URL http://cajun.cs.nott.

ac.uk/wiley/journals/epobetan/pdf/volume1/issue1/eprxf011.pdf.

Kristofer Johannisson, Janna Khegai, Markus Forsberg, and Aarne Ranta.
From Grammars to Gramlets. In The Joint Winter Meeting of Computing
Science and Computer Engineering. Chalmers University of Technology, 2003.

Janna Khegai, Bengt Nordström, and Aarne Ranta. Multilingual Syntax Edit-
ing in GF. In Alexander Gelbukh, editor, Computational Linguistics and In-
telligent Text Processing, volume 2588 of Lecture Notes in Computer Science,
pages 199–204. 2003. doi: 10.1007/3-540-36456-0_48.

Richard Power, Donia Scott, and Roger Evans. What You See Is What
You Meant: direct knowledge editings with natural language feedback. In
Henri Prade, editor, 13th European Conference on Artificial Intelligence (ECAI
1998), pages 677–681, Chichester, England, 1998. John Wiley and Sons. URL
http://citeseer.ist.psu.edu/power98what.html.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004. ISSN
0956-7968. doi: 10.1017/S0956796803004738.

Aarne Ranta. Grammars as software libraries. In Yves Bertot, Gérard
Huet, Jean-Jacques Lévy, and Gordon Plotkin, editors, From semantics
to computer science: essays in honor of Gilles Kahn. Cambridge Univer-
sity Press, 2008. URL http://www.cs.chalmers.se/~aarne/articles/

libraries-kahn.pdf.

Tim Teitelbaum and Thomas Reps. The Cornell program synthesizer: a
syntax-directed programming environment. Commun. ACM, 24(9):563–573,
September 1981. ISSN 0001-0782. doi: 10.1145/358746.358755.

http://www.win.tue.nl/~amc/pub/wexed.pdf
http://www.win.tue.nl/~amc/pub/wexed.pdf
http://cajun.cs.nott.ac.uk/wiley/journals/epobetan/pdf/volume1/issue1/eprxf011.pdf
http://cajun.cs.nott.ac.uk/wiley/journals/epobetan/pdf/volume1/issue1/eprxf011.pdf
http://dx.doi.org/10.1007/3-540-36456-0_48
http://citeseer.ist.psu.edu/power98what.html
http://dx.doi.org/10.1017/S0956796803004738
http://www.cs.chalmers.se/~aarne/articles/libraries-kahn.pdf
http://www.cs.chalmers.se/~aarne/articles/libraries-kahn.pdf
http://dx.doi.org/10.1145/358746.358755

Paper VI PGF: A Portable Run-Time Format

for Type-Theoretical Grammars

Submitted to the Journal of Logic, Language and
Information

PGF: A Portable Run-Time Format for

Type-Theoretical Grammars

Krasimir Angelov Björn Bringert

Aarne Ranta

Department of Computer Science and Engineering

Chalmers University of Technology

and University of Gothenburg

SE-412 96 Göteborg, Sweden

{krasimir,bringert,aarne}@chalmers.se

Abstract

PGF (Portable Grammar Format) is a low-level language used as a
target of compiling grammars written in GF (Grammatical Framework).
Low-level and simple, PGF is easy to reason about, so that its language-
theoretic properties can be established. It is also easy to write interpreters
that perform parsing and generation with PGF grammars, and compilers
converting PGF to other format. This paper gives a concise description of
PGF, covering syntax, semantics, and parser generation. It also discusses
the technique of embedded grammars, where language processing tasks
defined by PGF grammars are integrated in larger systems.

1 Introduction

PGF (Portable Grammar Format) is a grammar formalism designed to capture
the computational core of type-theoretical grammars, such as those written in
GF (Grammatical Framework, Ranta 2004). PGF thus relates to GF in the
same way as JVM (Java Virtual Machine) bytecode relates to Java. While GF
(like Java) is a rich language, whose features help the programmer to express
her ideas on a high level of abstraction, PGF (like JVM) is an austere language,
which is easy to implement on a computer and easy to reason about. The
bridge between these two level, in both cases, is a compiler. The compiler gives
the grammar writer the best of the two worlds: when writing grammars, she
can concentrate on linguistic ideas and find concise expressions for them; when
using grammars, she can enjoy efficient run-time performance and a light-weight
run-time system, as well as integration in applications.

PGF was originally designed as a back-end language for GF, providing the
minimum of what is needed to perform generation and parsing. Its expressive

105

106 Angelov, Bringert, Ranta

power is between context-free and fully context-sensitive (Ljunglöf 2004). Thus
it can potentially provide a back end to numerous other grammar formalisms as
well, providing for free a large part of what is involved in implementing these
formalisms. In addition, PGF can be compiled further into other formats, such
as language models for speech recognition systems (Bringert 2007a).

The most prominent characteristic of PGF (as well as GF) is multilingual-
ity: a PGF grammar has an abstract syntax, which is a type-theoretical
definition of tree structures. The abstract syntax is equipped with a set of con-
crete syntaxes, which are reversible mappings of tree structures to strings.
This grammar architecture is known as the Curry architecture, with a reference
to Curry (1961). It is at the same time familiar from programming language de-
scriptions, dating back to McCarthy (1962). While the Curry architecture was
used by Montague (1974) for describing English, GF might be the first grammar
formalism that exploits the multilingual potential of the Curry architecture.

Multilingual PGF grammars readily support translation and multilingual
generation. They are also useful when writing monolingual applications, since
the non-grammar parts of an application typically communicate with the ab-
stract syntax alone. This follows the standard architecture of compilers, which
use an abstract syntax as the format in which a programming language is pre-
sented to the other components, such as the type checker and the code generator
(Appel 1997). Thus an application using PGF is easy to port from one target
language to another, by just writing a new concrete syntax. The GF resource
grammar library (Ranta 2008) helps application programmers by providing
a comprehensive implementation of syntactic and morphological rules for 15
languages.

JVM is a general-purpose Turing-complete language, but PGF is limited to
expressing grammars. Grammars can be seen as declarative programs perform-
ing tasks such as parsing and generation. In a language processing system, these
tasks usually have to be combined with other functionalities. For instance, a
question answering system reads input and produces output by using grammars,
but the program that computes the answers from the questions has to be writ-
ten in another language. Embedded grammars is a technique that enables
programs written in another programming language to call PGF functionalities
and also to manipulate PGF syntax trees as data objects. There are two main
ways to implement this idea: interpreters and compilers. A PGF interpreter is a
program written in a general-purpose language (such as C++, Haskell, or Java,
which we have already written interpreters for). The interpreter reads a PGF
grammar from a file and gives access to parsing and generation with the gram-
mar. A PGF compiler translates PGF losslessly to another language (such as C,
JavaScript, and Prolog, for which compilers have already been written). When
we say that PGF is portable, we mean that one can write PGF interpreters and
compilers for different host languages, so that the same PGF grammars can be
used as components in applications written in these host languages.

The purpose of this paper is to describe the PGF grammar format and briefly
show how it is used in applications. The PGF description is detailed enough
to enable the reader to write her own PGF interpreters and compilers; but it is

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 107

informal in the sense that we don’t fully specify the concrete format produced
by the current GF-to-PGF compiler and implemented by the current PGF in-
terpreters. For that level of detail, on-line documentation is more appropriate
and can be found on the GF web page1.

Section 2 gives a concise but complete description of the syntax and seman-
tics of PGF. Section 3 gives a summary of the expressive power of PGF, together
with examples illustrating its main properties. It also discusses some extensions
of PGF. Section 4 describes the parser generation and sketches the parsing algo-
rithm of PGF. Section 5 discusses the principal ways of using PGF in language
processing applications, the compilation from PGF to other formats, and the
compilation of PGF grammars from GF, which is so far the main way to pro-
duce PGF grammars. Section 6 gives a survey of actual applications running
PGF and provides some data evaluating its performance. Section 7 discusses
related work, and Section 8 gives a conclusion.

2 The syntax and semantics of PGF

2.1 Multilingual grammar

The top-most program unit of PGF is a multilingual grammar (briefly, gram-
mar). A grammar is a pair of an abstract syntax A and a set of concrete
syntaxes C1, . . . , Cn, as follows:

G = < A, {C1, . . . , Cn} >

2.2 Abstract syntax

An abstract syntax has a finite a set of categories and a finite set of functions.
Categories are defined simply as unique identifiers, whereas functions are unique
identifiers equipped with types. A type has the form

(C1, . . . ,Cn)→ C

where n may be 0 and each of C1, . . . ,Cn,C is a category. These types are
actually function types with argument types C1, . . . ,Cn and value type C.

Here is an example of an abstract syntax, where we use the keyword cat to
give the categories and fun to give the functions. It defines the categories S

(sentence), NP (noun phrase), and VP (verb phrase). Sentences are formed by
the Pred function. John is given as an example of a noun phrase and Walk of a
verb phrase.

cat S; NP; VP

fun Pred : (NP,VP)→ S

fun John : ()→ NP

fun Walk : ()→ VP

1 http://gf.digitalgrammars.com/

http://gf.digitalgrammars.com/

108 Angelov, Bringert, Ranta

An abstract syntax tree (briefly, tree) is formed by applying the functions
obeying their typings, as in simply typed lambda calculus. Thus, for instance,
Pred (John,Walk), is a tree of type S, usable for representing the string John
walks.

2.3 Concrete syntax

A concrete syntax has judgements assigning a linearization type to each cat-
egory in the abstract syntax and a linearization function to each function.
Linearization types are tuples built from strings and bounded integers.
Thus we have the following forms of linearization types T:

T ::= Str | Intn | T1 ∗ . . . ∗ Tn

Linearization functions are terms t of these types, built in the following ways:

t ::= [] | “foo” | t1 ++ t2 | i | <t1, . . . , tn> | t1 ! t2 | $i

The first three forms are canonical for strings: the empty string [], a token
(quoted, like “foo”), and the concatenation ++. Concatenation is associative,
and it preserves the separation between tokens. The empty string is nilpotent
with respect to concatenation. The canonical PGF representation of the string
John loves Mary, if conceived as consisting of three tokens, is thus “John” ++
“loves” ++ “Mary”.

The form i, where i is a numeric constant 1, 2, . . . ,n, is canonical for integers
bounded by n. The form <t1, . . . , tn> is canonical for tuples, comprising a term
ti for each component type Ti in a tuple type.

The last two forms in the term syntax are non-canonical. The form t1 ! t2 is
the projection of t2 from t1. In order for the projection to be well-formed, t1

must be a tuple and t2 an integer within the bounds of the size of the tuple. The
last form $i is an argument variable. It is bound to a term given in a context,
which, as we shall see, always consists of the linearizations of the subtrees of a
tree.

Table 1 gives the static typing rules of the terms in PGF. It defines the
relation Γ ⊢ t : T (“in context Γ, term t has type T”). The context is a
sequence of types, and it is left implicit in all rules except the one for argument
variables.

The context is in each linearization function created from the linearization
types of the arguments of the function. Thus, if we have

fun f : (C1, . . . ,Cn)→ C

lincat C1 = T1; . . . ; Cn = Tn

lincat C = T

lin f = t

then we must also have
T1, . . . , Tn ⊢ t : T

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 109

Strings:

[] : Str “foo” : Str
s, t : Str

s ++ t : Str

Bounded integers:

i : Inti

i : Intm

i : Intn

m < n

Tuples:
t1 : T1 . . . tn : Tn

< t1, . . . , tn > : T1 ∗ · · · ∗ Tn

Projections:
t : Tn u : Intn

t ! u : T

t : T1 ∗ . . . ∗ Tn

t ! i : Ti

i = 1, . . . ,n

Argument variables:

T1, . . . , Tn ⊢ $i : Ti

i = 1, . . . ,n

Table 1. The type system of PGF concrete syntax.

The alert reader may notice that the typing rules for projections are partial:
they cover only the special cases where either all types in the tuple are the
same (denoted Tn) or the index is an integer constant. If the types are different
and the index has an unknown value (which happens when it e.g. depends on
an argument variable), the type of the projection cannot be known at compile
time. As we will see in Section 5.4, PGF grammars compiled from GF always
fall under these special cases.

2.4 Examples of a concrete syntax

Let us build a concrete syntax for the abstract syntax of the Section 2.2. We
define the linearization type of sentences to be just strings, whereas noun phrases
and verb phrases are more complex, to account for agreement. Thus a noun
phrase is a pair of a string and an agreement feature, where the feature is
represented by an integer. A verb phrase is a tuple of strings—as many as there
are possible agreement features. In this simple example, we just assume two
features, corresponding to the singular and the plural.

lincat S = Str; NP = Str ∗ Int2; VP = Str ∗ Str;

The linearization of John is the string “John” with the feature 1, representing
the singular. The linearization of Walk gives the two forms of the verb walk.

lin John = <“John”, 1>; Walk = <“walks”, “walk”>

The agreement itself is expressed as follows: in predication, the first field (1) of
the noun phrase ($1)—is concatenated with a field of the verb phrase ($2). The
field that is selected is given by the second field of the first argument ($1 ! 2):

110 Angelov, Bringert, Ranta

Strings:

[] ⇓ [] “foo” ⇓ “foo”
s ⇓ v t ⇓ w

s ++ t ⇓ v ++ w

Bounded integers:
i ⇓ i

Tuples:
t1 ⇓ v1 . . . tn ⇓ vn

< t1, . . . , tn > ⇓ < v1, . . . , vn >

Projections:
t ⇓ < v1, . . . , vn > u ⇓ i

t!u ⇓ vi
i = 1, . . . ,n

Argument variable:

v1, . . . , vn ⊢ $i ⇓ vi (i = 1, . . . ,n)

Table 2. The operational semantics of PGF.

lin Pred = $1 ! 1 ++ $2 ! ($1 ! 2)

The power of a multilingual grammar comes from the fact that both linearization
types and linearization functions are defined independently in each concrete
syntax. Thus German, in which both a two-value number and a three-value
person are needed in predication can be given the following concrete syntax:

lincat NP = Str ∗ Int2 ∗ Int3

VP = (Str ∗ Str ∗ Str) ∗ (Str ∗ Str ∗ Str)
lin Pred = $1 ! 1 ++ ($2 ! ($1 ! 2)) ! ($1 ! 3)

John = <“John”, 1, 3>
Walk = << “gehe”, “gehst”, “geht”>,<“gehen”, “geht”, “gehen”>>

2.5 Linearization

Linearization—the operation 7→ converting trees into concrete syntax objects—
is performed by following the operational semantics given in Table 2. The table
defines the relation γ ⊢ t ⇓ v (“in context γ, term t evaluates to term v”).
The context is a sequence of terms, and it is left implicit in all rules except the
one for argument variables.

To linearize a tree, we linearize its immediate subtrees, and the sequence of
the resulting terms constitutes the context of evaluation for the full tree:

a1 7→ t1 . . . an 7→ tn t1, . . . , tn ⊢ t ⇓ v

f a1 . . . an 7→ v
lin f = t

Since linearization operates on the linearizations of immediate subtrees, it is a
homomorphism, in other words, a compositional mapping. A crucial property

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 111

of PGF making it possible to maintain the compositionality of linearization
in realistic grammars is that its value need not be a string, but a richer data
structure. If strings are what ultimately are needed, one can require that the
start category has the linearization type Str; alternatively, one can define a
realization operation that finds the first string in a tuple recursively.

3 Properties of PGF

3.1 Expressive power

Context-free grammars have a straightforward representation in PGF: consider
a rule

C −→ t1 . . . tn

where every ti is either a nonterminal Cj or a terminal s. This rule can be
translated to a pair of an abstract function and a linearization:

fun f : (C1, . . . ,Cm)→ C

lin f = u1 ++ . . .++ un

where f is a unique label, (C1, . . . ,Cm) are the nonterminals in the rule, and
each ui is either $j (if ti = Cj) or s (if ti = s).

That PGF is stronger than context-free grammars, is easily shown by the
language anbncn, whose grammar shows how discontinuous constituents are
encoded as tuples of strings. The grammar is the following:

cat S; A

fun s : (A)→ S; e : ()→ A; a : (A)→ A

lincat S = Str; A = Str ∗ Str ∗ Str

lin s = $1 ! 1 ++ $1 ! 2 ++ $1 ! 3
e = <[], [], []>
a = <“a” ++ $1 ! 1, “b” ++ $1 ! 2, “c” ++ $1 ! 3>

The general result about PGF is that it is equivalent to PMCFG (Parallel
Multiple Context-Free Grammar, Seki et al. 1991). Hence any PGF grammar
is parsable in polynomial time, with the exponent dependent on the grammar.
This result was obtained for a more complex subset of GF by Ljunglöf (2004).
Section 4 on parser generation will outline the result for PGF; it will also present
a definition of PMCFG.

Being polynomial, PGF is not fully context-sensitive, but it is not mildly
context-sensitive in the sense of (Joshi et al. 1991), because it does not have
the constant-growth property. A counterexample is the following grammar,
which defines the exponential language {a2n | n = 0, 1, 2, . . .}:

cat S

fun a : ()→ S; s : (S)→ S

lincat S = Str

lin a = “a”; s = $1 ++ $1

112 Angelov, Bringert, Ranta

3.2 Extensions of concrete syntax

A useful extension of concrete syntax is free variation, expressed by the op-
erator |. Free variation is used in concrete syntax to indicate that different
expressions make no semantic difference, that is, that they have the same ab-
stract syntax. A term t | u is well-formed in any type T , if both t and u have
type T . In operational semantics, free variation requires the lifting of other
operations to cover operands of the form t|u. For instance,

(t | u) ! v = (t ! v) | (u ! v)

As shown by Ljunglöf (2004), the semantics can be given in such a way that the
complexity of parsing PGF is not affected.

In practical applications of PGF, it is useful to have non-canonical forms that
decrease the size of grammars by factoring out common parts. In particular, the
use of macros factors out terms occurring in several linearization rules. The
method of common subexpression elimination often results in a grammar
whose code size is just one tenth of the original. This method is standardly
applied as a back-end optimization in the GF grammar compiler (Section 5.4),
which may otherwise result in code explosion.

3.3 Extensions of abstract syntax

One of the original motivations of GF was to implement type-theoretical se-
mantics as presented in Ranta (1994). This kind of semantics requires that the
abstract syntax notation has the strength of a logical framework, in the sense
of Martin-Löf (1984) and Harper et al. (1993). What we have presented above
is a special case of this, with three ingredients missing:

• Dependent types: a category may take trees as arguments.

