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Abstract

Scientists and engineers must ensure that the equations and formulae which
they use are dimensionally consistent, but existing programming languages treat
all numeric values as dimensionless. This thesis investigates the extension of
programming languages to support the notion of physical dimension.

A type system is presented similar to that of the programming language ML
but extended with polymorphic dimension types. An algorithm which infers most
general dimension types automatically is then described and proved correct.

The semantics of the language is given by a translation into an explicitly-
typed language in which dimensions are passed as arguments to functions. The
operational semantics of this language is specified in the usual way by an eval-
uation relation defined by a set of rules. This is used to show that if a program
is well-typed then no dimension errors can occur during its evaluation.

More abstract properties of the language are investigated using a denotational
semantics: these include a notion of invariance under changes in the units of
measure used, analogous to parametricity in the polymorphic lambda calculus.
Finally the dissertation is summarised and many possible directions for future
research in dimension types and related type systems are described.
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Chapter 1

Introduction

Dimensions are to science what types are to programming. In science and en-
gineering, dimensional consistency provides a first check on the correctness of
an equation or formula, just as in programming the typability of a program or
program fragment eliminates one possible reason for program failure.

What then of dimensions in programming? After all, the writing of a scientific
program involves turning a set of equations which model some physical situation
into a set of instructions making up a computer program. It still makes sense
to talk about the dimensions of a formula, even when represented as a program
fragment written in some programming language.

Modern programming languages are strongly-typed : this prevents errors such
as the addition of a string to a real number, or the passing of too few or too
many arguments to a function or procedure. But there are many errors which a
conventional type system cannot catch:

• Attempting to index an array outside its bounds. In most languages, this
results in a run-time error, perhaps safely raising an exception (as in Stan-
dard ML), or simply leading to undefined behaviour (as in C).

• Passing a negative number to a function which expects a non-negative
argument, such as square root. Usually it is not possible for a compiler to
determine statically when some value is negative.

• Passing two lists of different lengths to a function which expects lists of
the same length, such as zip in a functional language.

Finally, there are dimension errors:

• The addition, subtraction or comparison of two numbers which represent
quantities with different dimensions.

Existing programming languages, even those with secure type systems, treat all
numeric quantities as dimensionless. The aim of this thesis is to show how the
type system of a programming language can be modified to support the notion
of physical dimension.

1



2 Introduction

This chapter introduces some necessary concepts from science and from the
study of programming languages, and discusses the issues involved in taking the
idea of dimension from science and incorporating it into the notion of type in
programming. The rest of the dissertation is described in outline.

This introduction also contains most of the example programs used in this
dissertation, in order to motivate the more formal study of dimensions and pro-
gramming languages in subsequent chapters. All these programs are written in
Standard ML [43, 51], and a subset of this language forms the basis for the-
oretical investigations. Clearly all of the ideas would apply to any functional
language in the style of ML: these include Haskell, Miranda and Hope. They
could also be applied to other language paradigms—in fact, to any language with
a secure type system. There are the usual intricacies of assignment in the pres-
ence of polymorphism to deal with (considered by Tofte amongst others [64]),
but dimensions do not introduce any new problems here.

1.1 Dimensions

Units vs dimensions

Physical quantities are measured with reference to a unit of scale. When we
say that something is ‘6 metres long’ we mean that six metre-lengths placed
end-to-end would have the same length. The unit ‘metre’ is acting as a point of
reference, not just for the purpose of comparison (X is longer than a metre), but
also for measurement (X is six times as long as a metre). Scales of measurement
are usually linear but need not be so: amplitudes are often measured in decibels,
with reference to some fixed amplitude. There may even be a ‘false origin’, as
with measurements of temperature in degrees Celsius or degrees Fahrenheit.

A single quantity may be measured in many different systems of units. Cru-
cially, though, all the units are interconvertible—if X can be measured with
reference to a unit U , and X can also be measured with reference to a unit V ,
then U can be related to V . This leads to the notion of physical dimension,
which is an abstraction of the idea of units of measure. In a sense, the dimen-
sion of some quantity represents all possible units in which the quantity can be
measured: it is a class of similar scales. Quantities which have the same dimen-
sion can usually be compared meaningfully; quantities with different dimensions
cannot. Moreover, the former can be compared quantitatively by determining
their ratio. One colour can be compared to another, and may be described as
different, lighter, darker, or whatever, but ‘colour’ is not a dimension. On the
other hand, ‘light intensity’ certainly is a dimension, because it can be expressed
as the product of a numeric value and a unit of scale.

Base vs derived

It is usual in science to fix a set of base dimensions which cannot be defined
in terms of each other. The International System of Units (SI) defines seven of
these: length, mass, time, electric current, thermodynamic temperature, amount
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of substance and luminous intensity. Derived dimensions are then defined in
terms of existing dimensions by product and quotient operations; for example,
acceleration is distance divided by time squared. Dimensions are conventionally
written in an algebraic form inside square brackets [35], so the dimensions of
force are written [MLT−2], for example.

Similarly there are base units: the SI base dimensions just listed have respec-
tive units metres, kilograms, seconds, Amperes, Kelvin, moles and Candela. Ex-
amples of derived units include inches (0.0254 metres) and newtons (kg m s−2).

Of course, this division of dimensions and units into base and derived is
arbitrary, and one could easily work with, say, force, acceleration and velocity
instead of mass, length and time. In some circumstances it even makes sense to
adopt a more refined set of base dimensions, for example to use three different
dimensions for length measured along three different axes.

Dimensionless quantities are common in science. Examples include refractive
index, coefficient of restitution, angle and solid angle. The last two should
properly be considered dimensionless though it is tempting to think otherwise—
after all, angles and solid angles are expressed in ‘units’ of radians and steradians
respectively. Nevertheless, they are just ratios: an angle is the ratio of two
lengths (distance along an arc divided by the radius it subtends) and a solid
angle is the ratio of two areas (surface area on a sphere divided by the square of
the radius).

Dimensional consistency

Quantities with the same dimension may be added, subtracted and compared,
but quantities with different dimensions may not. In contrast, quantities of any
dimension may be multiplied or divided, giving a result whose dimension is the
product or quotient of the dimensions of the two quantities. Thus the sum of
values with dimensions velocity [LT−1] and time [T] is a dimension error, whereas
their product has dimension length [L].

If an expression is free of dimension errors, then it is said to be dimensionally
consistent. For scientists and engineers, the dimensional consistency of a formula
or equation is a very handy check on its correctness, for dimensional inconsistency
certainly indicates that something is amiss.

On the other hand, it is not necessarily true that two quantities of the same
dimension can meaningfully be compared. For example, it usually does not make
sense to compare a coefficient of restitution with a solid angle, or to compare
torque with energy, both of which have the dimension [ML2T−1].

Dimensional analysis

An equation is said to be dimensionally invariant [33, 34] or unit-free [6, 39] if
it is invariant under changes in the units of measure used. We have already seen
how a dimension can be seen as a class of units, and this interpretation leads
directly to the fact that dimensionally consistent equations are dimensionally
invariant. Often the two terms are not even distinguished, and the phrase di-
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mensionally homogeneous is used to refer to either or both. Note, however, that
a dimensionally inconsistent equation may be dimensionally invariant in a trivial
way. Taking v to stand for velocity and t for time, the equation (v−v)(v+t) = 0
is clearly wrong dimensionally, but is valid under any system of units, and hence
is dimensionally invariant.

Philosophically, it is a profound fact that physical laws are dimensionally
invariant: why should they have the same form at all scales? Leaving the philos-
ophy aside, the assumption that physical laws work at all scales leads to a very
useful technique called dimensional analysis. The idea is simple: when investi-
gating some physical phenomenon, if the equations governing the phenomenon
are not known but the parameters are known, one can use the dimensions of
the parameters to narrow down the possible form the equations may take. For
example, consider investigating the equation which determines the period of
oscillation t of a simple pendulum. Possible parameters are the length of the
pendulum l, the mass m, the initial angle from the vertical θ and the acceler-
ation due to gravity g. After performing dimensional analysis it is possible to
assert that the equation must be of the form t =

√
l/g φ(θ) for some function

φ of the angle θ. Of course it turns out that for small angles φ(θ) ≈ 2π, but
dimensional analysis got us a long way—in particular, the period of oscillation
turned out to be independent of the mass m.

In its general form, this is known as the Pi Theorem, which states that any
dimensionally consistent equation over several variables can be reduced to an
equation over a smaller number of dimensionless terms which are products of
powers of the original variables. The books by Birkhoff [6] and by Langhaar [35]
are good references for this subject; unlike many other authors they give a proper
mathematical treatment to the problem of dimensional analysis.

1.2 Types

Static types and type checking

Programmers make mistakes. Therefore the process of writing software is im-
proved if the compiler can catch some of these mistakes before a program is run.
This is one purpose of a static type system. Every identifier and expression in
the program is assigned some type, the types of larger expressions being deter-
mined by the types of their sub-expressions according to certain rules. Usually
the rules insist that types of certain sub-expressions must match up, and this
leads to the idea that some programs are ill-typed and must be rejected by the
compiler.

In imperative languages, one rule states that in an assignment command of
the form x := e the type of the expression e must match the type of the variable x.
Furthermore, the types of parameters passed to procedures must match the types
of the formal parameters in the procedure’s definition. In functional languages,
the rule for function application is crucial: an expression e1(e2) is given a type
τ2 only if the type of e1 is a function type of the form τ1 → τ2 and the argument
e2 has type τ1.
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A properly-designed static type system results in a type-safe language, one
in which “well-typed programs do not go wrong” [42]; that is, execution of a
well-typed program in the language cannot lead to a type error.

Polymorphism

The danger with insisting on a safe, static type system is that the programming
language may be too restrictive as a result. This is not just a problem of recal-
citrant programmers: a restrictive type system can inhibit code re-use. A good
example is the language Pascal. Its type system is almost safe, and its single
type loophole (variant records) is the only way in which generic code may be
written, for example to implement linked lists for any element type.

An unfortunate consequence of the restrictive nature of static type systems
of the past is that many programmers and programming language designers are
unaware of the solution: parametric polymorphism. Instead of a function or
procedure having a single type, it has many. Moreover, all of its types can be
encapsulated in a single type scheme which contains type variables acting as
placeholders for other types. The function can then be re-used in many ways
simply by substituting different types for its type variables.

Type inference

A disadvantage of static type systems of the Algol/Pascal variety is that pro-
grams must be ‘decorated’ with type declarations, one for each new identifier
introduced in the program. Programming languages with dynamic type systems,
such as LISP, do without such declarations and tend to be seen by programmers
as more interactive and more suitable for prototyping. Milner’s seminal paper on
type polymorphism [42] showed how to have one’s cake and eat it too: by means
of a type inference algorithm a valid type can be deduced for any type-correct
program without the need for type declarations in the program.

Types as properties

Types have another role: they inform. Naturally, how informative they are
depends on the expressiveness of the type system.

The type of qsort in C, for instance, just tells us that it needs a ‘pointer to
anything’, a couple of integers, and a strange function which takes two ‘pointers
to anything’ as argument and returns an integer as result. But in Standard ML,
the same function would have the type

val qsort : (’a*’a -> bool) -> ’a list -> ’a list

which immediately tells us that the elements of the list argument must have
the same type as both arguments to the function. Furthermore, the polymor-
phic type of a function can say something about the function’s behaviour. For
instance, suppose that some function written in Standard ML has the type

val f : ’a list -> int



6 Introduction

Then we know from this type that f cannot possibly ‘look at’ the values in the
list passed as an argument. This can be expressed formally by showing that the
mapping of another function down the list before passing it as argument does
not affect the value of the integer which is returned.

1.3 Dimension types

The previous two sections have illustrated the clear analogy between dimension-
checking of mathematical formulae and type-checking of programs. The connec-
tion is so obvious that already there have been many proposals for dimension
checking in programming languages [29, 24, 16, 40, 15, 3] including two along
similar lines to the system discussed here [68, 18]. There has even been some
work on applying dimension checking to formal specification of software [22].
Nevertheless, some of the usual arguments in favour of static type checking do
not apply to dimensions. First, there is no way in which a dimension error can
have unpredictable, catastrophic consequences similar to those of a conventional
type error, such as treating an integer as though it were a pointer. Secondly,
unless dimension checking is already present in the run-time system, static di-
mension checking does not catch any existing run-time errors, such as would be
avoided by static checking of array indexing, for instance. Instead, dimension
checking aims to avoid wrong answers by ruling out programs which make no
sense dimensionally.

Dimension types and dimension checking

The basic idea common to all proposals is the following: parameterise numeric
types on a dimension or unit of measure. The form that this takes varies. Some
choose to fix a set of base dimensions and then express a dimension such as
[MLT−2] as a vector of exponents (1, 1,−2). Others are more flexible and let
the programmer choose the base dimensions, combining these to form derived
dimensions in the traditional algebraic style. Three questions arise:

1. Which types are parameterised?

2. Are they parameterised on dimensions or units?

3. Are exponents of base dimensions integers or rationals?

In answer to the first question, all systems allow the type of floating-point num-
bers (loosely referred to as reals) to be parameterised on a dimension or unit.
Some also allow other types, such as complex numbers, to have a dimension,
and more sophisticated systems extend this to user-defined types too. For the
moment, we will discuss only real numbers, and write real δ to indicate the type
of reals with dimension δ.
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The choice of dimensions or units is mostly a matter of taste. The relations
which hold between dimensions also hold between the units in which those di-
mensions are measured, so for the purposes of checking consistency it does not
matter which concept we choose. (Of course this assumes that the units are
linear with origin at zero—it makes no sense to add two amplitudes measured
in decibels or to double a temperature measured in degrees Celsius). In a sense,
a dimension is an abstract data type which ‘hides’ the actual units used (it is
a class of units), and choosing to parameterise quantities on a particular unit
of measure makes this representation explicit. Hence it is only necessary to be
aware of the distinction if the language permits multiple systems of units for
a single dimension and converts automatically between different systems when
appropriate. In the languages which we study we assume some global unit of
measure for each base dimension; therefore we use the phrase dimension type to
refer to types such as realδ. Sometimes, though, we will use the units-of-measure
interpretation to give intuition to the ideas which we present.

The most important decision is whether or not to allow fractional exponents
of dimensions. The argument against them is philosophical: a quantity with a
dimension such as [M

1
2 ] makes no sense physically, and if such a thing arose, it

would suggest revision of the set of base dimensions rather than a re-evaluation of
integral exponents. The argument in favour is pragmatic: sometimes it is easier
to write program code which temporarily creates a value whose dimension has
fractional exponents. In this dissertation the former view prevails, and fractional
exponents are not considered. However, most of the theory would apply just the
same; any potential differences are highlighted as they arise.

For the examples which follow, we will adopt the following notation which
is defined formally in Chapter 2. Base dimensions are alphabetic identifiers,
usually a single upper-case letter such as M (for mass) or L (for length). In a
real programming language, these would be predeclared to the compiler. Then
dimension expressions are formed by exponentiation, such as L3 (for volume).
Dimension products are written explicitly using ‘·’, such as M ·L−3 (for density).
Finally, dimensionless quantities are written using the symbol 1, so the type of
dimensionless reals is then real 1.

Polymorphism

A monomorphic dimension type system is of limited value. For non-trivial pro-
grams we would like to write general-purpose functions which work over a range
of dimensions; in fact, even something as simple as a squaring function requires
this. Of the proposals for dimension checking in Pascal-like languages, only
House recognised this need for polymorphism [24]. In this thesis we take a more
modern view of polymorphism: the parametric polymorphism adopted by lan-
guages such as ML and Haskell. Hence the syntax of dimension expressions is
extended with dimension variables, written d, d1, d2, etc. Then the type of a
squaring function sqr would be expressed by real d → real d2. This says that
sqr accepts an argument with any dimension d and returns a result which has
dimension d2.
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Arithmetic

With dimension polymorphism, the types of built-in arithmetic and comparison
functions can be expressed directly in the system, as follows:

+, - : real d × real d → real d

* : real d1 × real d2 → real d1 · d2

/ : real d1 × real d2 → real d1 · d−1
2

sqrt : real d2 → real d

<, >, <=, >= : real d × real d → bool

Trigonometric and logarithm functions are dimensionless:

exp, ln, sin, cos, tan : real 1 → real 1

We will sometimes want to convert integers into dimensionless reals:

real : int → real 1

Constants

Numeric constants are dimensionless, except for zero, which can have any di-
mension. Without a polymorphic zero value we would not even be able to test
the sign of a number, for example, in an absolute value function:

fun abs x = if x < 0.0 then 0.0 - x else x

This has type real d → real d. Polymorphic zero is also essential as an identity
for addition in functions such as the following:

fun sum [] = 0.0
| sum (x::xs) = x + sum xs

This has the polymorphic dimension type real d list → real d, where τ list is the
type of lists with elements of type τ .

It is assumed that for each base dimension B introduced, a value of type
real B is available which acts as the default unit of measure associated with that
dimension. Other values of type real B are then constructed by multiplying this
unit by a dimensionless numeric constant.

Note that if non-zero numeric constants were polymorphic in dimension then
a value of some dimension could be coerced into a value of any other dimension
simply by multiplying by a polymorphic constant, and this could be used to
break dimensional consistency.

Dimension inference

Having to decorate programs with types is an inconvenience. Having to decorate
all numeric types with dimensions, even when one has no particular dimension
in mind, is even more of a nuisance. Fortunately it is possible for the compiler
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to infer polymorphic dimension types just as ML infers ordinary types, and as
for ML the inferred type is most general in the sense that any valid type can
be derived by substituting types and dimensions for its type and dimension
variables. The types of all of the example programs in this introduction were
deduced by the inference algorithm which is presented later.

Dimension types as scaling properties

As with conventional types, polymorphic dimension types say something about
the behaviour of a function. In this case, we can deduce certain properties of
functions with respect to scaling, that is, multiplying values of type real δ by
some positive scale factor—in effect, changing the units of measure used. For
example, knowing that a function has the polymorphic type reald×reald → reald
tells us that if the two arguments to the function are both scaled by the same
multiplier k > 0, then the result of applying the function to these arguments
will scale accordingly.

1.4 Example programs

In this section the idea of dimension types is illustrated by a series of example
programs. They are simple from the numerical analyst’s point of view, but they
serve to demonstrate the utility of dimension types whilst being small enough to
understand at a glance.

Statistics

Statistics is a rich source of examples, and most of them would commonly be
used with quantities of many different dimensions, even in the same program.
Here are some Standard ML functions which calculate the mean, variance and
standard deviation of a list of dimensioned quantities:

fun mean xs = sum xs / real (length xs)

fun variance xs =
let val n = real (length xs)

val m = mean xs
in

sum (map (fn x => sqr (x - m)) xs) / real(n - 1)
end

fun sdeviation xs = sqrt (variance xs)
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Their polymorphic types, with those of some other statistical functions, are:

mean : real d list → real d

variance : real d list → real d2

sdeviation : real d list → real d

skewness : real d list → real 1

correlation : real d1 list → real d2 list → real 1

Differentiation and integration

We can write a function which differentiates another function numerically, using
the formula

f ′(x) ≈ f(x + h) − f(x − h)
2h

.

The ML code for this accepts a function f and increment h as arguments and
returns a new function which is an approximation to the derivative of f:

fun diff(h,f) = fn x => (f(x+h) - f(x-h)) / (2.0 * h)

This has the type

real d1 × (real d1 → real d2) → (real d1 → real d2 · d−1
1 ).

Unlike the statistical examples, the type of the result is related to the type of
more than one argument. It also illustrates the expressiveness of higher-order
functions.

We can likewise integrate a function, using one of the simplest methods: the
trapezium rule [53, Section 4.1]. It is defined by the following formula, which
gives an approximation to the area under the curve defined by f in the interval
a � x � b using n + 1 values of f(x):∫ b

a
f(x) dx ≈ h

2
(f(a) + 2f(a + h) + · · · + 2f(b − h) + f(b)) , h =

b − a

n
.

Its implementation in ML is shown below:

fun integrate(f, a, b, n) =
let val h = (b-a) / real(n)

fun iter(x, 0) = 0.0
| iter(x, i) = f(x) + iter(x+h, i-1)

in
h * (f(a) / 2.0 + iter (a+h, n-1) + f(b) / 2.0)

end

This has the type

(real d1 → real d2) × real d1 × real d1 × int → real d1 · d2.
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Root finding

Below is a tiny implementation of the Newton-Raphson method for finding roots
of equations, based on the iteration of

xn+1 = xn − f(xn)
f ′(xn)

.

This method calculates a solution of f(x) = 0, making use of the derivative f ′.
The ML code is as follows:

fun newton (f, f’, x, xacc) =
let val dx = f x / f’ x

val x’ = x - dx
in

if abs dx / x’ < xacc
then x’
else newton (f, f’, x’, xacc)

end

It accepts a function f, its derivative f’, an initial guess x and a relative accuracy
xacc. Its type is

(real d1 → real d2) × (real d1 → real d−1
1 · d2) × real d1 × real 1 → real d1.

Powers

To illustrate a more unusual type, here is a function of three arguments x, y and
z:

fun powers (x,y,z) = x*x + y*y*y*y*y + z*z*z*z*z*z

This has the polymorphic type

real d15 × real d6 × real d5 → real d30.

The unusually high powers are forced by the addition of x2 to y5 to z6, and
whilst such a function is unlikely to turn up in a real program, it does illustrate
the point that dimension inference must do ‘more work’ than conventional type
inference, in this case calculating the lowest common multiple of 2, 5 and 6.

1.5 Applications

The examples just discussed typify the kind of programs that scientists and
engineers write, and the application of dimension checking to these is obvious.
However, there are many other applications which do not necessarily involve
‘physical’ quantities but would still benefit from dimensions.

Computer graphics is one such field. It depends heavily on algorithms from
computational geometry; these involve the dimension length and its derivatives.
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Three-dimensional visualisation applies the physics of light to obtain realistic
images which simulate real-world scenes. The relevant dimension here is that
of light intensity, and if the images were animated, then the dimension of time
would be required too.

It is sometimes remarked that database systems would benefit from a dose
of type theory, and much progress has been made recently on typed program-
ming languages for database query and update [61]. Dimension types would be
even better. The ‘dimension’ of commerce is money, so the salaries stored in
a commercial database would have the dimension money/time. All the usual
physical dimensions have their use too: how about electricity unit price (derived
dimension: money/energy), price of coal (dimension: money/mass) and cost of
land (dimension: money/length2)?

Even systems programming, a pure ‘computer science’ application, might
benefit from dimension checking. Operating system code deals routinely with
values of disc capacity (units: bytes per sector), CPU time (units: seconds), and
data transfer rate (units: bits per second).

To end this section, here is a real-life example of a bug which could have been
picked up by a dimension type system that required consistent use of units.

“Much to the surprise of Mission Control, the space shuttle Discovery
flew upside-down over Maui on 19 June 1985 during an attempted
test of a Star-Wars-type laser-beam missile defense experiment. The
astronauts reported seeing the bright-blue low-power laser beam em-
anating from the top of Mona Kea, but the experiment failed because
the shuttle’s reflecting mirror was oriented upward! A statement is-
sued by NASA said that the shuttle was to be repositioned so that
the mirror was pointing (downward) at a spot 10,023 feet above sea
level on Mona Kea; that number was supplied to the crew in units
of feet, and was correctly fed into the onboard guidance system –
which unfortunately was expecting units in nautical miles, not feet.
Thus the mirror wound up being pointed (upward) to a spot 10,023
nautical miles above sea level. . . ”†

Clearly this was really a problem with the human-computer interface, but it
is not hard to imagine the same situation resulting from a pure programming
error.

†Reproduced from ACM SIGSOFT Software Engineering Notes vol. 10 no. 3, July 1985,
page 10
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1.6 Outline of dissertation

The remainder of this dissertation consists of the following chapters.

Chapter 2: A dimension type system. The type system of a very small
language with dimension types is presented. Two formulations of the typ-
ing rules are given: a set which includes explicit rules for generalisation
and specialisation of type schemes, and a set of syntax-directed rules where
the structure of the expression matches the structure of its typing deriva-
tions. The system differs from conventional ML-like type systems by the
presence of equations between dimensions. The particular set of equations
required—those of an Abelian group—lead to some interesting challenges
in setting up a syntax-directed system, in particular the generalisation of
a type with respect to a type assignment.

The two formulations are proved to be equivalent.

Chapter 3: Dimension type inference. Using the syntax-directed type sys-
tem as a basis, this chapter presents a dimension type inference algorithm.
As for ordinary ML, if an expression is typable at all then there is a single
most general type which generates all possible types by substituting for
type and dimension variables.

The algorithm differs from the standard one in its employment of equational
unification: in this case, unification over Abelian groups. A unification
algorithm and its proof of correctness is presented.

After discussing some related type systems, the chapter concludes with
some refinements to the type system: the problem of finding a canonical
form in which to display types, the possibility of providing polymorphism
in recursive definitions, and some limitations of ML-style implicit polymor-
phism.

Chapter 4: Implementation. In this chapter we depart temporarily from for-
malism and discuss a working implementation of Standard ML extended
with dimension types. The extension is conservative in the sense that ex-
isting ML programs will type-check and run unchanged, but may be given
more refined types.

Chapter 5: Operational semantics. The formal semantics of the ML-like
language of Chapters 2 and 3 is given by translating it into an explicitly-
typed language in the style of System F. The semantics of this language is
then given by a set of rules which define a big-step, evaluation relation.

The operational semantics is used to prove that “well-dimensioned pro-
grams do not go wrong” in the sense that dimension errors cannot occur
at run-time.

Chapter 6: Denotational semantics. The operational semantics of the pre-
vious chapter is too clumsy to investigate more abstract properties of pro-
grams with dimension types, and to this end a denotational semantics
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based on complete partial orders is developed. The agreement of the de-
notational and operational semantics is proved (an adequacy result).

Then a logical relation over this semantics is defined and used to prove
a theorem analogous to parametricity results for polymorphically-typed
languages. In essence, this theorem expresses the dimensional invariance
of programs: that their behaviour is independent of the units of measure
used.

Chapter 7: Dimensional invariance. One consequence of the dimensional
invariance theorem is that for every dimension type there is an associated
‘scaling theorem’ valid for expressions of that type. Another application
is in proving that there are certain types which are not possessed by any
non-trivial term—for example, a dimensionally-polymorphic ‘square root’
function cannot be written in terms of the usual arithmetic primitives.
Finally it is shown how the Pi Theorem from the theory of dimensional
analysis may have an analogue in programs with dimension types.

Chapter 8: Conclusion. The dissertation is summarised, and directions for
further research in dimension types and related type systems are suggested.



Chapter 2

A dimension type system

In this chapter we make formal the idea of a dimension type system by con-
sidering a small fragment of an ML-like language with dimension types. We
call this language MLδ. It differs from conventional ML in two ways. First, in
addition to type polymorphism it supports dimension polymorphism, formalised
by type schemes which can quantify over dimensions as well as types. Second,
implicit equations hold between dimension expressions (and hence types) which
are determined by the algebraic properties of dimensions.

We start by introducing the syntax of the language, and give some necessary
definitions of concepts such as type equivalence, substitution and free variables.
Then a set of typing rules is given, similar to those for ordinary ML but with
additional rules to support dimension types.

In order to study an inference algorithm it is easier to work with a syntax-
directed variant of the rules. Because of the equational theory imposed on di-
mensions and types, the setting up of such a system is far from trivial. The
definitions of standard concepts (such as an ordering on type schemes, free vari-
ables in a type scheme, and the generalisation of a type with respect to a type
assignment) are more subtle than usual. New concepts are required too, such
as a special property of the free variables in a type assignment that is required
for generalisation to work correctly. Having prepared the ground with a series
of lemmas concerning the syntax-directed type system we prove that the two
formulations are equivalent.

The system described in this chapter and its inference algorithm have previ-
ously appeared in a slightly different form [30].

15
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2.1 Syntax

Dimensions

The syntax of dimension expressions (ranged over by δ) has the following gram-
mar:

δ ::= d dimension variables
| B base dimensions
| 1 unit dimension
| δ1 · δ2 dimension product
| δ−1 dimension inverse

Here d ranges over an infinite set of dimension variables DimVars and B ranges
over a set of base dimensions DimCons. These sets are disjoint.

Dimensions satisfy certain algebraic properties, namely those of an Abelian
group whose operation is dimension product. For example, the dimensions M ·L
and L ·M are interchangeable, and M ·M−1 is equivalent to the unit dimension 1.
Hence we require a notion of dimension equivalence. Formally, we define =D to
be a congruence on dimension expressions generated by the following equations:

δ1 · δ2 =D δ2 · δ1 commutativity
(δ1 · δ2) · δ3 =D δ1 · (δ2 · δ3) associativity

1 · δ =D δ identity
δ · δ−1 =D 1 inverses

Then the set of all dimension expressions quotiented by this equivalence forms
a free Abelian group.

We now define exponentiation of dimensions δn for any integer n:

δn =




δ · · · · · δ (n dimensions) if n > 0,

1 if n = 0,

δ−1 · · · · · δ−1 (−n dimensions) if n < 0.

With this operation as ‘scalar multiplication’, the set of dimensions can be
treated as a vector space over the integers, or more properly, a free Z-module [1,
7]. This view of dimensions is discussed in more detail in Appendix B.

Next we introduce the notion of a normal form for dimension expressions. A
dimension expression is normalised if it is in the following form:

dx1
1 · dx2

2 · · · dxm
m · By1

1 · By2
2 · · ·Byn

n , xi, yj ∈ Z \ {0}, di and Bj distinct.

This assumes some total ordering on the sets used for dimension variables and
base dimensions. When giving concrete examples we will not worry about this,
but a real implementation such as the one discussed in Chapter 4 should be
consistent in the way it displays dimensions to the user.

Alternatively, the normal form can be defined using a function which extracts
the exponent of each variable or constant in a dimension expression. This is
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defined inductively on the structure of the expression as follows:

expδ : DimVars ∪ DimCons → Z

expd(v) =

{
1 if v = d,

0 if v �= d.

expB(v) =

{
1 if v = B,

0 if v �= B.

exp1(v) = 0
expδ1·δ2(v) = expδ1(v) + expδ2(v)
expδ−1(v) = −expδ(v)

Fact. Normal forms are unique: δ1 =D δ2 if and only if expδ1 = expδ2.

We will use the notation nf(δ) to denote the normal form of the dimension
expression δ.

Types

The polymorphic types used in the introductory chapter were implicitly quan-
tified, meaning that any type variable or dimension variable in the type of an
expression was assumed to be universally quantified. In order to define a set
of formal rules for type inference, it is necessary to distinguish between simple
types, in which all type and dimension variables appear free, and type schemes,
in which some variables are bound by explicit universal quantifiers. This is re-
flected in the syntax: simple types (ranged over by τ) and type schemes (ranged
over by σ) are separate syntactic classes. We will use the word type to refer to
both simple types and type schemes.

Simple types are defined by the following grammar:

τ ::= t type variables
| bool booleans
| real δ dimensioned reals
| τ1 → τ2 function types

Here t ranges over an infinite set of type variables TyVars. The types are delib-
erately limited to just booleans, dimensioned reals and functions. Even such a
small fragment of a practical type system captures the essence of polymorphic
dimension type inference, and its extension to other base types, tuples, lists and
recursive data types would be straightforward. In Chapter 4 we describe the
implementation of an extension to the Standard ML language using the ML Kit
compiler.

Type schemes extend simple types with explicit quantification over type and
dimension variables. Their syntax is defined below:

σ ::= τ types
| ∀t.σ type quantification
| ∀d.σ dimension quantification
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For conciseness we will use v to stand for a type or dimension variable, and write
�v to indicate a list of type and dimension variables. Then type schemes all have
the general form ∀�v.τ . Often we will abuse this notation and treat �v as a set,
making statements such as v ∈ �v to mean that “the variable v is in the list of
variables �v.”

The equivalence relation introduced for dimension expressions is extended
to simple types by the obvious congruence. For type schemes, we further allow
renaming of bound type and dimension variables (alpha-conversion).

Substitution

A dimension substitution S is a map from dimension variables to dimension
expressions. This extends to a homomorphic map between dimension expres-
sions in the natural way, and to types which may have dimension components.
Composition of substitutions is defined as usual, and the identity substitution
is denoted by I. The domain of a dimension substitution is the set of variables
which it modifies with respect to dimension equivalence:

dom(S) def= { d ∈ DimVars | S(d) �=D d } .

We will write {d1 �→ δ1, . . . , dn �→ δn} to stand for a particular substitution
whose domain is {d1, . . . , dn}, or occasionally, the more concise {�d �→ �δ}.

A type substitution S is a map from type variables to type expressions.
Again, this extends to a map between type expressions, with composition of
substitutions and domain of a substitution again defined in the standard way.

A general substitution S is a pair (Sd, St) consisting of a dimension substitu-
tion Sd and a type substitution St. Its interpretation as a function from types to
types has the natural inductive definition, with Sd applied to the dimension δ in
a type real δ, and St applied to type variables in the type. The domain of such a
substitution is simply dom(Sd) ∪ dom(St); we assume that the sets TyVars and
DimVars are disjoint.

Substitutions may also be applied to type schemes. Usually we will ensure
that the substitution does not involve any of the bound variables of the scheme;
that is, they are not present in its domain and are not present in any of the
dimensions and types of its range. However, sometimes we will be slightly sloppy
and let the substitution rename bound variables to avoid variable capture. In
this case, the substitution is no longer a function but we can safely think of it
as one because of the decision to identify type schemes up to alpha-conversion.

Two substitutions are equivalent under =D if they substitute equivalent di-
mension expressions on each variable:

S1 =D S2 iff S1(v) =D S2(v) for all v ∈ DimVars ∪ TyVars.

An invertible substitution, usually denoted by U , has an inverse U−1 such that
U ◦ U−1 =D U−1 ◦ U =D I.
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Finally, we write S|V to denote the restriction of a substitution S to the
variables in a set V:

S|V(v) =

{
S(v) if v ∈ V,

v otherwise.

Free variables

The set of free dimension variables in a dimension expression δ has an obvi-
ous inductive definition which extends naturally to give the type and dimension
variables in a type expression τ . However, this notion is of limited value be-
cause equivalent dimensions may have different free variables. For example, the
dimension expression d1 · (d2 · d−1

1 ) is equivalent to d2 but the former has free
variables d1 and d2 and the latter just d2. An equational theory in which any
pair of equivalent terms have the same free variables is called regular ; our theory
is not regular due to the axiom

δ · δ−1 =D 1 (inverses)

in which the variables on either side may be different.
When we present the typing rules for a language with dimension types we

will identify types up to equivalence. The use of ‘free variables’ in the traditional
syntactic sense would then be unsound, so instead we define a more semantic no-
tion of variables in a dimension or type which is preserved under the equivalence
relation. We are only really interested in the ‘essential’ dimension variables in a
dimension expression δ: those variables on which a substitution can change the
dimension under equivalence. Formally, a variable d in a dimension expression
δ is essential if {d �→ δ′}δ �=D δ for some δ′. The normal form for a dimension
expression provides an alternative, equivalent definition: dimension variables are
essential if and only if they appear in the normal form. Formally,

fdv(δ) def= { d ∈ DimVars | expδ(d) �= 0 } .

This is the method which a real implementation would employ, either maintain-
ing dimensions in normal form or calculating expδ whenever the free dimension
variables are required.

