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Abstract. We introduce the blame calculus, which adds the notion of blame from
Findler and Felleisen’s contracts to a system similar to Siek and Taha’s gradual
types and Flanagan’s hybrid types. We characterise where positive and negative
blame can arise by decomposing the usual notion of subtype into positive and
negative subtypes, and show that these recombine to yield naive subtypes. Naive
subtypes previously appeared in type systems that are unsound, but we believe
this is the first time naive subtypes play a role in establishing type soundness.

1 Introduction

Much recent work has focused on integrating dynamic and static typing using contracts
[4] to ensure that dynamically-typed code meets statically-typed invariants. Examples
include gradual types [15], hybrid types [5, 8], dynamic dependent types [13], and multi-
language programming [10]. Both Meijer [11] and Bracha [2] argue in favor of mixing
dynamic and static typing. Static and dynamic typing are both supported in Visual Ba-
sic, and similar integration is planned for Perl 6 and ECMAScript 4.

Here we unify some of this work, by introducing a notion of blame (from contracts)
into a type system with casts (similar to intermediate languages for gradual and hybrid
types), yielding a system we dub the blame calculus. In this calculus, programmers may
add casts to evolve dynamically typed code into statically typed, (as with gradual types)
or to evolve statically typed code to use subset types (as with hybrid types).

The technical content of this paper is to introduce notions of positive and negative
subtypes, and prove a theorem that characterises when positive and negative blame
can occur. A corollary is that when a program integrating less-typed and more-typed
components goes wrong the blame must lie with the less-typed component. Though
obvious, this result has either been ignored in previous work or required a complex
proof; here we give a simple proof.

Our work involves both ordinary subtypes (which, for functions, is contravariant
in the domain and covariant in the range) and naive subtypes (which is covariant in
both the domain and the range). Ordinary subtypes characterize a cast that cannot fail,
while naive subtypes characterize which side of a cast is less typed (and hence will be
blamed if the cast fails). We show that ordinary subtypes decompose into positive and
negative subtypes, and that these recombine in a different way to yield naive subtypes. A
striking analogy is a tangram, where a square decomposes into parts that recombine into
a different shape (see Figure 1). Naive subtypes previously appeared in type systems
that are unsound, notably that of Eiffel [12], but we believe this is the first time naive
subtypes play a role in establishing type soundness.
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Fig. 1. Tangram as metaphor: Ordinary
subtyping decomposes and recombines to
yield naive subtyping

Gradual types [15], hybrid types [5, 8], and
dynamic dependent types [13] use source lan-
guages where most or all casts are omitted,
but inferred by a type-directed translation; all
three use similar translations which target sim-
ilar intermediate languages. The blame cal-
culus resembles these intermediate languages.
Our point is that the intermediate language is
in itself suitable as a source language, with
the advantage that it becomes crystal clear
where static guarantees hold and where dy-
namic checks are enforced.

The blame calculus uses subset types as
found in hybrid types and dynamic dependent types, but it lacks the dependent func-
tion types found in these systems (an important area for future work). Hybrid types and
dynamic dependent types are parameterized by a theorem prover, which returns true,
false, or maybe when supplied with a logical implication required by a subtyping rela-
tionship; the blame calculus corresponds to the extreme case where the theorem prover
always returns maybe.

We make the following contributions.

– We introduce the blame calculus, showing that a language with explicit casts is
suited to many of the same purposes as gradual types and hybrid types (Section 2).

– We give a framework similar to that of hybrid types and dynamic dependent types,
but with a decidable type system for the source language (Section 3).

– We factor ordinary subtypes positive and negative subtypes, which recombine into
naive subtypes. We prove that a cast from a positive subtype cannot give rise to
positive blame, and that a cast from a negative subtype cannot give rise to negative
blame (Section 4).