• Higher-order abstract syntax: a function may take functions as argu-
ments.

• Semantic definitions: trees may be given computation rules.

Ranta (2004) gives the typing rules and operational semantics for these ex-
tensions of GF. The extensions have been transferred to PGF as well, but only
the Haskell implementation currently supports them. The reason for this is
mainly that these extensions are rarely used in GF applications (Burke and
Johannisson 2005 and Jonson 2006 being exceptions). Language-theoretically,
their effect is either dramatic or null, depending on how the language defined by
a grammar is conceived. If parsing is expected to return only well-typed trees,
then dependent types together with semantic definitions makes parsing unde-
cidable, because type checking is undecidable. If parsing and dependent type
checking are separated, as they are in practical implementations, dependent
types make no difference to the parsing complexity.

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 113

Metavariables are an extension useful for several purposes. In particular,
they are used for encoding suppressed arguments when parsing grammars with
erasing linearization rules (Section 4.5). In dependent type checking, they are
used for unifying type dependencies, and in interactive syntax editors (Khegai
et al. 2003), they are used for marking unfinished parts of syntax trees.

4 Parsing

PGF concrete syntax is simple but still too complex to be used directly for
efficient parsing and for that reason it is converted to PMCFG. It is possible
to do the conversion incrementally during the parsing but this slows down the
process, so instead we do the conversion in the compiler. This means that we
have duplicated information in the PGF file, because the two formalisms are
equivalent, but this is a trade off between efficiency and grammar size. At the
same time it is not feasible to use only the PMCFG because it might be quite
big in some cases while the client might be interested only in linearization for
which he or she can use only the PGF syntax.

4.1 PMCFG definition

A parallel multiple context-free grammar is a 8-tuple G = (N,T, F, P, S, d, r, a)
where:

• N is a finite set of categories and a positive integer d(A) called dimension
is given for each A ∈ N .

• T is a finite set of terminal symbols which is disjoint with N .

• F is a finite set of functions where the arity a(f) and the dimensions
r(f) and di(f) (1 ≤ i ≤ a(f)) are given for every f ∈ F . Let’s for every
positive integer d, (T ∗)d denote the set of all d-tuples of strings over T . The
function is a total mapping from (T ∗)d1(f) × (T ∗)d2(f) × · · · × (T ∗)da(f)(f)

to (T ∗)r(f) and it is defined as:

f :=< α1, α2, . . . , αr(f) >

Each αi is a string of terminals and 〈k; l〉 pairs, where 1 ≤ k ≤ a(f) is
called argument index and 1 ≤ l ≤ dk(f) is called constituent index.

• P is a finite set of productions of the form:

A→ f [A1, A2, . . . , Aa(f)]

where A ∈ N is called result category, A1, A2, . . . , Aa(f) ∈ N are called
argument categories and f ∈ F is the function symbol. For the production
to be well formed the conditions di(f) = d(Ai) (1 ≤ i ≤ a(f)) and r(f) =
d(A) must hold.

• S is the start category and d(S) = 1.

114 Angelov, Bringert, Ranta

S → s[A]

A→ a[A]

A→ e[]

s := < 〈1; 1〉 〈1; 2〉 〈1; 3〉 >

a := < a 〈1; 1〉, b 〈1; 2〉, c 〈1; 3〉 >

e := < [], [], [] >

Figure 1. PMCFG for the anbncn language.

We use the same definition of PMCFG as is used by Seki and Kato (2008)
and Seki et al. (1993) with the minor difference that they use variable names
like xkl while we use 〈k; l〉 to refer to the function arguments. In the actual
implementation we also allow every category to be used as a start category.
When the category has multiple constituents then they all are tried from the
parser.

The anbncn language from section 3.1 is represented in PMCFG as shown
in Figure 1. The dimension of S and A are d(S) = 1 and d(A) = 3. Functions
s and e are with 0-arity and function a is with 1-arity i.e. a(s) = 0, a(a) = 1
and a(e) = 0.

4.2 PMCFG generation

Both PGF and PMCFG deal with tuples but PGF is allowed to have bounded
integers and nested tuples while PMCFG is restricted to have only flat tuples
containing only strings. To do the conversion we need to get rid of the integers
and to flatten the tuples.

Let’s take again the categories from section 2.4 as examples:

lincat NP = Str ∗ Int2 ∗ Int3

VP = (Str ∗ Str ∗ Str) ∗ (Str ∗ Str ∗ Str)

The type for VP does not contain any integers so it is simply flattened to one
tuple with six constituents. When the linearization type contains integers then
the category is split into multiple PMCFG categories, one for each combination
of integer values. The integers are removed and the remaining type is flattened
to one tuple. In this case for NP we will have six categories and they will all have
a single string as a linearization type. Category splitting is not an uncommon
operation. For example, in part-of-speech tagging there are usually different
tags for nouns in plural and nouns in singular. We do this also on a syntactic
level and the NP category is split into:

NP11 NP12 NP13

NP21 NP22 NP23

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 115

Strings:

[] ⇓ [] ”foo” ⇓ ”foo”
s ⇓ v t ⇓ w

s++t ⇓ v ++w

Bounded integers:
i ⇓ i (i = 1, 2, . . .)

Tuples:
t1 ⇓ v1 . . . tn ⇓ vn

< t1, . . . , tn > ⇓ < v1, . . . , vn >

Projections:

t ⇓ < v1, . . . , vn > u ⇓ i

t!u ⇓ vi
i = 1, . . . , n

t ⇓ 〈k;π〉 u ⇓ i

t!u ⇓ 〈k;π i〉
i = 1, . . . , n

Argument variable:
$k ⇓ 〈k; 〉

Parameter Substitution:

a1 . . . an ⊢ t ⇓ 〈k;π〉

a1 . . . ak ∪ (π, i) . . . an, ⊢ t ⇓ i

(π,m) ∈ Tp(Ak), i = 1, . . . ,m,
∀j.((π, j) ∈ ak ⇒ i = j)

Table 3. Abstract interpretation of PGF.

The conversion from PGF rules to PMCFG productions starts with abstract
interpretation (Table 3), which is very similar to the operational semantics in
Table 2. The major difference is that the argument values are known only at
run-time and actually the $i terms should be replaced by 〈i; l〉 pairs in PMCFG
for some l. We extend the PGF syntax with a 〈i;π〉 meta-value which is only
used internally in the generation. Here, π is a sequence of indices and not only
one index as it is the case in the final PMCFG. Like in the operational semantics,
the rules define the relation γ ⊢ t ⇓ v but this time the context γ is a sequence
of assumption sets. Each assumption set ak contains pairs (π, i) which say that
if π is the sequence of indices l1 . . . ln then we assume that $k!l1 . . .!ln ⇓ i.

In addition, two sets have to be computed for each category C: Ts(C) and
Tp(C). Ts is the set of all sequences of integers i1 . . . in such that if x is an
expression of type C then x!i1!i2! . . .!in is of type Str. Tp is the set of all (π, k)
pairs where π is again a sequence i1 . . . in but this time x!i1!i2! . . .!in is of type
Intk.

The abstract interpretation rules for strings, integers and tuples are exactly
the same but the rule for argument variables is completely new. It says that
since we do not know the actual value of the variable we just replace it with
the meta-value 〈k; 〉. Furthermore there is an additional rule for projection
which deals with the case when we have argument variable on the left-hand
side of a projection. Basically the rule for argument variables and the extra
projection rule converts terms like $k!l1 . . .!ln to meta-values like 〈k;π〉 where

116 Angelov, Bringert, Ranta

π is the sequence l1 . . . ln. Since the terms are well-typed at some point either
π ∈ Ts(Ak) or (π, n) ∈ Tp(Ak) for some n will be the case. In the first case the
meta value will be left unchanged in the evaluated term. The second case is
more important because it triggers the parameter substitution rule. This rule
is nondeterministic because it makes an arbitrary choice for i and records the
choice in the context γ. The last side condition in the rule ensures that if we
already had made some assumption for 〈k;π〉 we cannot choose any other value
except the value that is already in the context. Since the integers are bounded
we have only a finite set of choices which ensures the termination.

Let’s use the linearization rule from section 2.4 as an example again:

lin Pred = $1 ! 1 ++ ($2 ! ($1 ! 2)) ! ($1 ! 3)

The first subterm $1 ! 1 is simply reduced to 〈1; 1〉 by the derivation:

$1 ⇓ 〈1; 〉 1 ⇓ 1

$1!1 ⇓ 〈1; 1〉

The derivation of the second subterm is more complex because it contains ar-
gument variables on the right hand side of a projection, so they have to be
removed using the parameter substitution rule:

a1 a2 ⊢ $1 ⇓ 〈1;〉 a1 a2 ⊢ 2 ⇓ 2

a1 a2 ⊢ $1!2 ⇓ 〈1;2〉

(a1 ∪ {(2, x)}) a2 ⊢ $1!2 ⇓ x

Since the parameter substitution is nondeterministic there are two possible
derivations but they differ only in the final value, so we use the variable x
to denote either value 1 or 2. In a similar way we can deduce that (a1 ∪
{(2, x), (3, y)}) a2 ⊢ $1!3 ⇓ y, where y is either 1, 2 or 3. Combining the two
results the derivation for the second term gives:

$2 ⇓ 〈2;〉 $1!2 ⇓ x

$2!($1!2) ⇓ 〈2;x〉
$1!3 ⇓ y

($2!($1!2))!($1!3) ⇓ 〈2;x y〉

By applying the rule for the concatenation the final result we get:

〈1; 1〉++ 〈2;x y〉

The output from the abstract interpretation can be converted directly to a
PMCFG tuple. In well-typed terms a tuple can appear only at the top-level,
inside another tuple or on the left-hand side of a record projection. In the
abstract interpretation all tuples inside record projections are removed so that
the only choice for the evaluated term is to be a tree of nested tuples with
leaves of type either Str or Intn. The tree strictly follows the structure of the
linearization type of the result category. The term can be flattened just like we
did with the linearization types.

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 117

For each possible tree a new unique function is generated with definition
containing all leaves of type Str as tuple constituents. For the example above
this will lead to six functions:

Pred1 := 〈1; 1〉 〈2; 1 1〉

Pred2 := 〈1; 1〉 〈2; 2 1〉

Pred3 := 〈1; 1〉 〈2; 1 2〉

Pred4 := 〈1; 1〉 〈2; 2 2〉

Pred5 := 〈1; 1〉 〈2; 1 3〉

Pred6 := 〈1; 1〉 〈2; 2 3〉

The bounded integers in the term are used to determine the right PMCFG
result category and each assumption set ai in the context γ is used to determine
the corresponding argument category in the production. One production is
generated for every function:

S → Pred1[NP11,VP]

S → Pred2[NP21,VP]

S → Pred3[NP12,VP]

S → Pred4[NP22,VP]

S → Pred5[NP13,VP]

S → Pred6[NP23,VP]

4.3 Common subexpression elimination in PMCFG

The produced PMCFG could be very big without some form of common subex-
pression elimination. There are three elimination techniques that are imple-
mented so far and they are described in this section. All of them have been
discovered in experiments with real grammars.

The first observation is that the conversion algorithm in the previous section
always generates a pair of function definition and production rule using the same
function. It happens to be pretty common that one function could be reused
in two different productions because the original definitions are equivalent. In
the real implementation first the definition is generated and after that it is
compared with the already existing definitions. Only if it is distinct a new
function is generated.

Another issue is that there are many constituents in the function bodies
which are equal but are used in different places. For that reason we collect a
list of distinct constituents and then the function definitions are rewritten to
contain only the indices of the corresponding constituents.

The last observation is that there are groups of productions like:

A→ f [B,C1, D1] A→ f [B,C2, D1] A→ f [B,C3, D1] A→ f [B,C4, D1]
A→ f [B,C1, D2] A→ f [B,C2, D2] A→ f [B,C3, D2] A→ f [B,C4, D2]

118 Angelov, Bringert, Ranta

Language Productions File Size (Kb)
Plain Optimized Ratio Plain Optimized Ratio

Bulgarian 3629 3516 1.03 20359 5021 4.05
Danish 1696 1615 1.05 1399 593 2.36
English 1198 1165 1.03 1648 710 2.32
Finnish - 141441 - - 6357 -
German 11079 8078 1.37 56559 3027 18.68
Italian - 1089621 - - 106282 -
Norwegian 1773 1696 1.05 1418 596 2.38
Russian 5248 5077 1.03 7735 1261 6.13
Swedish 1535 1496 1.03 1161 577 2.01

Table 4. Grammar sizes in number of PMCFG productions and PGF file size,
for the GF Resource Grammar Library.

where the list could be very large. This happens when in some linearization
function some parameters are used only when another parameter has a specific
value. The abstract interpretation could not detect all these cases. It detects
only the parameters that are not used at all and then the conversion rules are
introduced. The list of productions can be compressed by introducing extra
conversion rules:

A→ f [B,C,D]

C → _[C1]

C → _[C2]

C → _[C3]

C → _[C4]

D → _[D1]

D → _[D2]

These optimizations have been implemented and tried with the resource
grammar library (Ranta 2008), which is the largest collection of grammars writ-
ten in GF. The produced grammar sizes are summarized in Table 4. The first
column shows the grammar size in number of PMCFG productions and the
second the total PGF file size.

The common subexpression optimization seems to reduce the file size from
2 to 18 times depending on the grammar. For two of the languages Finnish and
Italian it is even impossible to compile the grammar without the optimization.
The conversion was tried on a computer with 2 GB physical memory but it
was not enough to fit the unoptimized grammar. The conversion for Italian is
possible but currently it takes 2 days on a 2 GHz CPU. For that reason three
other Romance languages are not listed: Catalan, French and Spanish. Their
compilation should be possible but would probably require the same amount
of time as Italian. The main problem is the compilation of the SlashVP rule.
All Romance languages have clitic structures in the verb phrases which cause

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 119

exponential growth of the grammar size. The same applies to Interlingua which
is an artificial language whose verb phrases also have clitics.

Some statistics were collected from the compiled Italian grammar which
suggest directions for further optimizations. The production and function defi-
nitions generated from the SlashVP linearization function constitute 41% of the
total grammar size. In the SlashVP size the dominant proportion is due to the
PMCFG functions. There are 11280 functions where each has 321 constituents.
Fortunately only 5% of these constituents are distinct. This suggests that the
data is sparse and there should be a more compact representation for it. This
also explains why the compilation is so slow. Each constituent is currently com-
piled independently and this means a lot of repeated work. If some kind of
memoization were used, the compilation time could be reduced dramatically.

4.4 Parsing with PMCFG

Efficient recognition and parsing algorithms for MCFG have been described
in (Nakanishi et al. 1997), Ljunglöf (2004) and (Burden and Ljunglöf 2005).
MCFG is a linear form of PMCFG where each constituent of an argument is used
exactly once. Ljunglöf (2004) gives an algorithm for approximating a PMCFG
with an MCFG. With the approximation it is possible to use a parsing algorithm
for MCFG to parse with a PMCFG, but after that a postprocessing step is
needed to recover the original parse tree and to filter out spurious parse trees via
unification. Instead we are using a parsing algorithm that works directly with
PMCFG and also has the advantage that it is incremental. The incrementality
is important because it can be used for word prediction (see section 5.1). The
incremental algorithm itself will appear in a separate paper.

4.5 Parse trees

The output from the parser is a syntax tree or a set of trees where the nodes are
labeled with PMCFG functions. The trees have to be converted back to PGF
abstract expression. In the absence of high-order terms (section 3.3) the trans-
formation is trivial. The definition of each PMCFG function is annotated with
the corresponding PGF linearization function so they just have to be replaced.
The PMCFG grammar might be erasing i.e. some argument might not be used
at all. In this case the slot for this argument is filled with meta variable.

5 Using PGF

In this section, we will outline how PGF grammars can be used to construct nat-
ural language processing applications. We first list a number of operations that
can be performed with a PGF grammar, along with some possible applications
of these operations. We then give a brief overview of the APIs (Application
Programmer’s Interfaces) which are currently available for using PGF function-
ality in applications. Finally, we outline how PGF grammars can be produced

120 Angelov, Bringert, Ranta

Running system

Development

Application

LinearizerParser

Speech

recognizer

TreeTree

Text

Speech recognition

grammar compiler

Speech

recognition

 grammar

Speech

PGF grammar

Text
Abstract syntax

manipulation

Text

Text

prediction
Text

Speech

synthesizer

Text

Speech

Grammar

compiler

Source grammar

(GF)

PGF

grammar

Figure 2. Overview of PGF applications.

from the more grammar-writer friendly format GF.

5.1 PGF operations

PGF grammars can be used for a wide range of tasks, either stand-alone, or as
integral parts of a larger application. Figure 2 shows an overview of how PGF
grammars can be used in natural language processing applications.

Parsing takes a string in some language and produces zero (in the case of
an out-of-grammar input), one (in the the case of an unambiguous input), or
more (for ambiguous inputs) abstract syntax trees. PGF parsing is for example
useful for handling natural language user input in applications. This lets the
rest of the application work on abstract syntax trees, which makes it easy to
localize the application to new languages.

Text Prediction is related to parsing. The incremental PMCFG parsing
algorithm can parse an incomplete input, and return the set of possible next
tokens. If the last token in the given input is itself incomplete, the list of
complete tokens can be given to the parser, and the result filtered to retain only
those tokens that have the last (incomplete) token as a prefix.

Linearization, the production of text given an abstract syntax tree, can be
used to produce natural language system outputs, either as text, or, by using
speech synthesis software, speech output. In the latter case, the concrete syntax
may contain annotations such as SSML tags which help the speech synthesizer.