A third view is that the essential variables in δ are those which appear in all
dimensions equivalent to δ:

fdv(δ) =
⋂{

V | δ =D δ′, V are the variables free in the expression δ′
}

.

The following lemma proves that the three definitions are equivalent.

Lemma 2.1. For any dimension expression δ and dimension variable d,

{d �→ δ′}δ �=D δ for some δ′ (1)
⇔ expδ(d) �= 0 (2)
⇔ d is present in δ′ for any δ′ such that δ =D δ′. (3)
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Proof. First observe that expδ(d) �= 0 implies that d is present in the expression
δ, and that expδ(d) = 0 implies that there is some δ′ =D δ not containing
the variable d (these are both easy to prove by induction on δ). Putting this
together with the fact that expδ = expδ′ if and only if δ =D δ′ gives the second
equivalence: (2) ⇔ (3).

For the equivalence of (1) and (2) we first prove by induction on δ that

exp{d�→δ′}δ(d
′) =

{
expδ(d) · expδ′(d′) if d = d′,
expδ(d) · expδ′(d′) + expδ(d′) otherwise.

To show (1) ⇒ (2) consider some dimension expression δ′ such that {d �→
δ′}δ �=D δ. Then exp{d�→δ′}δ(d′) �= expδ(d′) for some d′. By considering the
two cases d = d′ and d �= d′ it follows from the result above that expδ(d) �= 0 as
required. For the converse (2) ⇒ (1) we just pick δ′ = 1 and use the same
result to show that exp{d�→1}δ(d) = 0. Then exp{d�→1}δ �= expδ and hence
{d �→ 1}δ �=D δ.

With the final definition it is clear that δ1 =D δ2 implies that fdv(δ1) =
fdv(δ2). The definition can be extended to simple types in the obvious way:

fdv(t) = ∅
fdv(bool) = ∅

fdv(real δ) = fdv(δ)
fdv(τ1 → τ2) = fdv(τ1) ∪ fdv(τ2)

The set of free type variables in a simple type τ is denoted ftv(τ) and is defined
conventionally:

ftv(t) = {t}
ftv(bool) = ∅

ftv(real δ) = ∅
ftv(τ1 → τ2) = ftv(τ1) ∪ ftv(τ2)

We shall write fv(τ) to denote the set of type and dimension variables in a simple
type:

fv(τ) = ftv(τ) ∪ fdv(τ)

These definitions seem innocuous enough, but the presence of the equivalence
=D has some subtle consequences. In the case of a purely syntactic definition
of free variables such as ftv, if a substitution S is applied to a type expression τ
then the set of free variables in the resulting type has the property that

ftv(S(τ)) =
⋃

t∈ftv(τ)

ftv(S(t)).



2.1 Syntax 21

But this does not hold for our definition of free dimension variables; we only
have containment:

fdv(S(τ)) ⊆
⋃

d∈fdv(τ)

fdv(S(d)).

For a counter-example, consider the dimension type reald1 · d2 and the substitu-
tion

{
d2 �→ d−1

1

}
. In general, a substitution can cause variables to ‘vanish’ that

are not in its domain; this happens only because the equational theory is not
regular, and is the cause of most of the subtlety present in the dimension type
system.

Expressions

The syntax of expressions in the language is given by the following grammar:

e ::= x variable
| r constant
| e1 e2 application
| λx . e abstraction
| let x = e1 in e2 local definition
| letrec y(x ) = e1 in e2 recursive definition
| if e1 then e2 else e3 conditional

Here x and y range over an infinite set of value identifiers Vars, and r ranges
over rational-valued constants such as 3.14. A complete language is more likely
to allow floating-point values. The notation real was chosen merely to match up
with actual programming languages such as ML; no language actually caters for
real numbers in the sense understood by a mathematician. In any case, we will
refer loosely to values of type real δ as ‘reals’.

In order to write practical programs in the language, we assume the existence
of some built-in arithmetic functions including at least the following:

+, - : ∀d.real d → real d → real d

* : ∀d1.∀d2.real d1 → real d2 → real d1 · d2

/ : ∀d1.∀d2.real d1 → real d2 → real d1 · d−1
2

< : ∀d.real d → real d → bool

An alternative view

As mentioned at the start of this chapter, dimensions can be viewed as elements
of a vector space over the integers, or Z-module. It turns out that dimension
types, substitutions and type schemes also fit very nicely into this algebraic
setting. Moreover, when all dimension variables are drawn from a finite set
then dimensions, dimension types and substitutions can be interpreted more
concretely by vectors and matrices of integers. This viewpoint is described in
Appendix B. None of the results of this chapter or the next use it directly, but
it inspired some of the constructions used in the proofs.
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2.2 Typing rules

In this section we define the type system of MLδ through a set of typing rules.
To best explain the system we give two distinct but equivalent formulations.
The first of these is the more intuitive, with special typing rules for instantiation
and generalisation of type schemes. To motivate and prove the correctness of an
inference algorithm, we reformulate the system as a set of syntax-directed rules
where the structure of an expression uniquely determines the structure of its
typing derivations. It turns out to be surprisingly difficult to obtain a sound
syntax-directed system which leads naturally to an inference algorithm. This
is one reason for presenting the non-syntax-directed variant of the rules at all.
Another is that we want to make clear the similarity between these rules and
those for an explicitly-typed language which is presented in Chapter 5.

Non-syntax-directed rules

A type assignment Γ is a finite map between (value) variables and type schemes.
Notions of equivalence and substitution carry over from type schemes to type
assignments in the obvious way. Then a typing judgment

Γ � e : σ

means

“In the context of type assignment Γ, the expression e has type σ.”

The rules are shown in Figure 2.1. The notation Γ[x : τ ] indicates the extension
or update of the type assignment Γ with a type τ for variable x. We write
Γ �nsd e : σ to mean that there is a typing derivation with conclusion Γ � e : σ
in this non-syntax-directed system. The rules are almost the same as for a
fragment of conventional ML, for example those presented by Cardelli [9]. Apart
from the rules for constants, only two new rules are required—generalisation and
specialisation for dimensions. To incorporate the equational theory of dimensions
and types we could add a rule such as the following:

(deq)
Γ � e : τ1

Γ � e : τ2

τ1 =D τ2

This is rather like the subsumption rule found in type systems with subtyping,
except that the relation is an equivalence instead of just an ordering. Instead of
using an explicit rule such as this, we identify dimensions, types and type assign-
ments up to equivalence, which greatly simplifies matters. This identification is
sound because all the rules preserve the equivalence; in particular notice that our
notion of essential free variables is necessary for rule (dgen) to be well-defined.

There are two axioms for constant reals: one for zero, which is polymorphic in
its dimension, and one for all others, which are dimensionless. Observe that none
of the rules explicitly introduce types involving base dimensions. We assume that
in addition to the arithmetic operators already mentioned, there is a set of values



2.2 Typing rules 23

(var)
Γ � x : σ

Γ(x) = σ

(const)
Γ � r : real 1

r �= 0 (zero)
Γ � 0 : real δ

(abs)
Γ[x : τ1] � e : τ2

Γ � λx.e : τ1 → τ2

(app)
Γ � e1 : τ1 → τ2 Γ � e2 : τ1

Γ � e1 e2 : τ2

(gen)
Γ � e : σ

Γ � e : ∀t.σ
(t not free in Γ) (spec)

Γ � e : ∀t.σ

Γ � e : {t �→ τ}σ

(dgen)
Γ � e : σ

Γ � e : ∀d.σ
(d not free in Γ) (dspec)

Γ � e : ∀d.σ

Γ � e : {d �→ δ}σ

(let)
Γ � e1 : σ Γ[x : σ] � e2 : τ

Γ � let x = e1 in e2 : τ

(letrec)
Γ[x : τ1, y : τ1 → τ2] � e1 : τ1 → τ2 Γ[y : τ1 → τ2] � e2 : τ3

Γ � letrec y(x ) = e1 in e2 : τ3

(if)
Γ � e1 : bool Γ � e2 : τ Γ � e3 : τ

Γ � if e1 then e2 else e3 : τ

(Simple types and type schemes identified up to =D)

Figure 2.1: Non-syntax-directed typing rules for MLδ
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representing the default unit of measure for each base dimension. For example,
in a system with mass, length and time we would expect three unit values:

kg : real M
m : real L
s : real T

In a full language there would be a construct for declaring base dimensions along
with a default unit, such as the one described in Chapter 4. Derived units can
be obtained as multiples of the default units, for example in the fragment

let lb = 0.454*kg in . . .

Example. A derivation which illustrates most of the rules is shown in Figure A.1
in Appendix A.

Syntax-directed rules

The typing rules shown in Figure 2.1 are not syntax-directed because the rules
(gen), (dgen), (spec) and (dspec) can be applied to any expression. However,
observe that (spec) and (dspec) may only usefully be applied at the leaves of
the derivation tree just after an application of the axiom (var). Also, (gen) and
(dgen) may only usefully be applied to entail the first premise of an application
of (let). Hence the syntax-directed formulation shown in Figure 2.2 combines
(spec) and (dspec) with the (var) axiom to give a new rule (var′), and combines
(gen) and (dgen) with the (let) rule to give (let′). This is done using notions
of specialisation (�D) and generalisation (Gen(Γ, τ)) which are more general
than the single-step rules used up to now. These are discussed in the next two
sections.

In the new rules notice that all typing judgments have the form Γ � e : τ
for a simple type τ . We shall write Γ �sd e : τ to mean that there is a typing
derivation with conclusion Γ � e : τ in this system. Figure A.2 in Appendix A
shows a derivation of the same example used earlier.

2.3 Specialisation of type schemes

The (var′) rule rolls together an arbitrary number of applications of the (spec)
and (dspec) rule together with the (var) rule which picks out a type scheme from
a type assignment. To do this it uses a relation �D between type schemes and
simple types which we call specialisation. We say that a type scheme σ = ∀�v.τ
specialises to a simple type τ ′, and write σ �D τ ′, if there is a substitution R
such that

dom(R) ⊆ �v

and R(τ) =D τ ′.
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(var′)
Γ � x : τ

Γ(x) �D τ

(const)
Γ � r : real 1

r �= 0 (zero)
Γ � 0 : real δ

(abs)
Γ[x : τ1] � e : τ2

Γ � λx.e : τ1 → τ2

(app)
Γ � e1 : τ1 → τ2 Γ � e2 : τ1

Γ � e1 e2 : τ2

(let′)
Γ � e1 : τ1 Γ[x : Gen(Γ, τ1)] � e2 : τ2

Γ � let x = e1 in e2 : τ2

(letrec)
Γ[x : τ1, y : τ1 → τ2] � e1 : τ1 → τ2 Γ[y : τ1 → τ2] � e2 : τ3

Γ � letrec y(x ) = e1 in e2 : τ3

(if)
Γ � e1 : bool Γ � e2 : τ Γ � e3 : τ

Γ � if e1 then e2 else e3 : τ

(Simple types identified up to =D, type schemes up to ∼=D)

Figure 2.2: Syntax-directed typing rules for MLδ
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This is not standard notation, and unfortunately many authors use the opposite
inequality. In particular, the Definition of Standard ML [43] uses the symbol �.
However, there seems to be agreement amongst authors of papers on subtyping
that τ1 � τ2 means “τ1 is a subtype of τ2”, and its interpretation as “a value of
type τ1 may be used in place of a value of type τ2” is analogous to our interpre-
tation of specialisation. Indeed, recent work on combining Hindley-Milner type
inference with System F types [49] uses the same notation as here.

Our decision to identify type schemes up to renaming of bound variables is
usefully employed in the following lemma, which states that the specialisation
relation is preserved under arbitrary substitutions.

Lemma 2.2 (Substitutions preserve specialisation). For any substitution
S, if σ �D τ then S(σ) �D S(τ).

Proof. Let σ = ∀�v.τ , and choose �v so that they are not involved in S. Then σ �D

τ ′ if and only if there is a substitution R with domain �v such that R(τ) =D τ ′.
Now define another substitution R′ by the following:

R′(v) =

{
S(R(v)) if v ∈ �v,

v otherwise.

So R′ is the restriction of S ◦ R to �v. We now show that R′ ◦ S =D S ◦ R.
Consider some type or dimension variable v.

• If v ∈ �v then R′(S(v)) = R′(v) = S(R(v)) as required, because the domain
of S does contain any of �v.

• If v /∈ �v then S(v) is a type or dimension which does not involve any of �v.
Hence R′(S(v)) = S(v) = S(R(v)) as required because v /∈ dom(R).

Thus we have that R′(S(τ)) =D S(R(τ)) =D S(τ ′), so S(σ) �D S(τ ′) as re-
quired.

Observe that this result comes from general properties of substitutions and does
not rely on the equivalence relation =D.

Type scheme ordering

The specialisation relation can be extended to a partial order on type schemes
by the following definition. A type scheme σ specialises to a type scheme σ′,
written σ �D σ′, if for all τ such that σ′ �D τ it is the case that σ �D τ . The
following lemma provides a syntactic characterisation of this ordering analogous
to the definition of the specialisation relation.

Lemma 2.3 (Type scheme ordering). Let �v1 and �v2 be disjoint lists of type
and dimension variables. Then ∀�v1.τ1 �D ∀�v2.τ2 if and only if there is a substi-
tution R such that

dom(R) ⊆ �v1

and R(τ1) =D τ2.
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Proof.
(⇒). Clearly ∀�v2.τ2 �D τ2 by the identity substitution. Then ∀�v1.τ1 �D τ2

from the definition of the ordering on type schemes given above, and from the
definition of the specialisation relation there must be some substitution R with
the properties required.

(⇐). Consider some type τ such that ∀�v2.τ2 �D τ . Then there is some
substitution R′ such that R′(τ2) =D τ and dom(R′) ⊆ �v2. Now consider R′′ =
(R′ ◦ R)|�v1

. By the definition of specialisation this fulfils the requirements for
∀�v1.τ1 �D τ .

Using this result, Lemma 2.2 can be extended to show that the ordering on type
schemes is preserved under substitution also.

Type scheme equivalence

We make one final definition: if σ1 �D σ2 and σ2 �D σ1 then they specialise to
exactly the same types, and we write σ1

∼=D σ2. For ordinary ML types, this is
almost plain renaming, except that a scheme may quantify over superfluous type
variables which do not occur in its body. For dimension types, the equivalences
can be more subtle, as the following three cases demonstrate. For each example
we present substitutions which prove the equivalence valid by the lemma just
presented together with an appropriate renaming of bound variables to ensure
that they are disjoint. As one would expect, it is always possible to find sub-
stitutions which are inverses of each other, a fact which is proved formally by
Lemma 3.10 on page 59.

Example (a).

∀d1.∀d2.real d1 · d2 → real d1 · d2
∼=D ∀d1.real d1 → real d1.

This equivalence is justified using Lemma 2.3 by the substitutions

{ d1 �→ d1 · d−1
2 }

and { d1 �→ d1 · d2 }.
Notice how one type scheme has two bound variables but the other has only one.
In contrast to ordinary type polymorphism, the number of bound variables is
not an immediate indication of the ‘degree of polymorphism’ in a type scheme.
We will return to this point in Section 3.3 in the next chapter.

Example (b).

∀d1.∀d2.real d1 → real d2 → real d1 · d2
∼=D ∀d1.∀d2.real d1 · d−1

2 → real d−2
1 · d2 → real d−1

1 .

This equivalence is validated by the substitutions

{ d1 �→ d1 · d−1
2 , d2 �→ d2 · d−2

1 }
and { d1 �→ d−1

1 · d−1
2 , d2 �→ d−1

2 · d−2
1 }.

Unlike the first example, both type schemes have the same number of bound
variables, and there is no other equivalent scheme with fewer.
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Example (c).

∀d1.real d1 · d−1
2 · d3 → real d−1

1 · d2
∼=D ∀d1.real d

−1
1 · d3 → real d1.

The following substitutions support this equivalence:

{ d1 �→ d−1
1 · d2 }

and { d1 �→ d−1
1 · d2 }.

This example is particularly unusual, as the ‘free’ dimension variables in the
equivalent type schemes do not even coincide, if the free variables in a scheme
∀�v.τ are defined as those variables which are present in fv(τ) but not in �v.
Although by this definition the free variables are preserved under =D, they are
not preserved by equivalence up to specialisation.

Free variables in a type scheme

We require some notion of ‘essential’ free variables again. For simple types
we gave three alternative views: those variables on which a substitution could
change the type, those variables present in the normal form of the type, and
those variables present in all equivalent types. We can do the same for type
schemes as follows.

The first says that a variable v is essential in a scheme σ if S(σ) �∼=D σ for some
substitution S whose domain is {v}. If this is not the case, and no substitution
for the variable can change the type scheme, then the non-essential variable
is ‘dependent’ on one of the bound variables in the scheme. In Example (c)
above, the free variable d2 is linked to the bound variable d1 because whenever
d1 appears, d−1

2 appears too.
In the next chapter a simplification procedure is presented which calculates

for any type scheme σ a unique representative for its equivalence class under
∼=D. One property of this canonical form for type schemes is that it contains
only the essential free variables, so by making sure that type schemes remain in
this form we can use the naive method to find its free variables. For one thing
it is easy to see that the application of a capture-avoiding substitution to a type
scheme cannot introduce non-essential free variables.

Finally, the essential free variables can be viewed as those which appear in
every type to which the type scheme specialises:

fv(σ) =
⋂

{ fv(τ) | σ �D τ } .

Notice how this formulation neatly avoids mentioning the bound variables in the
type scheme explicitly. The proof that the three definitions are equivalent is
deferred until the next chapter.

Using this final definition straightforward set-theoretic reasoning leads im-
mediately to

σ1 �D σ2 ⇒ fv(σ1) ⊆ fv(σ2)
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and its corollary

σ1
∼=D σ2 ⇒ fv(σ1) = fv(σ2)

as we required.

Extension to type assignments

The definitions of type scheme ordering and type scheme equivalence extend to
type assignments in a pointwise way. Formally, Γ1 �D Γ2 if Γ1 and Γ2 share
domains and for all x ∈ dom(Γ1) it is the case that Γ1(x) �D Γ2(x). The
definition for equivalence is similar.

Likewise we define the free variables in a type assignment Γ, denoted fv(Γ),
as the union of all free variables in the type schemes present in the assignment:

fv(Γ) =
⋃

{ fv(Γ(x)) | x ∈ dom(Γ) } .

2.4 Generalisation with respect to a type assignment

The (let′) rule combines several uses of (gen) and (dgen) together with the (let)
rule which introduces a type scheme into the type assignment. Given a type
τ we would like to obtain a type scheme which is as general as possible. For
conventional ML, this means applying the rule (gen) for every type variable in τ
which does not violate the side-condition. This process is sometimes called the
closure of a type with respect to a type assignment and is defined by

Gen(Γ, τ) def= ∀�t.τ, where �t = ftv(τ) \ ftv(Γ).

In the sections which follow we show how things are not as simple when dimen-
sions are added to the type system.

The wrong way to generalise

The natural extension of the above definition to a dimension type system would
be the following:

NGen(Γ, τ) def= ∀�v.τ, where �v = fv(τ) \ fv(Γ).

Unfortunately this obvious approach has some subtle problems (NGen stands
for “naive generalisation”), noted also by Rittri in his article on polymorphic
recursion for dimension types [58]. Consider the assignment Γ = {x : real d1 · d2}
and the type τ = real d1 → real d2. Then by the rule given above,

NGen(Γ, τ) = real d1 → real d2

which introduces no polymorphism. Intuitively, though, there is something
strange about Γ: although it contains two free dimension variables, it has only
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one degree of freedom, as any substitution made for d1 can be undone by a substi-
tution made for d2. In some sense, the variables d1 and d2 are not independent.
The type τ , on the other hand, has two degrees of freedom because substitutions
made for the free variables d1 and d2 are independent. We shall see shortly
that the non-independence of d1 and d2 in the type assignment is ‘hiding’ some
polymorphism which can be extracted by a more sophisticated procedure than
NGen.

Free variable reduced form

We make the ideas above more precise by the following definition. We say that
a type scheme σ is in free variable reduced form if for any two substitutions S1

and S2,

S1(σ) ∼=D S2(σ) ⇐⇒ S1(v) =D S2(v) for all v ∈ fv(σ).

A similar definition can be made for type assignments. Its essence is that a
substitution on the free variables of a type scheme in free variable reduced form
is uniquely determined by its effect when applied to the type scheme. This is
automatically the case for free type variables, but in general there may be several
distinct dimension substitutions which have the same effect on a type scheme.

Example. The type reald1 · d2 is not in free variable reduced form because there
are substitutions which have the same effect on reald1 · d2 but different effects on
d1 or d2. Consider, for example, the identity substitution and the substitution
{ d1 �→ d2

2, d2 �→ d1 · d−1
2 }.

The importance of this notion is that the naive generalisation procedure
NGen(Γ, τ) is sound if the type assignment Γ is in free variable reduced form. It
is possible to transform an arbitrary type scheme or type assignment into free
variable reduced form by means of an invertible substitution. Algebraically, this
substitution is a change of basis.

Proposition 2.4 (Change of basis). For any type assignment Γ there is an
invertible substitution U so that U(Γ) is in free variable reduced form.

Proof. The proof is by construction and is postponed until the next chapter
when a simplification procedure is presented which calculates U .

The right way to generalise

The discussion above suggests the following method of calculating Gen:

1. Let U be an invertible substitution so that U(Γ) is in free variable reduced
form.

2. Calculate NGen(U(Γ), U(τ)) = ∀�v.U(τ) where �v = fv(U(τ)) \ fv(U(Γ)).

3. Then Gen(Γ, τ) is given by U−1(∀�v.U(τ)). This may involve renaming the
variables in �v to avoid clashes with the substitution U−1.
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Reusing the earlier example in which Γ = {x : real d1 · d2} and τ = real d1 →
real d2, a suitable substitution U is

U =
{
d1 �→ d1 · d−1

2

}
so U−1 = {d1 �→ d1 · d2} .

Then

Gen(Γ, τ) = U−1(NGen(U({x : real d1 · d2}), U(real d1 → real d2)))

= U−1(NGen({x : real d1} , real d1 · d−1
2 → real d2))

= U−1(∀d2.real d1 · d−1
2 → real d2)

= U−1(∀d3.real d1 · d−1
3 → real d3)

= ∀d3.real d1 · d2 · d−1
3 → real d3.

This is correct: it confirms our intuition that although Γ and τ have the same
free variables, the type assignment Γ has one degree of freedom less than the type
τ and so generalisation should be able to ‘uncover’ this difference to produce one
bound variable in the type scheme deduced.

In summary, here is the correct definition of Gen.

Definition 2.5.

Gen(Γ, τ) def= U−1(NGen(U(Γ), U(τ)))

where U is invertible and U(Γ) is in free variable reduced form.

An important property of Gen

In this section we prove an important property of generalisation from which all
other results we require can be derived without recourse to intricate reasoning
about the syntax of type schemes and types.

First we show that it holds in the restricted case when Γ is already in free
variable reduced form: then the naive procedure NGen(Γ, τ) is sufficient.

Lemma 2.6. Let Γ be a type assignment in free variable reduced form, let τ be
any type, and let σ = NGen(Γ, τ). Then for any substitution S,

S(σ) �D τ ′ iff there is some R such that R(Γ) ∼=D S(Γ) and R(τ) =D τ ′.

Proof. By renaming we can assume that S does not involve the bound variables in
σ, so S(σ) = ∀�v.S(τ) where �v = fv(τ)\fv(Γ). It is easy to see that fv(S(Γ))∩�v =
∅. Consider some v ∈ fv(Γ), so v /∈ �v. The assumption on S then ensures that
S(v) contains none of the variables in �v.

The two directions of the equivalence are proved as follows.
(⇒). From the definition of the specialisation relation, ∀�v.S(τ) �D τ ′

if and only if there is some substitution R′ such that R′(S(τ)) =D τ ′ with
dom(R′) ⊆ �v. Then R = R′ ◦ S has the properties required to obtain the con-
clusion: R′(S(Γ)) ∼=D S(Γ) because dom(R′) ∩ fv(S(Γ)) = ∅.

(⇐). Let R′ = R|�v. To show that R′(S(τ)) =D τ ′ we show that for all
v ∈ fv(τ) it is the case that R′(S(v)) =D R(v). Consider two possibilities:
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• If v ∈ fv(Γ) then because S(v) does not involve �v it must be true that
R′(S(v)) =D S(v). Now because Γ is in free variable reduced form, the fact
that R(Γ) ∼=D S(Γ) implies that for all v ∈ fv(Γ) we have R(v) =D S(v).
Hence R′(S(v)) =D R(v) as required.

• If v /∈ fv(Γ) then v ∈ �v so S(v) =D v. Hence R′(S(v)) =D R′(v) =D R(v)
by definition of R′.

The result for the general case then follows straightforwardly from Definition 2.5.

Proposition 2.7 (Gen). Let Γ be a type assignment, let τ be any type, and let
σ = Gen(Γ, τ). Then for any substitution S,

S(σ) �D τ ′ iff there is some R such that R(Γ) ∼=D S(Γ) and R(τ) =D τ ′.

Proof. From the definition, Gen(Γ, τ) = U−1(σ′) where σ′ = NGen(U(Γ), U(τ))
and U is an invertible substitution such that U(Γ) is in free variable reduced
form. By the previous lemma, S(U−1(σ′)) �D τ ′ if and only if there is some
substitution R′ such that

R′(U(Γ)) ∼=D (S ◦ U−1)(U(Γ)) and R′(U(τ)) =D τ ′.

Since (S ◦ U−1)(U(Γ)) ∼=D S(Γ) a suitable substitution is just R = R′ ◦ U .

Rittri’s solution to the problem of generalisation is slightly different to ours:
he finds a substitution R which is applied to the type τ before performing
naive generalisation [58]. This substitution leaves the type assignment alone,
so R(Γ) ∼=D Γ, but ‘reveals’ the additional polymorphism present in τ by a
renaming of variables. The following lemma shows how the two methods are
related by determining such a substitution using Definition 2.5.

Lemma 2.8. For any type assignment Γ and type τ ,

Gen(Γ, τ) ∼=D NGen(Γ, R(τ))

for some substitution R such that R(Γ) ∼=D Γ.

Proof. From definition, we have that

Gen(Γ, τ) = U−1(∀�v.U(τ))

where U is an invertible substitution such that U(Γ) is in free variable reduced
form, and �v = fv(U(τ)) \ fv(U(Γ)). Now let S be an invertible renaming of the
variables in �v given by

S = {�v ↔ �v0}

where �v0 are fresh. Then we can push U−1 inside the type scheme, as follows:

U−1(∀�v.U(τ)) ∼=D ∀�v0.U
−1(S(U(τ))).
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The substitution required for the result is then just R = U−1 ◦ S ◦ U . Clearly
R(Γ) ∼=D Γ because dom(S) ∩ fv(U(Γ)) = ∅. Now consider the free variables in
U(τ):

fv(U(τ)) = (fv(U(Γ)) ∩ fv(U(τ))) ∪ �v.

Then

fv(S(U(τ))) = (fv(U(Γ)) ∩ fv(U(τ))) ∪ �v0

and so

fv(U−1(S(U(τ)))) = (fv(Γ) ∩ fv(τ)) ∪ �v0.

Hence �v0 = fv(R(τ)) \ fv(Γ) as required by the definition of NGen.

Some lemmas concerning Gen

We now use Proposition 2.7 to prove a series of lemmas on which the correctness
of the type system depends.

First we show how substitutions interact with generalisation. In general,
the type scheme resulting from generalisation is less general if a substitution is
applied to the type and type assignment first. For the special case of an invertible
substitution, or change of basis, an equivalence holds: generalisation commutes
with change of basis, as one would expect.

Lemma 2.9. For any substitution S, type assignment Γ and type τ ,

S(Gen(Γ, τ)) �D Gen(S(Γ), S(τ)).

Moreover, for an invertible substitution U it is the case that

U(Gen(Γ, τ)) ∼=D Gen(U(Γ), U(τ)).

Proof.
For the first part we must show that Gen(S(Γ), S(τ)) �D τ ′ implies that

S(Gen(Γ, τ)) �D τ ′. If the premise holds then by Proposition 2.7 there is some
substitution R such that R(S(Γ)) ∼=D S(Γ) and R(S(τ)) =D τ ′. Now let R′ =
R ◦ S. Then R′(Γ) ∼=D S(Γ) and R′(τ) =D τ ′ which by Proposition 2.7 gives
S(Gen(Γ, τ)) �D τ ′ as required.

For the second part consider some τ ′ such that U(Gen(Γ, τ)) �D τ ′. Then
there is a substitution R such that R(Γ) ∼=D U(Γ) and R(τ) =D τ ′. Now let
R′ = R ◦U−1. Then R′(U(Γ)) ∼=D R(Γ) ∼=D U(Γ) and R′(U(τ)) =D R(τ) =D τ ′

so by Proposition 2.7 Gen(U(Γ), U(τ)) �D τ ′ as required.

In the general case when S is not necessarily invertible we have the following
equivalence result. Before presenting it we introduce one new concept. The
restriction of a substitution S to a type assignment Γ is a substitution S0 such
that
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• S0(Γ) ∼=D S(Γ).

• For any other substitution S′ such that S′(Γ) ∼=D S(Γ) there is some
substitution R such that S′ =D R ◦ S0.

In the terminology of unification theory, S0 is a most general matcher of Γ to
S(Γ). In the absence of the equivalence =D, this is just a complicated way of
defining the restriction of a substitution S to the variables in a type assignment
Γ, that is S|fdv(Γ). In the presence of =D, this is only the case if Γ is in free
variable reduced form, as can be verified easily from the definition on page 30. It
is also easy to see that if the restriction of S ◦U−1 to U(Γ) is R for an invertible
substitution U , then the restriction on S to Γ is S0 = R ◦ U . Hence using
Proposition 2.4 to obtain a suitable substitution U we can always find S0.

Lemma 2.10. For any substitution S, type assignment Γ and type τ , there is
some other substitution S0 such that S(Γ) ∼=D S0(Γ) and

S(Gen(Γ, τ)) ∼=D Gen(S0(Γ), S0(τ)).

Proof. Let S0 be the restriction of S to Γ. Then the two directions of the
equivalence can be proved as follows.

(�D). From Proposition 2.7, if Gen(S0(Γ), S0(τ)) �D τ ′ then there is a
substitution R such that R(S0(Γ)) ∼=D S0(Γ) and R(S0(τ)) =D τ ′. Let R′ =
R◦S0. Then R′(Γ) ∼=D S(Γ) and R′(τ) =D τ ′ so S(Gen(Γ, τ)) �D τ ′ as required.

(�D). From Proposition 2.7, if S(Gen(Γ, τ)) �D τ ′ then there is some sub-
stitution R such that R(Γ) ∼=D S(Γ) and R(τ) =D τ ′. Then from the definition
of S0 we know that R =D R′ ◦ S0 for some R′. Hence R′(S0(Γ)) ∼=D S0(Γ) and
R′(S0(τ)) =D τ ′ which entails Gen(S0(Γ), S0(τ)) �D τ ′ as required.

If a substitution leaves a type scheme fixed, then it will do the same for a
more general type scheme. The same is true for type assignments.

Lemma 2.11. If S(σ2) ∼=D σ2 and σ1 �D σ2 then S(σ1) ∼=D σ1. Also, if
S(Γ2) ∼=D Γ2 and Γ1 �D Γ2 then S(Γ1) ∼=D Γ1.

Proof. We show first that the result holds if σ2 is in free variable reduced form.
In this case, if S(σ2) ∼=D σ2 then S(v) =D v for all v ∈ fv(σ2). Also, σ1 �D σ2

implies that fv(σ1) ⊆ fv(σ2) (by our definition of essential free variables), so
clearly it must be the case that S(σ1) ∼=D σ1 also.

For the general case, let U be an invertible substitution so that U(σ2) is in free
variable reduced form. Then we can write S(σ2) ∼=D σ2 as S(U−1(U(σ2))) ∼=D

σ2, and apply U to both sides to obtain

(U ◦ S ◦ U−1)(U(σ2)) ∼=D U(σ2).

We also have that U(σ1) �D U(σ2), so using the result for the special case proved
above we obtain

(U ◦ S ◦ U−1)(U(σ1)) ∼=D U(σ1).
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Then by applying U−1 to both sides we get S(σ1) ∼=D σ1 as required.
The same result for type assignments follows by a simple induction on the

size of the type assignment.

This lemma is then used to prove that generalisation of a fixed type τ pre-
serves the specialisation ordering.

Lemma 2.12. If Γ1 �D Γ2 then Gen(Γ1, τ) �D Gen(Γ2, τ).

Proof. We must show for any τ ′ that Gen(Γ2, τ) �D τ ′ implies Gen(Γ1, τ) �D τ ′.
From Proposition 2.7 there must be a substitution R such that R(Γ2) ∼=D Γ2 and
R(τ) =D τ ′. Then from Lemma 2.11 R(Γ1) ∼=D Γ1 also. Hence Gen(Γ1, τ) �D τ ′

as required.

2.5 Properties of syntax-directed derivations

We have now discussed in detail the notions of specialisation and generalisation
required by the syntax-directed typing rules of Figure 2.2. To simplify the re-
maining proofs of this chapter and the proofs in the next, we assume that type
schemes and type assignments in these rules are identified up to the equivalence
∼=D. This identification is sound for the following reasons:

• Specialisation in (var′) preserves the equivalence by definition, that is, if
σ1 �D τ and σ1

∼=D σ2 then σ2 �D τ .

• Generalisation in (let′) preserves equivalence by a corollary of Lemma 2.12:
if Γ1

∼=D Γ2 then Gen(Γ1, τ) ∼=D Gen(Γ2, τ).

• Substitutions preserve equivalence, that is, if σ1
∼=D σ2 then S(σ1) ∼=D

S(σ2) and likewise for type assignments.

We now prove two lemmas concerning syntax-directed typing derivations.
The first shows that if a type for e can be obtained in the context of a type
assignment Γ2, then the same type can be obtained under a more general type
assignment Γ1.

Lemma 2.13 (Context generalisation). If Γ2 �sd e : τ and Γ1 �D Γ2 then
Γ1 �sd e : τ .

Proof. By induction on the structure of e. We present only the cases for variables
and let constructs; the rest are straightforward.

• For a variable x we have the derivation

(var′)
Γ2 � x : τ

under the side-condition that Γ2(x) �D τ . Now Γ1(x) �D Γ2(x) so the
required derivation follows directly from the definition of �D as a binary
relation on schemes.
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• A let construct must have the following typing derivation:

Γ2 � e1 : τ1 Γ2[x : Gen(Γ2, τ1)] � e2 : τ2
(let′)

Γ2 � let x = e1 in e2 : τ2

By the induction hypothesis there must be a derivation of Γ1 � e1 : τ1.
Then from Lemma 2.12 we can infer that Gen(Γ1, τ1) �D Gen(Γ2, τ1) and
hence apply the induction hypothesis to the second premise to get a deriva-
tion of

Γ1[x : Gen(Γ1, τ1)] � e2 : τ2.

The result then follows by an application of the (let′) rule.

If a typing derivation Γ �sd e : τ contains free type or dimension variables,
then it represents a kind of derivation scheme from which other less general
derivations may be obtained by substitution for those free variables. This is
proved by the following lemma.

Lemma 2.14 (Substitution on a derivation). For any derivation Γ �sd e :
τ and substitution S there is a derivation S(Γ) �sd e : S(τ).