An earlier version of this paper appeared in a workshop [19]. The current version is
completely rewritten and some technicalities differ. A rule merging positive blame and
negative blame from distinct casts has been eliminated, and as a consequence we use
a simpler notation with one label rather than two. A rule making every ground type a
subtype of type Dyn has been added, making the subtyping relations less conservative.
Detailed proofs may be found in the accompanying technical report [20].

2 The Blame Calculus

2.1 From Untyped to Typed

Figure 2 presents a series of example programs, which we consider in turn.
Program (a) is untyped. By default, our programming language is typed, so we in-

dicate untyped code by surrounding it with ceiling brackets. Untyped code is really
uni-typed (a slogan due to Robert Harper); it is a special case of typed code where
every term has type Dyn. Here the term evaluates to �4� : Dyn.
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(a) �let x = 2
let f = λy. y + 1
let h = λg. g (g x)
in h f�

(b) let x = 2
let f = 〈Int → Int ⇐ Dyn〉p �λy. y + 1�
let h = λg : Int → Int. g (g x)
in h f

(c) let x = 〈Nat⇐ Int〉p 2
let f = 〈Nat→ Nat ⇐ Int → Int〉q (λy : Int. y + 1)
let h = λg : Nat → Nat. g (g x)
in h f

(d) let x = �true�
let f = λy : Int. y + 1
let h = 〈(Int→ Int) → Int ⇐ Dyn〉p �λg. g (g x)�
in h f

(e) let x = �true�
let f = 〈Dyn ⇐ Int → Int〉p (λy : Int. y + 1)
let h = �λg. g (g x)�
in �h f�

(f) let x = 〈Nat⇐ Int〉p 3
let f = 〈Nat→ Nat ⇐ Int → Int〉q (λy : Int. y − 2)
let h = �λg. g (g x)�
in �h f�

Fig. 2. Example programs

As a matter of software engineering, when we add types to our code we may not
wish to do so all at once. Progam (b) contains typed and untyped parts, fit together
by casting the untyped code to a suitable type. and the term evaluates to 4 : Int.
Gradual evolution is overkill for such a short piece of code, but in real systems it plays
an important role [17, 18]. Here �λy. y + 1� has type Dyn, and the cast converts it to
type Int→ Int.

In general, a cast from source type S to target type T is written 〈T ⇐ S〉p s, where
subterm s has type S and the whole term has type T , and p is a blame label. We assume
an involutive operation of negation on blame labels: if p is a blame label then p̄ is its
negation, and p is the same as p. Consider a cast with blame label p: blame is allocated
to p when the term contained in the cast fails to satisfy the contract associated with the
cast, while blame is allocated to p̄ when the context containing the cast fails to satisfy
the contract.

Our notation is chosen for clarity rather than compactness. Writing the source type is
redundant, but convenient for a core calculus. Our notation is based on that of Gronski
and Flanagan [7].

2.2 Contracts and Subset Types

Findler and Felleisen [4] introduced higher-order contracts, and Flanagan [5] and Ou
et al. [13] observed that contracts can be incorporated into a type system as a form
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of subset (or refinement) type. An example is {x : Int | x ≥ 0}, the type of all
integers greater than zero, which we will write Nat. A cast from Int to Nat performs
a dynamic test, checking that the integer is indeed greater than or equal to zero. Just as
we can start with an untyped program and add types, we can start with a typed program
and add subset types. Program (c) is a version of the previous program with subset types
added.

Unlike hybrid or dependent types, the blame calculus does not require subsumption.
As a technical nicety, this allows us to design a type system which (like gradual types)
satisfies unicity: every well-typed term has exactly one type. In order to achieve unicity,
we must add new value forms corresponding to the result of casting to a subset type.
Thus, the value of Program (c) is not 4 : Int but 4Nat : Nat.