Translation is the combination of parsing and linearization (Khegai 2006).
Abstract syntax generation, is made easy by the PGF abstract syntax type

system. A potentially infinite lazy list of abstract syntax trees can be generated
randomly, or exhaustively through iterative deepening. Random generation can
be used to generate a monolingual corpus (generate a list of random abstract
syntax trees and linearize them to given language), a multilingual parallel corpus
(generate trees and linearize to several languages), or a treebank (generate trees,

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 121

data S = Pred NP VP

data NP = John

data VP = Walk

abstract class S { . . .}
class Pred extends S {NP np; VP vp; . . .}

abstract class NP { . . .}
class John extends NP { . . .}

abstract class VP { . . .}
class Walk extends VP { . . .}

Figure 3. Haskell and Java data types for the abstract syntax in Section 2.2.

readPGF :: FilePath→ IO PGF

linearize :: PGF→ Language→ Tree→ String

parse :: PGF→ Language→ Category→ String→ [Tree]

generateRandom :: PGF→ Category→ IO [Tree]

generateAll :: PGF→ Category→ [Tree]

complete :: PGF→ Language→ Category→ String→ [String]

Figure 4. A part of the Haskell PGF Interpreter API.

linearize, and output text, tree pairs).
Abstract syntax manipulation is useful in any application that analyzes or

produces abstract syntax trees. The PGF type system makes it possible to
expose abstract syntax manipulation to the user in a safe way. When statically
typed languages such as Haskell or Java are used, it is possible to generate host
language data types from an Figure 3 shows such data types generated from the
example abstract syntax in Section 2.2.

5.2 PGF Interpreter API

A PGF Interpreter API allows an application programmer to make use of PGF
grammars for the tasks listed above in a program written in some general
purpose programming language. There are currently APIs for Haskell, Java,
JavaScript, Prolog, C, C++, and web applications, with varying degrees of
functionality. We examine the Haskell API in some detail. The other APIs,
some of which are covered briefly below, have the same functionality, or subsets
of it.

Haskell API Figure 4 shows the most important functions in the Haskell
PGF Interpreter API. There are also functions for manipulating Tree value, for
getting metadata about grammars, and variants of generation functions which
give more control over the generation process, for example by setting a maximum
tree height.

122 Angelov, Bringert, Ranta

public class PGF {
public static PGF readPGF (String path)

public String linearize (String lang,Tree tree)

public List〈Tree〉 parse (String lang,String text)
}

Figure 5. A part of the Java PGF Interpreter API.

Java PGF Interpreter API The Java API is very similar to the Haskell
API, but with a more object-oriented design, see Figure 5.

JavaScript PGF Interpreter API PGF grammars can also be converted
into a JavaScript format, for which there is an interpreter that implements lin-
earization, parsing and abstract syntax tree manipulation (Meza Moreno 2008).

PGF Interpreter Web Service PGF parsing, linearization and translation
is also available as a web service, in the form of a FastCGI (Brown 1996) program
with a RESTful (Fielding 2000) interface that returns JSON (Crockford 2006)
structures. For example, a request to translate the sentence this fish is fresh
from the concrete syntax FoodEng to all available concrete syntaxes may return
the following JSON structure:

[{"from":"FoodEng","to":"FoodEng","text":"this fish is fresh"},

{"from":"FoodEng","to":"FoodIta","text":"questo pesce è fresco"}]

5.3 Compiling PGF to other formats

The declarative nature of PGF makes it possible to translate PGF grammars to
other grammar formalisms. It is theoretically interesting to produce algorithms
for translating between different grammar formalisms. However, it also has
practical applications, as it lets us use PGF grammars with existing software
systems based on other grammar formalisms, for example speech recognizers
(Bringert 2007a). When combined with PGF parsing, this makes it possible for
an application to accept speech input, based solely on the information in the
PGF grammar. Examples of such applications include dialogue systems (Erics-
son et al. 2006; Bringert 2007b) and speech translation (Bringert 2008).

Most examples in the rest of this section will be based on the PGF grammar
shown in Figure 7, which extends the earlier example grammar with the And

and We functions. This grammar has been chosen to compactly include both
agreement and left-recursion (at the expense of ambiguous parsing, this could
be fixed with a slightly larger grammar).

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 123

cat S; NP; VP

fun And : S→ S→ S

Pred : NP→ VP→ S

John,We : NP

Walk : VP

param Num = Sg | Pl

param Pers = P1 | P2 | P3

lincat S = Str

NP = {s : Str; n : Num; p : Pers}
VP = Num⇒ Pers⇒ Str

lin And x y = x ++ “und” ++ y

Pred np vp = np.s ++ vp ! np.n ! np.p
John = {s = “John”; n = Sg; p = P3}
We = {s = “wir”; n = Pl; p = P1}
Walk =

table {Sg⇒ table {P1⇒ “gehe”;
P2⇒ “gehst”;
P3⇒ “geht”};

Pl⇒ table {P1⇒ “gehen”;
P2⇒ “geht”;
P3⇒ “gehen”}}

Figure 6. GF grammar.

124 Angelov, Bringert, Ranta

cat S; NP; VP

fun And : (S,S)→ S

Pred : (NP,VP)→ S

John : ()→ NP

We : ()→ NP

Walk : ()→ VP

lincat S = Str

NP = Str ∗ Int2 ∗ Int3

VP = (Str ∗ Str ∗ Str)
∗ (Str ∗ Str ∗ Str)

lin And = $1 ++ “und” ++ $2

Pred = $1 ! 1 ++ ($2 ! ($1 ! 2)) ! ($1 ! 3)
John = <“John”, 1, 3>
We = <“wir”, 2, 1>
Walk =
< < “gehe”,

“gehst”,
“geht”>,
< “gehen”,

“geht”,
“gehen”>>

Figure 7. PGF grammar.

S → S “und” S | NP1 VP2 | NP2 VP1

NP1 → “John”
NP2 → “wir”
VP1 → “gehen”
VP2 → “geht”

Figure 8. CFG.

S → S “und” S{And ($1, $2)}
| NP1 VP2{Pred ($1, $2)}
| NP2 VP1{Pred ($1, $2)}

NP1 → “John”{ John ()}
NP2 → “wir”{We ()}
VP1 → “gehen”{Walk ()}
VP2 → “geht”{Walk ()}

Figure 9. Fig. 8 with interpretation.

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 125

S → NP1 S2 | NP2 S3

S2 → VP2 | VP2 S4

S3 → VP1 | VP1 S4

S4 → “und” S | “und” S S4

NP1 → “John”
NP2 → “wir”
VP1 → “gehen”
VP2 → “geht”

Figure 10. Non-left-recursive CFG.

S → NP1 S2{ $2 ($1)}
| NP2 S3{ $2 ($1)}

S2 → VP2{λx.Pred (x, $1)}
| VP2 S4{λx.$2 (Pred (x, $1))}

S3 → VP1{λx.Pred (x, $1)}
| VP1 S4{λx.$2 (Pred (x, $1))}

S4 → “und” S{λx.And (x, $1)}
| “und” S S4{λx.$2 (And (x, $1))}

NP1 → “John”{ John ()}
NP2 → “wir”{We ()}
VP1 → “gehen”{Walk ()}
VP2 → “geht”{Walk ()}

Figure 11. Fig. 10 with interpretation.

S → NP1 VP2 S2 | NP2 VP1 S2

S2 → “und” S | ǫ
NP1 → “John”
NP2 → “wir”
VP1 → “gehen”
VP2 → “geht”

Figure 12. Regular grammar.

126 Angelov, Bringert, Ranta

und

geht

gehenwir

John

Figure 13. Finite-state automaton.

S → A0 A1 A2

A → A0 | A1 | A2

A0 → ǫ | “a” A0

A1 → ǫ | “b” A1

A2 → ǫ | “c” A2

Figure 14. Context-free approximation of the PMCFG grammar for the anbncn

language.

Context-free approximation

A context-free grammar (CFG) that approximates a PGF grammar can be
produced by first producing a PMCFG as described earlier. The PMCFG is
then approximated with a CFG by converting each PMCFG category-field pair
to a CFG category. In the general case, this is an approximation, since PMCFG
is a stronger formalism than CFG. The example language with agreement is
converted to the CFG shown in Figure 8.

The PMCFG grammar given in Section 4.1 for the context-sensitive lan-
guage anbncn is approximated by the context-free grammar shown in Figure 14.
In this case the context-free approximation is overgenerating, as it generates
the language a∗b∗c∗. The simpler anbn language is context-free, but may be
described by either a context-sensitive grammar in a similar way to the anbncn

language above, or by a context-free grammar. The context-free approxima-
tion will preserve the language described by an already context-free grammar,
but not necessarily the language of a context-sensitive grammar that defines a
context-free language. It is not possible to devise an algorithm that converts all
context-sensitive grammars that generate context-free languages to context-free
grammars, since deciding whether a context-sensitive language is context-free is
undecidable. We conjecture that this also holds for deciding whether a PMCFG
generates a context-free language.

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 127

Context-free transformations

Our PGF compiler also implements a number of transformations on context-free
grammars, such as cycle elimination, bottom-up and top-down filtering, left-
recursion elimination, identical category elimination, and EBNF compaction.
This makes it possible to produce grammars in a number of restricted context-
free formats as required by speech recognition software.

Embedded tree building code

The rules for producing abstract syntax trees can be preserved through the
grammar translations listed above. This makes it possible to include abstract
syntax tree building code in the generated context-free grammars, for example
in SISR (Burke and Van Tichelen 2006) format. Figure 9 shows such an an-
notated grammar. As is shown in Figure 11, the abstract syntax tree building
annotations can be carried through the left-recursion removal transformation,
by the use of λ-terms.

Regular / finite-state approximation

The PGF grammar compiler can also approximate the produced context-free
grammars with regular grammars, which can in turn be compiled to finite-
state automata. An example of this is shown in Figures 12 and 13. This lets us
support speech recognizers which require regular or finite-state language models,
or for typical finite-state natural language processing tasks such as marking noun
phrases in a corpus.

5.4 Compiling GF to PGF

While PGF is suitable for efficient and simple implementation, PGF grammars
are not meant to be produced by humans. Rather, it is intended as the target
language of a compiler from a high-level grammar language. In this section,
we will outline the differences between the human-friendly GF language, and
the machine-friendly PGF language, and how grammars written in GF can be
translated to PGF. The PGF syntax and semantics can be seen as a subset of
the GF syntax and semantics, while the PGF type system is less strict than
that of GF. Where the GF type system is concerned with correctness, the PGF
type system only ensures safety.

Tables and records

In GF, there are two separate constructs that correspond to PGF tuples: tables
and records. In GF, tables are tuples whose values all have the same type,
and finite algebraic data types or records are used to select values from tables.
Tables are used to implemented parametric features such as inflection.

128 Angelov, Bringert, Ranta

Records, on the other hand, can have values of different type, but the selec-
tors used with records are labels which must be known statically. Records are
used to implement inherent features and discontinuous constituents.

Both tables and records can be nested, but they always have a statically
known size, which only depends on their type. This makes it possible to translate
both records and tables to PGF tuples. For example, the GF grammar shown
in Figure 6 is translated to the PGF grammar in Figure 7.

Structured parameter values and labels

As noted above, in GF, table projection is done with structured values known
as parameters. These can be combinations of non-recursive algebraic data types
and records of parameters. Since parameter records contain a known number
of values, and the algebraic parameter values are non-recursive, each parameter
type contains a finite number of values. This makes it possible to translate
each parameter type to a bounded integer type, suitable for projection on PGF
tuples.

Stricter type checking

As noted above, the GF concrete syntax type system is stricter than the PGF
type system. In PGF, bounded integers are used to represent all parameter
types and record labels, which means that many distinctions made by the GF
type checker are not available in PGF. The differences between the GF and
PGF type system can be compared to the differences between the Java type
system and JVM bytecode verification. The type system for abstract syntax is
identical in GF and PGF.

Pattern matching

Table projection in GF can be done by pattern matching with rather complex
patterns. When compiling to PGF, all tables are expanded to have one branch
with for each possible parameter value, to allow for translation to PGF tuples.

Modularity

GF grammars are organized into modules which can be compiled to core GF
separately, like Java classes or C object files. PGF on the other hand has no
module system and is a single file, similar to a statically linked executable. This
simplifies PGF implementations and makes it easy to distribute PGF grammars.

Auxiliary operations

In GF, auxiliary operations can be defined in order to implement for example
morphological paradigms or common syntactic operations. These operations,
like all GF concrete syntax can include complex features such as higher-order
functions and pattern matching on strings. During the translation to PGF, all

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 129

auxiliary operations are inlined, and all expressions are evaluated to produce
valid PGF terms. This means, for example, that all strings which are used in
pattern matching or in-token concatenation must be statically computable.

Because this inlining and computation can produce very large and repetitive
PGF terms, common sub-expression elimination is performed. This can recover
some of the auxiliary operations, but in a simpler form, but it can also discover
new opportunities for code sharing, as PGF macros allow open terms, are type
agnostic, and shared between code that comes from unrelated GF modules.

6 Results and evaluation

6.1 Systems using PGF

A number of natural language applications have been implemented using PGF
or its predecessor GFCM. Above, we have listed a number of individual tasks
that can be performed with PGF grammars. However, realistic applications
often make use PGF for more than one task. This helps avoid the duplicated
work involved in manually implementing multiple components which cover the
same language fragment.

GOTTIS (Bringert et al. 2005) is an experimental multimodal and multilin-
gual dialogue system for public transportation queries. It uses the a generated
Nuance GSL speech recognition grammar for speech input, embedded parsing
and linearization for system input and output, and generated Java data types
for analysing input abstract syntax trees and producing output abstract syntax
trees. Both input and output in GOTTIS make use of multimodal grammars.
The input grammar allows integrated multimodality, e.g. “I want to go here”,
accompanied by a click on a map. This is implemented by using a two-field
record (PGF tuple) to represent spatial expressions, where one field contains
the spoken component, and another contains the click component. System out-
put makes use of parallel multimodality; one concrete syntax produces spoken
route descriptions, and another produces drawing instructions which are used
to display routes on a map. Other examples of using GF grammars for formal
languages include the WebALT mathematics problem editor (Cohen et al. 2006)
and the KeY software specification editor (Burke and Johannisson 2005),

PGF abstract syntax can be used as a specification of a dialogue man-
ager (Ranta and Cooper 2004). Together with the existing speech recognition
grammar generation with embedded semantic interpretation tags, and the PGF
to JavaScript compiler, this can be used to generate complete multimodal and
multilingual VoiceXML dialogue systems (Bringert 2007b).

DUDE (Lemon and Liu 2006) and its extension REALL-DUDE (Lemon
et al. 2006) are environments where non-experts can develop dialogue systems
based on Business Process Models describing the applications. From keywords,
prompts and answer sets defined by the developer, the system generates a GF
grammar. This grammar is used for parsing input, and for generating a language
model in SLF or GSL format.

130 Angelov, Bringert, Ranta

Several syntax-directed editors for controlled languages (Khegai et al. 2003;
Johannisson et al. 2003; Meza Moreno and Bringert 2008), have been imple-
mented using PGF and its predecessors. They make use of abstract syntax
manipulation, parsing linearization.

PGF can be used to implement complete limited domain speech translation
systems that use PGF to produce speech recognition grammars and to perform
parsing and linearization (Bringert 2008).

Text prediction can be used to implement text-based user interfaces which
can show the user what inputs are allowed by the grammar. Examples of appli-
cations where this might be useful are editors for controlled languages, language
learning software or limited domain translation software such as tourist phrase
books. A web-based controlled language translator using text prediction is cur-
rently being developed.

Jonson (2006, 2007) used random corpus generation to produce statistical
language models (SLM) for speech recognition from a domain-specific grammar.
When combined with a general SLM trained on existing general domain text, the
precision on in-grammar inputs was largely unchanged, while out-of-grammar
inputs where handled with much higher precision, compared to a pure grammar-
based language model. When producing corpora for training SLMs, dependently
typed abstract syntax can be used to reduce over-generation (Jonson 2006).
Other, as yet unexplored, applications of PGF abstract syntax generation are
the use of generated multilingual parallel corpora for training statistical machine
translation systems, and the use of generated treebanks for training statistical
parsers.

The grammars from the GF resource grammar library (Ranta 2008) can be
used not only to implement application-specific grammars, but also as general
wide-coverage grammars. For example, the English resource grammar, with a
large lexicon and some minor syntax extensions, covers a significant portion of
the sentences in the FraCaS semantic test suite (Cooper et al. 1996).

7 Related work

Compilation of grammars to low-level formats is an old idea. The most well-
known examples are parser generators in the YACC family (Johnson 1975).
The output of YACC-like parser generation is a piece of host language source
code, which can be seamlessly integrated in a program written in the host lan-
guage. YACC-like systems for full context-free grammars suitable for natural
language include the work by Tomita and Carbonell (1987), the NLYACC sys-
tem (Ishii et al. 1994), and the GLR extension of the Happy parser tool for
Haskell (Callaghan and Medlock 2004). The main differences between PGF and
the YACC family are that PGF is stronger than context-free grammars, that
PGF contains no host language code and is therefore portable to many host lan-
guages, that PGF supports linearization in addition to parsing, and that PGF
grammars can be multilingual.

HPSG (Pollard and Sag 1994) and LFG (Bresnan 1982) are grammar for-

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 131

malisms used for large-scale grammar writing and processing. In their imple-
mentation, the use of optimizing compilers is essential, to support at the same
time high-level grammar writing and efficient run-time execution. HPSG com-
pilers, for instance, have used advanced compiler techniques such as data flow
analysis (Minnen et al. 1995). The main focus in both grammars is parsing,
but also generation is supported. Both in HPSG and LFG, systems of parallel
grammars for different languages have been developed, but neither formalism
is multilingual in the way GF/PGF is. The currently most popular implemen-
tations are LKB (Copestake 2002) for HPSG and XLE (Kaplan and Maxwell
2007) for LFG. To our knowledge, neither formalism supports generation of
portable low-level code.

An emerging species of embedded grammar applications is language models
for speech recognition. Regulus (Rayner et al. 2006) is a system that compiles
high-level feature-based grammars into low-level context-free grammars in the
Nuance format (Nua 2003). PGF can likewise be compiled into Nuance and a
host of other speech grammar formats (Bringert 2007a).

Type-theoretical grammar formats based on Curry’s distinction between tec-
togrammar and phenogrammar have gained popularity in the recent years: ACG
(Abstract Categorial Grammars) (de Groote 2001), HOG (Higher-Order Gram-
mars) (Pollard 2004), and Lambda Grammars (Muskens 2001) are the most
well-known examples besides GF. The work in implementing these formalisms
has not come so far as in GF. One obvious idea for implementing them is to
use compilation to PGF. But it remains to be seen if PGF is general enough
to support this. For instance, ACG is more general than PGF in the sense
that linearization types can be function types, but less general in the sense that
functions have to be linear (that is, use every argument exactly once). This
means that the style of defining functions is very different, for instance, that a
rule written with multiple occurrences of a variable in PGF is in ACG encoded
as a higher-order function.