Proof. First we assume that no bound variables in Γ are in dom(S) or are in-
troduced by S. This can be ensured by renaming all bound variables. Then we
proceed by induction on the structure of e. Only the cases for variables and let
constructs are of interest.

• A variable x must have the derivation

(var′)
Γ � x : τ

and from the side-condition we know that Γ(x) �D τ . Then S(Γ)(x) �D

S(τ) because by Lemma 2.2 the specialisation relation is preserved under
substitutions. The result follows immediately.

• A let construct has the derivation

Γ � e1 : τ1 Γ[x : Gen(Γ, τ1)] � e2 : τ2
(let′)

Γ � let x = e1 in e2 : τ2

Applying the induction hypothesis to the second premise gives a derivation
of

S(Γ)[x : S(Gen(Γ, τ1))] � e2 : S(τ2).

Then from Lemma 2.10 we know that there is a substitution R such that
R(Γ) ∼=D S(Γ) and Gen(R(Γ), R(τ1)) ∼=D S(Gen(Γ, τ1)). Substituting
these into the derivation gives

R(Γ)[x : Gen(R(Γ), R(τ1))] � e2 : S(τ2)
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and applying the induction hypothesis to the first premise produces a
derivation of

R(Γ) � e1 : R(τ1).

These two derivations can be combined using the (let′) rule to give

R(Γ) � e1 : R(τ1) R(Γ)[x : Gen(R(Γ), R(τ1))] � e2 : S(τ2)
(let′)

R(Γ) � let x = e1 in e2 : S(τ2)
.

This is the derivation we require because R(Γ) ∼=D S(Γ).

2.6 Equivalence of the two formulations

We now prove that the syntax-directed and non-syntax-directed rules permit
equivalent typings. There is a similar proof in Henglein’s paper on polymorphic
recursion [23]. The obvious statement (that Γ �nsd e : τ if and only if Γ �sd e : τ)
comes about as a special case of the following more general result.

Proposition 2.15 (Equivalence of formulations). For any type assignment
Γ and expression e it is the case that

Γ �nsd e : σ if and only if for all τ such that σ �D τ, Γ �sd e : τ.

Proof. By renaming we can ensure that all bound variables in the type assign-
ment Γ are distinct from free variables in Γ and σ. Then the proof proceeds as
follows.

(⇒). By induction on the structure of the derivation. We give the more
interesting cases.

• The derivation is a single application of (var).

(var)
Γ � x : σ

From the side-condition we know that Γ(x) = σ so we can immediately
construct the required derivation using (var′) for any τ such that σ �D τ .

• The last rule was (dgen).

Γ � e : σ
(dgen)

Γ � e : ∀d.σ
d not free in Γ

By the induction hypothesis, for any τ ′ such that σ �D τ ′ there is a deriva-
tion Γ �sd e : τ ′. Then by Lemma 2.14 (substitution on a derivation), and
making use of the side-condition, for any dimension δ there is a derivation
Γ �sd e : {d �→ δ}τ ′. Now because ∀d.σ �D τ if and only if σ �D τ ′ where
τ = {d �→ δ}τ ′ for some δ, we have the result as required.

The case for (gen) is similar.
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• The last rule was (dspec).

Γ � e : ∀d.σ
(dspec)

Γ � e : {d �→ δ}σ

If {d �→ δ}σ �D τ then clearly ∀d.σ �D τ . Then applying the induction
hypothesis to the premise gives a derivation Γ �sd e : τ as required.

The case for (spec) is similar.

• The last rule was (let).

Γ � e1 : ∀�v.τ1 Γ[x : ∀�v.τ1] � e2 : τ2
(let)

Γ � let x = e1 in e2 : τ2

By the induction hypothesis, for any τ such that ∀�v.τ1 �D τ there is a
derivation

Γ �sd e1 : τ. (1)

Similarly, by applying the induction hypothesis we can obtain a syntax-
directed derivation of the second premise. Now it is clear from Proposi-
tion 2.7 that Gen(Γ, τ1) �D ∀�v.τ1 if fv(Γ) ∩ �v = ∅, which is ensured by
our assumption about bound variables. Then by Lemma 2.13 there is a
derivation of

Γ[x : Gen(Γ, τ1)] �sd e2 : τ2 (2)

and putting (1) and (2) together gives the following derivation, as required.

Γ � e1 : τ1 Γ[x : Gen(Γ, τ1)] � e2 : τ2
(let′)

Γ � let x = e1 in e2 : τ2

(⇐). By induction on the structure of e. Again we consider only the inter-
esting cases.

• The expression is a variable. Then we have the following syntax-directed
derivation:

(var′)
Γ � x : τ

Γ(x) �D τ

Let Γ(x) = ∀v1 . . . vn.τ ′. Then from the definition of specialisation there
is a substitution R with dom(R) ⊆ {v1, . . . , vn} such that R(τ ′) =D τ .
Moreover, provided that the range of R does not involve the variables in
its domain (which was ensured by renaming), then R can be written as the
composition of n substitutions

Rn ◦ · · · ◦ R1
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where each Ri is a single type or dimension substitution having the form
{vi �→ τi} or {vi �→ δi}. Then the equivalent derivation in the non-syntax-
directed system is the following:

(var)
Γ � x : ∀v1 . . . vn.τ ′

==================== (spec and dspec).
Γ � x : (Rn ◦ · · · ◦ R1)(τ ′)

• The expression is a let construct with a derivation as follows:

Γ � e1 : τ1 Γ[x : Gen(Γ, τ1)] � e2 : τ2

Γ � let x = e1 in e2 : τ2

By Lemma 2.8 there must be some substitution R such that R(Γ) ∼=D Γ
and Gen(Γ, τ1) ∼=D NGen(Γ, R(τ1)). From definition NGen(Γ, R(τ1)) =
∀�v.R(τ1) where �v = fv(R(τ1)) \ fv(Γ). Then by Lemma 2.14 we can apply
R to obtain syntax-directed derivations of

Γ � e1 : R(τ1)
and Γ[x : ∀�v.R(τ1)] � e2 : τ2.

Next we apply the induction hypothesis to get derivations of both of these
in the non-syntax-directed system, and use rule (gen) or rule (dgen) for
each variable in �v to form the required derivation as follows:

Γ � e1 : R(τ1)
============= (dgen, gen)
Γ � e1 : ∀�v.R(τ1) Γ[x : ∀�v.R(τ1)] � e2 : τ2

(let)
Γ � let x = e1 in e2 : τ2

2.7 Normalising a typing derivation

The case for (let′) in the above proof of equivalence suggests a method of trans-
forming any syntax-directed derivation into one which uses only the naive gen-
eralisation procedure NGen. The following lemma proves that this is possible.

Lemma 2.16. If Γ �sd e : τ then there is another derivation in which every
(let′) rule uses just NGen.

Proof. By induction on the structure of the derivation. The only case of interest
is that for (let′):

Γ � e1 : τ1 Γ[x : Gen(Γ, τ1)] � e2 : τ2
(let′)

Γ � let x = e1 in e2 : τ2

From Lemma 2.8 there must be some substitution R such that R(Γ) ∼=D Γ and
Gen(Γ, τ1) ∼=D NGen(Γ, R(τ1)). From definition NGen(Γ, R(τ1)) = ∀�v.R(τ1)
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where �v = fv(R(τ1)) \ fv(Γ). Then by Lemma 2.14 we can apply R to the
derivations to obtain

Γ � e1 : R(τ1)
and Γ[x : ∀�v.R(τ1)] � e2 : τ2.

Next we apply the induction hypothesis to get suitable derivations of both of
these, and hence apply the (let′) rule using only naive generalisation:

Γ � e1 : ∀�v.R(τ1) Γ[x : ∀�v.R(τ1)] � e2 : τ2
(let′)

Γ � let x = e1 in e2 : τ2

This normalisation process is used in Chapter 5 to facilitate a translation from
the implicitly-typed language MLδ described here into an explicitly-typed lan-
guage Λδ.



Chapter 3

Dimension type inference

Type inference is the process of finding a valid type τ for an expression e which
contains no explicit type information. For ML there is a well-known type infer-
ence algorithm, due to Damas and Milner [13], which deduces a most general
type τ in the sense that any other valid type can be obtained from τ by sub-
stituting for its free type variables. In this chapter we show how this algorithm
can be adapted to find a most general dimension type whose valid instances are
obtained by substituting for its free type and dimension variables.

A process central to type inference is the unification of types. In conventional
type inference, syntactic unification is used, but to infer dimension types it is
necessary to unify types with respect to the equivalence relation =D defined in
the last chapter. In Section 3.1 we study this problem, beginning with a general
overview of equational unification. For the particular case of dimension types,
it turns out that the unification problem shares with syntactic unification the
important property that for any two types which are unifiable there is a unique
most general unifier. Armed with this fact, in Section 3.2 we show that the
inference algorithm finds the most general type of any typable expression, or
reports failure if no type exists. Then in Section 3.3 we look at the problem
of finding a unique form for displaying principal types, which is an important
feature of a real implementation. It turns out that the simplification algorithm
used for this purpose can also be used to calculate the invertible substitution
required by the generalisation procedure during type inference. Related type
systems are described in Section 3.4. Finally we discuss some refinements to
the system which would allow more expressions to be typed: the possibility of
providing polymorphism in recursive definitions, the extra power that dependent
types would give, and the increase in expressiveness permitted by polymorphism
in function arguments and results. These motivate the introduction of a more
richly-typed language in Chapter 5.

3.1 Unification

In order to construct a typing derivation working backwards from the conclusion
to the premises it is necessary to guess some of the types of the premises, by
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generating fresh type and dimension variables, and then unify appropriate types
to obtain a valid typing. This process of unification is at the heart of ML type
inference.

The dimension type system differs from ML in one important respect: types
are identified up to equivalence under =D. Therefore the inference algorithm
must unify types up to this equivalence, in contrast to the free unification em-
ployed in conventional ML type inference. This use of equational unification in
a type inference algorithm is unusual; another example is in Thatte’s automatic
generation of coercions between data representations [62].

Syntactic vs semantic unification

The problem of syntactic, or free, unification is the following. Given two terms
τ1 and τ2, find a substitution S such that S(τ1) = S(τ2). This substitution is
called a unifier of τ1 and τ2. Syntactic unification has the property that if any
unifier exists at all, then there is a unique most general unifier S from which any
other unifier can be derived. Formally, for any unifier S′ there is a substitution
R such that S′ = R ◦ S.

Syntactic unification is decidable; the original algorithm is due to Robin-
son [59] and there have been many more efficient algorithms designed since.

Given an equational theory E such as the one described here for dimension
expressions, one can pose a semantic or equational unification problem by re-
placing ordinary syntactic equality with the equivalence relation induced by the
theory (written =E). In the general case, we are given a set of E-unification
problems each of which is a pair of terms τ1 and τ2. Then a substitution S is an
E-unifier of this set if S(τ1) =E S(τ2) for every pair (τ1, τ2) in the set.

Sets of most general unifiers

In contrast to the free theory, for many equational theories unique most general
unifiers do not exist. An example is the equational theory C (standing for
commutativity) induced by the equation

τ1 + τ2 =C τ2 + τ1.

Consider the unification problem

x1 + x2
?=C c1 + c2

where x1 and x2 are variables, and c1 and c2 are constants. This has two unifiers,
{x1 �→ c1, x2 �→ c2} and {x1 �→ c2, x2 �→ c1}, neither of which is more general
than the other.

Instead of a single most general unifier, for many E-unification problems
there is a set of most general unifiers from which any other unifier can be de-
rived [27]. To formalise this notion we make some preliminary definitions. We
say that S1 �E S2 (substitution S1 “is more general than” substitution S2) if
there is a substitution R such that R ◦S1 =E S2. The notation S1 ≡E S2 means
that S1 �E S2 and S2 �E S1.
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Then a set of unifiers U is complete if for any unifier S′ there is some S ∈ U
such that S �E S′. This just says that the elements of U generate all unifiers by
instantiation.

Finally, U is said to be a complete set of most general unifiers if in addition
to completeness it has the property that for any two unifiers S1, S2 ∈ U such
that S1 �E S2 it is the case that S1 = S2.

Classification of theories

The notion of a complete set of most general unifiers U can be used to classify
equational theories in the following way.

• If U always has at most one element then the theory is unitary.

• If U is always finite then the theory is finitary.

• If U is possibly infinite then the theory is infinitary.

By this classification, free unification is unitary.
The presence of free constant symbols (such as the base dimensions in a

dimension δ) and free function symbols (such as arrows in a type τ) complicates
matters. It can affect the classification of a theory: the equational theory AC1
containing axioms for associativity, commutativity and identity is unitary in the
absence of free constants but becomes finitary when constants are introduced.
A unification problem is called pure if it does not contain constants; if constants
are present then it is called applied.

The equational theory for dimension types

The equations defining =D over dimensions are precisely the axioms of Abelian
groups. We are very fortunate in that unification is unitary for Abelian groups
with free nullary constants (our base dimensions). So if a unifier exists at all
then there is a unique most general unifier from which all others can be derived
by instantiation. Furthermore, there is an algorithm which will find this most
general unifier if it exists, or report failure if it does not. Before describing this
algorithm, it is worth mentioning that some survey papers on unification classify
Abelian group unification as finitary [60]. However, this refers to unification in
the presence of arbitrary free constants, which may include function symbols.
Consider the unification problem

x · (y ⊕ z) ?=D w · (a ⊕ b)

where w, x, y and z are variables, a and b are free constants, and ⊕ is a free
binary function symbol. Then the unifiers

{x �→ w, y �→ a, z �→ b}

and

{x �→ a ⊕ b, w �→ y ⊕ z}
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are incomparable and there is no unifier which is more general than both of
them.

Take away the free function symbols, and the problem becomes unitary [2, 8].
In type expressions such as real d1 → real d2 we do have free function symbols:
the unary real and binary →. However, the stratification of the syntax into di-
mensions and types means that these cannot occur inside a dimension expression
such as that in the type real (d1 → d2). This ensures that the problem remains
unitary even at the level of types.

Unification of dimensions

First we note that the unification of two dimensions δ1 and δ2 can be reduced
to the unification of δ1 · δ−1

2 and 1. Therefore we will refer to the “unification
of δ” to mean finding a substitution S such that S(δ) =D 1. Suppose that the
normal form of δ is

dx1
1 · · · dxm

m · By1
1 · · ·Byn

n .

In fact the constant part can be reduced to Bg, where g = gcd(y1, . . . , yn). Then
the problem of unification can be seen to be equivalent to the problem of finding
all solutions in integers z1, . . . , zm to the linear equation

x1z1 + · · · + xmzm + g = 0.

There are standard algorithms to solve this problem [48, 32]; we use Knuth’s,
which is essentially an adaptation of Euclid’s greatest common divisor algorithm.
Lankford, Butler and Brady were the first to apply such algorithms to unification
in Abelian groups [36], but they did not consider any particular algorithm in
detail. We take a more direct approach and present an algorithm and its proof
of correctness.

The unification algorithm DimUnify is shown in Figure 3.1. Although it is
presented as a recursively-defined function, it is easier to think of it iteratively.
A substitution is built up incrementally, on each iteration reducing the size of the
smallest exponent in the dimension expression by means of an invertible substi-
tution. When only one variable remains (m = 1), the algorithm either completes
the unifier by substituting an appropriate constant dimension or reports failure
if no such substitution exists. Take care to note that the form of δ changes for
each iteration: our identifiers d1, . . . , dm may refer to different actual dimension
variables on different iterations.

The correctness of the algorithm divides into two. First we show that when
the algorithm terminates with a substitution S then this is indeed a unifier
(soundness). Then we show that whenever a unifier exists then this is an instance
of the most general unifier returned by the algorithm (completeness).
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DimUnify(δ) =
let nf(δ) = dx1

1 · · · dxm
m · By1

1 · · ·Byn
n

where |x1| � · · · � |xm|
in

if m = 0 and n = 0 then I

else if m = 0 and n �= 0 then fail

else if m = 1 and x1 | yi for all i then
{

d1 �→ B−y1/x1

1 · · ·B−yn/x1
n

}
else if m = 1 otherwise then fail

else S ◦ U where
U =

{
d1 �→ d1 · d−�x2/x1�

2 · · · d−�xm/x1�
m · B−�y1/x1�

1 · · ·B−�yn/x1�
n

}
S = DimUnify(U(δ))

Figure 3.1: Algorithm DimUnify

Theorem 3.1 (Soundness and completeness of DimUnify). For any δ the
algorithm DimUnify(δ) terminates with failure or with a substitution S, and:

• If DimUnify(δ) = S then S(δ) =D 1.

• If S′(δ) = 1 then DimUnify(δ) = S such that S′ =D R ◦ S for some
substitution R.

Proof. By induction on µ(δ), where µ is the following function (with m and x1

in δ defined as in Figure 3.1):

µ(δ) =

{
0 if m = 0 or m = 1,

|x1| otherwise.

• If m = 0 then the result follows immediately.

• If m = 1 and x1 divides all of {y1, . . . , yn} then clearly the substitution

S =
{

d1 �→ B−y1/x1

1 · · ·B−yn/x1
n

}
is a unifier as required. For the second part of the result, the arbitrary
unifier S′ must satisfy

S′(dx1
1 ) =D B−y1

1 · · ·B−yn
n .

Clearly this can only be the case if x1 divides all of {y1, . . . , yn}. Now
let R be a substitution equal to S′ except at d1 where R(d1) = d1. Then
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Unify(bool, bool) = Unify(t, t) = I

Unify(t, τ) = Unify(τ, t) =

{
fail if t ∈ ftv(τ),
{t �→ τ} otherwise.

Unify(τ1 → τ2, τ3 → τ4) = S2 ◦ S1

where S1 = Unify(τ1, τ3)
and S2 = Unify(S1(τ2), S1(τ4))

Unify(real δ1, real δ2) = DimUnify(δ1 · δ−1
2 )

Unify(?, ?) = fail

Figure 3.2: Algorithm Unify

S′ =D R ◦S where S is the substitution returned by the algorithm, shown
above.

• If m > 1 then by a simple calculation we obtain

U(δ) =D dx1
1 · dx2modx1

2 · · · dxmmodx1
m · By1modx1

1 · · ·Bynmodx1
n .

Now if x1 divides all of {x2, . . . , xm} then µ(U(δ)) = 0. Otherwise there is
some non-zero (xi mod x1) smaller in magnitude than x1 so µ(U(δ)) <
µ(δ). Hence we can apply the induction hypothesis and deduce that
S(U(δ)) =D 1. For completeness we use the fact that invertible substi-
tutions preserve most general unifiers. Observe that U is invertible, as
any substitution of the form {d �→ d · δ} with d /∈ fdv(δ) has inverse
{d �→ d · δ−1}. Now consider an arbitrary unifier S′ of δ. Then S′ ◦ U−1

is a unifier of U(δ). By the induction hypothesis there must be some sub-
stitution R such that S′ ◦ U−1 =D R ◦ S. Hence S′ =D R ◦ S ◦ U as
required.

Unification of types

Any standard algorithm for syntactic unification can be extended to support
dimension unification simply by adding a new clause which unifies δ1 and δ2

whenever it is required to unify real δ1 and real δ2. A naive but concise algo-
rithm is shown in Figure 3.2. It is straightforward to prove that this algorithm
does compute the most general unifier of two types if one exists, making use of
Theorem 3.1 in the base case.
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Theorem 3.2 (Soundness and completeness of Unify). For any two type
expressions τ1 and τ2 the algorithm Unify(τ1, τ2) terminates with failure or with
a substitution S, and:

• If Unify(τ1, τ2) = S then S(τ1) =D S(τ2).

• If S′(τ1) =D S′(τ2) then Unify(τ1, τ2) = S such that S′ =D R ◦ S for some
substitution R.

Proof. By induction on the structure of τ1.

3.2 Inference

Figure 3.3 shows the inference algorithm. In essence it is the same as Damas and
Milner’s original algorithm [13]. We have omitted the clauses for conditionals and
for recursion, as these can be expressed easily by extending the type assignment
with constants cond and fix of appropriate type.

Usually the generation of fresh type variables is left implicit, and would be im-
plemented most naturally using imperative features of a programming language.
Unfortunately this makes a thorough proof of completeness rather intricate in
its treatment of free variables and substitutions. Instead, the algorithm pre-
sented here is purely functional, maintaining a set of ‘used’ type and dimension
variables so that fresh variables are generated away from this set.

The algorithm operates as follows. Given a type assignment Γ, an expression
e and a set of type and dimension variables V with fv(Γ) ⊆ V, then Infer(V, Γ, e)
either indicates failure or returns a triple (V ′, S, τ) consisting of an updated set of
used variables V ′ ⊇ V, a substitution S and a type τ . The following soundness
result states that a successful outcome (V ′, S, τ) implies that there is a valid
typing derivation S(Γ) �sd e : τ .

Theorem 3.3 (Soundness of Infer). If Infer(V, Γ, e) = (V ′, S, τ) then there is
a typing derivation S(Γ) �sd e : τ .

Proof. See Appendix C.

The completeness result states that if a valid typing exists then it is an
instance of the typing returned by the algorithm. To be precise, for any valid
typing S(Γ) �sd e : τ with fv(Γ) ⊆ V the algorithm will return a triple (V ′, S0, τ0)
such that S =D R ◦ S0 and τ =D R(τ0) for some substitution R.

Theorem 3.4 (Completeness of Infer). If S(Γ) �sd e : τ and fv(Γ) ⊆ V then
Infer(V, Γ, e) succeeds with result (V ′, S0, τ0) such that

S =D R ◦ S0 and τ =D R(τ0)

for some substitution R.

Proof. See Appendix C.
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Infer(V, Γ, x) = (V ∪ �v′, I, {�v �→ �v′}τ)
where

Γ(x) is ∀�v.τ
�v′ are type and dimension variables not in V

Infer(V, Γ, 0) = (V ∪ {d}, I, real d)
where

d is a dimension variable not in V

Infer(V, Γ, r) = (V, I, real 1)

Infer(V, Γ, e1 e2) = (V2 ∪ {t}, (S3 ◦ S2 ◦ S1)|V , S3(t))
where

(V1, S1, τ1) = Infer(V, Γ, e1)
(V2, S2, τ2) = Infer(V1, S1(Γ), e2)
S3 = Unify(S2(τ1), τ2 → t)
t is a type variable not in V2

Infer(V, Γ, λx.e) = (V ′, S|V , S(t) → τ)
where

(V ′, S, τ) = Infer(V ∪ {t}, Γ[x : t], e)
t is a type variable not in V

Infer(V, Γ, let x = e1 in e2) = (V2, S2 ◦ S1, τ2)
where

(V1, S1, τ1) = Infer(V, Γ, e1)
(V2, S2, τ2) = Infer(V1, S1(Γ)[x : σ], e2)
σ = Gen(S1(Γ), τ1)

InferScheme(Γ, e) = (S0, σ0)
where

(−, S0, τ0) = Infer(fv(Γ), Γ, e)
σ0 = Gen(S0(Γ), τ0)

Figure 3.3: Algorithm Infer
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These results can also be expressed in terms of type schemes. The function
InferScheme shown in Figure 3.3 applies the inference algorithm and then uses
Gen to obtain a type scheme. We introduce some terminology: σ is a principal
type scheme of e under Γ if

Γ � e : τ if and only if σ �D τ.

Then the soundness and completeness results can be re-expressed as follows.

Corollary 3.5 (Soundness of InferScheme). If InferScheme(Γ, e) = (S0, σ0)
then σ0 is a principal type scheme of e under S0(Γ).

Proof. Let Infer(fv(Γ), Γ, e) = (S0, τ0) and σ0 = Gen(S0(Γ), τ0). Then both
directions of the equivalence are proved as follows.

(⇒). If S0(Γ) � e : τ then from Theorem 3.4 (completeness of Infer) there is
a substitution R such that S0 =D R ◦ S0 and τ =D R(τ0). Hence R(S0(Γ)) =D

S0(Γ) so by Proposition 2.7 Gen(S0(Γ), τ0) �D τ as required.
(⇐). If Gen(S0(Γ), τ0) �D τ then there is some substitution R such that

R(S0(Γ)) ∼=D S0(Γ) and R(τ0) =D τ . From Theorem 3.3 (soundness of Infer)
there must be a derivation of S0(Γ) � e : τ0. Then applying R to this derivation
(by Lemma 2.14) we obtain S0(Γ) � e : τ as required.

Corollary 3.6 (Completeness of InferScheme). If the scheme σ is a princi-
pal type scheme of e under S(Γ) then InferScheme(Γ, e) = (S0, σ0) such that

R(S0(Γ)) ∼=D S(Γ) and R(σ0) �D σ

for some substitution R.

Proof. Again let Infer(fv(Γ), Γ, e) = (S0, τ0) and σ0 = Gen(S0(Γ), τ0). Also, if
σ is a principal type scheme of e under S(Γ) then σ ∼=D Gen(S(Γ), τ) for some
type τ . Applying the completeness result for Infer to the typing S(Γ) � e : τ we
obtain a substitition R such that

S =D R ◦ S0 and τ =D R(τ0).

Clearly R(S0(Γ)) ∼=D S(Γ) as required. Now consider R(σ0):

R(Gen(S0(Γ), τ0)) �D Gen(R(S0(Γ)), R(τ0)) by Lemma 2.9
∼=D Gen(S(Γ), τ) from above
∼=D σ.

When the type assignment Γ is closed, these results show that InferScheme
finds a principal type scheme for e under Γ if e is typable at all. This scheme
is unique up to type scheme equivalence. In the next section we show how it is
always possible to find a canonical representative in each equivalence class.
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3.3 Simplification of types

In this section we present a type simplification algorithm which serves two pur-
poses:

1. When applied to the bound variables of a type scheme it determines a
canonical form for the type scheme under the equivalence relation ∼=D.
For the programmer, this is important: the canonical form is natural in
an intuitive sense and is unique—so types can be displayed in a consistent
way by the inference algorithm. Furthermore, one effect of simplification
is that non-essential free variables are removed, a necessary precondition
for the correct operation of the generalisation procedure Gen(Γ, τ).

2. When applied to the free variables of a type scheme σ the algorithm deter-
mines an invertible substitution U such that U(σ) is in free variable reduced
form. This procedure extends straightforwardly to type assignments where
it is used to calculate Gen(Γ, τ) according to Definition 2.5.

The original motivation for designing this algorithm was the need for a ‘most
natural’ form for type schemes. This is the way that we describe the algorithm
initially. However, it turned out that the canonical form which it calculates
corresponds directly to a well-known form in matrix theory. This in turn explains
its application to the generalisation procedure as a ‘change of basis’.

Equivalent type schemes

We have seen already how a single type scheme can have a variety of equivalent
forms under the equivalence relation ∼=D. The inference algorithm as presented
makes no guarantees about the final form of the inferred type, and it probably
depends on the particular order in which unification of types is performed. In
terms of typable programs, this is not a problem, but if types are displayed to
the programmer then we must choose a suitable representation. For ordinary
ML, this merely involves choosing a set of names for the bound type variables,
typically generating names in the order in which the type variables first appear
in the type, reading from left to right. For dimension types, this is not enough.

Consider the following type which an early prototype implementation as-
signed to the correlation function from Chapter 1:

∀d1.∀d2.real d1 list → real d−1
1 · d2 list → real 1.

This is equivalent under ∼=D to

∀d1.∀d2.real d1 list → real d2 list → real 1.

The second of these makes more sense as it expresses the symmetry inherent in
the type. Sometimes the choice is not so clear. For example, the differentation
function of Chapter 1 can be assigned these equivalent types, amongst many:

∀d1.∀d2.real d1 → (real d1 → real d2) → (real d1 → real d−1
1 · d2)

∼=D∀d1.∀d2.real d1 → (real d1 → real d1 · d2) → (real d1 → real d2).
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We must decide what makes one type scheme ‘simpler’ than an equivalent
type scheme. We can confidently state the following:

1. The fewer the dimension variables, the better. For example, this favours
∀d.real d → real d2 over ∀d1.∀d2.real d1 · d2 → real d2

1 · d2
2. Here the number

of bound dimension variables in the simpler form matches the number of
‘degrees of freedom’ in the polymorphic part of the type scheme: we surely
require at least this of a canonical form.

Now consider the two types for correlation given above, where the num-
ber of bound variables cannot be reduced. Nevertheless, the ‘asymmetric’
type has more dimension variables in its second argument than does the
‘symmetric’ type, so the heuristic makes sense here too.

Finally, simplification should remove any non-essential free variables from
the type scheme, for example ∀d1.reald1 · d2 → reald1 · d2 should be reduced
to ∀d1.real d1 → real d1.

2. Positive exponents are simpler than negative ones. Thus ∀d.reald → reald2

is simpler than the equivalent ∀d.real d−1 → real d−2.

3. Small exponents are simpler than large exponents.

We now suggest a more arguable rule:

4. In a type τ1 → τ2, give precedence to the simplification of τ1 over τ2. For
example, this favours the type scheme

∀d1.∀d2.real d1 → real d2 → real d1 · d−2
2

over the equivalent scheme

∀d1.∀d2.real d1 · d2 → real d2 → real d1 · d−1
2 .

Similarly, the first type for diff from above is regarded as simpler than
the second.

Putting these heuristics together, one arrives at the following sketch for an al-
gorithm:

Simplify a type τ from left to right, and for each dimension compo-
nent δ attempt to reduce as much as possible the number of dimen-
sion variables, the size of its exponents, and the number of negative
exponents.

The realisation of the sketch is two functions shown in Figures 3.4 and 3.5. We
describe them each in turn.
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DimSimplify(V, δ) =
let nf(δ) = dx1

1 · · · dxm
m · vy1

1 · · · vyn
n

where each vi is a variable from V or a base dimension, no di is in V
and |x1| � · · · � |xm|
in

if m = 0 then I

else if x1 < 0 then U2 ◦ U1 where
U1 =

{
d1 �→ d−1

1

}
U2 = DimSimplify(V, U1(δ))

else if m = 1 then{
d1 �→ d1 · v−�y1/x1�

1 · · · v−�yn/x1�
n

}
else U2 ◦ U1 where

U1 =
{

d1 �→ d1 · d−�x2/x1�
2 · · · d−�xm/x1�

m · v−�y1/x1�
1 · · · v−�yn/x1�

n

}
U2 = DimSimplify(V, U1(δ))

Figure 3.4: Algorithm DimSimplify

Simplifying a dimension

The function DimSimplify in Figure 3.4 takes a dimension δ and a set of di-
mension variables V, and returns an invertible substitution which simplifies δ as
much as possible without substituting for any of the variables in V. If fact, ‘as
much as possible’ means reducing the part of δ not contained in V to at most
a single dimension variable d with positive exponent x. Furthermore, if such a
variable d exists then the exponents of all other variables in δ are positive and
smaller than x. The following lemma provides formal justification.

Lemma 3.7 (DimSimplify). For any dimension δ and set of dimension vari-
ables V, the algorithm DimSimplify(V, δ) returns an invertible substitution U
such that dom(U) ∩ V = ∅ and the normal form of U(δ) is either

vy1
1 · · · vyn

n

where all vi are base dimensions or dimension variables from V, or

dx · vy1
1 · · · vyn

n

for some dimension variable d /∈ V and all vi either base dimensions or variables
from V, with x > 0 and 0 < yi < x for 1 � i � n.
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Proof. By induction on µ(V, δ), where µ is the following function (with m and
x1 defined as in Figure 3.4):

µ(V, δ) =




0 if m = 0 or m = 1 and x1 > 0,

1 if m = 1 and x1 < 0,

2|x1| if m > 1 and x1 > 0,

2|x1| + 1 if m > 1 and x1 < 0.

• The case for m = 0 is trivial.

• When x1 < 0 it is clear that for the invertible substitution U1 = {d1 �→
d−1

1 } we have µ(V, U1(δ)) = µ(V, δ) − 1, so we can apply the induction
hypothesis and obtain the required result.

• When m = 1 and x1 > 0,

U(δ) =D dx1
1 · vy1modx1

1 · · · vynmodx1
n .

Then yi mod x1 < x1 for all i so this has the second of the forms required
by the lemma. Furthermore, it is easy to see that U is invertible and
dom(U) ∩ V = ∅.

• When m > 0 then the normal form of U1(δ) is

dx1
1 · dx2modx1

2 · · · dxmmodx1
m · vy1modx1

1 · · · vynmodx1
n .

Clearly the smallest exponent in U1(δ) is smaller than |x1|, or else only
the variable d1 is left, so that µ(V, U1(δ)) < µ(V, δ). Then the induction
hypothesis can be applied to show that U2(U1(δ)) has the required form.
Invertibility of U2 ◦ U1 is obtained from the induction hypothesis and the
fact that U1 is invertible.

The algorithms DimSimplify and DimUnify are closely related. Both apply the
same invertible substitution when iterating, except that DimSimplify can also
change the sign of the smallest exponent. They differ in the way that they
finish: whereas Simplify terminates when there is just one variable remaining,
Unify completes the unification process by removing the variable and the rest of
the term if it can, or reports failure if it cannot.
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Simplify(V, bool) = I

Simplify(V, t) = I

Simplify(V, real δ) = DimSimplify(V, δ)

Simplify(V, τ1 → τ2) = U2 ◦ U1

where U1 = Simplify(V, τ1)
and U2 = Simplify(V ∪ fdv(U1(τ1)), U1(τ2))

Figure 3.5: Algorithm Simplify

Example. Consider the (rather unlikely) dimension δ = d6
1 · d15

2 · d−7
3 · d12

4 and
set of variables V = {d3, d4}. Then DimSimplify would proceed to simplify δ
away from V by the following composition of invertible substitutions:

d6
1 · d15

2 · d−7
3 · d12

4�d1 �→ d1·d−2
2 ·d2

3·d−2
4

d6
1 · d3

2 · d5
3�d2 �→ d2·d−2

1 ·d−1
3

d3
2 · d2

3�d2 �→ d2

d3
2 · d2

3.

Simplifying a type

The function Simplify in Figure 3.5 calculates a simplifying substitution for τ by
traversing the type from left to right without touching the variables in V, taking
care not to change any already-simplified dimensions as it traverses the type.

The lemma which follows shows first that the substitution is invertible and
away from V: this ensures that it can be used to simplify a type scheme (away
from the free variables) and as a change of basis prior to generalisation (away
from the bound variables). Then the gist of proposition (1) below is that the
variables from V which remain in the simplified type are essential in the sense
that they cannot be removed by any substitution S away from V. When the
algorithm is used to simplify a type scheme then this indeed shows that the only
free variables which remain are essential. Proposition (2) says that the variables
not in V which remain in the simplified type are independent with respect to
substitution.
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Lemma 3.8 (Simplify). For any type τ and set of dimension variables V, the
algorithm Simplify(V, τ) returns an invertible substitution U with dom(U)∩V = ∅
and satisfying the following propositions:

1. For any dimension substitution S such that dom(S) ⊆ fdv(U(τ)) \ V and
any d ∈ V it is the case that

d ∈ fdv(U(τ)) implies d ∈ fdv(S(U(τ)))

and also

d ∈ fdv(S(d′)) for some d′ ∈ dom(S) implies d ∈ fdv(S(U(τ))).

2. for any two dimension substitutions S1 and S2 such that dom(S1) ∩ V =
dom(S2) ∩ V = ∅ it is the case that

S1(U(τ)) =D S2(U(τ)) implies S1(d) =D S2(d) for all d ∈ fdv(U(τ)).

Proof. By induction on the structure of τ .