2.3 The Blame Game

The above examples execute with no errors, but in general we may not be so lucky.
Casts perform dynamic tests at run-time that fail if a value cannot be coerced to the
given type. A cast to a subset type reduces to a dynamic test of the condition on the
type. Recall that Nat denotes {x : Int | x ≥ 0}. Here is a successful test:

〈Nat ⇐ Int〉p 4 −→ 4 ≥ 0 �p 4Nat −→ true �p 4Nat −→ 4Nat

And here is a failed test:

〈Nat⇐ Int〉p −4 −→ −4 ≥ 0 �p −4Nat −→ false �p −4Nat −→ ⇑ p

The middle steps show a new term form that performs a dynamic test, of the form
s �p v{x:B|t}. If s evaluates to true, the value of subset type is returned; if s evaluates
to false, blame is allocated to p, written ⇑ p.

Given an arbitrary term that takes integers to integers, it is not decidable whether
it also takes naturals to naturals. Therefore, when casting a function type the test is
deferred until the function is applied. This is the essence of higher-order contracts.

Here is an example of casting a function and applying the result.

(〈Nat → Nat⇐ Int → Int〉p (λy : Int. y + 1)) 2Nat −→
〈Nat ⇐ Int〉p((λy : Int. y + 1) (〈Int ⇐ Nat〉p̄ 2Nat) −→
〈Nat ⇐ Int〉p ((λy : Int. y + 1) 2) −→
〈Nat ⇐ Int〉p 3 −→ 3Nat

The cast on the function breaks into two casts, each in opposite directions: the cast on
the result takes the range of the source to the range of the target, while the cast on the
argument takes the domain of the target to the domain of the source. Preserving order
for the range while reversing order for the domain is analogous to the standard rule for
function subtyping, which is covariant in the range and contravariant in the domain.

Observe that the blame label on the reversed cast has been negated, because if that
cast fails it is the fault of the context, which supplies the argument to the function.
Conversely, the blame label is not negated on the result cast, because if that cast fails it
is the fault of the function itself.
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The above cast took a function with range and domain Int to a function with more
precise range and domain Nat. Now consider a cast to a function with less precise
range and domain Dyn.

(〈Dyn → Dyn ⇐ Int→ Int〉p (λy : Int. y + 1)) �2� −→
〈Dyn ⇐ Int〉p((λy : Int. y + 1) (〈Int ⇐ Dyn〉p̄ �2�)) −→
〈Dyn ⇐ Int〉p((λy : Int. y + 1) 2) −→ 〈Dyn ⇐ Int〉p 3 −→ �3�

Again, a cast on the function breaks into two casts, each in opposite directions.
If we consider a well-typed term of the form

(〈Nat → Nat⇐ Int → Int〉p f) x

we can see that negative blame never adheres to this cast, because the type checker guar-
antees that x has type Nat, and the cast from Nat to Int always succeeds. However
positive blame may adhere, for instance if f is λy : Int. y − 2 and x is 1.

Conversely, if we consider a well-typed term of the form

(〈Dyn → Dyn⇐ Int → Int〉p f) x

we can see that positive blame never adheres to this cast, because the types guaran-
tee that f returns an Int, and the cast from Int to Dyn always succeeds. However
negative blame may adhere, for instance if f is λy : Int. y + 1 and x is �true�.

The key result of this paper is to show that casting from a more precise type to a less
precise type cannot give rise to positive blame (but may give rise to negative); and that
casting for a less precise type to a more precise type cannot give rise to negative blame
(but may give rise to positive). Here are the two examples considered above, with the
more precise type on the left, and the less precise type on the right.

Nat→ Nat <:n Int→ Int Int→ Int <:n Dyn→ Dyn

We call this naive subtyping (hence the subscript n) because it is covariant in both the
domain and the range of function types, in contrast to traditional subtyping, which is
contravariant in the domain and covariant in the range. We formally define both subtyp-
ing and naive subtyping in Section 3.3.