PMCFG, while known for almost two decades and having nice computational
properties, has not been used for practical grammar writing. Even the use of
PMCFG as a target format for grammar compilation seems to be new to the
GF project.

8 Conclusion

PGF was first created as a low-level target format for compiling high-level gram-
mars written in GF. The division between high-level source formats and low-
level target formats has known advantages in programming language design,
which have been confirmed in the case of GF and PGF. One distinguishing
property is redundancy: the absence of redundancy from PGF makes is maxi-
mally easy to write PGF interpreters, to compile PGF to other formats, and to
reason about PGF. In GF, on the other hand, computationally redundant fea-
tures, such as intensional type distinctions, inlinable functions, and separately
compilable modules, support the programmer’s work by permitting useful er-

132 Angelov, Bringert, Ranta

ror messages and an abstract programming style. GF as compiled to PGF
has made it possible to build grammar-based systems that combine linguistic
coverage (the GF resource grammar library) with efficient run-time behaviour
(mostly linear-time generation, incremental PMCFG parsing) and integration
with other system components (web pages via JavaScript, spoken language mod-
els via context-free approximations). For other grammar formalisms than GF,
compilation to PGF could be used as an economical implementation technique,
which would moreover make it possible to link together grammars written in
different high-level formalisms.

References

Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, December 1997. ISBN 0521582741.

J. Bresnan, editor. The Mental Representation of Grammatical Relations. MIT
Press, 1982.

Björn Bringert. Speech Recognition Grammar Compilation in Grammatical
Framework. In Proceedings of the Workshop on Grammar-Based Approaches to
Spoken Language Processing, Prague, Czech Republic, pages 1–8. Association
for Computational Linguistics, June 2007a. URL http://www.aclweb.org/

anthology/W/W07/W07-1801.

Björn Bringert. Rapid Development of Dialogue Systems by Gram-
mar Compilation. In Simon Keizer, Harry Bunt, and Tim Paek, edi-
tors, Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue,
Antwerp, Belgium, pages 223–226. Association for Computational Linguistics,
September 2007b. URL http://www.sigdial.org/workshops/workshop8/

Proceedings/SIGdial39.pdf.

Björn Bringert. Speech Translation with Grammatical Framework. In Coling
2008: Proceedings of the workshop on Speech Processing for Safety Critical
Translation and Pervasive Applications, Manchester, UK, pages 5–8. Coling
2008 Organizing Committee, August 2008. URL http://www.cs.chalmers.

se/~bringert/publ/gf-slt/gf-slt.pdf.

Björn Bringert, Robin Cooper, Peter Ljunglöf, and Aarne Ranta. Multimodal
Dialogue System Grammars. In Proceedings of DIALOR’05, Ninth Workshop
on the Semantics and Pragmatics of Dialogue, Nancy, France, pages 53–60,
June 2005. URL http://dialor05.loria.fr/Papers/07-BjornBringert.

pdf.

Mark R. Brown. FastCGI: A High-Performance Gateway Interface. In Anton
Eliëns, editor, Programming the Web - a search for APIs, Fifth International
World Wide Web Conference (WWW5), Paris, France, May 1996. URL http:

//www.cs.vu.nl/~eliens/WWW5/papers/FastCGI.html.

http://www.aclweb.org/anthology/W/W07/W07-1801
http://www.aclweb.org/anthology/W/W07/W07-1801
http://www.sigdial.org/workshops/workshop8/Proceedings/SIGdial39.pdf
http://www.sigdial.org/workshops/workshop8/Proceedings/SIGdial39.pdf
http://www.cs.chalmers.se/~bringert/publ/gf-slt/gf-slt.pdf
http://www.cs.chalmers.se/~bringert/publ/gf-slt/gf-slt.pdf
http://dialor05.loria.fr/Papers/07-BjornBringert.pdf
http://dialor05.loria.fr/Papers/07-BjornBringert.pdf
http://www.cs.vu.nl/~eliens/WWW5/papers/FastCGI.html
http://www.cs.vu.nl/~eliens/WWW5/papers/FastCGI.html

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 133

Håkan Burden and Peter Ljunglöf. Parsing Linear Context-Free Rewrit-
ing Systems. In Proceedings of the Ninth International Workshop on Pars-
ing Technology, pages 11–17, Vancouver, British Columbia, 2005. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/W/

W05/W05-1502.

David Burke and Luc Van Tichelen. Semantic Interpretation for Speech
Recognition (SISR) Version 1.0. Working draft, W3C, November 2006. URL
http://www.w3.org/TR/2006/WD-semantic-interpretation-20061103.

David A. Burke and Kristofer Johannisson. Translating Formal Software Spec-
ifications to Natural Language. In Logical Aspects of Computational Linguis-
tics, volume 3492 of Lecture Notes in Computer Science, pages 51–66. Springer,
Heidelberg, May 2005. doi: 10.1007/11422532_4.

P. Callaghan and B. Medlock. Happy-GLR, 2004. URL http://www.dur.ac.

uk/p.c.callaghan/happy-glr/.

Arjeh Cohen, Hans Cuypers, Karin Poels, Mark Spanbroek, and Rikko Ver-
rĳzer. WExEd - WebALT Exercise Editor for Multilingual Mathematical
Exercises. In Mika Seppälä, Sebastian Xambo, and Olga Caprotti, editors,
WebALT 2006, First WebALT Conference and Exhibition, Eindhoven, The
Netherlands, pages 141–145, January 2006. URL http://www.win.tue.nl/

~amc/pub/wexed.pdf.

Robin Cooper, Dick Crouch, Jan van Eĳck, Chris Fox, Josef van Genabith,
Jan Jaspars, Hans Kamp, David Milward, Manfred Pinkal, Massimo Poesio,
Steve Pulman, Ted Briscoe, Holger Maier, and Karsten Konrad. A Semantic
Test Suite. In Using the Framework, Deliverable D16, chapter 3. The FRACAS
Consortium, January 1996. URL ftp://ftp.cogsci.ed.ac.uk/pub/FRACAS/

del16.ps.gz.

A. Copestake. Implementing Typed Feature Structure Grammars. CSLI Pub-
lications, 2002.

Douglas Crockford. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627 (Informational), July 2006. URL http://www.

ietf.org/rfc/rfc4627.txt.

Haskell B. Curry. Some Logical Aspects of Grammatical Structure. In Ro-
man O. Jakobson, editor, Structure of Language and its Mathematical Aspects,
volume 12 of Symposia on Applied Mathematics, pages 56–68. American Math-
ematical Society, Providence, 1961.

Philippe de Groote. Towards abstract categorial grammars. In Proceedings
of 39th Annual Meeting of the Association for Computational Linguistics,
Toulouse, France, pages 252–259, Morristown, NJ, USA, July 2001. Associ-
ation for Computational Linguistics. doi: 10.3115/1073012.1073045.

http://www.aclweb.org/anthology/W/W05/W05-1502
http://www.aclweb.org/anthology/W/W05/W05-1502
http://www.w3.org/TR/2006/WD-semantic-interpretation-20061103
http://dx.doi.org/10.1007/11422532_4
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.win.tue.nl/~amc/pub/wexed.pdf
http://www.win.tue.nl/~amc/pub/wexed.pdf
ftp://ftp.cogsci.ed.ac.uk/pub/FRACAS/del16.ps.gz
ftp://ftp.cogsci.ed.ac.uk/pub/FRACAS/del16.ps.gz
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://dx.doi.org/10.3115/1073012.1073045

134 Angelov, Bringert, Ranta

Stina Ericsson, Gabriel Amores, Björn Bringert, Håkan Burden, Ann-Charlotte
Forslund, David Hjelm, Rebecca Jonson, Staffan Larsson, Peter Ljunglöf, Pi-
lar Manchón, David Milward, Guillermo Pérez, and Mikael Sandin. Software
illustrating a unified approach to multimodality and multilinguality in the in-
home domain. deliverable 1.6, 2006. URL http://www.talk-project.org/

fileadmin/talk/publications_public/deliverables_public/D1_6.pdf.

Roy T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, 2000.
URL http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_

dissertation.pdf.

R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics.
JACM, 40(1):143–184, 1993.

Masayuki Ishii, Kazuhisa Ohta, and Hiroaki Saito. An efficient parser generator
for natural language. In Proceedings of the 15th conference on Computational
linguistics, pages 417–420, Morristown, NJ, USA, 1994. Association for Com-
putational Linguistics. doi: 10.3115/991886.991959.

Kristofer Johannisson, Janna Khegai, Markus Forsberg, and Aarne Ranta.
From Grammars to Gramlets. In The Joint Winter Meeting of Computing
Science and Computer Engineering. Chalmers University of Technology, 2003.

S. C. Johnson. Yacc — yet another compiler compiler. Technical Report
CSTR-32, AT & T Bell Laboratories, Murray Hill, NJ, 1975.

Rebecca Jonson. Generating Statistical Language Models from Interpretation
Grammars in Dialogue Systems. In EACL 2006, 11st Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, 2006. URL
http://acl.ldc.upenn.edu/E/E06/E06-1008.pdf.

Rebecca Jonson. Grammar-based context-specific statistical language mod-
elling. In Proceedings of the Workshop on Grammar-Based Approaches to Spo-
ken Language Processing, pages 25–32, Prague, Czech Republic, June 2007.
Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W/W07/W07-1804.

A. Joshi, K. Vĳay-Shanker, and D. Weir. The convergence of mildly context-
sensitive grammar formalisms. In P. Sells, S. Shieber, and T. Wasow, editors,
Foundational Issues in Natural Language Processing, pages 31–81. MIT Press,
1991.

R. Kaplan and J. Maxwell. XLE Project Homepage, 2007. URL http://www2.

parc.com/isl/groups/nltt/xle/.

Janna Khegai. Grammatical Framework (GF) for MT in sublanguage domains.
In Proceedings of EAMT-2006, 11th Annual conference of the European Asso-
ciation for Machine Translation, Oslo, Norway, pages 95–104, June 2006. URL
http://www.mt-archive.info/EAMT-2006-Khegai.pdf.

http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/D1_6.pdf
http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/D1_6.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://dx.doi.org/10.3115/991886.991959
http://acl.ldc.upenn.edu/E/E06/E06-1008.pdf
http://www.aclweb.org/anthology/W/W07/W07-1804
http://www.aclweb.org/anthology/W/W07/W07-1804
http://www2.parc.com/isl/groups/nltt/xle/
http://www2.parc.com/isl/groups/nltt/xle/
http://www.mt-archive.info/EAMT-2006-Khegai.pdf

PGF: A Portable Run-Time Format for Type-Theoretical Grammars 135

Janna Khegai, Bengt Nordström, and Aarne Ranta. Multilingual Syntax Edit-
ing in GF. In Alexander Gelbukh, editor, Computational Linguistics and In-
telligent Text Processing, volume 2588 of Lecture Notes in Computer Science,
pages 199–204. 2003. doi: 10.1007/3-540-36456-0_48.

Oliver Lemon and Xingkun Liu. DUDE: a Dialogue and Understanding De-
velopment Environment, mapping Business Process Models to Information
State Update dialogue systems. In EACL 2006, 11st Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, 2006. URL
http://www.aclweb.org/anthology-new/E/E06/E06-2004.pdf.

Oliver Lemon, Xingkun Liu, Daniel Shapiro, and Carl Tollander. Hierarchi-
cal Reinforcement Learning of Dialogue Policies in a development environ-
ment for dialogue systems: REALL-DUDE. In BRANDIAL’06, Proceedings of
the 10th Workshop on the Semantics and Pragmatics of Dialogue, pages 185–
186, September 2006. URL http://www.ling.uni-potsdam.de/brandial/

Proceedings/brandial06_lemon_etal.pdf.

Peter Ljunglöf. Expressivity and Complexity of the Grammatical Framework.
PhD thesis, Göteborg University, Göteborg, Sweden, 2004. URL http://www.

ling.gu.se/~peb/pubs/p04-PhD-thesis.pdf.

Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

J. McCarthy. Towards a mathematical science of computation. In Proceedings
of the Information Processing Cong. 62, pages 21–28, Munich, West Germany,
August 1962. North-Holland.

Moisés S. Meza Moreno. Implementation of a JavaScript Syntax Editor and
Parser for Grammatical Framework. Master’s thesis, Chalmers University of
Technology, 2008.

Moisés S. Meza Moreno and Björn Bringert. Interactive Multilingual Web
Applications with Grammatical Framework. In Bengt Nordström and Aarne
Ranta, editors, Advances in Natural Language Processing, 6th International
Conference, GoTAL 2008, Gothenburg, Sweden, volume 5221 of Lecture Notes
in Computer Science, pages 336–347, Heidelberg, August 2008. Springer. doi:
10.1007/978-3-540-85287-2_32.

G. Minnen, D. Gerdemann, and T. Gotz. Off-line optimization for ear-
leystyle hpsg processing, 1995. URL citeseer.ist.psu.edu/article/

minnen95offline.html.

R. Montague. Formal Philosophy. Yale University Press, New Haven, 1974.
Collected papers edited by Richmond Thomason.

R. Muskens. Lambda Grammars and the Syntax-Semantics Interface. In R. van
Rooy and M. Stokhof, editors, Proceedings of the Thirteenth Amsterdam Col-
loquium, pages 150–155, Amsterdam, 2001.

http://dx.doi.org/10.1007/3-540-36456-0_48
http://www.aclweb.org/anthology-new/E/E06/E06-2004.pdf
http://www.ling.uni-potsdam.de/brandial/Proceedings/brandial06_lemon_etal.pdf
http://www.ling.uni-potsdam.de/brandial/Proceedings/brandial06_lemon_etal.pdf
http://www.ling.gu.se/~peb/pubs/p04-PhD-thesis.pdf
http://www.ling.gu.se/~peb/pubs/p04-PhD-thesis.pdf
http://dx.doi.org/10.1007/978-3-540-85287-2_32
citeseer.ist.psu.edu/article/minnen95offline.html
citeseer.ist.psu.edu/article/minnen95offline.html

136 Angelov, Bringert, Ranta

Ryuichi Nakanishi, Keita Takada, and Hiroyuki Seki. An Efficient Recognition
Algorithm for Multiple Context-Free Languages. In Fifth Meeting on Math-
ematics of Language. The Association for Mathematics of Language, August
1997. URL http://citeseer.ist.psu.edu/65591.html.

Nuance Speech Recognition System 8.5: Grammar Developer’s Guide. Nuance
Communications, Inc., Menlo Park, CA, USA, December 2003.

C. Pollard and I. Sag. Head-Driven Phrase Structure Grammar. University of
Chicago Press, 1994.

Carl Pollard. Higher-Order Categorial Grammar. In Proceedings of Cate-
gorial Grammars 2004, pages 340–361, June 2004. URL http://www.ling.

ohio-state.edu/~hana/hog/pollard2004-CG.pdf.

A. Ranta. GF Resource Grammar Library, 2008. URL http://

digitalgrammars.com/gf/lib/.

A. Ranta. Type Theoretical Grammar. Oxford University Press, 1994.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004. ISSN
0956-7968. doi: 10.1017/S0956796803004738.

Aarne Ranta and Robin Cooper. Dialogue Systems as Proof Editors. Journal
of Logic, Language and Information, 13(2):225–240, 2004. ISSN 0925-8531.
doi: 10.1023/B:JLLI.0000024736.34644.48.

Manny Rayner, Beth A. Hockey, and Pierrette Bouillon. Putting Linguistics
into Speech Recognition: The Regulus Grammar Compiler. CSLI Publications,
Ventura Hall, Stanford University, Stanford, CA 94305, USA, July 2006. ISBN
1575865262.

Hiroyuki Seki and Yuki Kato. On the Generative Power of Multiple Context-
Free Grammars and Macro Grammars. IEICE-Transactions on Info and Sys-
tems, E91-D(2):209–221, 2008. doi: 10.1093/ietisy/e91-d.2.209.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On
multiple context-free grammars. Theoretical Computer Science, 88(2):191–229,
October 1991. ISSN 0304-3975. doi: 10.1016/0304-3975(91)90374-B.

Hiroyuki Seki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko Ando, and Tadao
Kasami. Parallel Multiple Context-Free Grammars, Finite-State Translation
Systems, and Polynomial-Time Recognizable Subclasses of Lexical-Functional
Grammars. In 31st Annual Meeting of the Association for Computational Lin-
guistics, pages 130–140. Ohio State University, Association for Computational
Linguistics, June 1993. doi: 10.3115/981574.981592.

Masaru Tomita and Jaime G. Carbonell. The universal parser architecture for
knowledge-based machine translation. In ĲCAI, pages 718–721, 1987.

http://citeseer.ist.psu.edu/65591.html
http://www.ling.ohio-state.edu/~hana/hog/pollard2004-CG.pdf
http://www.ling.ohio-state.edu/~hana/hog/pollard2004-CG.pdf
http://digitalgrammars.com/gf/lib/
http://digitalgrammars.com/gf/lib/
http://dx.doi.org/10.1017/S0956796803004738
http://dx.doi.org/10.1023/B:JLLI.0000024736.34644.48
http://dx.doi.org/10.1093/ietisy/e91-d.2.209
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://dx.doi.org/10.3115/981574.981592

Paper VII A Pattern for Almost

Compositional Functions

Journal of Functional Programming, and ICFP
2006, Portland

A Pattern for Almost Compositional Functions

Björn Bringert and Aarne Ranta

Department of Computer Science and Engineering

Chalmers University of Technology

and University of Gothenburg

SE-412 96 Göteborg, Sweden

{bringert,aarne}@chalmers.se

Abstract

This paper introduces a pattern for almost compositional functions
over recursive data types, and over families of mutually recursive data
types. Here “almost compositional” means that for all of the constructors
in the type(s), except a limited number of them, the result of the function
depends only on the constructor and the results of calling the function on
the constructor’s arguments. The pattern consists of a generic part con-
structed once for each data type or family of data types, and a task-specific
part. The generic part contains the code for the predictable compositional
cases, leaving the interesting work to the task-specific part. Examples of
the pattern are given, implemented in dependent type theory with induc-
tive families, in Haskell with generalized algebraic data types and rank-2
polymorphism, and in Java using a variant of the Visitor design pattern.
The relationships to the “Scrap Your Boilerplate” approach to generic
programming, and to general tree types in dependent type theory, are
investigated by reimplementing our operations using those frameworks.