• If τ = real δ, then from Lemma 3.7 we know that U is invertible and away
from V, and that there are two possibilities for the normal form of U(τ).
If fdv(U(τ)) ⊆ V then the results follow trivially. Otherwise, the normal
form is given by

U(τ) =D dx
0 · vy1

1 · · · vyn
n

where v1, . . . , vn are all base dimensions or variables in V and v0 /∈ V. For
part (1), consider a substitution S as specified i.e. dom(S) = {d0}. If
d = vi for some i, then it is easy to see that S cannot remove it, since
0 < yi < x for 1 � i � n. Otherwise, if d ∈ fdv(S(d0)) then clearly
d ∈ fdv(S(dx

0 · vy1
1 · · · vy1

n )) as required.

For part (2), consider two substititions S1 and S2 as described. Then

S1(U(τ)) =D (S1(d))x · vy1
1 · · · vyn

n

and S2(U(τ)) =D (S2(d))x · vy1
1 · · · vyn

n .

Hence S1(U(τ)) =D S2(U(τ)) implies S1(d) =D S2(d) as required.

• If τ = τ1 → τ2 then U = U2 ◦ U1, where

U1 = Simplify(V, τ1) (a)
U2 = Simplify(V ∪ fdv(U1(τ1)), U1(τ2)) (b)

First note that by applying the induction hypothesis to (b) we know that
dom(U2) ∩ (V ∪ fdv(U1(τ1))) = ∅, so U2(U1(τ1)) =D U1(τ1).

For part (1) of the lemma, consider some d ∈ fdv(U(τ1 → τ2)). If d ∈
fdv(U(τ1)) then by applying the induction hypothesis to (a) we can obtain
the result. Otherwise we must have d /∈ fdv(U(τ1)) but d ∈ fdv(U(τ2)).
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Now either d ∈ fdv(S(U(τ2))) or d /∈ fdv(S(U(τ2))). If it is the former,
then of course d ∈ fdv(S(U(τ1 → τ2))) as required. If it is the latter,
then it is easy to see that there must be some d′ ∈ dom(S) such that
d ∈ fdv(S(d′)). Hence by applying the induction hypothesis to (a) we have
d ∈ fdv(S(U(τ1))) so d ∈ fdv(S(U(τ1 → τ2))) as required.

For part (2) consider substitutions S1 and S2 as described. Then

S1(U2(U1(τ1 → τ2))) =D S2(U2(U1(τ1 → τ2))).

Then from the induction hypothesis on (1),

S1(d) =D S2(d) for all d ∈ fdv(U1(τ1)) \ V.

Now let S′
1 and S′

2 be the restrictions of S1 and S2 to all variables except
those in fdv(U1(τ1)). We can then apply the induction hypothesis to (2)
to obtain that

S′
1(d) =D S′

2(d) for all d ∈ fdv(U2(U1(τ2))) \ fdv(U1(τ1)) \ V.

Putting these together,

S1(d) =D S2(d) for all d ∈ fdv(U2(U1(τ1 → τ2))) \ V

as required.

Example. Consider the (extremely unlikely) type†

τ = real

δ1︷ ︸︸ ︷
d4

1 · d6
2 · d2

3 → real

δ2︷ ︸︸ ︷
d1 · d2

2 · d5
3 → real

δ3︷ ︸︸ ︷
d1 · d−7

2 · d3
3.

Then Simplify(∅, τ) would proceed to simplify τ by the composition of invertible
substitutions shown below. Each substitution in the diagram is a single iteration

†This example is a translation of the integer matrix on page 16 of Newman’s book on integral
matrices [46]
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SimplifyScheme(∀�d.τ) = ∀�d0.U(τ)
where U = Simplify(V, τ), V = fdv(τ) \ �d

�d0 = fdv(U(τ)) \ V.

Figure 3.6: Algorithm SimplifyScheme

of DimSimplify, processing the dimension component indicated to its left.

real d4
1 · d6

2 · d2
3 → real d1 · d2

2 · d5
3 → real d1 · d−7

2 · d3
3

(δ1)

�d3 �→ d3·d−3
2 d−2

1

real d2
3 → real d−9

1 · d−13
2 · d5

3 → real d−5
1 · d−16

2 · d3
3

(δ2)

�d1 �→ d−1
1

real d2
3 → real d9

1 · d−13
2 · d5

3 → real d5
1 · d−16

2 · d3
3

(δ2)

�d1 �→ d1·d−2
2

real d2
3 → real d9

1 · d5
2 · d5

3 → real d5
1 · d−6

2 · d3
3

(δ2)

�d2 �→ d2·d−1
1 ·d−1

3

real d2
3 → real d4

1 · d5
2 → real d11

1 · d−6
2 · d9

3

(δ2)

�d1 �→ d1·d−1
2

real d2
3 → real d4

1 · d2 → real d11
1 · d−17

2 · d9
3

(δ2)

�d2 �→ d2·d−4
1

real d2
3 → real d2 → real d79

1 · d−17
2 · d9

3

(δ3)

�d1 �→ d1·d2

real d2
3 → real d2 → real d79

1 · d62
2 · d9

3.

Simplifying a type scheme

Figure 3.6 shows how Simplify can be applied to the problem of determining a
unique form for type schemes under the equivalence relation ∼=D. For simplicity,
we consider type schemes with quantification only over dimensions.

First it is clear that simplification preserves type scheme equivalence: by
using Lemma 2.3 we have ∀�d0.U(τ) ∼=D ∀�d.τ via the invertible substitution U .

Next we show that simplification minimises the number of bound variables
in the type scheme so that they correctly match the ‘degree of polymorphism’ in
the scheme. Suppose that there are two ways of obtaining ∀�d0.U(τ) �D τ ′, that
is, two substitutions R1 and R2 such that dom(Ri) ⊆ �d0 and Ri(U(τ)) =D τ ′

for i = 1, 2. Then by the second part of Lemma 3.8 we know that R1 =D
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R2. Hence there is only ever one way of specialising a simplified type scheme
to a particular type. Now hypothesise some type scheme ∀�d1.τ1 equivalent to
∀�d0.U(τ) but with |�d1| < |�d0|. By the argument above, the set of types to
which this scheme specialises is in one-to-one correspondence (up to =D) with
the set of substitutions whose domain is �d0. Clearly there are less substitutions
with domain �d1, so there are not enough to generate the same set of types, in
contradiction with our hypothesis. Therefore it must be the case that |�d1| �
|�d0|, so the simplification procedure does indeed minimise the number of bound
variables.

We now turn our attention to the free variables in the simplified type scheme.
Recall the three definitions of the essential free variables in a type scheme
(page 28): those for which some substitution changes the type scheme with
respect to type scheme equivalence, those present in the simplified form de-
termined by SimplifyScheme, and those present in all types to which the type
scheme specialises. The following lemma proves that all three definitions are
equivalent.

Lemma 3.9. Let σ = ∀�d.τ and σ0 = SimplifyScheme(σ) = ∀�d0.U(τ) as shown.
Then for any dimension variable d,

{d �→ δ}σ �∼=D σ for some δ (1)

⇔ d ∈ fdv(U(τ)) \ �d0 (2)
⇔ d ∈ fdv(τ ′) for all τ ′ such that σ �D τ ′. (3)

Proof. To prove (1) ⇒ (2) we first note that {d �→ δ}σ �∼=D σ0 and then using
the fact that substitutions preserve type scheme equivalence deduce that {d �→
δ}σ0 �∼=D σ0. Without loss of generality we can assume that d is not present in
�d0. Then it is clear that

∀�d0.U(τ) �∼=D ∀�d0.{d �→ δ}(U(τ))

only if d ∈ fdv(U(τ)) \ �d0.
Now consider some simple type τ ′ such that ∀�d0.U(τ) �D τ ′. Then there is

some substitution R with dom(R) ⊆ �d0 such that R(U(τ)) =D τ ′. By the first
part of Lemma 3.8, if d ∈ fdv(U(τ)) \ �d0 then d ∈ fdv(τ ′). As σ ∼=D σ0 we have
shown (2) ⇒ (3).

Finally we show that (3) ⇒ (1). Trivially we have ∀�d.τ �D τ and ∀�d.{d �→
1}τ �D {d �→ 1}τ . If (3) holds then ∀�d.τ ��D {d �→ 1}τ because d /∈ fdv({d �→
1}τ). Hence ∀�d.τ �∼=D ∀�d.{d �→ δ}τ for δ = 1, which is proposition (1).

Example. Consider the type scheme

σ = ∀d1.∀d2.τ = ∀d1.∀d2.real d1 · d2 · d2
3 → real d2

1 · d2
2 · d4

3.

Applying Simplify({d3}, τ) reduces the type immediately:

real d1 · d2 · d2
3 → real d2

1 · d2
2 · d4

3�d1 �→ d1·d−1
2 ·d−2

3

real d1 → real d2
1
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Hence a simplified scheme ∀d1.reald1 → reald2
1 is obtained, with the non-essential

free variable d3 removed and correctly containing only one bound variable d1.

One final application of simplification is a syntactic characterisation of type
scheme equivalence by an invertible substitution: this is a stronger result than
Lemma 2.3.

Lemma 3.10 (Type scheme equivalence). ∀�d1.τ1
∼=D ∀�d2.τ2 if and only if

there is some invertible substitution U with dom(U) ⊆ �d1 and dom(U−1) ⊆ �d2

such that U(τ1) =D τ2.

Proof. Without loss of generality we can assume that �d1 and �d2 are disjoint
because we can always apply an invertible renaming substitution first. Then the
two directions of the equivalence are proved as follows.

(⇐). This direction follows trivially from Lemma 2.3.
(⇒). Let V1 = fdv(τ1) \ �d1 and V2 = fdv(τ2) \ �d2. Then apply the simplifica-

tion procedure to both schemes to give invertible substitutions

U1 = Simplify(V1, τ1)
and U2 = Simplify(V2, τ2).

The normal forms of ∀�d1.τ1 and ∀�d2.τ2 are ∀�d3.U1(τ1) and ∀�d4.U2(τ2) respectively,
where �d3 = fdv(U1(τ1))\V1 and �d4 = fdv(U2(τ2))\V2, as given by Figure 3.6. We
have already shown that SimplifyScheme does return a type scheme equivalent
to its input, so we can deduce that

∀�d3.U1(τ1) ∼=D ∀�d4.U2(τ2).

Then by Lemma 2.3 there are substitutions R1 and R2 such that R1(U1(τ1)) =D

U2(τ2) and R2(U2(τ2)) =D U1(τ1) with dom(R1) ⊆ �d3 and dom(R2) ⊆ �d4. Hence

R1(R2(U2(τ2))) =D U2(τ2)
and trivially I(U2(τ2)) =D U2(τ2).

Then by the second part of Lemma 3.8 it is clear that R1 ◦ R2 =D I, and by
a symmetric argument R2 ◦ R1 =D I. Let U = U−1

2 ◦ R1 ◦ U1 with inverse
U−1 = U−1

1 ◦ R2 ◦ U2. This is the invertible substitution required.
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Hermite normal form

For the uniqueness of the canonical form determined by Simplify we look to
matrix theory. There is an exact correspondence between dimension types and
rectangular matrices of integers, between dimension substitutions and square
matrices of integers, and between equivalence of closed type schemes and row-
equivalence of matrices. This is described more formally in Appendix B; in this
section we argue informally that the representative type scheme calculated by
SimplifyScheme corresponds to a well-known matrix form.

Consider a type τ = real δ1 → · · · → real δn with the normal form

real d
x1,1

1 · · · dxm,1
m → · · · → real d

x1,n

1 · · · dxm,n
m .

This can be written as the following integer matrix:
x1,1 · · · x1,n

...
. . .

...
xm,1 · · · xm,n


 .

If the closed type scheme ∀d1 . . .∀dm.τ is simplified using Simplify(∅, τ) then
the matrix representing the resulting type (after renaming of variables) has the
following ‘stairstep’ form:


0 . . . 0 a1 ? . . .? b1 ? . . .? c1 ? . . .? · · ·
0 . . . 0 0 0 . . . 0 b2 ? . . .? c2 ? . . .? · · ·
0 . . . 0 0 0 . . . 0 0 0 . . . 0 c3 ? . . .? · · ·
0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

. . .




It is easy to see from the definition of Simplify and from Lemma 3.7 that all
corner entries (a1, b2, etc.) are positive and that entries lying above them (b1,
c1, etc.) are non-negative and smaller than the corresponding corner entry. The
symbol ? . . .? denotes a block of arbitrary entries, and 0 . . . 0 denotes a block of
zeros. In the language of matrix theory this is known as a reduced row echelon
matrix or Hermite matrix. It is unique [1], that is, for every non-zero m × n
matrix A there is a unique m × n Hermite matrix UA for some invertible n × n
matrix U . In the language of types, this means that SimplifyScheme(σ) does
find a canonical representative for the ∼=D-equivalence class containing σ, as we
hoped.

Calculating Gen

The calculation of Gen(Γ, τ) specified by Definition 2.5 left one question unan-
swered, namely how to obtain an invertible substitution U to bring Γ into free
variable reduced form. The algorithm CofB shown in Figure 3.7 calculates such
a ‘change of basis’. It takes two arguments: a set of dimension variables V and
a type assignment Γ. It works by applying Simplify to the monomorphic (or
‘free’) part of every type scheme in Γ, taking care not to undo any changes made
already (including those on variables in V). The invertible substitution U which
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CofB(V, ∅) = I

CofB(V, {x : σ} ∪ Γ) = U2 ◦ U1

where σ = ∀�d.τ

and U1 = Simplify(V ∪ �d, τ)
and U2 = CofB(V ∪ fdv(U1(σ)), U1(Γ))

Figure 3.7: Algorithm CofB

it returns then ensures that U(Γ) is in free variable reduced form away from V.
This is formalised by a lemma which follows the same lines as Lemma 3.5.

Lemma 3.11. For any type assignment Γ and set of dimension variables V,
CofB(V, Γ) terminates with an invertible substitution U such that dom(U)∩V =
∅. Furthermore, for any two dimension substitutions S1 and S2 with dom(S1) ∩
V = dom(S2) ∩ V = ∅,

S1(U(Γ)) ∼=D S2(U(Γ)) implies S1(d) =D S2(d) for all d ∈ fdv(U(Γ)).

Proof. By induction on the size of Γ.

When V = ∅ we obtain Proposition 2.4 as a trivial corollary.

Corollary (Change of Basis). Let U = CofB(∅, Γ). Then U is an invertible
substitution such that fdv(U(Γ)) is in free variable reduced form.

To sum up, the calculation of σ = Gen(Γ, τ) proceeds as follows:

1. Determine U = CofB(∅, Γ).

2. Calculate σ′ = U−1(∀�v.U(τ)), where �v = fv(U(τ)) \ fv(U(Γ)).

3.4 Related work

There have been two other proposals for dimension inference in the style of ML
devised independently from the system described in this dissertation. They are
outlined here along with some comments concerning other type systems based
on equational theories.

Wand and O’Keefe’s system

Wand and O’Keefe define an ML-like type system extended with a single numeric
type parameterised on dimension [68]. This takes the form Q(n1, . . . , nN ) where
ni are number expressions formed from number variables, rational constants,
addition and subtraction operations, and multiplication by rational constants.
It differs from the real δ type of this chapter in two ways:
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1. A fixed number of base dimensions N is assumed. Dimension types are
expressed as a N -tuple of number expressions, so if there are three base
dimensions M, L and T, then the expression Q(n1, n2, n3) represents a
quantity with the dimensions Mn1 · Ln2 · Tn3 .

2. Dimensions have rational exponents. This means, for instance, that the
type of the square root function can be expressed as

∀i, j, k. Q(i, j, k) → Q(0.5 ∗ i, 0.5 ∗ j, 0.5 ∗ k)

in contrast to
∀d.real d2 → real d

in our system, and this function may be applied to a value of type Q(1, 0, 0),
whereas our system disallows its application to real M.

Their inference algorithm, like Infer, must solve equations between dimensions.
But there are no ‘dimension constants’ (our base dimensions) and equations are
not necessarily integral, so Gaussian elimination is used to solve them.

Wand and O’Keefe’s types are unnecessarily expressive and can be nonsen-
sical dimensionally. Consider the type ∀i, j, k. Q(i, j, k) → Q(i, 2 ∗ j, k) which
squares the length dimension but leaves the others alone, or ∀i, j, k. Q(i, j, k) →
Q(j, i, k) which swaps the mass and length dimensions. Fortunately no expres-
sion in the language will be assigned such types. The arguments for and against
fractional exponents have already been mentioned in Chapter 1.

Finally, Wand and O’Keefe propose a construct newdim which introduces a
local dimension. This is equivalent to the local use of the dimension declaration
in the ML Kit implementation described in the next chapter.

Goubault’s system

Jean Goubault has also looked at the problem of adding dimension types to
ML [18]. His extension is closer to the system described here in that dimension
types are formed from any combination of base dimensions which have been
predeclared in the program. Goubault chooses to make dimension variables a
special kind of type variable analogous to the equality type variables of Standard
ML. Syntactic restrictions then ensure that it is not possible to write types
such as τ1 · τ2, the ‘dimension product’ of two ordinary types, or δ1 → δ2, a
‘function’ from dimensions to dimensions. Like Wand and O’Keefe, Goubault
allows exponents which are not integers. Dimensions then form a vector space
over the rationals. A unification algorithm for this equational theory is presented.

As with our ML Kit implementation described in the next chapter, a base
dimension declaration must be accompanied by a default unit for that dimension.
Furthermore, the existing type synonym facility is used to provide names for
derived dimensions, for example, using Force to stand for M · L · T−2.

Goubault also suggests an intriguing extension to the module system of Stan-
dard ML which would allow different modules to use different units of measure,
the compiler inserting conversions between them automatically. This is discussed
in more detail in the final chapter of this thesis.
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Related type systems

The work on polymorphic type inference began with Milner’s algorithm W [42],
the discovery that it inferred principal types [13], and the detailed proofs in
Damas’s thesis [12]. Since then, hundreds of papers on type systems and infer-
ence algorithms have been published. I would like to acknowledge two theses
which I have found useful: those by Tofte [64] and by Mark Jones [26].

There are few other type inference algorithms which apply equational unifica-
tion. Thatte’s application to type coercions is one such [62]; another is Rémy’s
type inference with extensible records [54]. Order-sorted unification has been
applied to the problem of type inference for Haskell’s type classes [47].

Rémy has also studied ‘equational’ type inference more generally [55]. How-
ever, he restricts his presentation to regular equational theories. To the author’s
knowledge, dimension inference is the first application of a non-regular equational
theory to type inference, and leads to the subtleties of generalisation discussed
at length in Chapter 2.

Rémy makes the observation that even in the standard ML type system, the
generalisation step used in the (let) rule is computationally expensive: it involves
calculating the free type variables in a type assignment which can be arbitrarily
large. He goes on describe an equivalent system which avoids recalculation of
these free variables by assigning a rank to type variables as a measure of their
‘freshness’. In the inference algorithm for this system ranks are calculated in-
crementally by extending unification to ‘ranked’ unification. Rémy’s idea can be
applied only to type systems based on a regular equational theory. For systems
based on non-regular theories such as the one discussed in this dissertation the
generalisation of a type with respect to a type assignment is even more expen-
sive. For our system it involves first calculating a change of basis which brings
the type assignment into a form in which its free variables are independent with
respect to substitution. It might be possible to adapt Rémy’s idea of ranking to
such a system in order to improve the efficiency of type inference and perhaps
simplify the presentation of the system. This is one direction for future research.

3.5 Some refinements

In this final section we discuss some possible refinements to the type system of
MLδ which would allow more expressions to be typed.

Polymorphic recursion

In the ML type system, and our extension MLδ, only the let construct can
introduce polymorphism. In particular, lambda-bound variables can not be used
at more than one type, and the rule for letrec ensures that recursive functions
are not used polymorphically within their own definition.

Consider the following program written in ML:

fun prodlists([], []) = []
| prodlists(x::xs, y::ys) = (x*y) :: prodlists(ys, xs)
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The function prodlists calculates products of corresponding elements in a pair
of lists, but bizarrely switches the arguments on the recursive call. Naturally
this makes no difference to the result, given the commutativity of multiplication.
However, in the MLδ type system a version without the exchange is assigned a
type scheme

∀d1.∀d2.real d1 list × real d2 list → (real d1 · d2) list

whereas the version above would be given the less general type

∀d.real d list × real d list → real d2 list.

More realistic examples involve the use of user-defined datatypes. Consider
creating a list of successive derivatives of a function f , that is, [f, f ′, f ′′, . . . ].
If the function f has type real d1 → real d2 then its derivative f ′ has type
real d1 → real d2 · d−1

1 , its second derivative f ′′ has type real d1 → real d2 · d−2
1 ,

and so on. The type of this list can be expressed by the following ML-style
datatype definition:

datatype difflist(d1, d2) =
Nil

| Cons of (real d1 → real d2) × difflist(d1, d2 · d−1
1 ).

Then for a particular function this list can be created by the following ML
program which makes use of the function diff from page 10 in Chapter 1:

fun diffs(h, f, 0) = Nil
| diffs(h, f, n) = Cons(f, diffs(h, diff(h, f), n-1))

If (dimension-)polymorphic recursion was allowed, then this function would be
assigned the type

∀d1.∀d2.real d1 × (real d1 → real d2) × int → difflist(d1, d2).

More examples can be found in Rittri’s article [58].
The ordinary ML typing rules can be extended to allow polymorphism inside

recursive definitions. The rule shown below, first proposed by Mycroft [45], is
for a call-by-name language with a fixed-point construct rec x.e. Our (letrec)
rule could be modified similarly.

(polyrec)
Γ[x : σ] � e : σ

Γ � rec x.e : σ

Unfortunately, it has been shown by Henglein [23] and by Kfoury et al. [31] that
type inference is undecidable in the presence of this rule.

For our language MLδ the rule could be weakened so that it permits poly-
morphism over dimensions but not over types. This is then expressive enough
to type the function prodlists from above. Then the question arises: is type
inference still decidable? Some progress on this has been made by Rittri. The
proof of undecidability of inference under polymorphic recursion for types rests
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on a reduction from the problem of semi-unification to the problem of type in-
ference. The semi-unification problem is the following. We are given a set I of
pairs of types which represent inequations:

I = {(τ1, τ
′
1), . . . , (τn, τ ′

n)}.

Now find a substitution S such that S(τi) � S(τ ′
i) for 1 � i � n. The inequality

τi � τ ′
i holds whenever there is some substitution Ri such that Ri(τi) = τ ′

i . The
substitution S is said to be a semi-unifier of the inequations in I. Notice that
the same substitution S is applied to each inequation, whereas the matching
substitutions Ri may differ.

The analogous notion for a language extended with dimensions would be
semi-unification in the equational theory of Abelian groups. Then an inequation
τ �D τ ′ holds if there is a substitution R such that R(τ) =D τ ′. An Abelian
group semi-unifier of the inequations represented by

I = {(τ1, τ
′
1), . . . , (τn, τ ′

n)}

is a substitution S such that there exists a matching substitution Ri for each
inequation giving Ri(S(τi)) =D S(τ ′

i) for all i. Rittri has shown that for a single
inequation this problem is decidable, and he presents an algorithm which solves
it [57]. However, in order to use semi-unification to perform type inference in the
presence of polymorphic recursion, it might be necessary to solve several inequa-
tions. For unification, the problem of solving several equations can be reduced
to that of solving a single equation by simple tupling. For semi-unification, this
is not the case, and the decidability of semi-unification over Abelian groups in
this general case is still open.

Rittri has also investigated dimension type inference for a language in which
dimensions have rational exponents. For such a language, the appropriate equa-
tional theory is that of vector spaces over the rationals. Rittri gives an algorithm
for semi-unification in this theory and presents a type inference system modelled
on Henglein’s [23] which determines a most general type even in the presence of
polymorphic recursion [58]. This time, his algorithm works for the general case
of several inequations.

There is a further question: can we solve the type inference problem by some
means other than semi-unification? For ordinary ML extended with polymorphic
recursion, Henglein and Kfoury et al. have given reductions both ways, showing
that the type inference problem is equivalent to the semi-unification problem.
For dimension types, so far it has only been shown that inference can be reduced
to equational semi-unification; it is not yet known whether a reduction can be
made in the other direction.

So the situation can be summed up as follows:

• Type inference for ML in the presence of polymorphic recursion is equiva-
lent to the semi-unification problem. That problem is undecidable.

• Type inference for ML in the presence of dimension-polymorphic recur-
sion where dimensions have rational exponents can be reduced to semi-
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unification over vector spaces. That problem is decidable and admits a
straightforward algorithm.

• Type inference for ML in the presence of dimension-polymorphic recur-
sion where dimensions have integral exponents can be reduced to semi-
unification over Abelian groups. There is an algorithm which solves a
single inequation in this theory; the situation for the general case is not
known.

• Semi-unification is sufficient to solve the problem of type inference with
dimension-polymorphic recursion; it is not known whether it is necessary.

Dependent types

Consider a function which takes an integer argument n, a real-valued argument x,
and returns xn, the result of raising x to the power n. Here is an implementation
written in Standard ML:

fun power 0 x = 1.0
| power n x = if n < 0 then 1.0 / power (~n) x

else x * power (n-1) x

If x had type real δ for some dimension δ, we would like the result to have type
real δn. However, this type depends on the value of the argument n, so the only
way of expressing the intuitive type of this function is by a dependent type such
as

∀d.∀n ∈ Z.real d → real dn.

The inability to write such functions in a language with a type system like
MLδ is not a problem in practice, as almost all exponentiation operations in
numerical algorithms are used with constant integer powers. If necessary, a
real language with dimension types could provide a built-in shorthand for this
operation and assign the result a dimension accordingly.

Higher-order polymorphism

Consider the following function written in ML:

fun polyadd prod = prod 2.0 kg + prod kg 3.0

Assuming that kg has the type real M, the function prod is used at more than
one dimension type. This is sometimes called polymorphic abstraction. The type
of polyadd can only be expressed by allowing a type scheme in the the argument
position in a function type, as follows:

(∀d1.∀d2.real d1 → real d2 → real d1 · d2) → real M.

In such a system, top-level types have the form

∀�v.(σ1 → . . . → σn → τ)
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where each σi is a type scheme and τ is a simple type, defined as before. The
problem of type inference for ML in the presence of polymorphic abstraction is
undecidable and equivalent to the problem of semi-unification [31]. For poly-
morphism over dimensions alone, the problem is open.

Now consider a function makecube which accepts a polymorphic ‘product’
operation of type ∀d1.∀d2.real d1 → real d2 → real d1 · d2 and returns a polymor-
phic ‘cube’ operation of type ∀d.real d → real d3. This time both argument and
result are polymorphic.

In Chapters 5 and 6 we study an explicitly-typed language, in the style of
System F, in which dimension quantifiers can appear at any depth in a type. It is
powerful enough to express both polyadd and makecube. In Chapter 8 we sketch
an even more expressive dimension type system which supports quantification
over dimension operators (functions from dimensions to dimensions), formalised
by a system of kinds.



Chapter 4

Implementation

After implementing a dimension type system and inference algorithm for a toy
language resembling MLδ, the decision was taken to test the practical viability
of dimension types by implementing an extension to Standard ML.

The ML Kit [5] was chosen for this purpose. It is a full implementation of
Standard ML designed with extensibility as its primary objective rather than ef-
ficiency. It can be seen as a direct implementation of the rules in the Definition
of Standard ML [43], treating the rules for the static semantics as a prototypical
type inference algorithm and the rules for the dynamic semantics as a prototypi-
cal interpreter. To be completely precise, we should describe the changes to these
rules which are necessary to support dimension types. This would involve only
modest changes to the existing rules and a small number of additional rules. We
do not do this, as there is plenty of formalism elsewhere in this thesis; moreover,
it is used there as the precursor to theorems about a language, and proving such
theorems for an extension to the complete Definition of Standard ML would be
a major undertaking. Also, the Definition is large and complex with its own jar-
gon and notation. Therefore instead we describe informally the issues involved in
extending Standard ML to provide dimension types without assuming detailed
knowledge of the Definition.

Apart from the problem of overloading discussed later, the extension is con-
servative, in the sense that existing Standard ML programs would run unchanged
but with more refined types inferred for numerical programs. Type checking only
catches dimension errors when base dimensions have been declared and used in
a program.

4.1 Syntax

Figure 4.1 lists the changes to the grammar of the Core language and Modules
language of Standard ML, in the style of the Definition [43, Sections 2 and 3].
The meta-syntax xseq stands for an empty sequence, a singleton x, or a sequence
(x1,. . . ,xn). Notice how the dimension type extensions have the same flavour
as other constructs in Standard ML. For example, the syntax for declaring di-
mensions follows the same pattern as for type and datatype declarations, so

68
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Extensions to the core:
dec ::= . . . other declarations

dimension dimbind dimenson declaration

dimbind ::= dimcon ( var ) 〈and dimbind〉 dimension binding

typbind ::= tdvarseq tycon = ty 〈and typbind〉 type binding

datbind ::= tdvarseq tycon = conbind 〈and datbind〉 datatype binding

ty ::= . . .
tdseq longtycon type construction
. . .

td ::= ty type
[ 〈dim〉 ] dimension

dim ::= dimvar dimension variable
longdimcon base dimension
dim ^ int exponentiation
dim1 * dim2 dimension product
dim1 / dim2 dimension quotient
( dim ) grouping

tdvar ::= tyvar type variable
[ dimvar ] dimension variable

Extensions to the modules:
spec ::= . . . other specifications

dimension dimdesc dimension spec.

dimdesc ::= dimcon 〈( var )〉 〈and dimdesc〉 dimension description

typdesc ::= tdvarseq tycon 〈and typdesc〉 type description

datdesc ::= tdvarseq tycon = condesc 〈and datdesc〉 datatype description

Figure 4.1: Grammar
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dimension parameters precede constructors in constrast to the syntax used for
the toy language MLδ. Also, base dimension names are generative in the same
way that datatype names are generative in Standard ML. All this is described
in detail below.

4.2 A new type

In MLδ, the type of real numbers was parameterised on a dimension. For the
extension to Standard ML it was decided to use the language’s existing pa-
rameterisation mechanism and extend it to allow any type or datatype to be
parameterised on a dimension. This required that the syntax distinguishes be-
tween dimensions and types. Square brackets were chosen for this purpose, in
line with the conventional scientific notation for dimensions. The new numeric
type is written [dim] dim, where the dimension parameter dim precedes the
type constructor dim, as is the convention in Standard ML. The type of dimen-
sionless reals is written [] dim, but to ensure compatibility with the original
language, real is provided as a convenient type synonym:

type real = [] dim

Then the syntax of dimension expressions is the following:

• Base dimensions (dimcon in the grammar) are just alphabetic identifiers
such as M or Temp. These must be predeclared in a dimension construct
as described in Section 4.4.

• Dimension variables (dimvar in the grammar) are written in the same way
as type variables, with a preceding apostrophe. The presence of the square
brackets around dimensions ensures that there can be no confusion between
type variables and dimension variables.

• The product of dimensions dim1 and dim2 is denoted by dim1*dim2.

• The exponentiation of dimension dim to the power n is denoted by dim^n.

• The notation dim1/dim2 is syntactic sugar for dim1*dim2^~1.

A suitable type synonym defining density would be the following:

type Density = [M / L^3] dim

In our language MLδ this would have been written real (M · L−3). Here is a
function which expresses Newton’s second law:

fun force (mass : [M] dim, acc : [L / T^2] dim) = mass * acc
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Finally, here is a favourite toy example of object-oriented programmers, reinter-
preted to illustrate the utility of dimension types:

type ColouredPoint =
{

x : [L] dim,
y : [L] dim,
red : [Intensity] dim,
green : [Intensity] dim,
blue : [Intensity] dim

}

Every type constructor in Standard ML has an arity, which is the number of
type parameters it expects. For our extension, type constructors take a mixture
of type and dimension parameters. This shows up in the grammar as td (a type
or dimension parameter) and tdseq (a sequence of type or dimension parameters).
Hence the arity is no longer just a number—internally, the implementation uses
a bool list. The grammar for type, datatype and abstype declarations is
changed accordingly, with square brackets used again, this time to distinguish
between type and dimension variables (tdvar and tdvarseq in the grammar).
Here is an example which illustrates this—a datatype which represents a 3-vector
whose components all have the same dimension:

datatype [’a] Vector = Vec of [’a] dim * [’a] dim * [’a] dim

A second example uses both type and dimension parameters:

datatype (’a, [’b]) Pos = Map of (’a * [’b] Vector) list

4.3 New operations

Figure 4.2 lists the new polymorphic types assigned to arithmetic functions.
All other operations have a dimensionless type, unchanged from Standard ML,
assuming the presence of the type synonym described in the previous section.
For example, the trigonometric function sin has the type

val sin : real -> real

There is one major problem with this scheme: overloading. Standard ML
provides arithmetic operations and comparison functions at more than one type,
but does so in an ad-hoc way which is not available to the programmer. Functions
such as addition and subtraction are tentatively assigned the type

num * num -> num

where num is a placeholder which is replaced by real or int during type inference.
The program context is used to determine how to resolve such types, and if this
is not possible then the type checker generates an error. To extend this scheme
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val * : [’a] dim * [’b] dim -> [’a * ’b] dim
val / : [’a] dim * [’b] dim -> [’a / ’b] dim
val + : [’a] dim * [’a] dim -> [’a] dim
val - : [’a] dim * [’a] dim -> [’a] dim
val ~ : [’a] dim -> [’a] dim
val abs : [’a] dim -> [’a] dim
val sqrt : [’a^2] dim -> [’a] dim
val < : [’a] dim * [’a] dim -> bool
val > : [’a] dim * [’a] dim -> bool
val <= : [’a] dim * [’a] dim -> bool
val >= : [’a] dim * [’a] dim -> bool

Figure 4.2: Part of the initial static basis

to dimension types we cannot just replace a placeholder by int or dim because of
the dimension parameter to dim, which in the case of multiplication is not even
the same for both arguments. Perhaps the tentative type scheme for * should
be

[’a] num * [’b] num -> [’a*’b] num

and then [’a] num is replaced by [’a] dim or int according to the context.
All this has yet to be worked out, but a generalisation of this idea is sketched in
Chapter 8 as an area of future research.

4.4 Dimension declarations

In MLδ it was assumed that base dimensions were predefined. For an extension
to Standard ML it was necessary to devise some kind of declaration mechanism
analogous to the existing type, datatype and exception constructs. The new
construct is best illustrated by an example:

dimension M(kg) and L(m) and T(s)

This declaration introduces three base dimensions (M for mass, L for length and
T for time) and their associated SI units. The aim is that these units are just
values with types [M] dim, [L] dim and [T] dim respectively. They can then
be used to form constants of any chosen dimension. For example, to bind an
identifier force to the value 2.3 N (≡ kg m s−2) we could write

val force = 2.3 * kg * m / (s*s)

which would assign the type shown below:

val force : [M * L * T ^ ~2] dim
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Note that this should be the only means of constructing basic values. In par-
ticular, non-zero real constants should not be polymorphic, as was discussed on
page 8 in the Introduction.