2.4 Well-Typed Programs Can’t Be Blamed

Consider a program that mixes typed and untyped code; it will contain two sorts of
casts. One sort gives types to untyped code. Such casts make types more precise, and so
cannot give rise to negative blame. For instance, Program (d) in Figure 2 fails blaming
p. Because the blame is positive, the fault lies with the untyped code inside the cast.

The other sort takes typed code and makes it untyped. Such a cast makes types less
precise, and so cannot give rise to positive blame. For instance, Program (e) fails blam-
ing p̄. Because the blame is negative, the fault lies with the code outside the cast.

Both times the fault lies with the untyped code! This is of course what we would
expect, since typed code should contain no type errors. Understanding positive and
negative blame, and knowing when each can arise, is the key to giving a simple proof
of this expected fact.
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Syntax variables x, y blame labels p, q
base types B ::= Bool | Int | · · ·
constants c ::= true | false | 0 | 1 | · · · | + | − | ≥ · · ·
types S, T ::= Dyn | B | S → T | {x : B | t}
terms s, t, u ::= x | c | λx : S. t | t s | 〈T ⇐ S〉p s

Compile-time typing Γ 	 t : Tx : T ∈ Γ

Γ 	 x : T

T = ty(c)

Γ 	 c : T

Γ, x : S 	 t : T

Γ 	 λx : S. t : S → T

Γ 	 t : S → T Γ 	 s : S

Γ 	 t s : T

Γ 	 s : S S ∼ T

Γ 	 〈T ⇐ S〉p s : T

Compatibility S ∼ TB ∼ B Dyn ∼ T S ∼ Dyn

S ∼ S′ T ∼ T ′

S → T ∼ S′ → T ′
B ∼ T

{x : B | s} ∼ T

S ∼ B

S ∼ {y : B | t}
Fig. 3. Compile-time types

The same analysis generalizes to code containing subset types. For instance, Pro-
gram (f) fails blaming q. In this case, both casts make the types more precise, so cannot
give rise to negative blame. Because the blame is positive, the fault lies with the less
refined code inside the cast.

3 Types, Reduction, Subtyping

Compile-time type rules of our system are presented in Figure 3, run-time type rules
and reduction rules in Figure 4, and rules for subtyping in Figure 5. We discuss each of
these in turn in the following three subsections.

3.1 Types and Terms

Figure 3 presents the syntax of types and terms and the compile-time type rules. The
language is explicitly and statically typed. (See Section 3.4 for embedding untyped
terms.)

We let S, T range over types, and s, t range over terms. A type is either a base type
B, the dynamic type Dyn, a function type S → T , or a subset type {x : B | t}. A
term is either a variable x, a constant c, a lambda expression λx : S. t, an application
s t, or a cast expression 〈T ⇐ S〉p s. We write let x = s in t as an abbreviation for
(λx : S. t) s where s has type S.

We assume a denumerable set of constants. Every constant c is assigned a unique
type ty(c). We assume Bool is a base type with true and false as constants of
type Bool; and that Int is a base type with 0, 1, and so on, as constants of type Int,
and + and − as constants of type Int → Int → Int, and ≥ as a contant of type
Int→ Int → Bool, and possibly other constants. Constants must have base type or
function type; this guarantees that every value of type Dyn has the form DynG(v) and
that every value of subset type has the form v{x:B|t}. Constants of function type must
not raise blame when evaluated; this guarantees that only casts can raise blame.
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Syntax
ground types G ::= B | Dyn → Dyn
terms s, t, u ::= · · · | DynG(v) | v{x:B|t} | s �p v{x:B|t}
values v, w ::= x | c | λx : S. t | 〈S′ → T ′ ⇐ S → T 〉p v | DynG(v) | v{x:B|t}
results r ::= t | ⇑ p
eval contexts E ::= [ ] | E s | v E | 〈T ⇐ S〉p E | E �p v{x:B|t}