1 Introduction

This paper addresses the issue of repetitive code in operations on rich data
structures. To give concrete examples of what we would like to be able to do,
we start by giving some motivating problems.

1.1 Some motivating problems

Suppose that you have an abstract syntax definition with many syntactic types
such as statement, expression, and variable.

1. Write a function that prepends an underscore to the names of all variables
in a program. Do this with a case expression that has just two branches:
one for the variables, and another for the rest.

139

140 Bringert, Ranta

2. Write a function that gives unique names to all variables in a program.
Use only three cases: variable bindings, variable uses, and the rest.

3. Write a function that constructs a symbol table containing all variables
declared in a program, and the type of each variable. Do this with only
two cases: one for declarations, another for the rest.

4. Write a function that replaces increment statements with the correspond-
ing assignments. Use only two cases: one for increments, and one for the
rest.

One problem when writing recursive functions which need to traverse rich
data structures is that the straightforward way to write them involves large
amounts of traversal code which tends to be repeated in each function. There
are several problems with this:

• The repeated traversals are probably implemented using copy-and-paste
or retyping, both of which are error-prone and can lead to maintenance
problems.

• When we add a constructor to the data type, we need to change all func-
tions that traverse the data type, many of which may not need any specific
behavior for the new constructor.

• Repeated traversal code obscures the interesting cases where the functions
do their real work.

• The need for complete traversal code for the whole family of data types
in every function can encourage a less modular programming style where
multiple operations are collected in a single function.

1.2 The solution

The pattern which we present in this paper allows the programmer to solve
problems such as the above in a (hopefully) intuitive way. First we write the
traversal code once and for all for our data type or family of data types. We
then reuse this component to succinctly express the operations which we want
to define.

1.3 Article overview

We first present the simple case of a single recursive algebraic data type, and
show examples of using the pattern in plain Haskell 98 (Peyton Jones 2003a).
After that, we generalize this to the more complex case of a family of data
types, and show how the pattern can be used in dependent type theory (Martin-
Löf 1984; Nordström et al. 1990) with inductive families (Dybjer 1994) and in
Haskell with generalized algebraic data types (Peyton Jones et al. 2006; Augusts-
son and Petersson 1994) and rank-2 polymorphism (Leivant 1983; Peyton Jones

A Pattern for Almost Compositional Functions 141

et al. 2007). We then prove some properties of our compositional operations,
using the laws for applicative functors (McBride and Paterson 2008). We go on
to express the pattern in Java (Gosling et al. 2005), using a variant of the Visitor
design pattern (Gamma et al. 1995). We also briefly describe some tools which
can be used to automate the process of writing the necessary support code for
a given data type. Finally, we discuss some related work in generic program-
ming, type theory, object-oriented programming and compiler construction, and
provide some conclusions.

2 Abstract Syntax and Algebraic Data Types

Algebraic data types provide a natural way to implement the abstract syntax in
a compiler. To give an example, the following Haskell type defines the abstract
syntax of the lambda calculus with abstractions, applications, and variables. For
more information about using algebraic data types to represent abstract syntax
for programming languages, see for example Appel’s (1997) book on compiler
construction in ML.

data Exp = EAbs String Exp | EApp Exp Exp | EVar String

Pattern matching is the technique for defining functions on algebraic data
types. These functions are typically recursive. An example is a function that
renames all the variables in an expression by prepending an underscore to their
names:

rename :: Exp→ Exp

rename e = case e of

EAbs x b → EAbs ("_" ++ x) (rename b)
EApp c a → EApp (rename c) (rename a)
EVar x → EVar ("_" ++ x)

3 Compositional Functions

Many functions used in compilers are compositional, in the sense that the result
for a complex argument is constructed from the results for its parts. The rename

function is an example of this. The essence of compositional functions is defined
by the following higher-order function:

composOp :: (Exp→ Exp)→ Exp→ Exp

composOp f e = case e of

EAbs x b → EAbs x (f b)
EApp c a → EApp (f c) (f a)

→ e

142 Bringert, Ranta

Its power lies in that it can be used when defining other functions, to take care
of cases that are just compositional. Such is the EApp case in rename, which
we thus omit by writing:

rename :: Exp→ Exp

rename e = case e of

EAbs x b → EAbs ("_" ++ x) (rename b)
EVar x → EVar ("_" ++ x)

→ composOp rename e

In general, an abstract syntax has many more constructors, and this pattern
saves much more work. For instance, in the implementation of GF (Ranta
2004), the Exp type has 30 constructors, and composOp is used in more than 20
functions, typically covering 90 % of all cases.

A major restriction of composOp is that its return type is Exp. How do we
use it if we want to return something else? If we simply want to compute some
result using the abstract syntax tree, without modifying the tree, we can use
composFold:

composFold :: Monoid o ⇒ (Exp→ o)→ Exp→ o

composFold f e = case e of

EAbs x b → f b

EApp c a → f c ⊕ f a

→ ∅

This function takes an argument which maps terms to a monoid, and combines
the results. The Monoid class requires an identity element ∅, which we return for
leaf nodes, and an associative operation (⊕), which we use to combine results
from nodes with more than one child.

class Monoid a where

∅ :: a

(⊕) :: a → a → a

Using composFold we can now, for example, write a function which gets the
names of all free variables in an expression:

free :: Exp→ Set String

free e = case e of

EAbs x b → free b \ {x}
EVar x → {x}

→ composFold free e

This example uses a Set type with the operations \ (set minus), {·} (singleton
set), ∅ (empty set) and ∪ (union), with a Monoid instance such that ∅ = ∅ and
(⊕) = ∪.

A Pattern for Almost Compositional Functions 143

3.1 Monadic compositional functions

When defining a compiler in Haskell, it is convenient to use monads instead
of plain functions, to deal with errors, state, etc. To this end, we generalize
composOp to a monadic variant:

composM :: Monad m ⇒ (Exp→ m Exp)→ Exp→ m Exp

composM f e = case e of

EAbs x b → f b >>= (λb′ → return (EAbs x b′))
EApp c a → f c >>= (λc′ → f a >>= (λa′ → return (EApp c′ a′)))

→ return e

Here we are using the Monad type class (Peyton Jones 2003b):

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

If we want to maintain some state across the computation over the tree, we can
use composM with a state monad (Jones 1995). In the example below, we will
use a state monad State with these operations:

readState :: State s s

writeState :: s → State s ()
runState :: s → State s a → (a, s)

Now we can, for example, write a function that gives fresh names of the form
"_n", where n is an integer, to all bound variables in an expression. Here the
state is an infinite supply of fresh variable names, and we pass a table of the
new names for the bound variables to the recursive calls.

fresh :: Exp→ Exp

fresh = fst ◦ runState names ◦ f []
where names = ["_" ++ show n | n ← [0 . .]]

f :: [(String,String)]→ Exp→ State [String] Exp

f vs t = case t of

EAbs x b → do x ′ : ns ← readState

writeState ns

b′ ← f ((x, x ′) : vs) b

return (EAbs x ′ b′)
EVar x → return (EVar (findWithDefault x x vs))

→ composM (f vs) t

findWithDefault :: Eq a ⇒ b → a → [(a, b)]→ b

findWithDefault d [] = d

findWithDefault d k ((x, y) : xs) | x == k = y

| otherwise = findWithDefault d k xs

144 Bringert, Ranta

3.2 Generalizing composOp, composM and composFold

The three functions which we introduced above, henceforth referred to as com-
positional operations, share a common structure which we will now reveal.
McBride and Paterson (2008) introduce applicative functors, which generalize
monads. An applicative functor has two operations, pure and �:

class Applicative f where

pure :: a → f a

(�) :: f (a → b)→ f a → f b

The pure operation corresponds to the return operation of a monad, and �

corresponds to ap, which can be defined using >>=:

ap :: Monad m ⇒ m (a → b)→ m a → m b

ap mf mx = mf >>= λf → mx >>= λx → return (f x)

We can rewrite composM to use ap instead of >>=:

composM :: Monad m ⇒ (Exp→ m Exp)→ Exp→ m Exp

composM f e = case e of

EAbs x b → return EAbs ‘ap‘ return x ‘ap‘ f b

EApp c a → return EApp ‘ap‘ f c ‘ap‘ f a

→ return e

Since composM only uses return and ap, it actually works on all applicative
functors, not just on monads. We call this generalized version compos:

compos :: Applicative f ⇒ (Exp→ f Exp)→ Exp→ f Exp

compos f e = case e of

EAbs x b → pure EAbs � pure x � f b

EApp g h → pure EApp � f g � f h

→ pure e

By using wrapper types with appropriate Applicative instances (McBride
and Paterson 2008), we can now define composOp, composM and composFold in
terms of compos. The definitions of composOp and composFold are identical to
McBride and Paterson’s definitions of fmap and accumulate in terms of traverse,
and the definition of composM follows directly from the relationship between
applicative functors and monads.

composOp :: (Exp→ Exp)→ Exp→ Exp

composOp f = runIdentity ◦ compos (Identity ◦ f)

newtype Identity a = Identity {runIdentity :: a}

instance Applicative Identity where

pure = Identity

Identity f � Identity x = Identity (f x)

A Pattern for Almost Compositional Functions 145

composM :: Monad m ⇒ (Exp→ m Exp)→ Exp→ m Exp

composM f = unwrapMonad ◦ compos (WrapMonad ◦ f)

newtype WrappedMonad m a = WrapMonad{unwrapMonad :: m a}

instance Monad m ⇒ Applicative (WrappedMonad m) where

pure = WrapMonad ◦ return

WrapMonad f � WrapMonad v = WrapMonad (f ‘ap‘ v)

composFold :: Monoid o ⇒ (Exp→ o)→ Exp→ o

composFold f = getConst ◦ compos (Const ◦ f)

newtype Const a b = Const {getConst :: a}

instance Monoid m ⇒ Applicative (Const m) where

pure = Const ∅
Const f � Const v = Const (f ⊕ v)

Further compositional operations, such as composM_ below can be defined by
using other wrapper types.

composM_ :: Monad m ⇒ (Exp→ m ())→ Exp→ m ()
composM_ f = unwrapMonad_ ◦ composFold (WrapMonad_ ◦ f)

newtype WrappedMonad_ m = WrapMonad_{unwrapMonad_ :: m ()}

instance Monad m ⇒ Monoid (WrappedMonad_ m) where

∅ = WrapMonad_ (return ())
WrapMonad_ x ⊕WrapMonad_ y = WrapMonad_ (x >> y)

4 Systems of Data Types

4.1 Several algebraic data types

For many languages, the abstract syntax is not just one data type, but many,
which are often defined by mutual induction. An example is the following simple
imperative language with statements, expressions, variables, and types. In this
language, statements that return values (such as assignments and blocks that
end with a return statement) can be used as expressions.

data Stm = SDecl Typ Var | SAss Var Exp | SBlock [Stm] | SReturn Exp

data Exp = EStm Stm | EAdd Exp Exp | EVar Var | EInt Int

data Var = V String

data Typ = TInt | TFloat

We now need one compos function for each recursive type, and some of the
recursive calls must be made on terms which have types different from that
which the function was called on. This can be solved by taking several functions
as arguments, one for each type.

146 Bringert, Ranta

composStm :: Applicative f ⇒
(Stm→ f Stm,Exp→ f Exp,Var→ f Var,Typ→ f Typ)
→ Stm→ f Stm

composStm (fs, fe, fv, ft) s = case s of

SDecl x y → pure SDecl � ft x � fv y

SAss x y → pure SAss � fv x � fe y

SBlock xs → pure SBlock � traverse fs xs

SReturn x → pure SReturn � fe x

composExp :: Applicative f ⇒
(Stm→ f Stm,Exp→ f Exp,Var→ f Var,Typ→ f Typ)
→ Exp→ f Exp

composExp (fs, fe, fv, ft) e = case e of

EAdd x y → pure EAdd � fe x � fe y

EStm x → pure EStm � fs x

EVar x → pure EVar � fv x

Note that the Typ function is not actually required in composExp, but we include
it here for the sake of uniformity. We would also need to implement composOp,
composM , composFold etc. for each of the types. Even though these implemen-
tations would be identical for all type families, it is difficult to provide generic
implementations of them without resorting to multi-parameter type classes and
functional dependencies, since the type of the function tuple will depend on
the type family. With these functions, we can define a renaming function more
easily than without composOp:

renameStm :: Stm→ Stm

renameStm t = composOpStm (renameStm, renameExp,
renameVar , renameTyp)

renameExp :: Exp→ Exp

renameExp t = composOpExp (renameStm, renameExp,
renameVar , renameTyp)

renameVar :: Var→ Var

renameVar (V x) = V ("_" ++ x)

renameTyp :: Typ→ Typ

renameTyp t = t

We now need up to one extra function per type (for non-recursive types we can
get away with passing id). In a large system, this can result in significant over-
head. For example, the abstract syntax used in the Glasgow Haskell Compiler
contains more than 50 data types (Peyton Jones 2007).

4.2 Categories and trees

An alternative to separate mutual data types for abstract syntax is to define
just one type Tree, whose constructors take Trees as arguments:

A Pattern for Almost Compositional Functions 147

data Tree = SDecl Tree Tree | SAss Tree Tree | SBlock [Tree] | SReturn Tree

| EStm Tree | EAdd Tree Tree | EVar Tree | EInt Int

| V String | TInt | TFloat

This is essentially the representation one would use in a dynamically typed
language. It does not, however, constrain the combinations enough for our
liking: there are many Trees that are even syntactically nonsense.

A solution to this problem is provided by dependent types (Martin-Löf 1984;
Nordström et al. 1990). Instead of a constant type Tree, we define an induc-
tive family (Dybjer 1994) Tree c, indexed by a category c. The category is
just a label to distinguish between different types of trees. Inductive families
have previously been used for representing the abstract syntax of well-typed
expressions: the family Exp a gives separate, yet related, types to integer
expressions, boolean expressions, etc. (Augustsson and Petersson 1994). The
extension from such a family to one comprising all syntactic categories (expres-
sions, statements, etc.) seems to be a novelty of our work. We must now leave
standard Haskell and use a Haskell-like language with dependent types and in-
ductive families. Agda (Coquand and Coquand 1999; Norell 2007) is one such
language. What one would define in Agda is an enumerated type:

data Cat = Stm | Exp | Var | Typ

followed by an idata (inductive data type, or in this case an inductive family
of data types) definition of Tree, indexed on Cat. We omit the Agda definitions
of the Tree family and the compos function as they are virtually identical to the
Haskell versions shown below, except that in Agda the index for Tree is a value
of type Cat, whereas in Haskell the index is a dummy data type.

We can also do our exercise with a limited form of dependent types provided
by Haskell since GHC 6.4: Generalized Algebraic Data Types (GADTs,
Peyton Jones et al. 2006; Augustsson and Petersson 1994). We cannot quite
define a type of categories, but we can define a set of dummy data types:

data Stm

data Exp

data Var

data Typ

To define the inductive family of trees, we write, in this extension of Haskell:

data Tree :: ∗ → ∗ where

SDecl :: Tree Typ→ Tree Var→ Tree Stm

SAss :: Tree Var→ Tree Exp→ Tree Stm

SBlock :: [Tree Stm]→ Tree Stm

SReturn :: Tree Exp→ Tree Stm

EStm :: Tree Stm→ Tree Exp

EAdd :: Tree Exp→ Tree Exp→ Tree Exp

EVar :: Tree Var→ Tree Exp

148 Bringert, Ranta

EInt :: Int→ Tree Exp

V :: String→ Tree Var

TInt :: Tree Typ

TFloat :: Tree Typ

In Haskell we cannot restrict the types used as indices in the Tree family, which
makes it entirely possible to construct types such as Tree String. However, since
there are no constructors targeting this type, ⊥ is the only element in it.

4.3 Compositional operations

The power of inductive families is shown in the definition of the function compos.
We now define it simultaneously for the whole syntax, and can then use it to
define tree-traversing programs concisely.

compos :: Applicative f ⇒ (∀a. Tree a → f (Tree a))→ Tree c → f (Tree c)
compos f t = case t of

SDecl x y → pure SDecl � f x � f y

SAss x y → pure SAss � f x � f y

SBlock xs → pure SBlock � traverse f xs

SReturn x → pure SReturn � f x

EAdd x y → pure EAdd � f x � f y

EStm x → pure EStm � f x

EVar x → pure EVar � f x

→ pure t

The first argument must now be polymorphic, since it is applied to subtrees of
different types. This requires rank-2 polymorphism (Leivant 1983; Peyton Jones
et al. 2007), a widely supported Haskell extension. The argument to the SBlock

constructor is a list of statements, which we handle by visiting the list elements
from left to right, using the traverse function (McBride and Paterson 2008),
which generalizes mapM :

traverse :: Applicative f ⇒ (a → f b)→ [a]→ f [b]
traverse f [] = pure []
traverse f (x : xs) = pure (:) � f x � traverse f xs

The other compositional operations are special cases of compos in the same way
as before.

4.4 A library of compositional operations

Since all the other compositional operations can be defined in terms of compos,
we create a type class containing the compos function, and define the other
operations in terms of it. The code for this is shown in Figure 1.

A Pattern for Almost Compositional Functions 149

class Compos t where

compos :: Applicative f ⇒ (∀a. t a → f (t a))→ t c → f (t c)

composOp :: Compos t ⇒ (∀a. t a → t a)→ t c → t c

composOp f = runIdentity ◦ compos (Identity ◦ f)

composFold :: (Monoid o,Compos t)⇒ (∀a. t a → o)→ t c → o

composFold f = getConst ◦ compos (Const ◦ f)

composM :: (Compos t,Monad m)⇒ (∀a. t a → m (t a))→ t c → m (t c)
composM f = unwrapMonad ◦ compos (WrapMonad ◦ f)

composM_ :: (Compos t,Monad m)⇒ (∀a. t a → m ())→ t c → m ()
composM_ f = unwrapMonad_ ◦ composFold (WrapMonad_ ◦ f)

Figure 1. The Compos module.