As with other binding constructs in Standard ML, dimension declarations
are generative, meaning that each binding generates a new name to stand for
the base dimension identifier. For example, consider the following program:

dimension M(kg)
val x = 3.0*kg
fun f (m : [M] dim) = m*5.0
dimension M(lb)
val y = 4.0*kg
fun g (m : [M] dim) = m*6.0

The second declaration of M hides the first, so that all of the bindings shown
below would be ill-typed if added to the end of the above program.

val z1 = g x
val z2 = f y
val z3 = kg + lb

Dimension declarations can be localised to other declarations (with local)
or expressions (with let). Here is an example:

fun f x =
let dimension Apples(apple) and Oranges(orange)
in

...
end

Wand and O’Keefe suggest a similar construct in their paper on dimensional
inference [68].

4.5 Modules

Dimension specifications can appear in signatures. Then any structure matching
such a signature must provide a dimension declaration matching the specifica-
tion. By analogy with datatypes, in which a signature may choose to hide the
value constructors for the datatype or make them visible, a dimension specifica-
tion can hide the default unit associated with the dimension or make it visible.

These extensions to the module system of Standard ML are minimal. A more
flexible extension would include a dimension sharing mechanism analogous to
the type sharing which already exists. The dimension sharing construct might
even express unit conversions between different default units used for the re-
spective dimensions. This is an idea of Goubault [18] and is discussed further in
Chapter 8.



Chapter 5

Operational semantics

In this chapter we study the operational semantics of an explicitly-typed lan-
guage with dimension types which we call Λδ. In Section 5.1 we justify this choice
of language, which is strictly more expressive than the language MLδ studied for
the purposes of type inference. Sections 5.2 and 5.3 define the syntax, typing
rules and operational semantics of Λδ. Then in Section 5.4 we prove a funda-
mental property of the language, that “well-dimensioned programs do not go
wrong”—in other words, dimension errors cannot occur at run-time. Finally in
Section 5.5 we specify the semantics of the dimension types fragment of MLδ by
translating its typing derivations into terms in Λδ.

5.1 An explicitly-typed language

It is possible to define the semantics of the language MLδ described in Chap-
ter 3 directly, either by induction on the typing derivations of expressions, or
by first translating the language into an explicitly-typed variant with the same
expressive power. This approach is taken by Harper and Mitchell in their study
of ML [20], where an implicitly-typed source language Core-ML is translated
into an explicitly-typed target language Core-XML. A similar idea is pursued by
Benton in his thesis [4]; in this case, the target language is very much in the spirit
of ML but every variable is tagged with its type and the use of polymorphism
in let constructs is made explicit by binding distinct variables to distinct type
instances of the polymorphic expression. It is possible to do the same for MLδ,
as in the following example whose typing derivation is shown in Figure A.2 in
Appendix A.

λy . let sqr = λx . x ∗ x in sqr(3.14) ∗ sqr(y)

This would be written

λyreal d. let sqr real 1→real 1, sqr real d→real d2
= λxreal d′ . xreal d′ ∗ xreal d′

in sqr real 1→real 1(3.14) ∗ sqr real d→real d2
(yreal d)

We choose instead to study an explicitly-typed language in which dimensions
are passed as arguments in the same way that types are passed as arguments

74
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δ ::= d dimension variables
| 1 unit dimension
| δ1 · δ2 dimension product
| δ−1 dimension inverse

τ ::= bool booleans
| real δ dimensioned reals
| τ1 → τ2 function types
| ∀d.τ dimension quantification

Figure 5.1: Dimensions and types

in Reynolds’ polymorphic lambda calculus or Girard’s System F [56, 17]. We
call this second-order language Λδ. One advantage of this approach is that we
do not need to consider the semantics of a let construct explicitly. Instead, let
constructs can be translated into the dimension abstraction (Λd.e) and value
abstraction (λx : τ . e) constructs of Λδ. For example, the function above would
be rendered as the following expression whose derivation is shown in Figure A.3
in Appendix A.

λy : real d. (λsqr : (∀d.real d → real d2). sqr 1 (3.14) ∗ sqr d (y))
(Λd.λx : real d. x ∗ x)

It is straightforward to express a semantics for this language and prove results
using the semantics. In the final chapter of this thesis we show how the language
can be generalised in a natural way to give an even more richly-typed language
in the style of Fω. In fact, the language Λδ is already more expressive than MLδ.
The problematic makecube function of Chapter 3 can be written:

λf : ∀d1.∀d2.real d1 → real d2 → real d1 · d2.
Λd.λx : real d.

f d d2 x (f d d x x)

This function accepts a polymorphic product function f and returns a polymor-
phic cube function as result.

The trend in programming language design seems to be towards defining
a very expressive, explicitly-typed core language and then treating type recon-
struction as a ‘front-end’ issue akin to parsing. Recent work by Odersky and
Läufer [49] shows how a mixture of explicit type annotations and Milner-style
type inference can achieve the expressiveness of System F in a practical pro-
gramming language. Therefore we consider a more richly-typed language such
as Λδ worthy of study in its own right.
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e ::= x variable (x ∈ Vars)
| r constant (r ∈ Q)
| 0δ polymorphic zero
| e1 e2 application
| λx : τ . e typed abstraction
| rec y(x : τ1) : τ2. e recursion
| e δ dimension application
| Λd.e dimension abstraction
| e1 + e2 addition
| e1 − e2 subtraction
| e1 ∗ e2 multiplication
| e1/e2 division
| e1 < e2 comparison
| if e1 then e2 else e3 conditional

Figure 5.2: Expressions

5.2 Syntax

The syntax for dimensions and types in Λδ is defined by the grammar shown in
Figure 5.1. Dimensions are the same as in MLδ, except that base dimensions
are not distinguished from dimension variables. The equivalence relation =D is
identical and lifts to types in the obvious way, again identifying polymorphic
types up to renaming of bound variables.

Simple types and type schemes now are not separate syntactic classes. This
permits polymorphic types with nested quantifiers such as

(∀d1.∀d2.real d1 → real d2 → real d1 · d2) → (∀d.real d → real d3)

which is the type of the function makecube from the previous page. Also notice
that we are allowing quantification only over dimensions. Conventional type
polymorphism is orthogonal to our study of dimension types so to simplify the
theory we do not consider it here.

Figure 5.2 gives the grammar for expressions in the language, and Figure 5.4
presents a set of typing rules. As in previous chapters, Γ is a type assignment : a
finite mapping between identifiers and types. This time we take more care with
free and bound dimension variables, so the context in a judgment V; Γ � e : τ
contains a set of dimension variables V in addition to the type assignment Γ.

We define a well-formed judgment to be one in which the free dimension
variables of the type assignment Γ, expression e and type τ are contained in
V. Then the typing rules in Figure 5.4 are assumed to apply only to well-
formed judgments. An alternative to defining away ill-formed judgments in this
way would be to set up some inductive rules expressing the well-formedness of
dimensions, types and type assignments.
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fdv(bool) = ∅
fdv(real δ) = fdv(δ)

fdv(τ1 → τ2) = fdv(τ1) ∪ fdv(τ2)
fdv(∀d.τ) = fdv(τ) \ {d}

fdv(x) = ∅
fdv(r) = ∅

fdv(0δ) = fdv(δ)
fdv(e1 e2) = fdv(e1) ∪ fdv(e2)

fdv(λx : τ . e) = fdv(τ) ∪ fdv(e)
fdv(rec y(x : τ1) : τ2. e) = fdv(τ1) ∪ fdv(τ2) ∪ fdv(e)

fdv(e δ) = fdv(e) ∪ fdv(δ)
fdv(Λd.e) = fdv(e) \ {d}

fdv(e1 + e2) = fdv(e1) ∪ fdv(e2)
fdv(e1 − e2) = fdv(e1) ∪ fdv(e2)
fdv(e1 ∗ e2) = fdv(e1) ∪ fdv(e2)
fdv(e1/e2) = fdv(e1) ∪ fdv(e2)

fdv(e1 < e2) = fdv(e1) ∪ fdv(e2)
fdv(if e1 then e2 else e3) = fdv(e1) ∪ fdv(e2) ∪ fdv(e3)

Figure 5.3: Free dimension variables in types and expressions

In summary, then, a typing judgment

V; Γ � e : τ

means

“In the context of a typing assignment Γ and set of dimension vari-
ables V, the expression e has type τ with fdv(Γ)∪fdv(e)∪fdv(τ) ⊆ V.”

Free dimension variables for dimensions are defined as in Chapter 2, and Fig-
ure 5.3 gives the definition for types and for expressions.

We will often write V; Γ � e : τ to mean that there is a well-formed typing
derivation in Λδ with conclusion V; Γ � e : τ . If it is necessary to make clear
that the derivation is in Λδ then we will write V; Γ �δ e : τ .

Now consider each rule in turn.

Rules (const) and (zero). As with MLδ dimensionless constants are drawn
from the rationals; it would be perverse to allow irrational constants such
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(var) V; Γ � x : Γ(x) (const) V; Γ � r : real 1 r �= 0 (zero) V; Γ � 0δ : real δ

(app)
V; Γ � e1 : τ1 → τ2 V; Γ � e2 : τ1

V; Γ � e1 e2 : τ2

(abs)
V; Γ[x : τ1] � e : τ2

V; Γ � (λx : τ1. e) : τ1 → τ2

(rec)
V; Γ[x : τ1, y : τ1 → τ2] � e : τ2

V; Γ � (rec y(x : τ1) : τ2. e) : τ1 → τ2

(dgen)
V ∪ {d}; Γ � e : τ

V; Γ � Λd.e : ∀d.τ
d not free in Γ (dspec)

V; Γ � e : ∀d.τ

V; Γ � e δ : {d �→ δ}τ

(add)
V; Γ � e1 : real δ V; Γ � e2 : real δ

V; Γ � e1 + e2 : real δ

(sub)
V; Γ � e1 : real δ V; Γ � e2 : real δ

V; Γ � e1 − e2 : real δ

(mul)
V; Γ � e1 : real δ1 V; Γ � e2 : real δ2

V; Γ � e1 ∗ e2 : real δ1 · δ2

(div)
V; Γ � e1 : real δ1 V; Γ � e2 : real δ2

V; Γ � e1/e2 : real δ1 · δ−1
2

(lt)
V; Γ � e1 : real δ V; Γ � e2 : real δ

V; Γ � e1 < e2 : bool

(if)
V; Γ � e1 : bool V; Γ � e2 : τ V; Γ � e3 : τ

V; Γ � if e1 then e2 else e3 : τ

(Types identified up to =D)

Figure 5.4: Typing rules
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as
√

2 and π. Even the luxury of rational constants is a notational conve-
nience, as we could include only the constant 1 of type real 1 and obtain
the rest through repeated application of the arithmetic operations.

Notice that zero must be tagged with a dimension explicitly. An alternative
is the provision of a constant with type ∀d.real d.

Rules (abs) and (rec). Lambda and rec-bound variables must be annotated
with their types, thus ensuring that the syntax of a term uniquely deter-
mines its typing derivation.

The rec construct provides for general recursive functions, and hence non-
terminating programs. We will be defining a call-by-value semantics for Λδ,
and so the syntax for rec forces it to stand for a function. Think of
rec y(x : τ1) : τ2. e as sugar for fix (λy : τ1 → τ2. λx : τ1. e), where fix is a
generic fixed-point operator.

Rules (dgen) and (dspec). The instantiation and generalisation of dimension
variables is made explicit with special constructs Λd.e for dimension ab-
straction and eδ for dimension application. This is analogous to System F’s
type abstraction and type application.

As with the rules for MLδ, dimensions and types are identified up to the
equivalence induced by =D, removing the need for a special (deq) rule.

Rules (add), (sub), (mul) and (div). In contrast to MLδ, arithmetic is built
into the language itself, rather than being provided by a pervasive set of
polymorphic functions. This decision is largely one of convenience: passing
explicit dimension parameters to every arithmetic operation would make
programs extremely verbose.

Rule (lt) and (if). The significance of including a comparison operation and
conditional construct to make use of it will become clear in the next chapter
when we consider changes in the units of measure used by a program. For
the moment, observe that it is possible to write most of the functions
described in Chapter 1. The provision of lists would be an easy extension
to the language.

It is assumed that programs are typed under an initial type assignment Γbase

which contains dimensioned values representing default units for each base di-
mension, for example Γbase = {kg : real M, m : real L, s : real T}. As mentioned
earlier, base dimensions are just a subset of ordinary dimension variables, so an
initial set of dimension variables Vbase is also necessary, e.g. Vbase = {M, L, T}
to match this type assignment.

Our aim in defining an explicitly-typed language is encapsulated in the fol-
lowing result.

Proposition 5.1 (Uniqueness of typing). For any type assignment Γ, set of
dimension variables V and Λδ-expression e the typing derivation V; Γ � e : τ is
unique (up to =D) if it exists at all.

Proof. Induction on the structure of e.
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5.3 Operational semantics

In this section we describe a call-by-value operational semantics for Λδ, in the
style sometimes called natural semantics [28]. This kind of semantics was used
for the formal definition of Standard ML [43]. We define a set of basic values
(ranged over by v) and define environments (ranged over by E) to be finite
mappings between identifiers and values. Then an evaluation judgment

E � e ⇓ v

means

“In the context of an environment E the expression e evaluates to
the value v”.

Values are divided into four kinds: booleans, dimensioned reals, function clo-
sures, and dimension abstractions. They are defined by the following grammar:

v ::= true | false booleans
| 〈r, δ〉 dimensioned reals
| 〈E, λx : τ . e〉 function closures
| 〈E, rec y(x : τ1) : τ2. e〉 recursive function closures
| Λd.v polymorphic values

Closures represent yet-to-be-applied functions and consist of an environment E
and an abstraction (either lambda or rec) whose free variables refer to values in
E. An interpreter for the language is likely to use a similar mechanism. The
alternative is to define a subset of the expressions which represent fully-evaluated
expressions or canonicals [69, 19]. Then instead of an environment in which free
variables are looked up, arguments are substituted directly into the body of an
abstraction (beta reduction).

Figure 5.5 gives an inductive definition of the evaluation relation. Evaluation
order is not particularly relevant to our study of dimensions, but a call-by-
value semantics was chosen to maintain consistency with the implementation of
dimension types as an extension to Standard ML. This shows up in the rule for
application, where the evaluation of a term e1 e2 proceeds by evaluating e1 to a
closure and e2 to a value v2, and then extending the closure’s environment with
this value and evaluating its body under the new environment. If the closure is
recursive, then the environment is also extended with a recursive binding.

In contrast to value abstractions (λx : τ . e), the bodies of dimension abstrac-
tions (Λd.e) are evaluated ‘underneath’ the lambda. This means that

Λd.rec y(x : real d) : real d. y x

of type ∀d.real d → real d loops, whereas

λz : real 1. rec y(x : real 1) : real 1. y x
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E � x ⇓ E(x) E � r ⇓ 〈r,1〉 E � 0δ ⇓ 〈0, δ〉

E � λx : τ . e ⇓ 〈E, λx : τ . e〉 E � rec y(x : τ1) : τ2. e ⇓ 〈E, rec y(x : τ1) : τ2. e〉

E � e1 ⇓ 〈E′, λx : τ . e3〉 E � e2 ⇓ v2 E′[x �→ v2] � e3 ⇓ v3

E � e1 e2 ⇓ v3

E � e1 ⇓ 〈E′, rec y(x : τ1) : τ2. e3〉 E � e2 ⇓ v2

E′[x �→ v2, y �→ 〈E′, rec y(x : τ1) : τ2. e3〉] � e3 ⇓ v3

E � e1 e2 ⇓ v3

E � e ⇓ v

E � Λd.e ⇓ Λd.v

E � e ⇓ Λd.v

E � e δ ⇓ {d �→ δ}v

E � e1 ⇓ 〈r1, δ〉 E � e2 ⇓ 〈r2, δ〉
E � e1 + e2 ⇓ 〈r1 + r2, δ〉

E � e1 ⇓ 〈r1, δ〉 E � e2 ⇓ 〈r2, δ〉
E � e1 − e2 ⇓ 〈r1 − r2, δ〉

E � e1 ⇓ 〈r1, δ1〉 E � e2 ⇓ 〈r2, δ2〉
E � e1 ∗ e2 ⇓ 〈r1 · r2, δ1 · δ2〉

E � e1 ⇓ 〈r1, δ1〉 E � e2 ⇓ 〈r2, δ2〉
r2 �= 0

E � e1/e2 ⇓ 〈r1/r2, δ1 · δ−1
2 〉

E � e1 ⇓ 〈r1, δ〉 E � e2 ⇓ 〈r2, δ〉
r1 < r2

E � e1 < e2 ⇓ true

E � e1 ⇓ 〈r1, δ〉 E � e2 ⇓ 〈r2, δ〉
r1 � r2

E � e1 < e2 ⇓ false

E � e1 ⇓ true E � e2 ⇓ v

E � if e1 then e2 else e3 ⇓ v

E � e1 ⇓ false E � e3 ⇓ v

E � if e1 then e2 else e3 ⇓ v

(Types and values identified up to =D and renaming of bound dim. variables)

Figure 5.5: Operational semantics of Λδ
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V � true : bool V � false : bool V � 〈r, δ〉 : real δ

V ∪ {d} � v : τ

V � Λd.v : ∀d.τ

V � E : Γ V; Γ � e : τ

V � 〈E, e〉 : τ

∀x ∈ dom(E), V � E(x) : Γ(x)

V � E : Γ

Figure 5.6: Typing rules for values and environments

of type real 1 → real 1 does not. Again, this is consistent with an ML-like
language. We can think of dimensions as no more than ‘annotations’ to a pro-
gram which ensure dimensional consistency and convey special properties of the
program.

The rule for dimension application substitutes a dimension δ for a dimension
variable d. As with the substitution on type schemes defined in Chapter 2,
substitution on types, expressions and values is assumed to be capture-avoiding :
bound dimension variables in the type ∀d.τ , the expression Λd.e or the value
Λd.v are renamed to prevent capture by a free variable in δ.

Note how the rules dealing with arithmetic and comparison are defined only
for dimensionally consistent expressions, and there is no rule for a division by
zero. The symbols +, −, ·, and / stand for the conventional arithmetic operations
on the rationals.

5.4 Semantic soundness

We want to be sure that the operational semantics respects types and dimen-
sions. In order to formalise this, we first need a typing relation for values and
environments, defined inductively by the set of rules shown in Figure 5.6. As with
the rules for expressions, judgments are assumed to be well-formed: V � v : τ
is well-formed if fdv(v) ∪ fdv(τ) ⊆ V. Free dimension variables in values and
environments are specified by the following equations:

fdv(true) = fdv(false) = ∅
fdv(〈r, δ〉) = fdv(δ)

fdv(〈E, e〉) = fdv(E) ∪ fdv(e)
fdv(Λd.v) = fdv(v) \ {d}

fdv(E) =
⋃

x∈dom(E)

fdv(E(x))
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We will sometimes use the notation Val(V, τ) to stand for all possible values of
type τ containing free dimension variables from V, and Env(V, Γ) for all possible
environments matching the type assignment Γ with dimension variables drawn
from V. Also Expr(V, Γ, τ) stands for the set of all expressions which have the
type τ under a set of dimension variables V and type assignment Γ. Formally,

Val(V, τ) = { v | V � v : τ } ,

Env(V, Γ) = { E | V � E : Γ } ,

Expr(V, Γ, τ) = { e | V; Γ � e : τ } .

Proposition 5.2 (Semantic soundness). The semantics respects types and
dimensions: if V; Γ � e : τ and V � E : Γ then

E � e ⇓ v ⇒ V � v : τ.

Proof. Induction on the derivation of E � e ⇓ v.

Unfortunately, this is not enough to convince us that “well-dimensioned pro-
grams do not go wrong”. It only says that if an expression e evaluates to a value
v then we can be sure that there were no dimension errors. It may fail to eval-
uate to a value because it loops, or because it divides by zero, or because there
is a dimension error. The usual solution to this problem is the introduction of
a value wrong representing a type error. This approach is taken by Leroy, Tofte
and others in their studies of ML [37, 64]. It is a clumsy technique because of
the number of extra evaluation rules required. Although only a few rules ac-
tually introduce wrong, all the other rules must propagate such type errors to
the top level. An alternative is to define a small-step reduction semantics which
clearly distinguishes between non-terminating programs (infinite sequences of
reductions) and programs which contain run-time type errors (sequences of re-
ductions which ‘get stuck’ and never reach a value). Wright and Felleisen take
this approach, which they call syntactic type soundness; they also produce a
good survey of other research into the problem [70].

The addition of a wrong value is a nasty complication, and reduction se-
mantics is too fine-grained for our purposes. Instead, we introduce the idea
of erasing dimensions from types and expressions and then show that erasure
makes no difference to evaluation. By a simple argument this indicates that no
dimension errors can occur when evaluating well-typed expressions. Note that
we do not prove the absence of ordinary type errors (e.g. attempting to apply a
dimensionless number as if it were a function); it should be clear from our rules
and the many previous papers on the subject that these cannot occur.

The type τ� is the result of replacing all dimensions in τ with the unit
dimension and removing all quantifiers to leave a dimensionless type. To erase
dimensions from a term e to give e�, all explicit types are made dimensionless,
and dimension abstractions and dimension applications are removed. Erasure is
also defined for values and environments in the obvious way. All this is formalised
by the inductive definition given in Figure 5.7.

A straightforward lemma assures us that the type structure of the term is
not lost after erasing dimensions:
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Types:

bool� = bool

(real δ)� = real 1

(τ1 → τ2)
� = τ1

� → τ2
�

(∀d.τ)� = τ�

Expressions:

x� = x

r� = r

0δ
� = 01

(λx : τ . e)� = λx : τ�. e�

(e1 e2)
� = e1

� e2
�

(Λd.e)� = e�

(e δ)� = e�

(rec y(x : τ1) : τ2. e)� = rec y(x : τ1
�) : τ2

�. e�

(e1 + e2)
� = e1

� + e2
�

(e1 − e2)
� = e1

� − e2
�

(e1 ∗ e2)
� = e1

� ∗ e2
�

(e1/e2)
� = e1

�/e2
�

(e1 < e2)
� = e1

� < e2
�

(if e1 then e2 else e3)
� = if e�

1 then e�
2 else e�

3

Values:

true� = true

false� = false

〈r, δ〉� = 〈r,1〉
〈E, e〉� = 〈E�, e�〉
Λd.v� = v�

Environments:

for all x, E�(x) = (E(x))�

Figure 5.7: Dimension erasure
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Lemma 5.3. If V; Γ � e : τ then ∅; Γ� � e� : τ�. Furthermore, if V � v : τ then
∅ � v� : τ�, and if V � E : Γ then ∅ � E� : Γ�.

Proof. Induction on e or v.

Now the result we have been seeking is the following.

Theorem 5.4 (Dimension erasure). Dimensions can be thrown away at run-
time. That is, if V; Γ � e : τ and V � E : Γ then

E � e ⇓ v ⇐⇒ E� � e� ⇓ v�.

The reverse direction of this equivalence says that if an expression evaluates
to some value without checking dimensions then it would have evaluated to the
same value with dimension checking turned on. So we can be sure that an
expression never fails to evaluate just because of a dimension error: if there is
no v such that E � e ⇓ v then either e is a non-terminating computation or a
division by zero has occurred during evaluation.

Proof.
(⇒) Easy induction on the expression e.
(⇐) We actually wish to prove that

if for some v′, E� � e� ⇓ v′ then E � e ⇓ v with v� = v′.

Again, the proof is a straightforward induction on the structure of e.

Because the erasure defined on expressions removes dimension applications
and abstractions, this result also tells us that evaluation is not ‘held up’ by
dimension abstractions, as we hoped.

5.5 Translation from ML-like language

We now define the semantics of the dimension types fragment of MLδ by a
translation into the explicitly-typed language Λδ of this chapter. (To be precise:
we assume that expressions in the source language make no use of type poly-
morphism in let constructs). This is done by translating typing derivations of
expressions in the syntax-directed variant of MLδ into typed expressions in Λδ.
A similar approach is taken by Harper and Mitchell [20]. The only challenge is
in the rule for let:

Γ � e1 : τ1 Γ[x : Gen(Γ, τ1)] � e2 : τ2

Γ � let x = e1 in e2 : τ2

If Gen(Γ, τ1) = ∀�d.τ1 for some list of dimension variables �d then the obvious
translation of the construct is the following:

(λx : ∀�d.τ1. e′2) (Λ�d.e′1).
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Unfortunately, as discussed at length in Chapter 2, generalisation needs to be
more sophisticated so that sometimes Gen(Γ, τ1) �∼=D ∀�d.τ1. Therefore we first
apply Lemma 2.16 to obtain a derivation in which every occurrence of the (let′)
rule uses only the naive generalisation procedure NGen.

Then the translation is specified simply by extending the syntax-directed in-
ference rules of Figure 2.2 with translated expressions, so that a typing judgment
now has the form

Γ � e � e′ : τ

which means

“In the context of type assignment Γ, the MLδ-expression e has type
τ and translates to the Λδ-expression e′.”

The new rules are shown in Figure 5.8. Notice that none of the rules deals
with arithmetic operations, because these were not primitive operations in MLδ.
Instead, their types were assumed to be present in a pervasive type assignment.
Hence their semantics is defined by a pervasive value environment which matches
this type assignment, as follows:

{ + : Λd.λx : real d. λy : real d. x + y,

- : Λd.λx : real d. λy : real d. x − y,

* : Λd1.Λd2.λx : real d1. λy : real d2. x ∗ y,

/ : Λd1.Λd2.λx : real d1. λy : real d2. x/y,

< : Λd.λx : real d. λy : real d. x < y }.

We will write Γ � e � e′ : τ to indicate that there is a derivation of Γ � e : τ
in which the expression e translates to e′. We want two properties to hold of
this translation. First, it should preserve types.

Proposition 5.5 (Soundness). If Γ � e � e′ : τ then V; Γ �δ e′ : τ where
V = fdv(Γ) ∪ fdv(τ).

Proof. Induction on the structure of e.
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(var′) Γ � x � x �δ : {�d �→ �δ}τ Γ(x) = ∀�d.τ

(const)
Γ � r � r : real 1

r �= 0 (zero) Γ � 0 � 0δ : real δ

(abs)
Γ[x : τ1] � e � e′ : τ2

Γ � λx.e � λx : τ1. e′ : τ1 → τ2

(app)
Γ � e1 � e′1 : τ1 → τ2 Γ � e2 � e′2 : τ1

Γ � e1 e2 � e′1 e′2 : τ2

(let′)
Γ � e1 � e′1 : τ1 Γ[x : ∀�d.τ1] � e2 � e′2 : τ2

Γ � let x = e1 in e2 � (λx : ∀�d.τ1. e′2) (Λ�d.e′1) : τ2

�d = fdv(τ1) \ fdv(Γ)

(letrec)
Γ[x : τ1, y : τ1 → τ2] � e1 � e′1 : τ1 → τ2

Γ[y : τ1 → τ2] � e2 � e′2 : τ3

Γ � letrec y(x ) = e1 in e2 � (λy : τ1 → τ2. e′2) (rec y(x : τ1) : τ2. e′1) : τ3

(if)
Γ � e1 � e′1 : bool Γ � e2 � e′2 : τ Γ � e3 � e′3 : τ

Γ � if e1 then e2 else e3 � if e′1 then e′2 else e′3 : τ

Figure 5.8: Translation from MLδ into Λδ
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Second, the translation of different (normalised) derivations of the same ex-
pression should not assign different meanings to the expression. This property
is called coherence. For our language, it is sufficient to show that the translated
expressions have the same dimension erasure: Theorem 5.4 then implies that the
expressions have the same behaviour (in a sense to be defined formally in the
next chapter, the expressions are observationally equivalent).

Proposition 5.6 (Coherence). If Γ � e � e1 : τ and Γ � e � e2 : τ then
e1

� = e2
�.

Proof. Induction on the structure of e.

To see why a result of this kind is required, consider the expression

e
def= let s = λz.z ∗ z in s 5.

Two distinct typing derivations of � e : real 1 give rise to two distinct transla-
tions:

� e � (λs : real 1 → real 1. s 5) (λz : real 1. z ∗ z) : real 1

and

� e � (λs : (∀d.real d → real d2). s 1 5) (Λd.λz : real d. z ∗ z) : real 1.

The resulting Λδ expressions are not the same, even up to alpha-conversion, so
we need Proposition 5.6 to ensure that their meanings are identical.



Chapter 6

Denotational semantics

In the previous chapter we were interested in whether or not dimension errors
can occur during the evaluation of a well-typed program. This emphasis on
evaluation led us to define an operational semantics for the language.

In this chapter we will describe a more abstract model of the language in
order to investigate some more general properties in the next chapter. This
is the denotational approach, in which an expression in the language denotes
some element of a mathematical structure. Ideally programs would be modelled
as ordinary mathematical functions, so that, for instance, a program of type
∀d.real d → real d2 is an element of the function space Q → Q and the function
λx.x∗x with that type really is the function which squares its argument. Unfor-
tunately this approach does not work. First, the possibility of non-termination
must be dealt with, and second, it is not possible to treat recursion and higher-
order functions in a simple model based on sets. The closest we can get to this
mathematical ideal is a model based on complete partial orders, or domains.

The chapter is structured as follows. First we motivate the semantics by
considering ordinary type polymorphism in ML and the analogous situation for
dimension types. In Section 6.2 we define the denotational semantics for Λδ and
in Section 6.3 prove that it agrees with the operational semantics in a useful way.
Then in Section 6.4 we prove the dimensional invariance theorem. This is used
in the next chapter as a powerful tool for reasoning about programs in Λδ.

6.1 Motivation

Types as properties

One way of viewing a type is as a property ; this idea is taken to its logical
conclusion in type theory [63] where the type of a program type is a complete
specification of its behaviour. In the ML type system, and in the dimension type
system presented here, a type represents a partial specification.

Consider a function f in ML with the following polymorphic type:

f : ∀t.t → (t × t).

89
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What could this function be? One possibility is the pathological λx . loop where
loop is a divergent expression. In Standard ML another candidate is the expres-
sion

fn x => raise Alarm

Then of course there is λx .(x, x) and in fact this is the only terminating function
with the type given.

This observation is justified by a simple property of f which can be inferred
purely from its type: that for any function k,

f(k(x)) = k2(f(x))

where the function k2 is given by

k2(x, y) = (k(x), k(y)).

Wadler calls such results ‘theorems for free’ [66] because it is not necessary to
know anything about f other than its type.

Consider also a function g in ML with the type

g : ∀t1.∀t2.t1 → t2.

This time, the only function with this type is the non-terminating function, or
in Standard ML, one which always raises an exception. Again, this property was
deduced purely from the type.

Dimension types as scaling properties

Now consider a function written in MLδ with an polymorphic dimension type
analogous to the type of f from above:

f : ∀d.real d → real d2.

What could this function be? Again, there is a pathological function which never
terminates. This time there are many examples of functions which do terminate.
However, they all have the property that for any constant k > 0,

f(k ∗ x) = k2 ∗ f(x).

In essence, this says that if the argument to f is scaled then the result scales in
a corresponding way.

The dimensional invariance theorem proved at the end of this chapter cap-
tures this idea of ‘invariance under scaling’. It is used in Chapter 7 to prove
equivalences such as the above, and also to show that certain types are not ‘in-
habited’ except by trivial expressions. For example, there are no expressions g
with the type

g : ∀d.real d2 → real d

except for trivial functions which return zero or do not terminate.
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6.2 The denotational semantics

The meanings of expressions in Λδ will be defined using domains, or complete
partial orders. Traditionally, domains have been a useful tool for reasoning
about ‘flow of control’ properties of programs which use higher-order functions
or recursive datatypes (see, for example, work on strictness analysis [4]). We are
merely interested in properties of the data, viz. real numbers with dimensions, so
we will not be concerned with these matters. However, for concreteness it seems
appropriate to use a cpo-based model.

Mathematical preliminaries

The terminology and notation of domain theory varies slightly from author to
author. To prevent confusion, in this section we define all notation used in this
chapter. For a readable introduction to domains see Winksel’s book on seman-
tics [69] or Davey and Priestley’s textbook on the theory of ordered sets [14].

Let P be a partially ordered set: a set with an operation which is reflexive,
transitive and anti-symmetric, usually written �. Then P is a complete partial
order (cpo or domain for short) if least upper bounds exist for all chains {pi}i∈N

in P , written
⊔

i∈N
pi. We do not require every cpo to contain a bottom element,

but when it does, it is denoted by ⊥.
For two domains D and E the continuous function space D →c E is the

domain containing all continuous functions between D and E, with a pointwise
ordering.

Any domain D can be lifted to give a domain D⊥ with a new bottom element:

D⊥ = {⊥} ∪ { [d] | d ∈ D }

The notation [d] just makes clear that the non-bottom elements of D⊥ are
‘tagged’ so that they are distinct from the new element ⊥.

If a function f : D → E is continuous and E already has a bottom element
then we can lift f to get a continuous function f⊥ : D⊥ → E defined by

f⊥([d]) = f(d)
f⊥(⊥) = ⊥.

Similarly, a relation R ⊆ D × E can be lifted to give a relation R⊥ ⊆ D⊥ × E⊥
given by

R⊥ = {(⊥,⊥)} ∪ { ([d] , [e]) | (d, e) ∈ R } .

Domains of values

We start by defining for each type τ a domain of values [[τ ]]�, specified inductively
in Figure 6.1.

It is instructive to compare Figure 6.1 to the definition of values in the oper-
ational semantics given on page 80 in Section 5.3. Notice how we have ignored
the dimension component δ and simply model ‘reals’ in the language as elements
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[[bool]]� = B

[[real δ]]� = Q

[[τ1 → τ2]]
� = [[τ1]]

� →c [[τ2]]
�
⊥

[[∀d. τ ]]� = [[τ ]]�

Figure 6.1: Domains of values

of Q in contrast to the pair 〈r, δ〉 used in the operational semantics. The defini-
tion likewise ignores dimension quantification and does not distinguish between
monomorphic and polymorphic types. We already know that the evaluation of a
well-typed expression does not depend on the dimensions in its type, so it is safe
(in a certain sense) to throw away the dimensions when defining a denotational
semantics. To emphasise this, we write [[τ ]]� instead of the more usual [[τ ]] to
indicate that we are really defining a domain for τ�, the dimension-erasure of τ .

Also consider carefully our treatment of functions. Arguments to functions
are just values, i.e. fully evaluated expressions, but functions may not terminate,
so the result of a function is modelled by a lifted domain in which ⊥ represents
non-termination.

We will freely use b to range over elements of B, use r to range over Q, use
f to stand for a function, and use w to range over semantic values including all
of the above.

Semantic function

The operational semantics was presented by specifying the result of evaluating
an expression e in some environment E. We make use of a similar notion in the
denotational semantics. Here an environment ρ is a finite map from identifiers to
values belonging to some semantic domain. Then the meaning of an expression e
in the context of an environment ρ is given by [[e]]�(ρ). The rules which define this
semantic function inductively are shown in Figure 6.2. This is all very standard,
as we are in effect just modelling the semantics of dimensionless expressions given
by e�, which explains the notation [[e]]� again. Winksel’s treatment corresponds
closely [69].