Run-time typing Γ 	 t : TΓ 	 s : Bool Γ 	 v : B t[x := v] −→∗ s

Γ 	 s �p v{x:B|t} : {x : B | t}

Γ 	 v : G

Γ 	 DynG(v) : Dyn

Γ 	 v : B t[x := v] −→∗ true

Γ 	 v{x:B|t} : {x : B | t}
Reductions s −→ r

E[c v] −→ E[[[c]](v)] (1)

E[(λx : S. t) v] −→ E[t[x := v]] (2)

E[〈B ⇐ B〉p v] −→ E[v] (3)

E[(〈S′ → T ′ ⇐ S → T 〉p v) w] −→ E[〈T ′ ⇐ T 〉p (v (〈S ⇐ S′〉p̄ w))] (4)

E[〈Dyn ⇐ Dyn〉p v] −→ E[v] (5)

E[〈Dyn ⇐ B〉p v] −→ E[DynB(v)] (6)

E[〈Dyn ⇐ S → T 〉p v] −→ E[DynDyn→Dyn(〈Dyn→ Dyn ⇐ S → T 〉p v)] (7)

E[〈T ⇐ Dyn〉p DynG(v)] −→ E[〈T ⇐ G〉p v], if G ∼ T (8)

E[〈T ⇐ Dyn〉p DynG(v)] −→ ⇑ p, if G ∼ T (9)

E[〈{x : B | t} ⇐ S〉p v] −→ E[let x = 〈B ⇐ S〉p v in t �
p x{x:B|t}] (10)

E[true�
p v{x:B|t}] −→ E[v{x:B|t}] (11)

E[false�
p v{x:B|t}] −→ ⇑ p (12)

E[〈T ⇐ {x : B | s}〉p v{x:B|s}] −→ E[〈T ⇐ B〉p v] (13)

Fig. 4. Run-time types and reduction

The type system is explained in terms of three judgements, which are presented in
Figure 3. We write Γ 
 t : T if term t has type T in environment Γ , and we write
S ∼ T if type S is compatible with type T . We let Γ range over type environments,
which are a list of variable-type pairs x : T .

A type is well-formed if for every subset type {x : B | t} we have that t has type
Bool on the assumption that x has type B (no other free variables may appear in t). In
what follows, we assume all types are well-formed. We call B the domain of the subset
type {x : B | t}.

The type rules for variables, constants, lambda abstraction, and application are stan-
dard. The type rule for casts is straightforward: if term s has type S and type S is
compatible with type T (defined below), then the term 〈T ⇐ S〉p s has type T .
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We write S ∼ T for the compatibility relation, which holds if it may be sensible to
cast type S to type T . A base type is compatible with itself, type Dyn is compatible with
any type, two function types are compatible if their domains and ranges are compatible,
and a subset type is compatible with every type that is compatible with its domain.

Compatibility is reflexive and symmetric but not transitive. For example, S ∼ Dyn
and Dyn ∼ T hold for any types S and T , but S ∼ T does not hold if one of S or T is
a function type and the other is a base type. Requiring compatibility ensures that there
are no obviously foolish casts, but does not rule out the possibility of two successive
casts, one from S to Dyn and the next from Dyn to T .

Our cast rule is inspired by the similar rules found for gradual types and hybrid
types. Gradual types introduce compatibility, but do not have subset types. Hybrid types
include subset types, but do not bother with compatibility. Neither system uses both
positive and negative blame labels, as we do here.

Hybrid types also have a subsumption rule: if s has type S, and S is a subtype of T ,
then s also has type T . This greatly increases the power of the type system. For instance,
in hybrid types each constant is assigned the singleton type c : {x : B | c = x}; and by
subtyping and subsumption it follows that each constant belongs to every subset type
{x : B | t} for which t[x := c] −→∗ true. However, the price paid for this is that type
checking for hybrid types is undecidable, because the subtype relation is undecidable.

A pleasant consequence of omitting subsumption from the blame calculus is that
each term has a unique type, and an even more pleasant consequence is that the type
system for the source language is decidable.