4.5 Migrating existing programs

Replacing a family of data types with a GADT (Generalized Algebraic Data
Type) does not change the appearance of the expressions and patterns in the
syntax tree types. However, the types now have the form Tree c. If we want,
we can give the dummy types names other than those of the original categories,
for example Stm_, Exp_, Var_, and Typ_, and use type synonyms to make the
types also look like they did when we had multiple data types:

type Stm = Tree Stm_
type Exp = Tree Exp_
type Var = Tree Var_
type Typ = Tree Typ_

This allows us to modify existing programs to switch from a family of data types
to a GADT, simply by replacing the type definitions. All existing functions
remain valid with the new type definitions, which makes it possible to take
advantage of our compositional operations when writing new functions, without
being forced to change any existing ones. There are a few minor issues: the
limitations on type inference for GADTs (Peyton Jones et al. 2006) and rank-
2 polymorphism (Peyton Jones et al. 2007) may require type signatures for
some functions, and since GHC does not currently support type class instance
deriving for GADTs, we have to write instances of common type classes such as
Show and Eq for our type family by hand.

4.6 Examples

Example: Variable renaming

It is laborious to define a renaming function for the original Haskell definition
with separate data types (as shown in Section 4.1). But now it is easy:

150 Bringert, Ranta

rename :: Tree c → Tree c

rename t = case t of

V x → V ("_" ++ x)
→ composOp rename t

Example: Symbol table construction

This function constructs a variable symbol table by folding over the syntax tree.
We use the Monoid instance for lists, where the associative operation is ++, and
the identity element is [].

symbols :: Tree c → [(Tree Var,Tree Typ)]
symbols t = case t of

SDecl typ var → [(var , typ)]
→ composFold symbols t

Example: Syntactic sugar

This example shows how easy it is to add syntax constructs as syntactic sugar,
i.e. syntactic constructs that can be eliminated. Suppose that you want to add
increment statements. This means a new branch in the definition of Tree c from
Section 4.2:

SIncr :: Tree Var→ Tree Stm

Increments are eliminated by translation to assignments as follows:

elimIncr :: Tree c → Tree c

elimIncr t = case t of

SIncr v → SAss v (EAdd (EVar v) (EInt 1))
→ composOp elimIncr t

Example: Warnings for assignments

To encourage pure functionality, this function sounds the bell each time an as-
signment occurs. Since we are not interested in the return value of the function,
but only in its IO outputs, we use the function composM_ (like composM but
without a tree result, see Section 3.2 for its definition).

warnAssign :: Tree c → IO ()
warnAssign t = case t of

SAss → putChar (chr 7)
→ composM_ warnAssign t

A Pattern for Almost Compositional Functions 151

Example: Constant folding

We want to replace additions of constants by their result. Here is a first attempt:

constFold :: Tree c → Tree c

constFold e = case e of

EAdd (EInt x) (EInt y)→ EInt (x + y)
→ composOp constFold e

This works for simple cases, but what about for example 1 + (2 + 3)? This is
an addition of constants, but is not matched by our pattern above. We have to
look at the results of the recursive calls:

constFold ′ :: Tree c → Tree c

constFold ′ e = case e of

EAdd x y → case (constFold ′ x, constFold ′ y) of

(EInt n,EInt m)→ EInt (n + m)
(x ′, y′) → EAdd x ′ y′

→ composOp constFold ′ e

This illustrates a common pattern used when the recursive calls can introduce
terms which we want to handle.

4.7 Writing Compos instances

Up til now, we have only shown compos functions for example data types. But
what is the general pattern? We will consider types of the form:

data T : ∗ → ∗ where

C1 :: t1,1 → . . .→ t1,a1 → T c1

. . .
Cn :: tn,1 → . . .→ tn,an → T cn

where n > 0 is the number of data constructors, ax > 0 is the arity of data con-
structor Cx , tx,y is the type of argument y of constructor Cx , and cx is the type
argument to T in the type of constructor Cx . The argument types tx,y cannot
be type variables, since it must be possible to determine statically whether or
not each argument belongs to the type family T. All Compos instances have
this general form:

instance Compos T where

compos f t = case t of

C1 b1 . . . ba1
→ pure C1 � g1,1 b1 � . . .� g1,a1

ba1

. . .
Cn b1 . . . ban

→ pure Cn � gn,1 b1 � . . .� gn,an ban

where each gx,y function depends on the type tx,y of the corresponding con-
structor argument. There is some freedom in how gx,y is chosen. The simplest

152 Bringert, Ranta

choice is to only use f on children which have a type in the type family T:

gx,y =

{

f if ∃c.tx,y = T c

pure otherwise

In the compos implementation shown in Section 4.3, we used traverse to map
f over any lists containing elements in the type family T. This can be general-
ized to any traversable type, using the Traversable type class by McBride and
Paterson (2008).

gx,y =

f if ∃c.tx,y = T c

traverse f if ∃c.tx,y = F (T c) ∧ Traversable F

pure otherwise

Parameterized abstract syntax

We may want to have type parameters for the entire type family. For example,
GHC’s abstract syntax is parameterized over the type of identifiers. This makes
it possible to use the same abstract syntax, with different identifier types, for
the input before and after name resolution. We can add extra type parameters
to our type family to support this. For example:

data Decl

data Exp

data Tree :: ∗ → ∗ → ∗ where

Decl :: i → Tree i Exp→ Tree i Decl

App :: Tree i Exp→ Tree i Exp→ Tree i Exp

Var :: i → Tree i Exp

We said above that constructors should not have type variable arguments, but
when we implement compos, we can choose to treat i as a non-Tree type.

An optimization

As done in the compos implementations in Sections 3.2 and 4.3, the cases for all
non-recursive constructors (i.e. constructors Cx such that ∀y.gx,y = pure) can
be optimized to a single catch-all case: → pure t. This can be done since
pure Cx � pure b1 � . . .� pure bax

= pure (Cx b1 . . . bax
) by the homomorphism

law for applicative functors (see Section 4.8).

4.8 Properties of compositional operations

The following laws hold for our compositional operations:

Identity 1 compos pure = pure

Identity 2 composOp id = id

Identity 3 composFold (λ → ∅) = λ → ∅
Composition composOp f ◦ composOp g = composOp (f ◦ g)

A Pattern for Almost Compositional Functions 153

Here, = denotes extensional function equality at some type T for which we have
defined compos according to the scheme shown in Section 4.7. That is, f = g

means that for all total values t :: T, f t = g t. In the proofs, we will make use
of the laws for applicative functors (McBride and Paterson 2008):

Identity pure id � u = u

Composition pure (◦) � u � v � w = u � (v � w)
Homomorphism pure f � pure x = pure (f x)
Interchange u � pure x = pure (λf → f x) � u

We would like compos to have the property that it does not modify the term on
its own, i.e. that:

Theorem 1. For all total values t :: T, compos pure t = pure t.

Proof. Consider some t = C t1 . . . tn, where C is an arbitrary constructor of T

with arity n. The relevant part of the compos function is then:

compos f t = case t of

C x1 . . . xn → pure C � g1 x1 � . . .� gn xn

where each gi is either pure, f , or traverse f , depending on the type of xi .
Since f = pure in the case that we are reasoning about, the functions g1 . . . gn

are either pure or traverse pure. As noted by Gibbons and Oliveira (2006),
all implementations of traverse should satisfy the “purity law” traverse pure =
pure. Thus, all the g1 . . . gn functions are pure and the constructor cases all
have the form:

C x1 . . . xn → pure C � pure x1 � . . .� pure xn

By repeated use of the homomorphism law for applicative functors, we have
that:

pure C � pure x1 � . . .� pure xn = pure (C x1 . . . xn)

Thus, for all total t : T, compos pure t = pure t.

With the definitions of composOp and composFold given in Section 4.3, Iden-
tity 2 and Identity 3 follow straightforwardly from Theorem 1.

Theorem 2. For all total t :: T, composOp f (composOp g t) = composOp (f ◦
g) t.

Proof. Consider some t = C t1 . . . tn, where C is an arbitrary constructor of T,
with arity n. As in the proof of Theorem 1, the interesting part of compos is:

compos f t = case t of

C x1 . . . xn → pure C � g1 x1 � . . .� gn xn

154 Bringert, Ranta

Lemma 1. composOp g (C x1 . . . xn) = C (g′1 x1) . . . (g′n xn), where each g′i is
id, g or fmap g, depending on the type of xi.

Proof. composOp g (C x1 . . . xn)
= { Definition of composOp }
runIdentity (compos (Identity ◦ g) (C x1 . . . xn))
= { Definition of compos }
runIdentity (pure C � g1 x1 � . . .� gn xn)
= { Definition of pure for Identity }
runIdentity (Identity C � g1 x1 � . . .� gn xn)
= { Definition of � for Identity }
runIdentity (Identity (C (runIdentity (g1 x1))) � . . .� gn xn)
= { Definition of � for Identity }
runIdentity (Identity (C (runIdentity (g1 x1)) . . . (runIdentity (gn xn))))
= { Introduce g′i = runIdentity ◦ gi }
runIdentity (Identity (C (g′1 x1) . . . (g′n xn)))
= { Definition of runIdentity }
C (g′1 x1) . . . (g′n xn)

Since each gi is Identity, Identity ◦ g or traverse (Identity ◦ g), each g′i is id, g or
fmap g. The last case relies on the observation by Gibbons and Oliveira (2006)
that all implementations of traverse should satisfy traverse (Identity ◦ f) =
Identity ◦ fmap f .

Now,

composOp f (composOp g (C x1 . . . xn))
= { Lemma 1 }
composOp f (C (g′1 x1) . . . (g′n xn))
= { Lemma 1 }
C (f ′1 (g′1 x1)) . . . (f ′n (g′n xn))
= { Definition of ◦ }
C ((f ′1 ◦ g′1) x1) . . . ((f ′n ◦ g′n) xn)
= { Lemma 1 and fmap f ◦ fmap g = fmap (f ◦ g) }
composOp (f ◦ g) (C x1 . . . xn)

One may think that the stronger compos g t >>= compos f = compos (λx →
g x>>= f) t would hold for any Applicative type that is also a Monad, but it does
not, as it changes the order of the monadic computations.

It should also be possible to perform formal reasoning about our composi-
tional operations using dependent type theory with tree sets, as discussed in
Section 7.4.

A Pattern for Almost Compositional Functions 155

5 Almost Compositional Functions and the Vis-

itor Design Pattern

The Visitor design pattern (Gamma et al. 1995) is a pattern used in object-
oriented programming to define an operation for each of the concrete elements of
an object hierarchy. We will show how an adaptation of the Visitor pattern can
be used to define almost compositional functions in object-oriented languages,
in a manner quite similar to that shown above for languages with algebraic data
types and pattern matching.

First we present the object hierarchies corresponding to the algebraic data
types. Each object hierarchy has a generic Visitor interface. We then show
a concrete visitor that corresponds to the composOp function. Our examples
are written in Java 1.5 (Gosling et al. 2005) and make use of its parametric
polymorphism (Bracha et al. 1998).

5.1 Abstract syntax representation

We use a standard encoding of abstract syntax trees in Java (Appel 2002),
along with the support code for a type-parametrized version of the Visitor de-
sign pattern. For each algebraic data type in the Haskell version (as shown in
Section 4.1), we have an abstract base class in the Java representation:

public abstract class Stm {
public abstract〈R,A〉R accept (Visitor〈R,A〉v,A arg);
public interface Visitor〈R,A〉 {

public R visit (SDecl p,A arg);
public R visit (SAss p,A arg);
public R visit (SBlock p,A arg);
public R visit (SReturn p,A arg);
public R visit (SInc p,A arg);
}

}

The base class contains an interface for visitors, with methods for visiting each
of the inheriting classes. The Visitor interface has two type parameters: R is
the type of the value returned by the Visitor, and A is the type of an auxiliary
argument which is threaded through the traversal. Each inheriting class must
have a method for accepting the visitor. This method dispatches the call to the
correct method in the visitor.

For each data constructor in the algebraic data type, we have a concrete
class which inherits from the abstract base class, for example:

public class SDecl extends Stm {
public final Typ typ_;
public final Var var_;
public SDecl (Typ p1,Var p2){typ_ = p1; var_ = p2; }

156 Bringert, Ranta

public〈R,A〉R accept (Visitor〈R,A〉v,A arg){
return v.visit (this, arg);
}

}

The Visitor interface can be used to define operations on all the concrete
classes in one or more of the hierarchies (when defining an operation on more
than one hierarchy, the visitor implements multiple Visitor interfaces). This
corresponds to the initial examples of pattern matching on all of the construc-
tors, as shown in Section 2. It suffers from the same problem: lots of repetitive
traversal code.

5.2 ComposVisitor

We can create a class which does all of the traversal and tree rebuilding. This
corresponds to the composOp function in the Haskell implementation.

public class ComposVisitor〈A〉implements

Stm.Visitor〈Stm,A〉,Exp.Visitor〈Exp,A〉,
Var.Visitor〈Var,A〉,Typ.Visitor〈Typ,A〉 {

public Stm visit (SDecl p,A arg){
Typ typ_ = p.typ_.accept (this, arg);
Var var_ = p.var_.accept (this, arg);
return new SDecl (typ_, var_);
}

// . . .
}

The ComposVisitor class implements all the Visitor interfaces in the abstract
syntax, and can thus visit all of the constructors in all of the types. Each
visit method visits the children of the current node, and then constructs a
new node with the results returned from these visits. A visitor for a given
base class corresponds to a Haskell case expression on an algebraic data type.
Multiple interface inheritance lets us write a single visitor which can handle
multiple classes. Such a visitor is then like a case expression on an entire type
family. This use of multiple interface inheritance is what makes it possible to
handle the multiple-type recursion issue that forced us to use GADTs and rank-2
polymorphism in Haskell.

The code above could be optimized to eliminate the reconstruction overhead
when the recursive calls do not modify the subtrees. For example, if all the
objects which are being traversed are immutable, unnecessary copying could be
avoided by doing a pointer comparison between the old and the new child. If
all the children are unchanged, we do not need to construct a new parent.

A Pattern for Almost Compositional Functions 157

5.3 Using ComposVisitor

While the composOp function takes a function as a parameter, and applies
that function to each constructor argument, the ComposVisitor class in itself
is essentially a complicated implementation of the identity function. Its power
comes from the fact that we can override individual visit methods.

When using the standard Visitor pattern, adding new operations is easy,
but adding new elements to the object hierarchy is difficult, since it requires
changing the code for all the operations. Having a ComposVisitor changes this,
as we can add a new element, and only have to change the Visitor interface, the
ComposVisitor, and any operations which need to have special behavior for the
new class.

The Java code below implements the desugaring example from Section 4.6
where increments are replaced by addition and assignment. Note that in Java
we only need the interesting case, all the other cases are taken care of by the
parent class.

class Desugar extends ComposVisitor〈Object〉 {
public Stm visit (SInc i,Object arg){

Exp rhs = new EAdd (new EVar (i.var_),new EInt (1));
return new SAss (i.var_, rhs);
}

}

Stm desugar (Stm stm){
return stm.accept (new Desugar (),null);
}

The Object argument to the visit method is a dummy since this visitor does not
need any extra arguments. The desugar method at the end is just a wrapper
used to hide the details of getting the visitor to visit the statement, and passing
in the dummy argument.

This being an imperative language, we do not have to do anything special to
thread a state through the computation. Here is the symbol table construction
function from Section 4.6 in Java:

class BuildSymTab extends ComposVisitor〈Object〉 {
Map〈Var,Typ〉symTab = new HashMap〈Var,Typ〉();

public Stm visit (SDecl d,Object arg){
symTab.put (d.var_, d.typ_);
return d;
}

}

Map〈Var,Typ〉symbolTable (Stm stm){
BuildSymTab v = new BuildSymTab ();
stm.accept (v,null);
return v.symTab;
}

158 Bringert, Ranta

You may wonder why this function was implemented as a stateful computation
instead of as a fold like in the Haskell version. Creating a visitor which cor-
responds to composFold would be less elegant in Java, since we would have to
pass a combining function and a base case value to the visitor. This could be
done by adding abstract methods in the visitor, but in most cases the stateful
implementation is probably more idiomatic in Java.

Our final Java example is the example from Section 3, where we compute
the set of free variables in a term in the small functional language introduced
in Section 2.

class Free extends ComposVisitor〈Set〈String〉〉 {
public Exp visit (EAbs e,Set〈String〉vs){

Set〈String〉xs = new TreeSet〈String〉();
e.exp_.accept (this, xs);
xs.remove (e.ident_);
vs.addAll (xs);
return e;
}
public Exp visit (EVar e,Set〈String〉vs){

vs.add (e.ident_);
return e;
}

}

Set〈String〉freeVars (Exp exp){
Set〈String〉vs = new TreeSet〈String〉();
exp.accept (new Free (), vs);
return vs;
}

Here we make use of the possibility of passing an extra argument to the visit

methods. The argument is a set to which the visit method adds all the free
variables in the visited term.

6 Language and Tool Support for Compositional

Operations

When using the method we have described, one needs to define the Haskell
Compos instance or Java ComposVisitor class manually for each type or type
family. To create Compos instances automatically, we could extend the Haskell
compiler to allow deriving instances of Compos. Another possibility would be
to generate the instances using Template Haskell (Sheard and Peyton Jones
2002), DrIFT (Winstanley et al. 2007), or Derive (Mitchell and O’Rear 2007),
but these tools do not yet support GADTs.

We have added a new back-end to the BNF Converter (BNFC) (Forsberg
2007; Forsberg and Ranta 2006) tool which generates a Haskell GADT abstract

A Pattern for Almost Compositional Functions 159

SDecl. Stm ::= Typ Var ";";
SAss. Stm ::= Var "=" Exp ";";
SBlock. Stm ::= "{" [Stm] "}";
SReturn.Stm ::= "return" Exp ";";
SInc. Stm ::= Var "++" ";";
separator Stm "";

EStm. Exp1 ::= Stm;
EAdd. Exp1 ::= Exp1 "+" Exp2;
EVar. Exp2 ::= Var;
EInt. Exp2 ::= Integer;
EDbl. Exp2 ::= Double;
coercions Exp 2;

V. Var ::= Ident;

TInt. Typ ::= "int";
TDbl. Typ ::= "double";

Figure 2. LBNF grammar for the simple imperative language.

syntax type along with instances of Compos, Eq, Ord and Show. We have also
extended the BNFC Java 1.5 back-end to generate the Java abstract syntax
representation shown above, along with the ComposVisitor class. In addition
to the abstract syntax types and traversal components described in this paper,
the generated code also includes a lexer, a parser, and a pretty printer. We
can generate all the Haskell or Java code for our simple imperative language
example using the grammar shown in Figure 2. It is written in LBNF (Labelled
Backus-Naur Form), the input language for BNFC.