As with the operational semantics, we require that the denotational semantics
is well-defined with respect to the typing rules. We first formalise what it means
for the domains in an environment ρ to ‘match’ the types in a type assigment
Γ. If Γ is a finite mapping between identifiers and types, then [[Γ]]� is the set of
all finite mappings between the same identifiers and elements of the domain of
values corresponding to the identifier’s type in Γ:

[[Γ]]� = { ρ | dom(ρ) = dom(Γ) and ρ(x) ∈ [[Γ(x)]]� for all x ∈ dom(Γ) }

Now we can prove the following lemma which shows that the denotational se-
mantics is well-defined. This is analogous to the semantic soundness result for
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[[·]]� : Expr(V, Γ, τ) → ([[Γ]]� → [[τ ]]�⊥)

[[x]]�(ρ) = [ρ(x)]
[[r]]�(ρ) = [r]

[[0δ]]
�(ρ) = [0]

[[λx : τ . e]]�(ρ) = [λw ∈ [[τ ]]�. [[e]]�(ρ[x �→ w])]

[[e1 e2]]
�(ρ) =

{
w1(w2) if [[e1]]

�(ρ) = [w1] and [[e2]]
�(ρ) = [w2] ,

⊥ otherwise.

[[Λd.e]]�(ρ) = [[e]]�(ρ)
[[e δ]]�(ρ) = [[e]]�(ρ)

[[rec y(x : τ1) : τ2. e]]�(ρ) =

[ ⊔
i∈N

wi

]
, where

w0 = λw ∈ [[τ1]]
�. ⊥

wi+1 = λw ∈ [[τ1]]
�. [[e]]�(ρ[x �→ w, y �→ wi])

[[e1 + e2]]
�(ρ) =

{
[r1 + r2] if [[e1]]

�(ρ) = [r1] and [[e2]]
�(ρ) = [r2] ,

⊥ otherwise.

[[e1 − e2]]
�(ρ) =

{
[r1 − r2] if [[e1]]

�(ρ) = [r1] and [[e2]]
�(ρ) = [r2] ,

⊥ otherwise.

[[e1 ∗ e2]]
�(ρ) =

{
[r1 · r2] if [[e1]]

�(ρ) = [r1] and [[e2]]
�(ρ) = [r2] ,

⊥ otherwise.

[[e1/e2]]
�(ρ) =




[r1/r2] if [[e1]]
�(ρ) = [r1] and [[e2]]

�(ρ) = [r2]
and r2 �= 0,

⊥ otherwise.

[[e1 < e2]]
�(ρ) =




[true] if [[e1]]
�(ρ) = [r1] and [[e2]]

�(ρ) = [r2]
and r1 < r2,

[false] if [[e1]]
�(ρ) = [r1] and [[e2]]

�(ρ) = [r2]
and r1 � r2,

⊥ otherwise.

[[if e1 then e2 else e3]]
�(ρ) =




[[e2]]
�(ρ) if [[e1]]

�(ρ) = [true] ,
[[e3]]

�(ρ) if [[e1]]
�(ρ) = [false] ,

⊥ otherwise.

Figure 6.2: Denotational semantics
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the operational semantics.

Lemma 6.1. If V; Γ � e : τ and ρ ∈ [[Γ]]� then [[e]]�(ρ) ∈ [[τ ]]�⊥.

Proof. Induction on e.

6.3 Relating the two semantics

The results proved using the denotational semantics will be of no use unless the
operational and denotational semantics agree in some way. For example, we will
show later that if � e : ∀d.real d → real d2 and [[e]]�(∅) = [f ] then for any r ∈ Q

and k ∈ Q+, whenever f(r) = [r′] it is the case that f(k · r) =
[
k2 · r′

]
. We

would like to infer from this that the expression e (k ∗ x) is ‘equivalent’ in some
sense to the expression k ∗ k ∗ e x.

What kind of equivalence do we require? A programmer would say that two
program fragments are equivalent if one can be replaced by the other in any
complete program without affecting its behaviour. Formalising this notion, an
expression e1 is said to be contextually equivalent to another expression e2 if for
any program context C[·] the observable behaviour of C[e1] is the same as the
observable behaviour of C[e2].

We must now make precise what we mean by program context and observable
behaviour. We choose to take programs to be closed expressions of type real 1.
It turns out that it makes no difference if the expressions are allowed to make
use of dimensioned units drawn from Γbase, so for simplicity we consider only
closed expressions; we will justify this formally later. Then a (V, Γ, τ)-context
C[φ] is a expression with a ‘hole’ φ in it which is to be filled by any expression e
which has a typing V; Γ � e : τ , so that � C[e] : real 1. Here C[e] stands for the
result of replacing all occurrences of φ in C[φ] by e, permitting variable capture
in contrast to our standard definition of substitution. For example, the program

(Λd. λx : real d. λy : real d. φ x ∗ φ y) 1 5 6

is a (d, {x : real d, y : real d}, real d2)-context.
For observable behaviour, we choose to observe the value of type real1 which

results from evaluating C[e]. Then two expressions e1 and e2 with typings V; Γ �
e1 : τ and V; Γ � e2 : τ are contextually (or observationally) equivalent if for any
(V, Γ, τ)-context C[φ],

� C[e1] ⇓ 〈r,1〉 if and only if � C[e2] ⇓ 〈r,1〉.

We write e1 ≈ e2.

Full abstraction

The two styles of semantics would match up completely if for any two expressions
e1 and e2,

e1 ≈ e2 ⇐⇒ [[e1]]
� = [[e2]]

�.
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This is known as full abstraction. Our semantics is not fully abstract—it is a
very difficult problem to find such a semantics for ‘sequential’ languages such as
the one discussed here [50]. However, equivalences do match up in one direction,
that is,

[[e1]]
� = [[e2]]

� ⇒ e1 ≈ e2.

This property is a simple consequence of the adequacy of the semantics. It is
enough for our purposes, as we are interested only in proving equivalences (and
not non-equivalences) in the denotational semantics.

What kind of examples cause the reverse direction to fail? We want two ex-
pressions e1 and e2 which have different meanings in the denotational semantics
([[e1]]

� �= [[e2]]
�) but cannot be distinguished by any context in the operational

semantics (e1 ≈ e2).
Let R be real 1, the type of dimensionless reals. Let zero be λx : R. 01, the

constant zero function. Let loop be rec y(x : R) : R. y x, a function which loops
for any argument value. Then consider the two expressions below.

e1
def= λy : (R → R) → (R → R) → R. y loop zero + y zero loop

and e2
def= λy : (R → R) → (R → R) → R. (y loop loop) ∗ 2

There is no context which can distinguish these expressions, because any con-
text would apply the expression to a function which applied one of its arguments
(which for both expressions would loop) or applied neither (which for both ex-
pressions would return twice the value of the result).

Now consider the function por ∈ [[(R → R) → (R → R) → R]]� defined by

por f g =




[0] if f(0) �= ⊥,

[0] if g(0) �= ⊥,

⊥ otherwise.

Then [[e1]]
�(∅)(por) = [0] whereas [[e2]]

�(∅)(por) = ⊥ so [[e1]]
� �= [[e2]]

�.
This example is standard for typed lambda calculi such as Λδ [52]. Intu-

itively, there are functions such as por in the denotational semantics which
‘evaluate their arguments in parallel’, and which correspond to no expression
in the operational semantics.

In fact, there are expressions in Λδ which defeat full abstraction in a different
way. Consider the following expressions:

e1
def= λy : (∀d.real d → real d). y 1 2

and e2
def= λy : (∀d.real d → real d). 2 ∗ y 1 1

Clearly [[e1]]
� �= [[e2]]

� as there are many functions f ∈ Q → Q⊥ for which
[[e1]]

�(∅)(f) �= [[e2]]
�(∅)(f). But the type constraint on y actually ensures that

the expression y 1 2 always evaluates to the same value as 2 ∗ y 1 1, or both
fail to evaluate at all. Hence it is actually the case that e1 ≈ e2. Later we will
show that this equivalence is an instance of dimensional invariance, and use the
theorem proved at the end of this chapter to justify it.
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Values:

[[·]]� : Val(V, τ) → [[τ ]]�

[[true]]� = true

[[false]]� = false

[[〈r, δ〉]]� = r

[[Λd.v]]� = [[v]]�

[[〈E, e〉]]� = w, where [[e]]�(ρ) = [w] and ρ = [[E]]�.

Environments:

[[·]]� : Env(V, Γ) → [[Γ]]�

[[E]]� = [[·]]� ◦ E.

Figure 6.3: Denotation of operational values and environments

Adequacy

In order to relate the two styles of semantics, we must first define a meaning
for values and environments from the operational semantics in terms of the
denotational semantics. This is shown in Figure 6.3.

First we prove that the denotational semantics respects the evaluation rela-
tion of the operational semantics.

Proposition 6.2 (Soundness). If E � e ⇓ v and ρ = [[E]]� then [[e]]�(ρ) = [w]
where w = [[v]]�.

Proof. By induction on the derivation of E � e ⇓ v.

The converse fails to hold, but we can prove a weaker result, that for any program
e it is the case that

[[e]]�(∅) = [r] implies � e ⇓ 〈r,1〉.

This is more difficult to prove as we need something stronger than the denotation
given in Figure 6.3. We construct a logical relation [44] between values in the
denotational semantics and values in the operational semantics. The relation
AV

τ ⊆ [[τ ]]� × Val(V, τ) is defined inductively by:

• AV
bool(b, b

′) holds if and only if b = b′.

• AV
real δ(r, 〈r′, δ〉) holds if and only if r = r′.

• AV
τ1→τ2(f, 〈E, λx : τ1. e〉) holds if and only if for all w ∈ [[τ1]]

� and V � v : τ1

such that AV
τ1(w, v) it is the case that

f(w) =
[
w′] implies E[x �→ v] � e ⇓ v′

such that AV
τ2(w

′, v′).



6.3 Relating the two semantics 97

• AV
τ1→τ2(f, 〈E, rec y(x : τ1) : τ2. e〉) holds if and only if for all w ∈ [[τ1]]

� and
V � v : τ1 such that AV

τ1(w, v) it is the case that

f(w) =
[
w′] implies E[x �→ v, y �→ 〈E, rec y(x : τ1) : τ2. e〉] � e ⇓ v′

such that AV
τ2(w

′, v′).

• AV
∀d.τ (w, Λd.v) holds if and only if AV∪{d}

τ (w, v).

This relation is extended to environments in a pointwise fashion. If ρ ∈ [[Γ]]� and
V � E : Γ then

• AV
Γ(ρ, E) if and only if for all x ∈ dom(Γ), AV

Γ(x)(ρ(x), E(x)).

Before proving the main theorem, we state a couple of lemmas. The first of these
just asserts that dimensions are ignored by the denotational semantics.

Lemma 6.3. If AV
τ (w, v) then AV

{d�→δ}τ (w, {d �→ δ}v) for any d ∈ V and any
dimension δ such that fdv(δ) ⊆ V.

We must also show that the relation preserves least upper bounds of infinite
chains.

Lemma 6.4. Let {wi}i∈N be a chain in [[τ ]]� and let v ∈ Val(V, τ) be a value in
the operational semantics. Then if AV

τ (wi, v) for all i ∈ N, then AV
τ (

⊔
i∈N

wi, v).

Using the logical relation we can prove the following result. The proof is
omitted but follows the same pattern as adequacy proofs elsewhere [69, 19, 4]
except that we use environments and closures in the operational semantics in-
stead of explicit substitution of values for free variables.

Proposition 6.5. If V; Γ � e : τ then for all ρ ∈ [[Γ]]� and V � E : Γ such that
AV

Γ(ρ, E) it is the case that

[[e]]�(ρ) = [w] ⇒ E � e ⇓ v

for some v such that AV
τ (w, v).

Proof. Induction on the structure of e.

A corollary of Propositions 6.2 and 6.5 is that the operational and denota-
tional meanings of programs (but not expressions in general) coincide.

Corollary 6.6 (Adequacy). If � e : real 1 then [[e]]�(∅) = [r] if and only if
� e ⇓ 〈r,1〉.
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To prove that the semantics is sound with respect to observational equiva-
lence we need the following lemma which states that the semantics is composi-
tional : that is, the meaning of compound expressions is defined only in terms of
the meaning of their subexpressions.

Lemma 6.7 (Compositionality). If V; Γ � e1 : τ and V; Γ � e2 : τ then for
any (V, Γ, τ)-context C[φ],

[[e1]]
� = [[e2]]

� implies [[C[e1]]]
� = [[C[e2]]]

�.

Proof. By induction on C[·].

Putting this together with the previous corollary gives us the result we want.

Theorem 6.8 (Denotational semantics respects ≈). If V; Γ � e1 : τ and
V; Γ � e2 : τ , then

[[e1]]
� = [[e2]]

� ⇒ e1 ≈ e2.

Proof. By Compositionality we know that for all (V, Γ, τ)-contexts C[φ] it is the
case that [[C[e1]]]

� = [[C[e2]]]
�. Hence by Adequacy, � C[e1] ⇓ 〈r,1〉 if and only if

� C[e2] ⇓ 〈r,1〉, that is, e1 ≈ e2.

6.4 Dimensional invariance

Consider an expression e which has typing Vbase; Γbase � e : real 1. For concrete-
ness, assume that Vbase = {M, L, T} and Γbase = {kg : real M, m : real L, s :
real T}. Thus e is almost a closed expression except that it makes use of a
predetermined system of base dimensions and their associated units of measure.

Now consider some value environment Ebase which matches this type assign-
ment so that Vbase � Ebase : Γbase. Then what values should we choose for Ebase?
We could pick Ebase = {kg : 〈1, M〉,m : 〈1, L〉, s : 〈1, T〉}, but it is clear that it
should not matter what values we pick. In a sense we are choosing the units in
which mass, length and time are measured, and the result of evaluating e will
not be affected by this choice of units.

There is a proviso: the values chosen for Ebase must be positive. This is due
to the presence of the comparison construct e1 < e2. The expression e could
take different courses of action depending on the signs of the values in Ebase.
Intuitively, it makes no sense for units of measure to be negative or zero, and so
a change of unit should only ever alter a value’s magnitude.

More generally, consider scaling an arbitrary environment E in accordance
with the dimensions of its values to give a new environment E′. If an expression
e is first evaluated under E to produce a result v, and then evaluated under
E′ to produce a result v′, then we expect v to scale in accordance with its
dimensions to give v′. This is the essence of dimensional invariance. In what
follows, we formalise the idea of dimensional invariance for the denotational
semantics, applying scaling to environments ρ and values w. Then in the next
chapter we show how it can be used to prove certain equivalences which hold in
the operational semantics.
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Scaling environment

A scaling environment is a mapping ψ : V → R+ which assigns a positive ‘scale
factor’ to each dimension variable in a set V. A scaling environment can be
thought of as a change in the system of units used in an expression. For example,
if an expression manipulates masses (dimension M) measured in kilograms, and
we wish to change to Imperial units of pounds, then ψ would be the mapping
{M �→ 2.205}.

Note carefully the choice of positive reals for the scaling environment in
contrast to the rationals used for semantic values. It turns out that this is
required to prove type inhabitation results as described later in Section 7.2.

A scaling environment ψ is extended to arbitrary dimension expressions by
the following equations which ensure that ψ is a homomorphism between the
Abelian group of dimensions and the Abelian group 〈R+, ·〉.

ψ(1) = 1
ψ(δ1 · δ2) = ψ(δ1) · ψ(δ2)

ψ(δ−1) = 1/ψ(δ)

Then if we wanted to convert metres to feet as well as changing kilograms to
pounds, we would set ψ to be the mapping {M �→ 2.205, L �→ 3.281}. A conver-
sion of density from kilograms per cubic metre to pounds per cubic foot would
be given by ψ(M · L3).

The action of a substitution S on a scaling environment ψ is defined by

S(ψ)(d) = ψ(S(d)),

and it is easily checked that for any dimension expression δ,

S(ψ)(δ)) = ψ(S(δ)).

The notation ψ−1 denotes the pointwise inverse of ψ: a scaling environment
defined by ψ−1(d) def= 1/ψ(d) for each dimension variable d.

Scaling relation

For an ML-like language with implicit polymorphism it is possible to define a
scaling function on values of any type τ according to some scaling environment
ψ—in fact, we do exactly this in Section 7.1 in the next chapter. But if explicit
polymorphism is present, as in our language Λδ, it is not clear how such a
function would operate on values of type ∀d.τ . Instead, we define the stronger
notion of a relation between values of the same type so that a value w is related to
another value w′ if w scales to give w′. Then a value w of polymorphic dimension
type ∀d.τ is related to another value w′ if the values are related for all possible
scalings with respect to the dimension variable d. Think of the quantifier in ∀d.τ
as standing for “for all units of measure δ”.

The relation Rψ
τ is parameterised on a scaling environment ψ and defined

by induction on a type τ , as shown in Figure 6.4. It is extended pointwise to
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Rψ
τ ⊆ [[τ ]]� × [[τ ]]�

Rψ
bool(b, b

′) ⇐⇒ b = b′

Rψ
real δ(r, r

′) ⇐⇒ ψ(δ) · r = r′

Rψ
τ1→τ2(f, f ′) ⇐⇒ for all w, w′ ∈ [[τ1]]

�, Rψ
τ1(w, w′) ⇒ Rψ

τ2⊥(f(w), f ′(w′))

Rψ
∀d.τ (w, w′) ⇐⇒ for all k ∈ R+, Rψ[d�→k]

τ (w, w′)

Rψ
Γ ⊆ [[Γ]]� × [[Γ]]�

Rψ
Γ(ρ, ρ′) ⇐⇒ for all x ∈ dom(Γ), Rψ

Γ(x)(ρ(x), ρ′(x))

Figure 6.4: Scaling relation

type assignments to give a relation Rψ
Γ . Note that Rψ

τ⊥ is shorthand for (Rψ
τ )⊥.

Informally, the clauses of the definition have the following interpretation.

• Basic values are related if one scales to give the other under the scaling
environment ψ. As r and r′ are both elements of Q, whereas the scaling
environment maps dimensions to R+, then the values will be related only
if they are both zero or if ψ(δ) is rational. In Section 7.2 it is shown how
this property is vital to the proof of type inhabitation results.

• The rule for function types can be summed up by the slogan “related
arguments give related results”; this makes Rψ

τ another example of a logical
relation [44]. In particular notice that if a function fails to terminate on
some argument w, then it must fail to terminate on any related argument
w′.

• Values of a polymorphic dimension type ∀d.τ are related if they are re-
lated for all possible scalings with respect to the dimension variable d as
explained above.

The following lemma characterises the effect on Rψ
τ of applying a substitution

to the type τ or scaling environment ψ.

Lemma 6.9. For any scaling environment ψ, substitution S and type τ ,

Rψ
S(τ)(w, w′) ⇐⇒ RS(ψ)

τ (w, w′).

Proof. Induction on the structure of τ .

A similar result holds for environments. Another lemma asserts that the relation
preserves least upper bounds of chains.

Lemma 6.10. If {wi}i∈N and {w′
i}i∈N are chains in [[τ ]]� such that Rψ

τ (wi, w
′
i)

for all i ∈ N, then Rψ
τ

(⊔
i∈N

wi,
⊔

i∈N
w′

i

)
.

Proof. By induction on τ .
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The dimensional invariance theorem

The remainder of this chapter consists of a proof of the following theorem, the gist
of which is that the interpretation of some expression e under an environment ρ
is related to the interpretation of the same expression e under an environment ρ′

if the environments are related in the same way. The proof follows the same lines
as the so-called Fundamental Theorem of Logical Relations [44]; in particular,
the cases for application, abstraction and recursion are standard. In addition
we have dimension abstraction and application to consider. The remaining cases
essentially prove that the built-in constants and arithmetic operations preserve
the relation. We present the cases for division and comparison as illustrative of
the rest.

Theorem 6.11 (Dimensional invariance). If V; Γ � e : τ then for any two
environments ρ, ρ′ ∈ [[Γ]]� and scaling environment ψ : V → R+ such that
Rψ

Γ(ρ, ρ′) it is the case that

Rψ
τ⊥([[e]]�(ρ), [[e]]�(ρ′)).

Proof. By induction on the structure of e.

• For a variable x the result follows immediately from Γ(x) = τ .

• For a non-zero constant we have the trivial derivation

(const)
V; Γ � r : real 1

Now ψ(1) = 1 from definition. Hence r = ψ(1) · r and the result follows
immediately.

• For a constant zero we have the trivial derivation

(zero)
V; Γ � 0δ : real δ

and so 0 = ψ(δ) · 0 for any δ as required.

• For a lambda abstraction we have the derivation

V; Γ[x : τ1] � e : τ2
(abs)

V; Γ � λx : τ1. e : τ1 → τ2

.

Now the result we want is that under the assumption that Rψ
Γ(ρ, ρ′) it is

the case that

Rψ
(τ1→τ2)⊥

([[λx : τ1. e]]�(ρ), [[λx : τ1. e]]�(ρ′))

⇐⇒ Rψ
(τ1→τ2)⊥

(
[λw ∈ [[τ1]]

�. [[e]]�(ρ[x �→ w])] ,
[
λw ∈ [[τ1]]

�. [[e]]�(ρ′[x �→ w])
])

⇐⇒ Rψ
τ1→τ2

(
λw ∈ [[τ1]]

�. [[e]]�(ρ[x �→ w]), λw ∈ [[τ1]]
�. [[e]]�(ρ′[x �→ w])

)
.
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From the definition of Rψ
τ1→τ2 this says that

∀w, w′ ∈ [[τ1]]
�, Rψ

τ1(w, w′) ⇒ Rψ
τ2⊥([[e]]�(ρ[x �→ w]), [[e]]�(ρ′[x �→ w′]))

and combining this with the original assumption we obtain

Rψ
Γ[x:τ1](ρ[x �→ w], ρ′[x �→ w′]) ⇒ Rψ

τ2⊥([[e]]�(ρ[x �→ w]), [[e]]�(ρ′[x �→ w′]))

as the conclusion we want to reach. We get there by applying the induction
hypothesis to the premise of the (abs) rule.

• For a function application we have the derivation

V; Γ � e1 : τ1 → τ2 V; Γ � e2 : τ1
(app)

V; Γ � e1 e2 : τ2

By the induction hypothesis we know that

Rψ
(τ1→τ2)⊥

([[e1]]
�(ρ), [[e1]]

�(ρ′))

and Rψ
τ1⊥([[e2]]

�(ρ), [[e2]]
�(ρ′)).

We consider two possibilities.

1. [[e1]]
�(ρ) = ⊥ or [[e2]]

�(ρ) = ⊥ which implies by the induction hypoth-
esis that [[e1]]

�(ρ′) = ⊥ or [[e2]]
�(ρ′) = ⊥. Then [[e1 e2]]

�(ρ) = ⊥ and
[[e1 e2]]

�(ρ′) = ⊥ so Rψ
τ2⊥([[e1 e2]]

�(ρ), [[e1 e2]]
�(ρ′)) as required.

2. [[e1]]
�(ρ) = [w1] and [[e1]]

�(ρ′) = [w′
1] with Rψ

τ1(w1, w
′
1), and [[e2]]

�(ρ) =
[w2] and [[e2]]

�(ρ′) = [w′
2] with Rψ

τ1→τ2(w2, w
′
2). Then by the definition

of Rψ
τ1→τ2 we have that

∀w, w′ ∈ [[τ1]]
�, Rψ

τ1(w, w′) ⇒ Rψ
τ2⊥(w2(w), w′

2(w
′)).

Hence Rψ
τ2⊥(w2(w1), w′

2(w
′
1)) which is Rψ

τ2⊥([[e1 e2]]
�(ρ), [[e1 e2]]

�(ρ′))
as required.

• For a rec construct we have the derivation

V; Γ[f : (τ1 → τ2), x : τ1] � e : τ2
(rec)

V; Γ � (rec y(x : τ1) : τ2. e) : τ1 → τ2

Now from Figure 6.2,

[[rec y(x : τ1) : τ2. e]]�(ρ) =
⊔
i∈N

wi

where w0 = λw ∈ [[τ1]]
�.⊥,

and wi+1 = λw ∈ [[τ1]]
�.[[e]]�(ρ[x �→ w, y �→ wi]).
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Similarly,

[[rec y(x : τ1) : τ2. e]]�(ρ′) =
⊔
i∈N

w′
i

where w′
0 = λw ∈ [[τ1]]

�.⊥,

and w′
i+1 = λw ∈ [[τ1]]

�.[[e]]�(ρ′[x �→ w, y �→ w′
i]).

We now show by induction that Rψ
τ1→τ2(wi, w

′
i) for all i ∈ N.

– The base case is trivial: Rψ
τ1→τ2(λw ∈ [[τ1]]

�.⊥, λw ∈ [[τ1]]
�.⊥).

– For the step, show that Rψ
τ1→τ2(wi, w

′
i) implies Rψ

τ1→τ2(wi+1, w
′
i+1).

Expanding out wi+1 and w′
i+1 gives

Rψ
τ1→τ2(λw ∈ [[τ1]]

�.[[e]]�(ρ[x �→ w, y �→ wi]),
λw ∈ [[τ1]]

�.[[e]]�(ρ′[x �→ w, y �→ w′
i]))

which from the definition of the relation requires that for all w, w′ ∈
[[τ1]]

� such that Rψ
τ1(w, w′) it is the case that

Rψ
τ2⊥([[e]]�(ρ[x �→ w, y �→ wi]),

[[e]]�(ρ′[x �→ w′, y �→ w′
i])).

We can obtain this by applying the induction hypothesis of the main
theorem to the premise of the rule for rec.

Finally we just use Lemma 6.10 to get

Rψ
τ1→τ2

(⊔
i∈N

wi,
⊔
i∈N

w′
i

)

as required.

• For a dimension abstraction we have the derivation

V ∪ {d}; Γ � e : τ
(dgen)

V; Γ � Λd.e : ∀d.τ

Consider the scaling environment ψ : V → R+ and value environments ρ, ρ′

such that Rψ
Γ(ρ, ρ′). By the side-condition on (dgen) we know that d is not

free in Γ and hence Rψ[d�→k]
Γ (ρ, ρ′) for any k ∈ R+. Hence by the induction

hypothesis we can deduce that

Rψ[d�→k]
τ⊥ ([[e]]�(ρ), [[e]]�(ρ′)).

Under our initial assumptions about ρ, ρ′ we know that the above is true
for any k ∈ R+. Hence from the definition of Rψ

∀d.τ we obtain

Rψ
∀d.τ⊥([[Λd.e]]�(ρ), [[Λd.e]]�(ρ′))

as required.
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• For a dimension application we have the derivation

V; Γ � e : ∀d.τ
(dspec)

V; Γ � e δ : {d �→ δ}τ

By the induction hypothesis we know that for any ψ : V → R+,

Rψ
∀d.τ⊥([[e]]�(ρ), [[e]]�(ρ′))

⇐⇒ ∀k ∈ R+, Rψ[d�→k]
τ⊥ ([[e]]�(ρ), [[e]]�(ρ′)).

Now let S = {d �→ δ} and let k = ψ(S(δ)). Then by Lemma 6.9 we know
that

Rψ
{d�→δ}τ⊥

([[e δ]]�(ρ), [[e δ]]�(ρ′))

as required.

• For a division we have the derivation

V; Γ � e1 : real δ1 V; Γ � e2 : real δ2
(div)

V; Γ � e1/e2 : real δ1 · δ−1
2

From the induction hypothesis we know that

Rψ
real δ1⊥([[e1]]

�(ρ), [[e1]]
�(ρ′)) and Rψ

real δ2⊥([[e2]]
�(ρ), [[e2]]

�(ρ′)).

Now consider three possibilities.

1. [[e1]]
�(ρ) = ⊥ or [[e2]]

�(ρ) = ⊥. Then [[e1]]
�(ρ′) = ⊥ or [[e2]]

�(ρ′) = ⊥
from the induction hypothesis, so [[e1/e2]]

�(ρ) = [[e1/e2]]
�(ρ′) = ⊥ and

Rψ

(real δ1·δ−1
2 )⊥

([[e1/e2]]
�(ρ), [[e1/e2]]

�(ρ′)) as required.

2. [[e2]]
�(ρ) = [0] so by the induction hypothesis we know that [[e2]]

�(ρ′) =
[ψ(δ2) · 0] = [0]. Then [[e2/e1]]�(ρ) = [[e2/e1]]�(ρ′) = ⊥ and the result
follows.

3. [[e1]]
�(ρ) = [r1] and [[e2]]

�(ρ) = [r2] with r2 �= 0. Then

[[e1/e2]]
�(ρ) = [r1/r2]

and using the induction hypothesis,

[[e1/e2]]
�(ρ′) = [(ψ(δ1) · r1)/(ψ(δ2) · r2)]

= [(ψ(δ1)/ψ(δ2)) · (r1/r2)]
=

[
ψ(δ1 · δ−1

2 ) · (r1/r2)
]
.

Putting these together gives

Rψ

(real δ1·δ−1
2 )⊥

([[e1/e2]]
�(ρ), [[e1/e2]]

�(ρ′))

which is the required result.
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• For a comparison we have the derivation

V; Γ � e1 : real δ V; Γ � e2 : real δ
(cond)

V; Γ � e1 < e2 : bool

From the induction hypothesis we know that

Rψ
real δ⊥([[e1]]

�(ρ), [[e1]]
�(ρ′)) and Rψ

real δ⊥([[e2]]
�(ρ), [[e2]]

�(ρ′)).

Now consider three possibilities.

1. [[e1]]
�(ρ) = ⊥ or [[e2]]

�(ρ) = ⊥ so the result follows as in the case for
division.

2. [[e1]]
�(ρ) = [r1] and [[e2]]

�(ρ) = [r2] with r1 < r2 so [[e1 < e2]]
�(ρ) =

[true]. Then from the induction hypothesis [[e1]]
�(ρ′) = [ψ(δ) · r1] and

[[e1]]
�(ρ′) = [ψ(δ) · r2]. But since ψ(δ) > 0 we must have ψ(δ) · r1 <

ψ(δ) · r2 so [[e1 < e2]]
�(ρ′) = [true] as required.

3. [[e1]]
�(ρ) = [r1] and [[e2]]

�(ρ) = [r2] with r1 � r2. This is similar to the
previous case.

• The case for conditionals is similar to that for function application.



Chapter 7

Dimensional invariance

The dimensional invariance theorem proved at the end of Chapter 6 showed
how a logical relation Rψ

τ can be constructed over the denotational semantics to
capture the idea of invariance under scaling. In this chapter we apply dimensional
invariance to investigate three properties of programs in Λδ.

• First we show that the type of an expression alone determines how it
behaves with respect to scaling. For instance, any expression with type
∀d.real d → real d2 has the property that if its argument is multiplied by a
scale factor k ∈ Q+ then its result is multiplied by k2.

• An interesting consequence of dimensional invariance is that there are some
types which are not inhabited by any non-trivial term. For example, the
only expressions with polymorphic type ∀d.reald2 → reald are useless ones
such as the constant zero function and non-terminating function. The
implication is that if we want to calculate square roots then an appropriate
function would have type ∀d.real d → real d2 → real d, requiring an initial
estimate for the root as its first argument.

• The central theorem of dimensional analysis states that any equation which
holds between dimensioned variables x1, . . . , xn is equivalent to another
equation between a smaller number of dimensionless variables. Each of
these is a simple product of powers of the original variables, i.e., having
the form xz1

1 · · ·xzn
n where the exponents zi are integers. The theorem

is founded on the assumption that equations which express physical laws
are dimensionally invariant. We describe some preliminary ideas on how
an analogous ‘Pi theorem’ might hold for programming languages with
dimension types such as Λδ. This would be more general than the classical
result as it would hold for higher-order types, and we present an example
function to illustrate this.

Finally we argue that the scaling relation can be used to define a better, more
abstract semantics which distinguishes fewer observationally-equivalent expres-
sions.

The base type realδ is modelled by rationals in our semantics, but surprisingly
it is necessary to pick scale factors in ψ from the reals in order to obtain type

106
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Φψ
τ : [[τ ]]� → [[τ ]]�

Φψ
bool(b) = b

Φψ
real δ(r) = ψ(δ) · r

Φψ
τ1→τ2(f) = λw ∈ [[τ1]]

�. Φψ
τ2⊥(f(Φψ−1

τ1 (w)))

Figure 7.1: Scaling function

inhabitation properties such as the square root example above. We use r to
range over all rationals (the elements of base type in the semantics), and k to
range over positive rationals or positive reals (the scale factors used in the scaling
relation). For the reader uncomfortable with our use of a set as large as the reals,
it suffices to take any ordered field which includes all roots of positive elements.

7.1 Theorems for free

We began Chapter 6 with some examples of program equivalences in ML and
MLδ which can be deduced purely from the type of the program. It is possible to
use the scaling relation Rψ

τ directly to obtain these ‘theorems for free’. However,
for ML-style types in which all quantifiers are outermost it is easier to make use
of a scaling function which performs an invertible ‘change of units of measure’
on values which have quantifier-free types. For example, consider an expression
which calculates the force on a body due to gravity. Its type would be

weight : real M → real M · L · T−2.

Now assume that this function is initially used in the metric system but we wish
to convert it for use under Imperial units. A suitable conversion is given by

weightimp def= λmass : real M. weight(mass/k1) ∗ k2

where k1 = ψ(M), k2 = ψ(L · T−2) and ψ = {M �→ 2.205, L �→ 3.281, T �→ 1},
given that there are 2.205 pounds in a kilogram and 3.281 feet in a metre.

In general, the arguments to a function are scaled one way and the result
scaled the opposite way; this works for higher-order functions as well. Formally,
we define a family of scaling functions Φψ

τ : [[τ ]]� → [[τ ]]� parameterised on a
scaling environment ψ : DimVars → Q+ and defined inductively on the type τ .
This is shown in Figure 7.1. Because the basic values in [[τ ]]� are rationals, here
we restrict the scaling environment to positive rational scale factors in contrast to
the more general scaling relation which used reals. It is extended to environments
in the obvious pointwise fashion, giving functions Φψ

Γ : [[Γ]]� → [[Γ]]�.
In defining Φψ

τ we are essentially picking out the functional subset of the
scaling relation Rψ

τ when τ is quantifier-free. This is proved formally by the
following lemma.
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Lemma 7.1. For any scaling environment ψ : DimVars → Q+ and quantifier-
free type τ ,

Rψ
τ (w, w′) ⇐⇒ Φψ

τ (w) = w′.

Proof. By induction on τ .

Putting this together with the dimensional invariance theorem we get the fol-
lowing result for expressions with quantifier-free types.

Proposition 7.2. If V; Γ � e : τ for some quantifier-free type τ and quantifier-
free type assignment Γ, then for any scaling environment ψ : V → Q+ and value
environment ρ ∈ [[Γ]]�,

[[e]]�(Φψ
Γ(ρ)) = Φψ

τ⊥([[e]]�(ρ)).

Summarised as a commuting diagram this is the following:

[[Γ]]�
[[e]]�−−−→ [[τ ]]�⊥

Φψ
Γ

� �Φψ
τ⊥

[[Γ]]� −−−→
[[e]]�

[[τ ]]�⊥

It is interesting to note that the functions Φψ
τ and Φψ−1

τ are very similar to
the coercions used by Leroy to optimise data representation in ML [38]. In place
of our scaling conversions he has wrap and unwrap coercions which are used to
convert data between boxed and unboxed forms when polymorphic functions are
used at particular types.

We shall now see how Proposition 7.2 can be used to derive observational
equivalences between expressions of the kind that Wadler calls ‘theorems for
free’ [66]. We give two examples informally; the formal reasoning involved is te-
dious but trivial. For conciseness we omit type information from the expressions,
as would be the case in ML.

Example (Exponentiation). Consider an expression with an ‘exponentiation’
type:

� e : ∀d.real d → real dn, n ∈ Z.

Then for any k ∈ Q+ the following equivalence holds:

e(k ∗ x) ≈ kn ∗ e(x).