Proposition 1. (Unicity) If Γ 
 s : S and Γ 
 s : T then S = T .

Proposition 2. (Decidability) Given Γ and t, it is decidable whether there is a T such
that Γ 
 t : T (using the compile-time type rules of Figure 3).

Both propositions are easy inductions.
However, there are some less pleasant consequences. (The tiger is caged, not tamed!)

Reduction may introduce terms that are not permitted in the source language, and we
need additional semidecidable run-time rules to check the types of these terms. We
explain the details of how this works below.

3.2 Reductions

Figure 4 defines additional term forms, values, evaluation contexts, additional run-time
type rules, and reduction.

We let v, w range over values. A value is either a variable, a constant, a lambda term,
a cast to a function type from another function type, an injection into dynamic from a
ground type, or an injection into a subset type from its domain type. The first three of
these are standard, and we explain the other three below.

We take a cast to a function type from another function type as a value for technical
convenience. Other work [15, 5] makes the opposite choice, and reduce a cast to a
function type from another function type to a lambda expression.

Values of dynamic type take the form DynG(v), where G is ground type, which is
either a base type B or the function type Dyn → Dyn, and v is a value of type G. For
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example, the cast 〈Dyn ⇐ Int → Int〉p (λx : Int. x + 1) reduces to the value
DynDyn→Dyn(〈Dyn → Dyn ⇐ Int → Int〉p (λx : Int. x + 1)). Note that the inner
cast is a value, since it is to a function type from another function type.

Values of subset type take the form v{x:B|t} where v is a value of type B and t[x :=
v] −→∗ true. We also need an intermediate term to test the predicate associated with
a cast to a subset type. This term has the form s �p v{x:B|t}, where v is a value of type
T , and s is a boolean term such that t[x := v] −→∗ s. If s reduces to true the term
reduces to v{x:B|t}, and if s reduces to false the term allocates blame to p.

(In contrast, Flanagan [5] has essentially the following rule.

t[x := v] −→∗ true

〈{x : B | t} ⇐ B〉p v −→ v{x:B|t}

This formulation is unusual, in that a single reduction step in the conclusion depends on
multiple steps in the hypothesis. The rule makes it awkward to formulate a traditional
progress theorem, because if reduction of t[x := v] proceeds forever, then evaluation
gets stuck.)

We let E range over evaluation contexts, which are standard. The cast operation is
strict, and reduces the term being cast to a value before the cast is performed, and the
subset test is strict in its predicate.

We write s −→ r to indicate that a single reduction step takes term s to result r,
which is either a term t or the form ⇑ p, which indicates allocation of blame to label p.
We write s −→∗ r for the reflexive and transitive closure of reduction.

There are three additional type rules for the three additional term forms. These are
straightforward, save that the two rules for subset types involve reduction, and hence
are semi-decidable. Hence, Proposition 2 (Decidability) holds only for the compile-
time syntax type rules of Figure 3, and fails when these are extended with the run-time
type rules of Figure 4. However, it is easy to check that Proposition 1 (Unicity), holds
even when the compile-time type rules are extended with the run-time type rules.

The good news is that semi-decidability is not a show stopper. We introduce the
semi-decidable type rules precisely in order to prove preservation and progress. Typing
of the source language is decidable, and reduction is decidable. We never need to check
whether a term satisfies the semi-decidable rules, since this is guaranteed by preserva-
tion and progress!

We now go through each of the reductions in turn. (1) Constants of function type are
interpreted by a semantic function consistent with their type: if ty(c) = S → T and
value v has type S, then [[c]](v) is a term of type T . For example, ty(+) = Int →
Int → Int, with [[+]](3) = +3, where ty(+3) = Int → Int and [[+3]](4) = 7. (2)
The rule for applying a lambda expression is standard. (3) A cast to a base type from
itself is the identity. (4) A cast to a function type from another function type decomposes
into separate casts on the argument and result. Note the reversal in the argument cast,
and the corresponding negating of the blame label.