7 Related Work

7.1 Scrap Your Boilerplate

The part of this work dealing with functional programming languages can be
seen as a solution to a subset of the problems solved by generic programming
systems. Like “Scrap Your Boilerplate” (SYB) (Lämmel and Peyton Jones
2003), we focus on traversal operations that make it easier to write functions
over a given rich data type or set of data types when there are only a few
“interesting” cases. Our approach does not aim at defining functions such as
equality, hashing, or pretty-printing, which need to consider every constructor
in the type or type family. We also do not address the problem of writing
polytypic functions (Jansson and Jeuring 1997; Hinze 2004), that is, functions
that work on any data type, even those which are yet to be defined.

160 Bringert, Ranta

Introduction to Scrap Your Boilerplate

SYB uses generic traversal functions along with a type safe cast operation imple-
mented by the use of type classes. This allows the programmer to extend fully
generic operations with type-specific cases, and use these with various traversal
schemes. Data types must have instances of the Typeable and Data type classes
to be used with SYB.

The original “Scrap Your Boilerplate” paper (Lämmel and Peyton Jones
2003) contains a number of examples, some of which we will show as an intro-
duction and later use for comparison. In the examples, some type synonyms
(GenericT and GenericQ) have been inlined to make the function types more
transparent. The examples work on a family of data types:

data Company = C [Dept] deriving (Typeable,Data)
data Dept = D Name Manager [Unit] deriving (Typeable,Data)
data Unit = PU Employee | DU Dept deriving (Typeable,Data)
data Employee = E Person Salary deriving (Typeable,Data)
data Person = P Name Address deriving (Typeable,Data)
data Salary = S Float deriving (Typeable,Data)
type Manager = Employee

type Name = String

type Address = String

The first example increases the salary of all employees:

increase :: Data a ⇒ Float→ a → a

increase k = everywhere (mkT (incS k))

incS :: Float→ Salary→ Salary

incS k (S s) = S (s ∗ (1 + k))

The everywhere function applies a generic transformation to every node, bottom-
up, and mkT makes a type specific transformation generic. More advanced
traversal schemes are also supported. This example increases the salary of
everyone in a named department:

incrOne :: Data a ⇒ Name→ Float→ a → a

incrOne n k a | isDept n a = increase k a

| otherwise = gmapT (incrOne n k) a

isDept :: Data a ⇒ Name→ a → Bool

isDept n = False ‘mkQ‘ isDeptD n

isDeptD :: Name→ Dept→ Bool

isDeptD n (D n′) = n == n′

The gmapT function applies a generic transformation to the immediate sub-
terms. SYB also supports queries, that is, functions that compute some result
from the data structure rather than returning a modified structure. A type-
specific query is made generic by mkQ, whose first argument is a constant that

A Pattern for Almost Compositional Functions 161

is returned for all other types. This example computes the sum of the salaries
of everyone in the company:

salaryBill :: Company→ Float

salaryBill = everything (+) (0 ‘mkQ‘ billS)

billS :: Salary→ Float

billS (S f) = f

The everything function applies a generic query everywhere in a term, and
summarizes the results using the function given as the first argument.

SYB examples using compositional operations

We will now show the above examples implemented using our compositional
operations. We lift the family of data types from the previous section into a
GADT:

data Company; data Dept; data Unit

data Employee; data Person; data Salary

type Manager = Employee

type Name = String

type Address = String

data Tree :: ∗ → ∗ where

C :: [Tree Dept]→ Tree Company

D :: Name→ Tree Manager→ [Tree Unit]→ Tree Dept

PU :: Tree Employee→ Tree Unit

DU :: Tree Dept→ Tree Unit

E :: Tree Person→ Tree Salary→ Tree Employee

P :: Name→ Address→ Tree Person

S :: Float→ Tree Salary

We define compos as described in Section 4.7, and use the operations from the
library of compositional operations from Section 4.4 to implement the examples.

increase :: Float→ Tree c → Tree c

increase k c = case c of

S s → S (s ∗ (1 + k))
→ composOp (increase k) c

Here is the richer traversal example:

incrOne :: Name→ Float→ Tree c → Tree c

incrOne d k c = case c of

D n | n == d → increase k c

→ composOp (incrOne d k) c

Query functions are also easy to implement (given a Monoid instance where
∅ = 0 and (⊕) = (+)):

162 Bringert, Ranta

salaryBill :: Tree c → Float

salaryBill c = case c of

S s → s

→ composFold salaryBill c

These examples can all be written as single functions, whereas with SYB they
each consist of two or three functions. SYB requires at least one function for
each type-specific case, and one function that extends a generic traversal with
the type specific cases.

SYB is a powerful system, but for many common uses such as the examples
presented here, we believe that the composOp approach is more intuitive and
easy to use. The drawback is that the data type family has to be lifted to a
GADT, and that the compos function must be implemented. However, this only
needs to be done once, and at least the latter can be automated, either by using
BNFC, or by extending the Haskell compiler to generate instances of Compos

(as is done for the Data and Typeable classes used by SYB).

Using SYB to implement compositional operations

Single data type Above we have shown how to replace simple uses of SYB
with compositional operations. We will now show the opposite, and investigate
to what extent the compositional operations can be reimplemented using SYB.
The renaming example for the simple functional language, as shown in Section 3,
looks very similar when implemented using SYB:

rename :: Exp→ Exp

rename e = case e of

EAbs x b → EAbs ("_" ++ x) (rename b)
EVar x → EVar ("_" ++ x)

→ gmapT (mkT rename) e

For the single data type case, our composOp and composM can be imple-
mented with gmapT and gmapM (a monadic version of gmapT). The gmapQ

function, which returns a list of the results of applying a query to the immediate
subterms, can be used to write composFold. Our compos function can be writ-
ten in terms of gfoldl, the one SYB function which can be used to implement
all the others. Here are their definitions for the Exp type:

composOp :: (Exp→ Exp)→ Exp→ Exp

composOp f = gmapT (mkT f)

composM :: Monad m ⇒ (Exp→ m Exp)→ Exp→ m Exp

composM f = gmapM (mkM f)

composFold :: Monoid o ⇒ (Exp→ o)→ Exp→ o

composFold f = foldl (⊕) ∅ ◦ gmapQ (mkQ ∅ f)

compos :: Applicative f ⇒ (Exp→ f Exp)→ Exp→ f Exp

compos f = gfoldl (λx y → x � extM pure f y) pure

A Pattern for Almost Compositional Functions 163

Here the extM function, which adds a type-specific case to a generic transfor-
mation, has been generalized to arbitrary functors (the extM from SYB requires
a Monad).

Families of data types For the multiple data type case, it is difficult to use
SYB to implement our examples with the desired type. When using composOp,
the type restriction is achieved as a byproduct of lifting the family of data types
into a GADT. Using a GADT to restrict the function types when using SYB
is currently not practical, since current GHC versions cannot derive Data and
Typeable instances automatically for GADTs. We can implement functions with
types that are too general or too specific. For example, this is too general:

rename :: Data a ⇒ a → a

rename = gmapT (rename ‘extT ‘ renameVar)
where renameVar :: Var→ Var

renameVar (V x) = V ("_" ++ x)

renameStm :: Stm→ Stm

renameStm = rename

What we would like to have is a rename function which can be applied to any
abstract syntax tree, but not to things that are not abstract syntax trees. With
a family of normal Haskell data types, the restriction could be achieved by the
use of a dummy type class:

class Data a ⇒ Tree a

instance Tree Stm

instance Tree Exp

instance Tree Var

instance Tree Typ

renameTree :: Tree a ⇒ a → a

renameTree = rename

However, we would like the class Tree to be closed, something which is currently
only achievable using hacks such as not exporting the class.

Using compositional operations to implement SYB

We can also try to implement the SYB functions in terms of our functions. If
we are only interested in our single data type, this works:

gmapT :: Data a ⇒ (∀b. Data b ⇒ b → b)→ a → a

gmapT f = mkT (composOp f)

gmapM :: (Data a,Monad m)⇒ (∀b. Data b ⇒ b → m b)→ a → m a

gmapM f = mkM (composM f)

gmapQ :: Data a ⇒ (∀b. Data b ⇒ b → u)→ a → [u]
gmapQ f = mkQ [] (composFold (λx → [f x]))

164 Bringert, Ranta

Note that these functions are no longer truly generic: even though their types
are the same as the SYB versions’, they will only apply the function that they
are given to values in the single data type Exp. Defining gfoldl turns out to
be problematic, since the combining operation that gfoldl requires cannot be
constructed from the operations of an applicative functor.

For the type family case, it does not seem possible to use compositional op-
erations to implement SYB operations. It is even unclear what this would mean,
since type families are implemented in different ways in the two approaches.

The Spine data type

In “Scrap Your Boilerplate” Reloaded (Hinze et al. 2006), SYB is explained by
using a GADT called Type to lift all types into a single type Spine. For our type
family example, this becomes:

data Stm; data Exp; data Var; data Typ

data Type :: ∗ → ∗ where

Stm :: Type Stm

Exp :: Type Exp

Var :: Type Var

Typ :: Type Typ

List :: Type a → Type [a]
Int :: Type Int

String :: Type String

data Typed a = a : Type a

data Spine :: ∗ → ∗ where

Constr :: a → Spine a

(⋄) :: Spine (a → b)→ Typed a → Spine b

For example, the value EVar (V "x") is represented as Constr EVar ⋄V "x" : Var.
Compared to our representation, the Spine data type only lifts the top-level (or
spine) of the value, rather than the entire value. The Spine type adds another
level above the existing types, instead of replacing them, which changes how
values are written. It also decouples constructors from their arguments, making
it impossbile to do pattern matching directly. While this means that the Spine

type cannot be used to replace our type family representation, it can be used
to implement the SYB combinators. Thus it can be used to implement compos

as is shown in Section 7.1.

Scrap Your Boilerplate conclusions

We consider the main differences between Scrap Your Boilerplate and our com-
positional operations to be that:

• When using SYB, no changes to the data types are required (except some
type class deriving), but the way in which functions over the data types

A Pattern for Almost Compositional Functions 165

are written is changed drastically. With compositional operations on the
other hand, the data type family must be lifted to a GADT, while the
style in which functions are written remains more natural.

• SYB functions over multiple data types are too generic, in that they are
not restricted to the type family for which they are intended.

• Our approach is a general pattern which can be translated rather directly
to other programming languages and paradigms.

• Compositional operations directly abstract out the pattern matching, re-
cursion and reconstruction code otherwise written by hand. SYB uses
runtime type representations and type casts, which gives more genericity,
at the expense of transparency and understandability.

7.2 Catamorphisms and folds

The composFold function may appear to be similar to a catamorphism or fold
(Meĳer et al. 1991). However, none of the compositional operations are recur-
sive, as they just apply a given function to the immediate children of the current
term. When using a fold, the behavior for each constructor is specified, and the
recursion is done by the fold operator. With composFold, there is a default
behavior for each constructor, and any recursion must be done explicitly.

7.3 Two-level types

Two-level types, as described by Sheard and Pasalic (2004), also address a prob-
lem that can lead to repetitive code. Their solution is to break the data type
up into two levels, one for the structures that the algorithm manipulates and
“a recursive knot-tying level”. The problem which the two-level types approach
solves is dual to the problem described in this paper: we want to reduce the
amount of repeated code when writing many similar functions over the same
data type, and they want to reduce the amount of repeated code when writing
the same function for many similar data types.

Using the idea of splitting a type into two levels can give us some insight
into the relationship between compositional operations and idiomatic traversals
(the term used by Gibbons (2007) to describe McBride and Paterson’s (2008)
traverse function). We split the Exp type into two levels, making Exp a fixed
point of the structure operator E. Now compos becomes an idiomatic traversal,
without changing anything but the type signature (and expanding the catch-all
case). The intuition is that E is a container of expressions, and compos maps
a function over the expressions that it contains. This is only done at the top
level, just as a regular map on lists does not descend into any nested lists.

data E e = EAbs String e | EApp e e | EVar String

newtype Exp = Wrap (E Exp)

compos :: Applicative f ⇒ (a → f b)→ E a → f (E b)

166 Bringert, Ranta

compos f e = case e of

EAbs x b → pure EAbs � pure x � f b

EApp g h → pure EApp � f g � f h

EVar v → pure EVar � pure v

We define composOp, composM and composFold as before, but with different
types:

composOp :: (a → b)→ E a → E b

composM :: Monad m ⇒ (a → m b)→ E a → m (E b)

composFold :: Monoid o ⇒ (a → o)→ E a → o

Functions such as rename which work on the Exp type now need to use the Wrap

constructor, but apart from that, the code is unchanged.

rename :: Exp→ Exp

rename (Wrap e) = Wrap $ case e of

EAbs x b → EAbs ("_" ++ x) (rename b)
EVar x → EVar ("_" ++ x)

→ composOp rename e

7.4 The Tree set constructor

Introduction

Petersson and Synek (1989) introduce a set constructor for tree types into
Martin-Löf’s (1984) intuitionistic type theory. Their tree types are similar to the
inductive families in for example Agda (Norell 2007), and, for our purposes, to
Haskell’s GADTs. The value representation, however, is quite different. There
is only one constructor for trees, and it takes as arguments the type index, the
data constructor and the data constructor arguments.

Tree types are constructed by the following rule:

Tree set formation

A : set B(x) : set[x : A] C(x, y) : set[x : A, y : B(x)]
d(x, y, z) : A[x : A, y : B(x), z : C(x, y)] a : A

Tree(A,B,C, d, a) : set

Here A is the set of names (type indices) of the mutually dependent sets. B(x)
is the set of constructors in the set with name x. C(x, y) is the set of argument
labels (or selector names) for the arguments of the constructor y in the set
with name x. d is a function which assigns types to constructor arguments: for
constructor y in the set with name x, d(x, y, z) is the name of the set to which
the argument with label z belongs. For simplicity, T (a) is used below, instead
of Tree(A,B,C, d, a).

A Pattern for Almost Compositional Functions 167

Tree values are constructed using this rule:

Tree value introduction

a : A b : B(a) c(z) : T (d(a, b, z))[z : C(a, b)]

tree(a, b, c) : T (a)

Here a is the name of the set to which the tree belongs, b is the constructor,
and c is a function which assigns values to the arguments of the constructor
(children of the node), where c(z) is the value of the argument with label z.

Trees are eliminated using the treerec constant, with the computation rule:

treerec(tree(a, b, c), f)→ f(a, b, c, λz. treerec(c(z), f))

Here, f is applied to the tree set name a, the constructor b, the children c, and
the results of recursive calls on each of the children. The type of treerec is given
by:

Tree value elimination

D(x, t) : set[x : A, t : T (x)] a : A t : T (a)
f(x, y, z, u) : D(x, tree(x, y, z))

[x : A, y : B(x), z(v) : T (d(x, y, v))[v : C(x, y)],
u(v) : D(d(x, y, v), z(v))[v : C(x, y)]]

treerec(t, f) : D(a, t)

Relationship to GADTs

As we have seen above, trees are built using the single constructor tree, with
the type, constructor, and constructor arguments as arguments to tree. We can
use this structure to represent GADT values, as long as all children are also
trees. Using the constants l1 . . . as argument labels for all constructors, we can
represent GADT values in the following way:

b t1 . . . tn :: Tree a ≡ tree(a, b, λz. case z of {l1 : t1; . . . ; ln : tn})

For example, the value SDecl TInt (V "foo") :: Tree Stm in our Haskell repre-
sentation would be represented as the term shown below. We use “string” to
stand for some appropriate tree representation of a string.

tree(Stm, SDecl, λx. case x of {
l1 : tree(Typ, TInt, λy. case y of {});
l2 : tree(V ar, V, λy. case y of {l1 : “foo”})

})

Tree types and compositional operations

We can implement a composOp-equivalent in type theory by using treerec:

composOp(f, t) = treerec(t, λa. λb. λc. λc′. tree(a, b, λz. f(c(z))))

168 Bringert, Ranta

What makes this so easy is that all values have the same representation, and c
which contains the child trees is just a function that we can compose with our
function f . With this definition, we can use composOp like in Haskell. The code
below assumes that we have wild card patterns in case expressions, and that ++
is a concatenation operation for whatever string representation we have.

rename(t) = treerec(t, λa. λb. λc. λc′. case b of {
V : tree(V ar, V, λl. “_” ++c(l));

: composOp(rename, t)
})

One advantage over the Haskell solution is that treerec is a catamorphism for
arbitrary tree types, as it gives us access not only to the original child values
(c in the example above), but also to the results of the recursive calls (c′ in the
example above). This would simplify functions which need to use the results
of recursive calls, for example the constant folding example in Section 4.6. As
compositional operations are not catamorphisms (see Section 7.2), composOp
itself does not make use of the c′ argument.

7.5 Related work in object-oriented programming

The ComposVisitor class looks deceptively simple, but it has a number of features
in what appears to be a novel combination:

• It uses type-parameterized visitor interfaces, which require powerful fea-
tures such as C++ templates or Java generics. Similar parameterized
visitor interfaces can be found in the Loki C++ library (Alexandrescu
2001).

• It is a depth-first traversal combinator whose behavior can be overrid-
den for each concrete class. A similar traversal can be achieved by using
the BottomUp and Identity combinators from Visser’s (2001) work on vis-
itor combinators, and with the depth-first traversal function in the Boost
Graph Library (Lee et al. 2002).

• It allows modification of the data structure in a functional and compo-
sitional way. The fact that functional modification is not widely used in
imperative object-oriented programming is probably the main reason why
this area has not been explored further.

7.6 Nanopass framework for compiler education

The idea of structuring compilers as a large number of simple passes is central
to the work on the Nanopass framework for compiler education (Sarkar et al.
2005), a domain-specific language embedded in Scheme. Using the Nanopass
framework, a compiler is implemented as a sequence of transformations between
a number of intermediate languages, each of which is defined using a set of
mutually recursive data types. Transformations are implemented by pattern

A Pattern for Almost Compositional Functions 169

matching, and a pass expander adds any missing cases, a role similar to that of
our composOp.