Example (Differentiation). Consider an expression diff with the type of the
differentiation function from page 10 in Chapter 1:

� diff : ∀d1.∀d2.real d1 → (real d1 → real d2) → (real d1 → real d2 · d−1
1 ).

Then for any k1, k2 ∈ Q+ the following equivalence holds:

diff h f x ≈ k2

k1
∗ diff

(
h

k1

)(
λx.

f(x ∗ k1)
k2

)(
x

k1

)
.
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The scaling relation and scaling function can be extended to deal with data
structures such as tuples, lists, or arbitrary algebraic datatypes, if the language
Λδ were so extended. For example, tuples scale in a pointwise fashion, and
likewise the scaling of a list is simply the scaling of each of its elements (all of
which have the same dimension type).

Example (Variance). Consider an expression variance with the type of the
variance function on page 9 of Chapter 1:

� variance : ∀d.real d list → real d2.

Then for any k ∈ Q+ the following equivalence holds:

variance(map (λx.k ∗ x) xs) ≈ k2 ∗ variance(xs)

where map f xs applies the function f to every element of the list xs.

It is unsurprising but very pleasing to note that these kinds of properties
carry over correctly to the implementation of complex numbers defined using
only primitive operations on the reals. Consider implementing a complex num-
ber package in which the complex number type has a dimension parameter, for
example via the Standard ML parameterisation mechanism used in Chapter 4.
Complex numbers might be implemented as pairs with real and imaginary com-
ponents:

complex δ
def= real δ × real δ.

Alternatively, a complex number could be represented in polar form by its mag-
nitude and polar angle:

complex δ
def= real δ × real 1.

Either way, the usual arithmetic operations can be defined on complex numbers
and given polymorphic dimension types matching those of the same operations
on the reals—and the inference algorithm of Chapter 3 can deduce them. Scal-
ing properties derived by dimensional invariance apply to dimensioned complex
numbers: for the first representation multiplying both real and imaginary com-
ponents by the same positive scale factor, and for the second representation
multiplying just the magnitude. Of course, the properties could be broken if the
representation was revealed to the undisciplined programmer; therefore the type
and its primitive operations should be packaged up as an abstract data type if
the language supports it.
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7.2 Type inhabitation

Consider the typing

� e : ∀d.real d2 → real d.

Assume that the evaluation of e does terminate so that [[e]]�(∅) = [f ] for some
f ∈ Q → Q⊥. Now consider the behaviour of this function when applied to a
rational number r. We know that either f(r) = ⊥ or f(r) = [r′] for some rational
number r′ (f cannot be a true square root function because some rationals have
irrational roots).

Now apply the dimensional invariance theorem, first considering only rational
scale factors. Then for any k ∈ Q+, if f(r) = ⊥ then f(k2 · r) = ⊥, and
if f(r) = [r′] then f(k2 · r) = [k · r′]. This cuts down the range of possible
functions somewhat. If f fails to terminate on any value without a rational root
then it must fail to terminate on all such values. Also, if it returns zero for any
value without a rational root then it must return zero for all such values. So we
have the intriguing possibility of a function which finds rational roots when they
exist, but which otherwise returns zero or just loops. Indeed, it is possible to
write such a function simply by enumerating all rationals until reaching the root
but looping if none exists. Informally, an implementation of this function can
not have a polymorphic type because the only rationals that it can enumerate
must be dimensionless.

In order to show formally that there is no such rational square root function
with a polymorphic type, we must allow the scale factor k to be irrational. For
any k′ ∈ Q+ there is some k ∈ R+ such that k′ = k2. Applying dimensional
invariance gives two possibilities.

• If f(r) = ⊥ then f(k′ · r) = ⊥. Hence if f fails to terminate for any
positive argument, then it must fail to terminate for all positive arguments.
Similarly, if it loops for any negative argument then it loops for all negative
arguments.

• If f(r) = [r′] then f(k′ · r) = [k · r′]. Now because f ∈ Q → Q⊥ it must
be the case that k · r′ is rational. This can only be true if r′ = 0. Hence
if f returns zero for any positive argument then it must return zero for all
positive arguments. The same is true of negative arguments.

To sum up, we have drawn the scale factors from the positive reals in order
to show that a function with the type ∀d.real d2 → real d cannot distinguish
between different positive or negative values. In fact, all functions f of this type
are characterised by

f(r) =




w1 if r < 0,

w2 if r = 0,

w3 if r > 0,

where each of w1, w2 and w3 is either ⊥ or [0]. This gives just eight possible
functions.
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More generally, consider an expression e with the typing

� e : ∀d.real dm → real dn

for some m, n ∈ Z. Let [[e]]�(∅) = [f ]. Then f must be one of the trivial functions
described above whenever m does not divide n.

These examples show how it is not possible to write polymorphic root-finding
functions unless an initial estimate of the root is provided as an additional argu-
ment. For example, it is possible to write an approximate square root function
with the type ∀d.real d → real d2 → real d. A real implementation might provide
a primitive square root operation with type ∀d.real d2 → real d, but it would not
be dimensionally invariant, at least not precisely. In an implementation based
on floating-point arithmetic even the primitive addition and subtraction opera-
tions cannot be dimensionally invariant due to the non-linearity of floating-point
representation, so we would not really lose anything by making this compromise.

It is interesting to note that one can write a dimensionally-polymorphic
function which accepts two numbers a and b and returns an approximation to√

a2 + b2. This function has the type ∀d.real d → real d → real d, and would use
some linear combination of a and b as an initial estimate for the root.

For our final example we formalise the use of the phrase non-trivial.

• A value r ∈ [[real δ]]� is non-trivial if r �= 0.

• A value f ∈ [[τ1 → τ2]]
� is non-trivial if f(w) is non-trivial for some w ∈

[[τ1]]
�.

• A value w ∈ [[τ ]]�⊥ is non-trivial if w = [w′] for some non-trivial w′ ∈ [[τ ]]�.

We now present an example of a type which is non-trivially inhabited if and only
if there is a solution to a certain equation in integers.

Example. The expression e has the typing†

� e : ∀d.real da1 → · · · → real dan → real db

for a1, . . . , an, b ∈ Z. Then [[e]]� can be non-trivial only if there is a solution in
integers c1, . . . , cn to the equation

a1c1 + · · · + ancn = b.

Proof. Let [[e]]�(∅) = [w]. By dimensional invariance we know that

R∅
∀d.real da1→···→real dan→real db(w, w).

Expanding out the definition of the relation gives us the following: for all k ∈ R+

and all r1, . . . , rn ∈ Q such that ka1 · r1, . . . , kan · rn ∈ Q it is the case that

R{d�→k}
real db⊥

(w (r1) · · · (rn), w (ka1 · r1) · · · (kan · rn)).

†This example suggested by Ian Stark
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Now suppose that there are some r1, . . . , rn ∈ Q such that

w (r1) · · · (rn) = [r]

for some r �= 0. Let g = gcd(a1, . . . , an) and pick k ∈ R+ such that kg ∈ Q+ but
km /∈ Q+ for all m < g (for example, let k = 21/g). Then clearly ka1 , . . . , kan ∈
Q+. So by the result above we must have

w (ka1 · r1) · · · (kan · rn) =
[
kb · r

]
.

But kb · r ∈ Q only if g divides b or r = 0, so w can be non-trivial only if
gcd(a1, . . . , an) divides b. This statement is equivalent to there being a solution
in integers c1, . . . , cn to the equation

a1c1 + · · · + ancn = b.

7.3 Dimensional analysis and type isomorphisms

We start this section with a statement of the Pi Theorem from dimensional
analysis.

Theorem (Pi Theorem). Fix a set of n base dimensions. Let x1, . . . , xn be
positive variables with the dimension of xi given by the i’th column of an m× n
matrix A of dimension exponents. Then any dimensionally-invariant relation of
the form

f(x1, . . . , xn) = 0

is equivalent to a relation

f ′(Π1, . . . ,Πn−r) = 0

where r is the rank of the matrix A and Π1, . . . ,Πn−r are dimensionless power-
products of x1, . . . , xn.

Proof. See Birkhoff [6].

The proof of the theorem constructs f ′ explicitly. We now do the same for
a particular instance: the equation which governs the behaviour of a simple
pendulum as discussed in Chapter 1.

Example (Pendulum). Suppose that there is some function f which relates
the mass m, the length of pendulum l, the initial angle from the vertical θ, the
acceleration due to gravity g and the period of oscillation t:

f(m, l, θ, g, t) = 0.
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Now m has dimensions [M], l has dimensions [L], θ is dimensionless, g has
dimensions [LT−2] and t has dimensions [T]. Then by dimensional invariance,
for any positive M , L and T the following relation holds:

f(Mm, Ll, θ, LT−2g, T t) = 0.

Assuming that the variables m, l and g are positive, let

M = 1/m,
L = 1/l,

and T =
√

g/l.

Then the relation can be rewritten

f(1, 1, θ, 1, t
√

g/l) = 0

so removing the constant arguments this is a function f ′(θ, t
√

g/l) whose ar-
guments are dimensionless power-products. We can rearrange this to obtain a
function φ such that the period of oscillation is given by

t =
√

l/g φ(θ).

Inspired by this example, suppose that we have some expression e in Λδ with

� e : ∀M.∀L.∀T.real M → real L → real 1 → real L · T−2 → real T → real 1.

Then by using an argument similar to the example (based on our dimensional in-
variance theorem) we can deduce that the following equivalence holds for positive
argument values. Again for simplicity we omit type information:

e (m) (l) (θ) (g) (t) ≈ 0 if and only if e (1) (1) (θ) (1) (t ∗
√

g/l) ≈ 0.

So we can construct an expression e′ analogous to f ′ above with the typing

� e′ : real 1 → real 1 → real 1

such that

e (m) (l) (θ) (g) (t) ≈ 0 if and only if e′ (θ) (t ∗
√

g/l) ≈ 0.

Note, however, that this assumes the existence of a square root function, which
we have already shown cannot be defined in the language. Thus the relation
above is rather limited in its application. More definitive results are the subject
of further research.

The classical Pi Theorem covers only first-order functions, but the idea works
equally well for higher-order functions in Λδ. This suggests a more general result
which applies to expressions of any type, though it is not clear how types with
nested quantifiers would be handled.
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Example (Differentiation). Consider the differentiation function again:

� diff : ∀d1.∀d2.real d1 → (real d1 → real d2) → (real d1 → real d2 · d−1
1 ).

In Section 7.1 we showed that the following equivalence holds for any k1, k2 ∈ Q+.
This time we show all dimensions explicitly:

diff δ1 δ2 h f x ≈ k2

k1
∗ diff δ1 δ2

(
h

k1

)(
λx : real δ1.

f(x ∗ k1)
k2

)(
x

k1

)
.

Assume that x, h and f are positive. Then we can set k1 = h and k2 = f(h) to
obtain

diff δ1 δ2 h f x ≈ f(h)
h

∗ diff ′
(

λx : real 1.
f(x ∗ h)

f(h)

)(x

h

)
where diff ′ = diff 1 1 1 and has typing

� diff ′ : (real 1 → real 1) → (real 1 → real 1).

These reductions are almost examples of type isomorphisms. We say that a
type τ1 is isomorphic to another type τ2 (written τ1

∼= τ2) if there are expressions
e1 and e2 with types τ1 → τ2 and τ2 → τ1 such that e1(e2x) ≈ x and e2(e1x) ≈ x.
In other words, there exist two expressions which together define an isomorphism
between the domains of τ1 and τ2. For example,

τ1 → τ2 → τ3
∼= τ2 → τ1 → τ3

by the expressions

e1
def= λz : τ1 → τ2 → τ3. λx : τ2. λy : τ1. z y x

and e2
def= λz : τ2 → τ1 → τ3. λx : τ1. λy : τ2. z y x.

Now consider the type τ1 = ∀d.real d → real d → real d. By the Pi Theorem it
would first appear that any expression of type τ1 is ‘equivalent’ in some sense
to an expression of type τ2 = real 1 → real 1. Therefore in addition to standard
isomorphisms between types (studied for example by Di Cosmo [11]), one would
hope to add

∀d.real d → real d → real d ∼= real 1 → real 1.

Suitable coercions are given by

e1
def= λz : (∀dreal d → real d → real d). λx : real 1. z 1 1 x

and e2
def= λz : (real 1 → real 1). Λd. λx : real d. λy : real d. (z (y/x)) ∗ x.

However, as we saw earlier this only works if argument values are restricted to be
positive. Intuitively there are more functions of type ∀d.real d → real d → real d
than of type real1 → real1 because they can use the signs of the two arguments
to determine completely different courses of action, in contrast to functions of
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type real 1 → real 1 which can only switch on the sign of a single argument. It
follows that we do not have a true isomorphism.

One kind of type isomorphism which does exist is associated with a change
of basis in the sense described in Chapter 2. Our earlier notion of type scheme
equivalence (∼=D defined on page 27) is then just one example of a type isomor-
phism (∼= defined above):

∀d1 . . . dm.τ ∼=D ∀d′1 . . . d′n.τ ′ implies ∀d1 . . . dm.τ ∼= ∀d′1 . . . d′n.τ ′.

If the type scheme equivalence holds then by Lemma 3.10 there is an invert-
ible substitution U such that U(τ) =D τ ′ and U−1(τ ′) =D τ . Using this
substitution we can define expressions e and e′ which perform the appropri-
ate coercions between expressions of equivalent polymorphic types. First let
δ1 = U(d1), . . . , δm = U(dm) and δ′1 = U−1(d′1), . . . , δ′n = U−1(d′n). Then

e
def= λz : (∀d1 . . . dm.τ). Λd′1 . . . d′n. z δ1 · · · δm

and e′ def= λz : (∀d′1 . . . d′n.τ ′). Λd1 . . . dm. z δ′1 · · · δ′n.

7.4 A more abstract model

Through the use of the dimensional invariance theorem we have shown how
certain elements of a ‘dimensionless’ domain [[τ ]]� can be ruled out as possible
meanings for expressions with the type τ . In this section we ‘put the dimensions
back into the semantics’ by using the scaling relation to quotient the semantics in
an appropriate way. The resulting semantics is more abstract and distinguishes
less expressions.

Reasoning using dimensional invariance

Consider the following observationally-equivalent expressions seen earlier in Sec-
tion 6.3:

e1
def= λy : (∀d.real d → real d). y 1 2

and e2
def= λy : (∀d.real d → real d). 2 ∗ y 1 1.

Although these expressions have different denotations in the naive, dimensionless
semantics given by [[·]]�, we can use the scaling relation and dimensional invari-
ance theorem to prove that they are equivalent. First, though, we need a lemma
which shows that observational equivalence can be characterised by something
simpler than all program contexts. For functional languages Milner proved a
result which he called the Context Lemma [41]. It states that two expressions
of closed, functional type can only be distinguished observationally by applying
them to some argument value. We can prove a similar result for our language
Λδ and extend it to cover expressions of polymorphic type.
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Lemma 7.3 (Context Lemma). If � e1 : τ1 → τ2 and � e2 : τ1 → τ2 then
e1 ≈ e2 if and only if e1 e ≈ e2 e for all expressions e of type τ1. Also, if
� e1 : ∀d.τ and � e2 : ∀d.τ then e1 ≈ e2 if and only if e1 δ ≈ e2 δ for all
dimension expressions δ.

Applying this to the expressions e1 and e2 given above, we need to show that
for any expression e of type ∀d.real d → real d it is the case that e1 e ≈ e2 e.
Now by dimensional invariance, if � e : ∀d.real d → real d and [[e]]�(∅) = w then
R∅

∀d.real d→real d(w, w). Also,

[[e1 e]]�(∅) = [[y 1 2]]�{y �→ w}
[[e2 e]]�(∅) = [[2 ∗ y 1 1]]�{y �→ w}.

Expanding out the definition of the scaling relation it follows that [[e1 e]]�(∅) =
[[e2 e]]�(∅) and hence by adequacy e1 e ≈ e2 e as required.

Quotienting the semantics

Inspired by the use of the scaling relation in the reasoning above, we now discuss
some preliminary work on constructing a more abstract semantics for dimension
types.

Consider two expressions e1, e2 with typings V; Γ � e1 : τ and V; Γ � e2 : τ .
In the new semantics we want to assign identical meanings to e1 and e2 if their
meanings [[e1]]

� and [[e2]]
� in the original semantics preserve the scaling relation

for any choice of scaling environment ψ ∈ V → R+. Let RV;Γ
τ be a scaling

relation for functions in [[Γ]]� → [[τ ]]�⊥ (where fv(τ) ∪ fv(Γ) ⊆ V) defined by:

RV;Γ
τ (f, f ′) def⇐⇒ for all ψ ∈ V → R+ and ρ, ρ′ ∈ [[Γ]]�,

Rψ
Γ(ρ, ρ′) ⇒ Rψ

τ⊥(f(ρ), f ′(ρ′)).

Using this new notation, dimensional invariance (Theorem 6.11) can be restated
as follows: if V; Γ � e : τ then RV;Γ

τ ([[e]]�, [[e]]�).
To define the new semantics we quotient the original semantics by a partial

equivalence relation. A PER is a binary relation R that is transitive and symmet-
ric. Its domain is defined by dom(R) = { x | (x, x) ∈ R }. A PER is so-called
because it forms a proper equivalence relation over its domain, but outside of its
domain no elements are in the relation. Ideally we would like RV;Γ

τ to be a PER,
so that values in the new semantics are simply equivalence classes of values in
the old semantics under RV;Γ

τ . It is certainly true that RV;Γ
τ is symmetric.

Lemma 7.4. If RV;Γ
τ (f, f ′) then RV;Γ

τ (f ′, f).

Proof. For a scaling environment ψ ∈ V → R+ define ψ−1 by:

ψ−1(d) def= 1/ψ(d).

It is clear that ψ−1(δ) = 1/ψ(δ) for any dimension δ. It is also easy to show by
induction that

Rψ
τ (w, w′) if and only if Rψ−1

τ (w′, w)
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and

Rψ
Γ(ρ, ρ′) if and only if Rψ−1

Γ (ρ′, ρ).

The symmetry of RV;Γ
τ is a direct corollary.

Unfortunately transitivity is much harder to show. The obvious approach is to
start by defining the pointwise product of two scaling environments ψ1 and ψ2:

(ψ1 · ψ2)(d) def= ψ1(d) · ψ2(d).

It is clear that (ψ1 · ψ2)(δ) = ψ1(δ) · ψ2(δ) for any dimension δ. We might then
expect that

if Rψ1
τ (w, w′) and Rψ2

τ (w′, w′′) then Rψ1·ψ2
τ (w, w′′).

Unfortunately this does not hold. A counterexample is given by τ = real d →
real 1, ψ1 = ψ2 = {d �→

√
2}, and w = w′ = w′′ = λr.r ∈ Q → Q⊥. So far other

attempts to prove transitivity have failed. To avoid the issue, we can just take
the transitive closure of the relation, denoted by tr(RV;Γ

τ ). The practical import
of this technique is that in order to prove that two expressions are equivalent
it might be necessary to relate their meanings by RV;Γ

τ via some intermediate
values.

The equivalence class of a function f ∈ [[Γ]]� → [[τ ]]�⊥ (where fv(τ)∪fv(Γ) ⊆ V)
is denoted [f ]V;Γ

τ and defined as follows:

[f ]V;Γ
τ

def=
{

f ′ ∈ [[Γ]]� → [[τ ]]�⊥ | tr(RV;Γ
τ )(f, f ′)

}
.

Then the abstract semantics of an expression e with typing V; Γ � e : τ is given
by

[[e]] def= [[[e]]�]V;Γ
τ .

Hence the meaning [[e]] is an equivalence class in the quotient

([[Γ]]� → [[τ ]]�⊥)/tr(RV;Γ
τ ).

How abstract is the semantics?

The observational equivalence proved manually above shows that the new se-
mantics based on dimensional invariance is more abstract than the dimensionless
semantics which provides the underlying domains. But just how abstract is it?
First, it is worth observing that the decision to quantify scale factors over the
reals rather than the rationals accounts for an additional level of abstraction.
Consider the following expressions:

e1
def= λy : (∀d.real d2 → real d). y 1 2

and e2
def= λy : (∀d.real d2 → real d). y 1 4



118 Dimensional invariance

It is clear from the discussion in Section 7.2 that if the scaling relation was
allowed to quantify only over the rationals then there would be rational square
root functions related by R∅

τ for τ = ∀d.real d2 → real d. These could be used
to distinguish e1 and e2. With scale factors drawn from the reals, though, we
have shown that the functions preserved by the scaling relation cannot even
distinguish between different arguments which have the same sign. Hence in our
more abstract semantics e1 and e2 are indistinguishable: [[e1]] = [[e2]].

The new semantics could be said to be parametric, in the sense that it cap-
tures the parametric polymorphism of the language. What is the best we can
expect of this parametric semantics? It cannot be fully abstract, because its
underlying model is just the standard cpo model of PCF which is known not
to be fully abstract. Ideally we want something that is ‘no worse’; that is, the
only distinctions that the semantics makes are those that would have been made
anyway in models of PCF. To formalise this, let the proposition dist(e1, e2) hold
if e1 and e2 are incorrectly distinguished by the denotational semantics, that is,

dist(e1, e2)
def= [[e1]] �= [[e2]] ∧ e1 ≈ e2.

Then we say that the semantics is relatively fully abstract if for any expressions
e1 and e2 such that V; Γ � e1 : τ and V; Γ � e2 : τ , then

dist(e1, e2) ⇒ dist(e1
�, e2

�).

Informally, this says that if two expressions e1 and e2 are distinguished incor-
rectly by the denotational semantics, then they would also be distinguished even
if dimensions were ignored. Thus the only expressions which are distinguished
incorrectly are the sort that standard models of PCF would distinguish, i.e.
those which are distinguished by the presence of a parallel-or function in the
model.

Another way of saying the same thing is that if the underlying semantics
[[·]]� were fully abstract with respect to dimensionless expressions, then the para-
metric semantics [[·]] would be fully abstract also. This is analogous to the idea
that a program logic can be relatively complete with respect to its underlying
logic of assertions.

I do not know whether the new semantics is relatively fully abstract: this is
an area for future research.



Chapter 8

Conclusion

In this final chapter we describe some possibilities for further research into the
syntax and semantics of dimension types and related type systems. We then
summarise the results of the dissertation.

8.1 Further work

Types and type inference

The type system described in Chapter 2 and its inference algorithm presented
in Chapter 3 were based on the conventional notion of type scheme, first in-
troduced by Damas and Milner [13]. However, the subtleties of working in the
non-regular equational theory of Abelian groups led to some quite unconventional
problems and their solutions: the distinction between essential and non-essential
free variables, and the need for an invertible substitution which was applied be-
fore generalising a type with respect to a type assignment. One possible avenue
of research is to abandon type schemes and define an equivalent first-order sys-
tem. This is the style favoured by Henglein [23] and by Kfoury et al. [31] in
their study of polymorphic recursion for ML. In their formulation, the context
in a typing judgment consists of a type assignment containing only simple types
(no type schemes) and a list of types which have been assigned to lambda-bound
variables. Interestingly, this is very reminiscent of the original system proposed
by Milner [42].

It is possible that a type inference algorithm based on a first-order formula-
tion of the type system would be more efficient than the current one based on
type schemes. Indeed, efficiency of dimension inference is an area not explored
in this thesis. The worst-case complexity of dimension inference cannot be any
worse than ordinary ML type inference, given that Abelian group unification can
be done in polynomial-time. However, it is probable that for the average case
dimension inference is worse, and this may be worth investigating.

Many possible enhancements to dimension types were discussed at the end of
Chapter 3. Of these, polymorphic recursion has received some attention through
Rittri’s work [57, 58] but this is by no means complete. Odersky and Läufer have
recently shown how one can extend the ML type system with explicit annotations

119
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that give the language the expressiveness of System F. It would be interesting
to investigate supporting dimension types in such a system.

More generally there is potential for studying ML-style type inference under
an arbitrary equational theory. Rémy has done this for regular theories [55] but
for non-regular theories such as that of dimensions the problem is open. The
obvious conjecture is that unique most general types exist whenever unification
in the equational theory is unitary.

The overloading of arithmetic operators was the only real difficulty encoun-
tered when implementing a dimension type extension to Standard ML. There
seem to be two opposing trends in the treatment of overloading. One is to aban-
don it entirely: this appears to be the direction that ML is taking (for example
in ML-2000). The other is to generalise the idea of equality types from Stan-
dard ML to a system of type classes: these are the most innovative aspect of the
language Haskell [25, 67]. A type class declaration prescribes certain operations
which must be available on any type belonging to that class. For example, the
class Eq of equality types requires that for every type τ in the class there is an
operation ‘=’ with the type τ → τ → bool. Furthermore, there is a programmer-
defined ordering relation on type classes which supports the idea of inheritance.
A class C is a subclass of another class C ′ if it provides at least the operations
of C ′. A very natural extension of this idea would be the definition of a type
class (called Dim, say) whose type instances admit a dimension parameter. In
other words, Dim is a class of type operators. Any type belonging to this class
must provide the standard arithmetic operations, perhaps including a compari-
son operator. This idea is along the same lines as Chen, Hudak and Odersky’s
parametric type classes [10], where types belonging to a type class may be pa-
rameterised on another type; this is particularly useful in representing container
classes such as lists and bags. Here is some tentative syntax for the definition of
Dim:

class Dim T =
{

+, - : ∀d.T (d) → T (d) → T (d)
* : ∀d1.∀d2.T (d1) → T (d2) → T (d1 · d2)
/ : ∀d1.∀d2.T (d1) → T (d2) → T (d1 · d−1

2 )
< : ∀d.T (d) → T (d) → bool

}
The type of rational values (perhaps frac δ) would be an instance of Dim. A
subclass of Dim would add extra operations such as sin and log; the type real δ
of reals and the type complex δ of complex numbers would be instances of this
class.

This discussion hints at a whole hierarchy of type classes whose instances are
dimensioned types. An obvious question is: can integers have dimensions? After
all, many quantities clearly have units (for instance, disc storage density in bytes
per sector) but would not usually be represented by real numbers. However,
consider the ‘div’ operation on integers, defined by

x div y = �x/y�.
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This could be given the polymorphic dimension type

div : ∀d1.∀d2.int d1 → int d2 → int d1 · d−1
2 .

But this type does not correctly describe the behaviour of div under scaling of
its arguments: it is not dimensionally invariant. Therefore if we want a proper
semantics for dimensioned integers, and a dimensional invariance result in the
sense described in Chapter 6, then we are forced to reject this type for div and
allow only dimensionless arguments. We are left with just addition, subtraction
and multiplication as dimensioned arithmetic operations, none of which uses
dimension inverses. So perhaps the correct equational theory for dimensions in
this case is not that of Abelian groups, but of commutative monoids instead,
with axioms just for associativity, commutativity and identity of dimensions.

This thesis has concentrated on dimension-checking and dimension-inference
for programming languages and has not covered the situation of multiple sys-
tems of units within the same dimension. Different units can be seen as different
views, or implementations, of the same underlying abstract data type. Thatte
has shown how a type inference algorithm can be modified to insert coercions
between different views automatically [62]. He calls these maps coercive type
isomorphisms, but because in his system they are defined by the programmer
there is no guarantee that they are true isomorphisms. For the special case
of unit conversions there is such a guarantee whose most general form is the
dimensional invariance theorem described in Chapter 6. If units are taken as
primary, and real δ interpreted as “reals with unit of measure δ”, then it should
be straightforward to extend the typing rules of MLδ with information concern-
ing unit conversions, and then modify the dimension unification and inference
algorithms to insert unit conversions automatically. The best way to formalise
this would be to combine it with the translation into the explicitly-typed lan-
guage Λδ.

As well as multiple units, programmers might want to use different sets of
base dimensions, for example to use the dimension force as an alternative to the
combination of SI base dimensions [MLT−2]. At its simplest, this just requires
a dimension synonym construct in the style of the type synonym construct pro-
vided by Standard ML. Then a synonym for force would be declared by the
following:

dimension Force = M * L * T ^ ~2

The problem of a unique form to display polymorphic dimension types was ad-
dressed in Section 3.3. The same issue crops up here: if there are a number
of ways to describe a dimension type in terms of various base dimensions and
synonyms, what is the ‘best’ way to present such a type to the programmer? For
example, pressure (force per unit area) has the SI dimensions [ML−1T−2] but is
more simply expressed as [Force·L−2]. Of course, this issue of type representation
occurs with ordinary type synonyms too.

More imaginatively, the possibility of multiple units and alternative sets of
base dimensions could be integrated into the module system of a language, as
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Goubault has suggested for ML [18]. In Standard ML, types may be shared be-
tween modules if special declarations called sharing constraints make clear which
types are to be treated as the same. Goubault describes how an analogous di-
mension sharing construct could specify the relationship between alternate sets
of base dimensions, and at the same time define unit conversions between differ-
ent units used for these base dimensions. For example, one module might use
the SI base dimensions of mass, length and time, measured in kilograms, metres
and seconds, whereas another uses force, velocity and acceleration measured in
pounds, feet per second and feet per second per second.

Semantics

There is scope for further work in understanding the denotational semantics of
dimension types. In particular, it would be very satisfying to obtain a relatively
fully abstract model, in the sense that all distinctions made by the semantics
are due to the underlying cpo-based model. In essence the idea is to separate
the issues of sequentiality and parametricity in the language. The former is a
well-known hard problem (the ‘full abstraction problem for PCF’) and the par-
tial equivalence relation described in Section 7.4 is a step towards solving the
latter. Although this work is not complete, there are reasons to be optimistic.
This is because dimension polymorphism is predicative: the quantification in a
dimension type ∀d.τ is over something ‘smaller’ than ∀d.τ . In contrast, paramet-
ric models of System F are much harder to find because type polymorphism is
impredicative: the quantification in a type ∀t.τ is over all types, and this includes
the type ∀t.τ itself.

In Chapter 7 we presented two examples of types which are inhabited up to
equivalence only by a small number of ‘trivial’ terms. It should be possible to
obtain a better characterisation of what is meant by ‘trivial’ and of those types
which are non-trivially inhabited. There may be some kind of Curry-Howard
correspondence between propositions and dimension types: that is to say, a type
is non-trivially inhabited if and only if there is a proof of a certain proposition
which corresponds to that type.

We saw informally how the Pi Theorem from dimensional analysis can be
applied to first-order types in Λδ, and an example was given of a similar result
holding for the higher-order type of the differentiation function. One area of
future research is the formulation of a Pi Theorem for types of any order; also,
the situation for negative and zero arguments to functions should be investigated.

It seems likely that parametricity could be applied fruitfully to other predica-
tive type systems based on an equational theory. For example, Rémy’s system for
polymorphic typing of records uses an equational theory and predicative quan-
tification over rows. There are also potential applications in providing a better
understanding of some type-based program analyses. For example, Tofte’s anal-
ysis of memory allocation in functional programs [65] employs quantification over
regions; again, this is predicative. In general, we have some equational theory
E which induces an equivalence between types =E . Then a logical relation Rτ

is defined over the domains of values in a denotational semantics, in the style
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of the scaling relation of Chapter 6. We certainly want this relation to preserve
the equivalence, that is:

τ1 =E τ2 ⇒ Rτ1 = Rτ2 .

For the dimension type system, the equivalence relation on types was built up
from an equivalence on the dimension components of base types, that is realδ. By
ensuring that the scaling relation was preserved under this equivalence at base
type the rest then came ‘for free’. Our scaling environment ψ can be viewed as
a homomorphism between elements of the free Abelian group of dimensions and
the Abelian group of unit conversions on the values of base type (the rationals).
It seems likely that for type systems based on other equational theories we should
look to this kind of homomorphic relation for parametricity results.

It is possible to extend the explicitly-typed language Λδ to give it a higher-
order type system with a notion of kinds, in the same way that System F has
been extended to produce System Fω. To see why this might be useful, consider
the following ML code:

fun twice f x = f (f x)
fun sqr x = x*x
fun fourth x = (twice sqr) x

Under ordinary ML type inference, twice is assigned the type scheme

∀t.(t → t) → (t → t).

Unfortunately, this does not capture all possible uses of the function. In par-
ticular, when it is applied to the function sqr, which in our system would be
assigned the polymorphic dimension type ∀d.real d → real d2, the resulting func-
tion fourth can only be assigned a dimensionless type instead of the desired
∀d.real d → real d4. This is because the argument passed to twice is used
at two instances: at the type ∀d.real d → real d2 and at ∀d.real d2 → real d4.
Crucially, these instances are related to each other by the dimension operator
F = λd.d2. The first has type ∀d.real d → real (F (d)) and the second has type
∀d.real (F (d)) → real (F (F (d))). Hence if twice was allowed to quantify over
dimension operators then a suitable typing could be given to it which would
permit twice sqr to be assigned the type ∀d.real d → real d4 as desired.

We call the new language with dimension operators Λδω. In addition to the
kind of ground dimension expressions, there is a kind of dimension operators
(functions from dimensions to dimensions), and of all higher-order operators
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too. Kinds, dimensions and types would then have the following syntax:

K ::= dim kind of dimensions
| K1 → K2 operator kinds

δ ::= d dimension variables
| 1 unit dimension
| δ1 · δ2 dimension product
| δ−1 dimension inverse
| λd : K.δ operator abstraction
| δ1 δ2 operator application

τ ::= bool booleans
| real δ dimensioned reals
| τ1 → τ2 function types
| ∀d : K.τ dimension quantification

Dimensions now form a very small typed lambda calculus, with application of
dimension operators and operator abstraction. Types differ only in that the
kind of a quantified dimension variable must be given; similarly, expressions are
identical to those of Λδ except that the dimension abstraction construct Λd : K.e
specifies a kind. We will not present the typing rules but the reader familiar with
System Fω should be able to reconstruct them without difficulty. Just observe
that the problematic twice sqr can be expressed in Λδω:

twice : ∀F : dim → dim.

(∀d : dim. real d → real F d)
(∀d : dim. real d → real F (F d))

twice def= ΛF : dim → dim.

λf : (∀d : dim. real d → real F d).
Λd : dim. λx : real d. f (F d) (f d x)

sqr : ∀d : dim. real d → real d2

sqr def= Λd : dim. λx : real d. x ∗ x

fourth : ∀d : dim. real d → real d4

fourth def= twice (λd : dim. d2) sqr

This demonstrates the expressiveness of Λδω but perhaps just for the purposes
of dimensions it is a ‘type system too far’. However, the ideas are likely be
applicable to similar type systems based on equational theories which have some
kind of predicative quantification over ‘data representations’. Indeed there are
similarities between Λδω and the type system used by Harper and Morrisett to
optimize compilation of ML programs [21]. The predicativity of his system stems
from the restriction that kinds range over type constructors of simple types only.
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ML MLδ

Class of types τ Classes of types τ and dimensions δ

Syntactic equivalence = Semantic equivalence =D

Type quantification ∀t.τ Dimension quantification ∀d.τ also

Alpha-equivalence of type schemes
⇒ obvious canonical form

Non-trivial equivalence of type schemes ∼=D

⇒ non-trivial Hermite normal form

Free variables in types and schemes Essential free variables in types and schemes

Generalisation easy
(just ftv(Γ) \ ftv(τ))

Generalisation hard
(change of basis first)

Inference by syntactic unification Inference by semantic unification over =D

Syntactic unification is unitary
⇒ single most general type

Unification over =D is unitary
⇒ single most general type

Well-typed programs don’t go wrong
⇒ erase types at run-time

Well-dimensioned programs don’t go wrong
⇒ erase dimensions at run-time

Polymorphic recursion undecidable Dimension-polymorphic recursion not known

Figure 8.1: Comparison of ML and MLδ

Finally, the inspiration for all this work on semantics was the well-known
fact that physical laws are invariant under changes in the system of units. But
in general they are also invariant under changes in the coordinate system given
by a translation or rotation of the axes. Mathematically, this is the theory of
tensors. It would make an interesting challenge to devise a type system which
supported this idea.