The next three rules concern casts to the dynamic type. (5) A cast to Dyn from itself
is the identity. (6) A cast to Dyn from a base type is a value. (7) A cast to Dyn from a
function type S → T decomposes into a cast to Dyn from the ground type Dyn→ Dyn,
and a cast to Dyn → Dyn from S → T .
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Entailment x : T ⇐ S |= t

S ∼ T for all v and w, if 	 v : S and 〈T ⇐ S〉p v −→∗ w then t[x := w] −→∗ true

x : T ⇐ S |= t

Subtype S <: T
B <: B Dyn <: Dyn

S′ <: S T <: T ′

S → T <: S′ → T ′
B <: T

{x : B | s} <: T

S <: B x : B ⇐ S |= t

S <: {x : B | t}
S <: G

S <: Dyn

Positive subtype S <:+ T
B <:+ B S <:+ Dyn

S′ <:− S T <:+ T ′

S → T <:+ S′ → T ′
B <:+ T

{x : B | s} <:+ T

S <:+ B x : B ⇐ S |= t

S <:+ {x : B | t}

Negative subtype S <:− T
B <:− B Dyn <:− T

S′ <:+ S T <:− T ′

S → T <:− S′ → T ′
B <:− T

{x : B | s} <:− T

S <:− B

S <:− {x : B | t}
S <:− G

S <:− T

Naive subtype S <:n T
B <:n B S <:n Dyn

S <:n S′ T <:n T ′

S → T <:n S′ → T ′
B <:n T

{x : B | s} <:n T

S <:n B x : B ⇐ S |= t

S <:n {x : B | t}

Fig. 5. Subtypes

The next two rules concern casts from the dynamic type. (8) A cast to type T from
the value DynG(v) of dynamic type collapses to a cast to type T directly from type G
if the types T and G are compatible. (9) Otherwise, such a cast fails.

The next three rules concern casts to subset type. (10) A cast to subset type with
domain B from type S decomposes into a cast to B from S, followed by a test that the
value satisfies the predicate. (11) If the predicate evaluates to true the test reduces to the
subset type. (12) Otherwise the test fails.

The last rule concerns casts from a subset type. (13) Consider a cast to type T from
a subset type. Recall that values of subset type have the form v{x:B|s}, where v has
type B. The cast collapses to a cast directly to T from B. Note that B and T must be
compatible, since a subset type is only compatible with a type that is compatible with
its domain.

3.3 Subtyping

We do not need subtyping to assign types to terms, but we will use subtyping to char-
acterise when a cast cannot give rise to blame. Figure 5 presents entailment and four
subtyping judgements—ordinary, positive, negative, and naive.
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Entailment is written
x : T ⇐ S |= t

and holds if for all values v of type S and w of type T such that 〈T ⇐ S〉p v −→∗ w
we have that t[x := w] −→∗ true.

We write S <: T if S is a subtype of T . Function subtyping is contravariant in the
domain and covariant in the range. A subset type is a subtype of its domain, and a type
is a subtype of a subset type if membership in the type entails satisfaction of the subset
type’s predicate. Every subtype of a ground type is a subtype of Dyn, since casts from
subtypes of a ground type to Dyn cannot allocate blame.

For example, say that we define Pos = {x : Int | x > 0} and Nat = {x : Int |
x ≥ 0}. Then x : Int ⇐ Pos |= x ≥ 0, and so Pos <: Nat by the sixth rule. For
another example, Int <: Int by the first rule, so Pos <: Int by the fifth rule, so
Pos <: Dyn by the third rule.

Entailment, and hence subtyping, are undecidable. This is not a hindrance, since our
type system does not depend on subtyping. Rather it is an advantage, since it means we
can show more types are in the subtype relation, making our results more powerful.