One notable feature of the Nanopass framework is that a language can be
declared to inherit from an existing language, with new constructors added or
existing ones removed. This makes it possible to give more accurate types to
functions which add or remove constructions, without having to define com-
pletely separate languages which differ only in the presence or absence of a few
constructors. While this is a very useful feature, it is difficult to implement in
languages such as Haskell or Java whose notions of data types are more rigid
than Scheme’s. In Haskell, we model abstract syntax with algebraic datatypes,
but Haskell does not allow the extension or restriction of datatypes. In Java,
we could add subclasses to encode new constructors, and create new Visitor in-
terfaces for each set of constructors we want to handle, but this would require
writing a new ComposVisitor class for each new Visitor interface.

8 Conclusions

We have presented a pattern for easily implementing almost compositional op-
erations over rich data structures such as abstract syntax trees.

We have ourselves started to use this pattern for real implementation tasks,
and we feel that it has been very successful. In the compiler for the Transfer lan-
guage (Bringert 2006) we use a front-end generated by BNFC (Forsberg 2007;
Forsberg and Ranta 2006), including a Compos instance for the abstract syntax.
The abstract syntax has 70 constructors, and in the (still very small) compiler
compositional operations are currently used in 12 places. The typical function
that uses compositional operations pattern matches on between 1 and 5 of the
constructors, saving hundreds of lines of code. Some of the functions include:
replacing infix operator use with function calls, beta reduction, simultaneous
substitution, getting the set of variables bound by a pattern, getting the free
variables in an expression, assigning fresh names to all bound variables, num-
bering meta-variables, changing pattern equations to simple declarations using
case expressions, and replacing unused variable bindings in patterns with wild
cards. Furthermore, we have noticed that using compositional operations to im-
plement a compiler makes it easy to structure it as a sequence of simple steps,
without having to repeat large amounts of traversal code for each step. Modify-
ing the abstract syntax, for example by adding new constructs to the front-end
language, is also made easier since only the functions which care about this new
construct need to be changed. However, using many simple steps is likely to
have a negative impact on performance, as a complete traversal is potentially
done in every step. This problem could perhaps be ameliorated by developing
deforestation techniques (Wadler 1990) for compositional operations.

170 Bringert, Ranta

Acknowledgments

We would like to thank the following people for their comments on earlier ver-
sions of this work: Thierry Coquand, Bengt Nordström, Patrik Jansson, Josef
Svenningsson, Sibylle Schupp, Marcin Zalewski, Andreas Priesnitz, Markus
Forsberg, Alejandro Russo, Thomas Schilling, Andres Löh, the anonymous ICFP
and JFP referees, and everyone who offered comments during the talks at the
Chalmers CS Winter Meeting, at Galois Connections, and at ICFP 2006. The
code in this paper has been typeset using lhs2TeX, with help from Andres Löh
and Jeremy Gibbons. This work has been partly funded by the EU TALK
project, IST-507802.

References

Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley Professional, Indianapolis, February 2001.
ISBN 0201704315.

Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge
University Press, second edition, October 2002. ISBN 052182060X.

Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, December 1997. ISBN 0521582741.

Lennart Augustsson and Kent Petersson. Silly type families. http://www.cs.

pdx.edu/~sheard/papers/silly.pdf, 1994. URL http://www.cs.pdx.edu/

~sheard/papers/silly.pdf.

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Mak-
ing the Future Safe for the Past: Adding Genericity to the Java Programming
Language. In Craig Chambers, editor, Proceedings of the 13th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applica-
tions, Vancouver, BC, pages 183–200, New York, NY, USA, 1998. ACM. doi:
10.1145/286936.286957.

Björn Bringert. The Transfer programming language, 2006. http://www.cs.

chalmers.se/Cs/Research/Language-technology/GF/doc/transfer.html.

Catarina Coquand and Thierry Coquand. Structured type theory. In Workshop
on Logical Frameworks and Meta-languages (LFM’99), Paris, France, Septem-
ber 1999. URL http://citeseer.ist.psu.edu/coquand99structured.

html.

Peter Dybjer. Inductive families. Formal Aspects of Computing, 6(4):440–465,
July 1994. doi: 10.1007/BF01211308.

Markus Forsberg. Three Tools for Language Processing: BNF Converter,
Functional Morphology, and Extract. PhD thesis, Göteborg University and

http://www.cs.pdx.edu/~sheard/papers/silly.pdf
http://www.cs.pdx.edu/~sheard/papers/silly.pdf
http://www.cs.pdx.edu/~sheard/papers/silly.pdf
http://www.cs.pdx.edu/~sheard/papers/silly.pdf
http://dx.doi.org/10.1145/286936.286957
http://www.cs.chalmers.se/Cs/Research/Language-technology/GF/doc/transfer.html
http://www.cs.chalmers.se/Cs/Research/Language-technology/GF/doc/transfer.html
http://citeseer.ist.psu.edu/coquand99structured.html
http://citeseer.ist.psu.edu/coquand99structured.html
http://dx.doi.org/10.1007/BF01211308

A Pattern for Almost Compositional Functions 171

Chalmers University of Technology, September 2007. URL http://www.cs.

chalmers.se/~markus/phd2007_print_version.pdf.

Markus Forsberg and Aarne Ranta. BNF Converter homepage, 2006. http:

//www.cs.chalmers.se/~markus/BNFC/.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995. ISBN 0201633612. URL
http://portal.acm.org/citation.cfm?id=186897.

Jeremy Gibbons. Datatype-Generic Programming. In Roland Backhouse,
Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors, Spring School on
Datatype-Generic Programming, volume 4719 of Lecture Notes in Computer
Science, pages 1–71, Heidelberg, November 2007. Springer. doi: 10.1007/978-
3-540-76786-2_1.

Jeremy Gibbons and Bruno C. Oliveira. The Essence of the Iterator Pattern.
In Conor McBride and Tarmo Uustalu, editors, Workshop on Mathematically
Structured Functional Programming (MSFP 2006), Kuressaare, Estonia, Elec-
tronic Workshops in Computing (eWiC), Swindon, UK, July 2006. British
Computer Society. URL http://www.comlab.ox.ac.uk/jeremy.gibbons/

publications/iterator-msfp.pdf.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language Spec-
ification. Addison-Wesley Professional, Indianapolis, third edition, July 2005.
ISBN 0321246780.

Ralf Hinze. Generics for the masses. In ICFP ’04: Proceedings of the
ninth ACM SIGPLAN international conference on Functional programming,
volume 39, pages 236–243, New York, September 2004. ACM Press. doi:
10.1145/1016850.1016882.

Ralf Hinze, Andres Löh, and Bruno C. D. S. Oliveira. “Scrap Your Boiler-
plate” Reloaded. In Masami Hagiya and Philip Wadler, editors, 8th Inter-
national Symposium on Functional and Logic Programming (FLOPS 2006),
Fuji-Susono, Japan, volume 3945 of Lecture Notes in Computer Science, pages
13–29, Heidelberg, 2006. Springer. doi: 10.1007/11737414_3.

Patrik Jansson and Johan Jeuring. PolyP - a polytypic programming language
extension. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL), pages 470–482, New York, NY,
USA, 1997. ACM Press. ISBN 0897918533. doi: 10.1145/263699.263763.

Mark P. Jones. Functional Programming with Overloading and Higher-Order
Polymorphism. In Advanced Functional Programming, First International
Spring School on Advanced Functional Programming Techniques-Tutorial Text,
volume 925 of Lecture Notes in Computer Science, pages 97–136, Heidelberg,
1995. Springer. ISBN 3540594515. doi: 10.1007/3-540-59451-5_4.

http://www.cs.chalmers.se/~markus/phd2007_print_version.pdf
http://www.cs.chalmers.se/~markus/phd2007_print_version.pdf
http://www.cs.chalmers.se/~markus/BNFC/
http://www.cs.chalmers.se/~markus/BNFC/
http://portal.acm.org/citation.cfm?id=186897
http://dx.doi.org/10.1007/978-3-540-76786-2_1
http://dx.doi.org/10.1007/978-3-540-76786-2_1
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/iterator-msfp.pdf
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/iterator-msfp.pdf
http://dx.doi.org/10.1145/1016850.1016882
http://dx.doi.org/10.1007/11737414_3
http://dx.doi.org/10.1145/263699.263763
http://dx.doi.org/10.1007/3-540-59451-5_4

172 Bringert, Ranta

Ralf Lämmel and Simon Peyton Jones. Scrap Your Boilerplate: A Practical
Design Pattern for Generic Programming. In Proceedings of the ACM SIG-
PLAN Workshop on Types in Language Design and Implementation (TLDI
2003), New Orleans, LA, USA, pages 26–37, New York, NY, USA, January
2003. ACM. doi: 10.1145/604174.604179.

Lie-Quan Lee, Andrew Lumsdaine, and Jeremy G. Siek. The Boost graph
library: user guide and reference manual. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002. ISBN 0-201-72914-8.

Daniel Leivant. Polymorphic type inference. In POPL ’83: Proceedings of
the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 88–98, New York, NY, USA, 1983. ACM. ISBN 0897910907.
doi: 10.1145/567067.567077.

Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

Conor McBride and Ross Paterson. Applicative Programming with Ef-
fects. Journal of Functional Programming, 18(1):1–13, January 2008. doi:
10.1017/S0956796807006326.

Erik Meĳer, Maarten Fokkinga, and Ross Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In Proceedings of the 5th
ACM conference on Functional programming languages and computer archi-
tecture, volume 523 of Lecture Notes in Computer Science, pages 124–144,
Heidelberg, 1991. Springer. ISBN 0387543961. doi: 10.1007/3540543961_7.

Neil Mitchell and Stefan O’Rear. Data.Derive: A User Manual, August 2007.
http://www.cs.york.ac.uk/fp/darcs/derive/derive.htm.

Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
Löf’s Type Theory: An Introduction. Oxford University Press, USA, July 1990.
ISBN 0198538146.

Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, Göteborg, Sweden, 2007. URL http://

www.cs.chalmers.se/~ulfn/papers/thesis.pdf.

Kent Petersson and Dan Synek. A set constructor for inductive sets in Martin-
Löf’s type theory. In Category Theory and Computer Science, volume 389 of
Lecture Notes in Computer Science, pages 128–140, Heidelberg, 1989. Springer.
doi: 10.1007/BFb0018349.

Simon Peyton Jones. The GHC Commentary, August 2007. http://hackage.

haskell.org/trac/ghc/wiki/Commentary.

Simon Peyton Jones. The Haskell 98 Language. Journal of Functional Pro-
gramming, 13(1):1–146, 2003a.

http://dx.doi.org/10.1145/604174.604179
http://dx.doi.org/10.1145/567067.567077
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1007/3540543961_7
http://www.cs.york.ac.uk/fp/darcs/derive/derive.htm
http://www.cs.chalmers.se/~ulfn/papers/thesis.pdf
http://www.cs.chalmers.se/~ulfn/papers/thesis.pdf
http://dx.doi.org/10.1007/BFb0018349
http://hackage.haskell.org/trac/ghc/wiki/Commentary
http://hackage.haskell.org/trac/ghc/wiki/Commentary

A Pattern for Almost Compositional Functions 173

Simon Peyton Jones. The Haskell 98 Libraries. Journal of Functional Pro-
gramming, 13(1):149–240, 2003b.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for GADTs. In ICFP ’06:
Proceedings of the eleventh ACM SIGPLAN international conference on Func-
tional programming, pages 50–61, New York, NY, USA, 2006. ACM Press.
ISBN 1595933093. doi: 10.1145/1159803.1159811.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark
Shields. Practical type inference for arbitrary-rank types. Journal of Func-
tional Programming, 17(1):1–82, 2007. doi: 10.1017/S0956796806006034.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004. ISSN
0956-7968. doi: 10.1017/S0956796803004738.

Dipanwita Sarkar, Oscar Waddell, and Kent R. Dybvig. EDUCATIONAL
PEARL: A Nanopass framework for compiler education. Journal of Functional
Programming, 15(5):653–667, 2005. doi: 10.1017/S0956796805005605.

Tim Sheard and Emir Pasalic. Two-level types and parameterized modules.
Journal of Functional Programmming, 14(5):547–587, September 2004. ISSN
0956-7968. doi: 10.1017/S095679680300488X.

Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. In Haskell ’02: Proceedings of the ACM SIGPLAN workshop on
Haskell, pages 1–16, New York, NY, USA, 2002. ACM. ISBN 1581136056.
doi: 10.1145/581690.581691.

Joost Visser. Visitor combination and traversal control. In OOPSLA ’01:
Proceedings of the 16th ACM SIGPLAN conference on Object oriented pro-
gramming, systems, languages, and applications, volume 36, pages 270–282,
New York, NY, USA, November 2001. ACM Press. ISBN 1581133359. doi:
10.1145/504282.504302.

Philip Wadler. Deforestation: transforming programs to eliminate trees. The-
oretical Computer Science, 73(2):231–248, June 1990. doi: 10.1016/0304-
3975(90)90147-A.

Noel Winstanley, Malcom Wallace, and John Meacham. The DrIFT homepage,
2007. http://repetae.net/~john/computer/haskell/DrIFT/.

http://dx.doi.org/10.1145/1159803.1159811
http://dx.doi.org/10.1017/S0956796806006034
http://dx.doi.org/10.1017/S0956796803004738
http://dx.doi.org/10.1017/S0956796805005605
http://dx.doi.org/10.1017/S095679680300488X
http://dx.doi.org/10.1145/581690.581691
http://dx.doi.org/10.1145/504282.504302
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://repetae.net/~john/computer/haskell/DrIFT/

	Abstract
	Table of Contents
	Introduction
	Interactive Natural Language Applications
	Problems

	This work
	Advantages
	Limitations

	Grammatical Framework
	An Example Application Grammar

	Paper I: Speech Recognition Grammar Compilation in Grammatical Framework
	An Example
	Contribution
	Publication

	Paper II: Multimodal Dialogue System Grammars
	An Example
	Contribution
	Publication

	Paper III: Rapid Development of Dialogue Systems by Grammar Compilation
	An Example
	Contribution
	Publication

	Paper IV: Speech Translation with Grammatical Framework
	An Example
	Contribution
	Publication

	Paper V: Interactive Multilingual Web Applications with Grammatical Framework
	An Example
	Contribution
	Publication

	Paper VI: PGF: A Portable Run-Time Format for Type-Theoretical Grammars
	An Example
	Contribution
	Publication

	Paper VII: A Pattern for Almost Compositional Functions
	An Example
	Contribution
	Publication

	Related Work
	GF in Interactive Speech Applications
	Compiler-like Grammar Development
	Embedded Languages
	Interactive Development Environments for Dialogue Systems

	Future work
	References

	Paper I: Speech Recognition Grammar Compilation in Grammatical Framework
	Introduction
	Speech Recognition Grammars
	Grammatical Framework
	The Resource Grammar Library
	An Example GF Grammar

	Generating Context-free Grammars
	Algorithm
	Discussion

	Finite-State Models
	Algorithm
	Discussion

	Semantic Interpretation
	Algorithm
	Discussion

	Related Work
	Unification Grammar Compilation
	Generating SLMs from GF Grammars

	Results
	Conclusions
	References

	Paper II: Multimodal Dialogue System Grammars
	Introduction
	The Grammatical Framework and multilingual grammars
	Extending multilinguality to multimodality
	Proof-of-concept implementation
	Transport network
	Multimodal input
	Multimodal output

	Related Work
	Conclusion
	References

	Paper III: Rapid Development of Dialogue Systems by Grammar Compilation
	Introduction
	Grammatical Framework
	Abstract Syntax
	Concrete Syntax

	An Example Dialogue System
	Abstract Syntax
	Concrete Syntax
	Example Dialogues
	Extending the Example System

	Implementation
	Dialogue Management
	Language Model and Semantic Interpretation
	Generation

	Future Work
	Dialogue flexibility
	Automatically Generated Help
	Context-dependent Prompts
	Dependent Types
	Integrated Multimodality
	Weighted Grammars

	Related Work
	Dialogue and Proof Editing
	GUI Tools for Rapid Dialogue System Development
	GF and Dialogue Systems

	Conclusions
	References

	Paper IV: Speech Translation with Grammatical Framework
	Introduction
	Example Grammar
	Speech Translator Implementation
	Evaluation
	Extensions
	Interactive Disambiguation
	Bidirectional Translation
	Larger Input Coverage

	Conclusions
	References

	Paper V: Interactive Multilingual Web Applications with Grammatical Framework
	Introduction
	Grammatical Framework
	An Example Grammar

	Syntax Editing
	GF JavaScript Syntax Editor
	User Interface
	Syntax Editing Actions
	Implementation

	Example Application: The Restaurant Review Wiki
	Description
	Implementation
	Discussion

	Related Work
	Future Work
	Conclusions
	References

	Paper VI: PGF: A Portable Run-Time Format for Type-Theoretical Grammars
	Introduction
	The syntax and semantics of PGF
	Multilingual grammar
	Abstract syntax
	Concrete syntax
	Examples of a concrete syntax
	Linearization

	Properties of PGF
	Expressive power
	Extensions of concrete syntax
	Extensions of abstract syntax

	Parsing
	PMCFG definition
	PMCFG generation
	Common subexpression elimination in PMCFG
	Parsing with PMCFG
	Parse trees

	Using PGF
	PGF operations
	PGF Interpreter API
	Compiling PGF to other formats
	Compiling GF to PGF

	Results and evaluation
	Systems using PGF

	Related work
	Conclusion
	References

	Paper VII: A Pattern for Almost Compositional Functions
	Introduction
	Some motivating problems
	The solution
	Article overview

	Abstract Syntax and Algebraic Data Types
	Compositional Functions
	Monadic compositional functions
	Generalizing composOp, composM and composFold

	Systems of Data Types
	Several algebraic data types
	Categories and trees
	Compositional operations
	A library of compositional operations
	Migrating existing programs
	Examples
	Writing Compos instances
	Properties of compositional operations

	Almost Compositional Functions and the Visitor Design Pattern
	Abstract syntax representation
	ComposVisitor
	Using ComposVisitor

	Language and Tool Support for Compositional Operations
	Related Work
	Scrap Your Boilerplate
	Catamorphisms and folds
	Two-level types
	The Tree set constructor
	Related work in object-oriented programming
	Nanopass framework for compiler education

	Conclusions
	References