8.2 Summary

In conclusion, we summarise the relationship between conventional type systems
and the dimension type systems described here. Figure 8.1 highlights the simi-
larities and differences between ordinary ML and the extension which we called
MLδ. Figure 8.2 does the same for System F and the explicitly-typed language
Λδ.

In our investigation into programming languages and dimensions we have
described the following:

• A generalisation of the Damas-Milner type system which supports dimen-
sion types and dimension polymorphism.

• An inference algorithm which combines type inference with dimension in-
ference, deducing a most general type which has a natural canonical rep-
resentation expressing type polymorphism and dimension polymorphism.
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System F Λδ

Impredicative type polymorphism ∀t.τ Predicative dimension polymorphism ∀d.δ

Type abstraction Λt.e Dimension abstraction Λd.e

Type application e τ Dimension application e δ

Parametricity Dimensional invariance

Theorems for free Scaling theorems for free

Type inhabitation
(no term in ∀t1.∀t2.t1 → t2)

Type inhabitation
(trivial terms in ∀d.real d2 → real d)

Type isomorphisms Pi Theorem from dimensional analysis

Figure 8.2: Comparison of System F and Λδ

• The practicality of integrating dimensions into a general-purpose program-
ming language: Standard ML.

• The formal operational semantics of a programming language with dimen-
sions which showed that dimension errors cannot occur during the evalu-
ation of a well-typed program, and hence that dimensions do not need to
be carried around at run-time.

• The denotational semantics of the same language and its relation to the
operational semantics.

• A theorem that captured the essence of polymorphic dimension types—
invariance under scaling—and was used to prove interesting observational
equivalences between expressions in the language.

This research provides a foundation for the application of dimensions to program-
ming by programming language designers and implementers. Then programmers
can enjoy the benefits of the prevention of dimension errors in programs.
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Example derivations

In this appendix we present three sample typing derivations. The first two
(shown in Figures A.1 and A.2) are for an expression in the language MLδ of
Chapter 2:

λy.let sqr = λx.x ∗ x in sqr 3.14 ∗ sqr y

This is assigned the type

real d → real d2.

The typing of this expression uses most of the rules. In particular, notice how
the built-in multiplication operation and user-defined squaring function are used
at different dimensions through the application of the (dspec) rule, and the poly-
morphism in sqr is introduced through a combination of (let) and (dgen). In the
syntax-directed derivation, specialisation happens in rule (var′) and generalisa-
tion in rule (let′).

The third derivation is of the translation of the program above into the
following expression in the explicitly-typed language of Chapter 5:

λy : real d. (λsqr : (∀d1.real d1 → real d2
1). sqr 1 3.14 ∗ sqr d y)

(Λd1.λx : real d1. x ∗ x)
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Derivation D1

Γ1 = {∗ : ∀d1.∀d2.real d1 → real d2 → real d1 · d2, y : real d}

(var)
Γ1[x : real d1] � ∗ : ∀d1.∀d2.real d1 → real d2 → real d1 · d2

(dspec2)
Γ1[x : real d1] � ∗ : real d1 → real d1 → real d2

1

(var)
Γ1[x : real d1] � x : real d1

(app)
Γ1[x : real d1] � x ∗ : real d1 → real d2

1

(var)
Γ1[x : real d1] � x : real d1

(app)
Γ1[x : real d1] � x ∗ x : real d2

1
(abs)

Γ1 � λx.x ∗ x : real d1 → real d2
1

Derivation D2

Γ2 = {∗ : ∀d1.∀d2.real d1 → real d2 → real d1 · d2, y : real d, sqr : ∀d1.real d1 → real d2
1}

(var)
Γ2 � ∗ : ∀d1.∀d2.real d1 → real d2 → real d1 · d2

(dspec2)
Γ2 � ∗ : real 1 → real d2 → real d2

(var)
Γ2 � sqr : ∀d1.real d1 → real d2

1
(dspec)

Γ2 � sqr : real 1 → real 1
(const)

Γ2 � 3.14 : real 1
(app)

Γ2 � sqr 3.14 : real 1
(app)

Γ2 � sqr 3.14 ∗ : real d2 → real d2

(var)
Γ2 � sqr : ∀d1.real d1 → real d2

1
(dspec)

Γ2 � sqr : real d → real d2
(var)

Γ2 � y : real d
(app)

Γ2 � sqr y : real d2

(app)
Γ2 � sqr 3.14 ∗ sqr y : real d2

Final derivation using D1 and D2

Γ = {∗ : ∀d1.∀d2.real d1 → real d2 → real d1 · d2}

D1

Γ[y : real d] � λx.x ∗ x : real d1 → real d2
1 (dgen)

Γ[y : real d] � λx.x ∗ x : ∀d1.real d1 → real d2
1

D2

Γ[y : real d, sqr : ∀d1.real d1 → real d2
1] � sqr 3.14 ∗ sqr y : real d2

(let)
Γ[y : real d] � let sqr = λx.x ∗ x in sqr 3.14 ∗ sqr y : real d2

(abs)
Γ � λy.let sqr = λx.x ∗ x in sqr 3.14 ∗ sqr y : real d → real d2

Figure A.1: A non-syntax-directed derivation in MLδ
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Derivation D′
1

Γ1 = {∗ : ∀d1.∀d2.real d1 → real d2 → real d1 · d2, y : real d}

(var′)
Γ1[x : real d1] � ∗ : real d1 → real d1 → real d2

1

(var)
Γ1[x : real d1] � x : real d1

(app)
Γ1[x : real d1] � x ∗ : real d1 → real d2

1

(var)
Γ1[x : real d1] � x : real d1

(app)
Γ1[x : real d1] � x ∗ x : real d2

1
(abs)

Γ1 � λx.x ∗ x : real d1 → real d2
1

Derivation D′
2

Γ2 = {∗ : ∀d1.∀d2.real d1 → real d2 → real d1 · d2, y : real d, sqr : ∀d1.real d1 → real d2
1}

(var′)
Γ2 � ∗ : real 1 → real d2 → real d2

(var′)
Γ2 � sqr : real 1 → real 1

(const)
Γ2 � 3.14 : real 1

(app)
Γ2 � sqr 3.14 : real 1

(app)
Γ2 � sqr 3.14 ∗ : real d2 → real d2

(var′)
Γ2 � sqr : real d → real d2

(var)
Γ2 � y : real d

(app)
Γ2 � sqr y : real d2

(app)
Γ2 � sqr 3.14 ∗ sqr y : real d2

Final derivation using D′
1 and D′

2

Γ = {∗ : ∀d1.∀d2.real d1 → real d2 → real d1 · d2}

D′
1

Γ[y : real d] � λx.x ∗ x : real d1 → real d2
1

D′
2

Γ[y : real d, sqr : ∀d1.real d1 → real d2
1] � sqr 3.14 ∗ sqr y : real d2

(let′)
Γ[y : real d] � let sqr = λx.x ∗ x in sqr 3.14 ∗ sqr y : real d2

(abs)
Γ � λy.let sqr = λx.x ∗ x in sqr 3.14 ∗ sqr y : real d → real d2

Figure A.2: A syntax-directed derivation in MLδ
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Derivation D′′
1

(var)
{d; d1}; {y : real d, x : real d1} � x : real d1

(var)
{d; d1}; {y : real d, x : real d1} � x : real d1

(mul)
{d; d1}; {y : real d, x : real d1} � x ∗ x : real d2

1
(abs)

{d, d1}; {y : real d} � λx : real d1. x ∗ x : real d1 → real d2
1

Derivation D′′
2

Γ = {y : real d, sqr : ∀d1.real d1 → real d2
1}

(var)
{d}; Γ � sqr : ∀d1.real d1 → real d1

2

(dspec)
{d}; Γ � sqr 1 : real 1 → real 1

(const)
{d}; Γ � 3.14 : real 1

(app)
{d}; Γ � sqr 1 3.14 : real 1

(var)
{d}; Γ � sqr : ∀d1.real d1 → real d1

2

(dspec)
{d}; Γ � sqr d : real d → real d2

(var)
{d}; Γ � y : real d

(app)
{d}; Γ � sqr d y : real d2

(mul)
{d}; Γ � sqr 1 3.14 ∗ sqr d y : real d2

Final derivation using D′′
1 and D′′

2

D′′
2

{d}; {y : real d, sqr : ∀d1.real d1 → real d2
1} � sqr 1 3.14 ∗ sqr d y : real d2

(abs)
{d}; {y : real d � λsqr : ∀d1.real d1 → real d2

1. sqr 1 3.14 ∗ sqr d y : (∀d1.real d1 → real d2
1) → real d2

D′′
1

{d, d1}; {y : real d} � λx : real d1. x ∗ x : real d1 → real d2
1 (dgen)

{d}; {y : real d} � Λd1.λx : real d1. x ∗ x : ∀d1.real d1 → real d2
1

(app)
{d}; {y : real d} � (λsqr : ∀d1.real d1 → real d2

1. sqr 1 3.14 ∗ sqr d y) (Λd1.λx : real d1. x ∗ x) : real d2

(abs)
{d}; ∅ � λy : d. (λsqr : ∀d1.real d1 → real d2

1. sqr 1 3.14 ∗ sqr d y) (Λd1.λx : real d1. x ∗ x) : real d → real d2

Figure A.3: A derivation in Λδ
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Appendix B

An algebraic view of
dimension types

In Chapters 2 and 3, a dimension type system and its inference algorithm were
presented in the syntactic style traditionally used for describing such systems.
The presence of equations in the type system made for a certain degree of com-
plexity, including a number of notions of ordering and equivalence. In this short
appendix we take a more algebraic approach, treating dimensions and dimension
types as elements of vector spaces over the integers, or Z-modules. More con-
cretely, if only a finite set of dimension variables is considered, then dimensions
can simply be interpreted as vectors of integers, dimension types as rectangular
matrices of integers, and substitutions as square matrices.

Most of the results in the main part of the thesis were obtained without the
benefit of module theory, but it is likely to illuminate future investigations. The
best reference for module theory is the textbook by Adkins and Weintraub [1];
for the theory of integral matrices only, see Newman [46].

For ease of presentation, only the dimension fragment of the language MLδ

of Chapter 2 is considered: type variables and type schemes which quantify over
types are omitted from the interpretation. We also do not distinguish dimension
variables and base dimensions.

B.1 Module theory

We begin by defining the algebraic notion of a module and associated module
homomorphism. Other module-theoretic concepts will be introduced when re-
quired.

Let R be an arbitrary ring with identity. Then a left R-module, or left module
over R, is an abelian group M together with a scalar multiplication operation

· : R × M → M

that satisfies the following four axioms, with x, y standing for elements of M and
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λ, µ standing for elements of R.

λ(x + y) = λx + λy;
(λ + µ)x = λx + µy;
(λµ)x = λ(µx);
1Rx = x.

The analogous definition of a right R-module has scalar multiplication on the
right instead. If R is a commutative ring then either definition can be taken, and
as we will only be considering modules over the integers we will not make the
distinction. An F -module V for some field F is the more familiar vector space
over F .

Let R be a ring and let M, N be R-modules. A function f : M → N is an
R-module homomorphism if

f(x + y) = f(x) + f(y) for all x, y ∈ M, and
f(λx) = λf(x) for all λ ∈ R and x ∈ M.

B.2 Dimensions

Dimension spaces

A dimension space D is a set of dimension expressions identified up to equiv-
alence =D and closed under dimension product and dimension exponentiation.
Formally,

δ1, δ2 ∈ D ⇒ δ1 · δ2 ∈ D
and δ ∈ D ⇒ δx ∈ D for any x ∈ Z.

Then D forms a Z-module if dimension product is interpreted as ‘addition’ and
exponentiation as ‘scalar multiplication’.

The dimension space generated by a set of dimension expressions {δ1, . . . , δn}
is simply the closure of the set under product and exponentiation, and is denoted
by Dims({δ1, . . . , δn}). Then we define the rank of a dimension space D to
be the minimal number of generators of D. For example, the rank of D =
Dims({d2

1, d
3
1, d

4
2}) is 2, because D can also be generated by the set {d1, d

4
2}.

Dimensions as vectors of integers

By the above definition Dims(V) is the space of all dimension expressions whose
free dimension variables are picked from the set V. If the set V of dimension
variables is finite, it is easier to think of elements of Dims(V) as vectors of
integers. Let V = {d1, . . . , dm}. Then a dimension δ ∈ Dims(V) can be written
as an m-vector whose elements are the exponents of the dimension variables in
δ. So if

nf(δ) = dx1
1 · · · dxm

m
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then we write

δ
def=


x1

...
xm


 .

The (essential) free variables in a dimension δ are of course just the variables
corresponding to the non-zero elements of the vector δ.

Linear independence and bases

Let D be a dimension space. Then δ1, . . . , δn ∈ D are linearly dependent if there
are some x1, . . . , xn ∈ Z, not all zero, such that

δx1
1 · · · δxn

n = 1.

A set of dimensions that is not linearly dependent is said to be linearly indepen-
dent. Notice that in contrast to the situation for vector spaces, if a set is linearly
dependent it does not necessarily follow that any element can be expressed as a
linear combination of the others. Consider, for example, the linearly dependent
dimensions d2 and d3.

If a set {δ1, . . . , δr} is linearly independent and generates a dimension space
D, then it is called a basis of D. Then every δ ∈ D can be written uniquely as a
linear combination of elements of the basis. That is,

δ = δx1
1 · · · δxr

r

for x1, . . . , xr ∈ Z. Every basis of a dimension space D contains rank(D) ele-
ments; conversely, every set with rank(D) elements which generates D is a basis
of D. Clearly V is a basis of Dims(V).

If D′ is a subset of the dimension space D and is itself a dimension space,
then D′ is said to be a subspace of D, written D′ ⊆ D.

Dimension space homomorphisms and substitutions

Let D,D′ be dimension spaces. We can recast the standard definition of mod-
ule homomorphism as follows. A function f : D → D′ is a dimension space
homomorphism if

f(δ1 · δ2) = f(δ1) · f(δ2) for all δ1, δ2 ∈ D, and
f(δx) = (f(δ))x for all δ ∈ D and x ∈ Z.

We will write Hom(D,D′) for the set of all dimension homomorphisms between
D and D′; if D = D′ then End(D) = Hom(D,D), the set of all endomorphisms
of D.

Given a set of dimension variables V, a dimension substitution S which
involves only variables from V can be treated as a dimension endomorphism
S ∈ End(Dims(V)). At first it might appear that any dimension homomorphism
can be represented by a dimension substitution. This is not the case: consider
the homomorphism f ∈ Hom(Dims({d2}), Dims({d})) defined by

f(d2x) = dx.
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Substitutions as square integer matrices

If V is finite and has m elements then a substitution S ∈ End(Dims(V)) can
be represented by an m × m matrix S whose i’th column corresponds to the
dimension δi to be substituted for dimension variable di. If

S = { d1 �→ δ1, . . . , dm �→ δm }

then

S
def=


δ1 . . . δm


 .

Then the application of a substitution S to a dimension δ is just the multiplica-
tion of a vector by a matrix:

S(δ) = S δ.

The composition of two substitutions is just matrix multiplication:

S1 ◦ S2 = S1 S2.

The inverse of a substitution S, if it exists, is given by the inverse of its
matrix representation S−1. Moreover, an integer matrix has an inverse if and
only if its determinant is ±1. Hence a substitution S has inverse given by

S−1 = S−1

if and only if det(S) = ±1.
If a square integer matrix is invertible then it can be written as the product

of a set of matrices which correspond to elementary row operations. These are
the following:

1. Multiplication of a row by −1. As a substitution this takes the form

{di �→ d−1
i }.

2. Interchange of any two rows. This corresponds to a renaming of the form

{di �→ dj , dj �→ di}, i �= j.

Of course, an arbitrary permutation of dimension variables can be built up
from a sequence of such substitutions.

3. Addition of the multiple of one row to another row. This corresponds to a
substitution of the form

{di �→ di · dx
j }, i �= j

for some x ∈ Z.
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B.3 Types

Type spaces

First we define the ‘product’ of two types, defined simply as the pointwise prod-
uct of corresponding dimension components. The types must be ‘compatible’,
that is, they have the same type structure when the dimensions are omitted (in
the notation of Chapter 5 this is just the dimension erasure τ�).

bool · bool = bool

real δ · real δ′ = real δ · δ′

(τ1 → τ2) · (τ ′
1 → τ ′

2) = (τ1 · τ ′
1) → (τ2 · τ ′

2).

Similarly we can define an exponentiation operation on types:

boolx = bool

(real δ)x = real δx

(τ1 → τ2)x = τx
1 → τx

2 .

Then a type space T is a set of type expressions identified up to equivalence =D

and closed under product and exponentiation. Formally,

τ1, τ2 ∈ T ⇒ τ1 · τ2 ∈ T
and τ ∈ T ⇒ τx ∈ T for any x ∈ Z.

So T forms a Z-module if type product is interpreted as ‘addition’ and exponen-
tiation as ‘scalar multiplication’.

Suppose that the elements of a type space T each have n dimension compo-
nents drawn from dimension spaces D1, . . . ,Dn. If the type structure is ignored,
then T is the direct sum of D1, . . . ,Dn: the cartesian product D1 × · · · × Dn

treated as a Z-module by the pointwise product and exponentiation of dimen-
sions. This is usually denoted D1 ⊕ · · · ⊕ Dn.

Usually all dimension components in a type are taken from the same dimen-
sion space. Hence we will let Types(D, τ�) stand for the space of types whose
dimension erasure is τ� with dimension components taken from D. Then if the
type structure is ignored this is just the direct sum D ⊕ · · · ⊕ D for n copies of
D, where n is the number of components in each type.

Types as integer matrices

By the above definition Types(Dims(V), τ�) is the space of all types whose di-
mension erasure is τ� and whose free dimension variables are picked from the
set V. If the set V of dimension variables is finite, it is easier to think of the
elements as rectangular matrices of integers. Let V = {d1, . . . , dm} and let n be
the number of dimension components in τ�. Then the dimension components in
a type τ ∈ Types(Dims(V), τ�) can be represented by an m×n matrix τ , defined
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as follows by induction on the structure of the type:

bool
def= ()

real δ
def= δ

τ1 → τ2
def= τ1|τ2

Here () denotes the empty matrix and A|B joins an m×n matrix A to an m× r
matrix B to give an m × (n + r) matrix.

For example, assuming a two-element set of dimension variables, the type
real d1 → real d2 → real d1 · d2 is represented by the dimensionless type real 1 →
real 1 → real 1 together with the matrix(

1 0 1
0 1 1

)
.

The set of free variables in a type are those which correspond to non-zero rows
in its matrix representation.

Now consider our notion of a free variable reduced form for types, defined
on page 30. Matrix theoretically, this corresponds to full row rank form. Its
rank (number of degrees of freedom in τ) is equal to the number of non-zero
rows (number of free dimension variables in τ). For example, the dimension
components of the type reald1 · d−1

2 → reald−2
1 · d2 → reald−1

1 can be represented
by the full row rank matrix (

1 −2 −1
−1 1 0

)
.

In contrast, the type reald1 · d2
2 → reald2

1 · d4
2 → reald−1

1 · d−2
2 has only one degree

of freedom and hence its matrix representation has rank 1 and is not in full row
rank form: (

1 2 −1
2 4 −2

)
.

B.4 Type schemes

Closed type schemes

Suppose that τ ∈ T for some type space T . Then the set of all instantiations of
τ is given by the smallest set containing τ which is closed under endomorphisms
on T :

Insts(τ) = { f(τ) | f ∈ End(T ) } .

It is clear that Insts(τ) is itself a type space, so Insts(τ) ⊆ T .
Let T = Types(Dims(V), τ�). If σ = ∀�d.τb is a closed type scheme with

τb ∈ T then Insts(τb) is the space of all specialisations of σ with dimension



B.4 Type schemes 137

variables picked from V. This is a very natural interpretation of σ. In particular,
observe that for closed type schemes ∀�d1.τ1 and ∀�d2.τ2 with τ1, τ2 ∈ T ,

∀�d1.τ1 �D ∀�d2.τ2 ⇒ Insts(τ1) ⊇ Insts(τ2).

Geometrically, one can think of Insts(τb) ⊆ T as a collection of points in a plane
in the type space T which passes through the origin.

Returning to the syntax, from Lemma 3.10 we know that two closed type
schemes ∀�d1.τ1 and ∀�d2.τ2 are equivalent if and only if there is an invertible sub-
stitution U such that U(τ1) =D τ2. Recasting this in terms of matrices, there is
an invertible matrix U such that Uτ1 = τ2. If a matrix A can be transformed
into another matrix B by multiplication on the left by an invertible matrix, then
A and B are said to be row-equivalent (sometimes: left equivalent). Thus (for
closed type schemes) our notion of type scheme equivalence corresponds to the
notion of row equivalence from matrix theory. For each equivalence class in-
duced by this equivalence relation there is a single representative with the form
described on page 60—the Hermite Normal Form. Our simplification algorithm
Simplify essentially calculates the invertible matrix necessary to bring a rect-
angular matrix into this form: if Simplify(∅, τ) = U then the matrix U τ is in
Hermite Normal Form.

Quotient spaces

To deal with the situation of open type schemes we introduce the idea of a
quotient space. Consider a type space T and a subspace T ′ ⊆ T . Then for some
τ ∈ T define the left coset τ · T ′ by

τ · T ′ =
{

τ · τ ′ | τ ′ ∈ T ′ } .

Now the collection of all such cosets of T ′ containing elements from T is given
by

T /T ′ =
{

τ · T ′ | τ ∈ T
}

.

This then forms a Z-module called the quotient space T /T ′ when product and
exponentiation operations are defined for cosets by

(τ1 · T ′) · (τ2 · T ′) = (τ1 · τ2) · T ′;
(τ · T ′)x = τx · T ′.

A type space endomorphism f : T → T can be extended to give an endomor-
phism f ′ : T /T ′ → T /T ′ by the following definition:

f ′(τ · T ′) = f(τ) · T ′.

This is well-defined only if T ′ is invariant under f : that is, if f(τ) ∈ T ′ whenever
τ ∈ T ′.
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Open type schemes

We now discuss how the notion of a quotient space can be used to model open
type schemes in which some variables are free. We allow the possibility of non-
essential free variables as discussed on page 28. Suppose that we are given a
type scheme σ = ∀d1 . . .∀dm.τ with

fdv(τ) = {d1, . . . , dm, dm+1, . . . , dp, dp+1, . . . , dn} ⊆ V.

Here d1, . . . , dm are the bound variables, dm+1, . . . , dp are the non-essential free
variables, and dp+1, . . . , dn are the essential free variables, and τ ∈ T with
T = Types(Dims(V), τ�). Then τ can be decomposed into its bound part τb,
non-essential free part τn and essential free part τf as follows:

τb = {dm+1 �→ 1, . . . , dn �→ 1}τ
τn = {d1 �→ 1, . . . , dm �→ 1, dp+1 �→ 1, . . . , dn �→ 1}τ
τf = {d1 �→ 1, . . . , dp �→ 1}τ.

Clearly τ = τf · τb · τn. Now a particular type scheme can be represented by the
left coset

τf · τn · Insts(τb).

Geometrically, think of this as a plane parallel to Insts(τb) which passes through
the point τf · τn. As τn is non-essential we can remove it: in fact, it is just
an instance of the bound part of the type scheme (τn ∈ Insts(τb)). Hence τf ·
τn · Insts(τb) = τf · Insts(τb). Geometrically, the line through the origin passing
through τf is perpendicular to the plane Insts(τb), and the effect of τn is a
translation which leaves Insts(τb) alone.

Then we can form a type scheme space T / Insts(τb) containing all type
schemes with τb as bound part. Geometrically, this quotient space is the collec-
tion of all planes parallel to the plane Insts(τb) which represents a closed type
scheme.

The representation of closed type schemes by Insts(τb) ⊆ T is closed under
type space endomorphisms on T ; hence Insts(τb) is an invariant subspace of T
for any endomorphism f : T → T . Then the extension of endomorphisms to
quotient spaces described earlier explains correctly the extension of substitutions
on types to type schemes:

S(τf · Insts(τb)) = S(τf ) · Insts(τb).

Observe how S is applied only to the free part τf of the type scheme, as required.
Finally, we consider what the type scheme ordering means for open type

schemes. Clearly σ1 �D σ2 can only hold when the free parts of σ1 and σ2 are
the same. Also if the type space T1 represents the bound part of σ1 and T2

represents the bound part of σ2 so that σ1 ∈ T /T1 and σ2 ∈ T /T2 then T2 ⊆
T1. So the relation σ1 �D σ2 is given by the natural injective homomorphism
ι : T /T2 → T /T1 defined by

ι(τ · T2) = τ · T1.
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Omitted proofs

In this appendix we present the proofs of soundness and completeness for the
inference algorithm which were omitted from Chapter 3 (Theorems 3.3 and 3.4).
Although these are standard results, more care is taken than usual over the
generation of fresh variable names. To simplify the statement of completeness,
let Ty(V) denote the set of all simple types whose free variables are in V, let
Ass(V) denote the set of all type assignments whose free variables are in V, and
let Substs(V,V ′) denote the set of all substitutions whose domains are included
in V and whose range involves variables only from V ′.

Theorem (Soundness of Infer). If Infer(V, Γ, e) = (V ′, S, τ) then there is a
typing derivation S(Γ) �sd e : τ .

Proof. By induction on the structure of e.

• If e is a variable x or a constant r, then the derivation follows immediately.

• If the expression is an abstraction λx.e then

Infer(V, Γ, λx.e) = (V ′, S|V , S(t) → τ)
where

(V ′, S, τ) = Infer(V ∪ {t}, Γ[x : t], e)
t is a type variable not in V.

By the induction hypothesis there must be a derivation of

S(Γ[x : t]) � e : τ

so by an application of the (abs) rule we can obtain the following derivation:

S(Γ)[x : S(t)] � e : τ
(abs).

S(Γ) � λx.e : S(t) → τ

139
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• If we have an application e1 e2 then

Infer(V, Γ, e1 e2) = (V2 ∪ {t}, (S3 ◦ S2 ◦ S1)|V , S3(t))
where

(V1, S1, τ1) = Infer(V, Γ, e1)
(V2, S2, τ2) = Infer(V1, S1(Γ), e2)
S3 = Unify(S2(τ1), τ2 → t)
t is a type variable not in V2.

By the induction hypothesis there are derivations of

S1(Γ) � e1 : τ1

and S2(S1(Γ)) � e2 : τ2

and from Lemma 2.14 (substitution on a derivation) we can deduce that
these imply derivations of

S3(S2(S1(Γ))) � e1 : S3(S2(τ1))
and S3(S2(S1(Γ))) � e2 : S3(τ2).

Now we know from the soundness of Unify (Theorem 3.2) that

S3(S2(τ1)) =D S3(τ2) → S3(t)

so we can construct a typing derivation as follows:

S3(S2(S1(Γ))) � e1 : S3(τ2) → S3(t) S3(S2(S1(Γ))) � e2 : S3(τ2)
(app)

S3(S2(S1(Γ))) � e1 e2 : S3(t)

• If the expression is a let construct then

Infer(V, Γ, let x = e1 in e2) = (V2, S2 ◦ S1, τ2)
where

(V1, S1, τ1) = Infer(V, Γ, e1)
(V2, S2, τ2) = Infer(V1, S1(Γ)[x : σ], e2)
σ = Gen(S1(Γ), τ1)

By the induction hypothesis there are derivations of

S1(Γ) � e1 : τ1 (1)
and S2(S1(Γ)[x : Gen(S1(Γ), τ1)]) � e2 : τ2. (2)

By Lemma 2.10 there is a substitution R such that

R(S1(Γ)) ∼=D S2(S1(Γ))

and

S2(Gen(S1(Γ), τ1)) ∼=D Gen(R(S1(Γ)), R(τ1)).



Omitted proofs 141

Then we can apply Lemma 2.14 (substitution) to (1) to obtain a derivation
of

R(S1(Γ)) � e1 : R(τ1)

and rewrite (2) as

R(S1(Γ))[x : Gen(R(S1(Γ)), R(τ1))] � e2 : τ2.

So finally we can construct the following derivation:

R(S1(Γ)) � e1 : R(τ1) R(S1(Γ))[x : Gen(R(S1(Γ)), R(τ1))] � e2 : τ2
(let′)

R(S1(Γ)) � let x = e1 in e2 : τ2

Identifying type schemes up to equivalence, this is a derivation of

S2(S1(Γ)) � let x = e1 in e2 : τ2

as required.

Theorem (Completeness of Infer). Suppose Γ ∈ Ass(V), S ∈ Substs(V,V ′′)
and τ ∈ Ty(V ′′). If S(Γ) �sd e : τ then Infer(V, Γ, e) = (V ′, S0, τ0) for some
S0 ∈ Substs(V,V ′), τ0 ∈ Ty(V ′) such that

S =D R ◦ S0 and τ =D R(τ0)

for some substitution R ∈ Substs(V ′,V ′′).

Proof. By induction on the structure of e. We present every case in detail; it is
easy to see that all uses of the induction hypothesis are valid by checking that
the types, type assignments and substitutions belong to the appropriate sets.

• A variable x must have the typing derivation

(var′)
S(Γ) � x : τ ′

with S(Γ)(x) �D τ ′. From the definition of the algorithm we have:

Infer(V, Γ, x) = (V ∪ �v′, I, {�v �→ �v′}τ)
where

Γ(x) is ∀�v.τ
�v′ are type and dimension variables not in V.

Now

S(Γ)(x) = S(∀�v.τ)

=D ∀�v′.S({�v �→ �v′}τ)
�D τ ′.

From the definition of specialisation there must be some substitution R′

with dom(R′) ⊆ �v′ such that

R′(S({�v �→ �v′}τ)) =D τ ′.

Then R′ ◦ S is the substitution R required by the theorem.
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• The case for a non-zero constant r is trivial.

• A constant zero must have been typed by the derivation

(zero)
S(Γ) � 0 : real δ

From the definition of the algorithm,

Infer(V, Γ, 0) = (V ∪ {d}, I, real d)
where

d is a dimension variable not in V.

Then {d �→ δ} ◦ S is the substitution R required by the theorem.

• An abstraction λx.e must have been typed by the derivation

S(Γ)[x : τ1] � e : τ2
(abs)

S(Γ) � λx.e : τ1 → τ2

From the algorithm,

Infer(V, Γ, λx.e) = (V ′, S0|V , S0(t) → τ0)
where

(V ′, S0, τ0) = Infer(V ∪ {t}, Γ[x : t], e)
t is a type variable not in V.

Now let S′ = {t �→ τ1} ◦ S so that the premise can be rewritten as

S′(Γ[x : t]) � e : τ2.

Then by the induction hypothesis there is a substitution R such that

S′ =D R ◦ S0 (1)
τ2 =D R(τ0). (2)

Then R is the substitution we need, because equation (1) implies that

S =D R ◦ S0|V

and

R(S0(t) → τ0) =D S′(t) → R(τ0) by (1)
=D τ1 → τ2 by definition of S′ and (2)

as required.

• An application e1 e2 must have been typed by the derivation:

S(Γ) � e1 : τ1 → τ2 S(Γ) � e2 : τ1
(app)

S(Γ) � e1 e2 : τ2
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From the algorithm,

Infer(V, Γ, e1 e2) = (V2 ∪ {t}, (S3 ◦ S2 ◦ S1)|V , S3(t))
where

(V1, S1, τf ) = Infer(V, Γ, e1)
(V2, S2, τa) = Infer(V1, S1(Γ), e2)
S3 = Unify(S2(τf ), τa → t)
t is a type variable not in V2.

Applying the induction hypothesis to the first premise gives a substitution
R1 such that

S =D R1 ◦ S1 (1)
τ1 → τ2 =D R1(τf ). (2)

Using equation (1) the second premise can be rewritten as

R1(S1(Γ)) � e2 : τ1.

Applying the induction hypothesis to this gives a substitution R2 such that

R1 =D R2 ◦ S2 (3)
τ1 =D R2(τa). (4)

Now let R′
2 = {t �→ τ2}. Then

R′
2(R2(S2(τf ))) =D R′

2(R1(τf )) by (3)
=D τ1 → τ2 by (2)

and

R′
2(R2(τa → t)) =D R2(τa) → τ2 because t /∈ V2

=D τ1 → τ2 by (4).

Hence by completeness of Unify (Theorem 3.2) there must be some substi-
tution T such that

R′
2 ◦ R2 =D T ◦ S3.

Then

S =D R1 ◦ S1 by (1)
=D R2 ◦ S2 ◦ S1 by (3)
=D (R′

2 ◦ R2 ◦ S2 ◦ S1)|V
=D (T ◦ S3 ◦ S2 ◦ S1)|V
=D T ◦ (S3 ◦ S2 ◦ S1)|V .

This is the first part of the result we require. For the second part,

T (S3(t)) =D R′
2(R2(t))

=D τ2.
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• A let construct must have been typed by the derivation:

S(Γ) � e1 : τ1 S(Γ)[x : Gen(S(Γ), τ1)] � e2 : τ2
(let)

S(Γ) � let x = e1 in e2 : τ2

From the definition of Infer,

Infer(V, Γ, let x = e1 in e2) = (V2, S2 ◦ S1, τ
′
2)

where
(V1, S1, τ

′
1) = Infer(V, Γ, e1)

(V2, S2, τ
′
2) = Infer(V1, S1(Γ)[x : Gen(S1(Γ), τ ′

1)], e2)

By the induction hypothesis applied to the first premise there is some
substitution R1 such that

S =D R1 ◦ S1 (1)
τ1 =D R1(τ ′

1). (2)

Now we can rewrite the second premise as:

R1(S1(Γ))[x : Gen(R1(S1(Γ)), R1(τ ′
1))] � e2 : τ2.

Let Γ′ be the type assignment in this judgment. Then by Lemma 2.9 we
know that

R1(S1(Γ)[x : Gen(S1(Γ), τ ′
1)]) �D Γ′

and so by Lemma 2.13 (context generalisation) there is a derivation of

R1(S1(Γ)[x : Gen(S1(Γ), τ ′
1)]) � e2 : τ2.

It follows by the induction hypothesis that there is a substitution R2 such
that

R1 =D R2 ◦ S2 (3)
τ2 =D R2(τ ′

2). (4)

Then R2 is the substitution we require, because

S =D R1 ◦ S1 by (1)
=D R2 ◦ S2 ◦ S1 by (3).
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[49] M. Odersky and K. Läufer. Putting type annotations to work (preliminary).
Presented at Newton Institute Workshop on Advances in Type Systems for
Computing, Cambridge, England, August 1995.

[50] C.-H. L. Ong. Correspondence between operational and denotational se-
mantics: the full abstraction problem for PCF. In S. Abramsky, D. B.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 4. Oxford University Press, 1995.

[51] L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, 1991.

[52] G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

[53] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical Recipes in Pascal. Cambridge University Press, 1989.
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