Our rules for subtyping are similar to those found in earlier work [5, 8, 13]. However,
they take every type to be a subtype of Dyn. In contrast, we only take S to be a subtype
of T if a cast from S to T can never receive any blame, and therefore the only subtypes
of Dyn are Dyn itself and subtypes of ground types. It is not appropriate to take function
types (other that Dyn → Dyn) as subtypes of Dyn, because a cast to Dyn from a
function type may receive negative blame. The issues are similar to the treatment of the
contract Any [3].

In order to characterize when positive and negative blame cannot occur, we factor
subtyping into two subsidiary relations, positive subtyping, written S <:+ T and neg-
ative subtyping, written S <:− T . The two judgements are defined in terms of each
other, and track the swapping of positive and negative blame labels that occurs with
function types, with the contravariant position in the function typing rule reversing the
roles. We have S <:+ Dyn and Dyn <:− T for every type S and T , since casting to
Dyn can never give rise to positive blame, and casting from Dyn can never give rise
to negative blame. We only check entailment between subtypes for positive subtyping,
since failure of a subset predicate gives rise to positive blame. Finally, on the negative
side, if S <:− G, then S <:− T , since no cast from a subtype of a ground type to any
other type can allocate negative blame.

Proposition 3. (Subtyping is transitive and reflexive) If S <: S′ and S′ <: S′′ then
S <: S′′, for all S, S′, S′′, and S <: S, for all S. Similarly for <:+, <:−, and <:n.

Proposition 4. (Subtyping and compatibility) If S <: T then S ∼ T . Similarly for <:+

and <:n, but not <:−.

The main results concerning positive and negative subtyping are given in Section 4. We
show that S <: T if and only if S <:+ T and S <:− T . We also show that if S <:+ T
then a cast from S to T cannot receive positive blame, and that if S <:− T then a cast
from S to T cannot receive negative blame.

We also define a naive subtyping judgement, S <:n T , which corresponds to our
informal notion of type S being more precise than type T , and is covariant for both
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Syntax untyped terms M, N ::= x | k | λx. N | M N | �t�
Well-formed terms Γ 	 M wf

(x : Dyn) ∈ Γ

Γ 	 x wf

Γ, x : Dyn 	 N wf

Γ 	 (λx. N) wf

Γ 	 M wf Γ 	 N wf

Γ 	 (M N) wf

Γ 	 t : Dyn

Γ 	 �t� wf

Embedding �M��x� = x
�c� = 〈Dyn ⇐ ty(c)〉 c
�λx. N� = 〈Dyn ⇐ Dyn → Dyn〉 (λx : Dyn. �N�)
�M N� = (〈Dyn → Dyn ⇐ Dyn〉 �M�) �N�
��t�� = t

Fig. 6. Untyped lambda calculus

the domain and range of functions. In Section 4, we show that S <:n T if and only
if S <:+ T and T <:− S. (Note the reversal! In the similar statement for ordinary
subtyping, we wrote S <:− T , where here we write T <:− S.)

Here are some examples:

Int→ Nat <: Nat → Int
Int→ Nat <:+ Nat → Int
Int→ Nat <:− Nat → Int

Nat → Nat <:n Int→ Int
Nat → Nat <:+ Int→ Int
Int → Int <:− Nat→ Nat

The left-hand side line shows that ordinary subtyping is contravariant in the domain and
covariant in the range, while the right-hand side shows that naive subtyping is covariant
in both. In both cases, the first line is equivalent to the second and third.

3.4 Typed and Untyped Lambda Calculus

We introduce a separate grammar for untyped terms, and show how to embed untyped
terms into typed terms (and vice versa). The relevant definitions are in Figure 6.

Let M, N range over untyped terms. The term form �t lets us embed typed terms
into untyped terms; it is well-formed only if the typed term t has type Dyn. Below we
define a mapping �M�, that lets us embed untyped terms into typed terms.

An untyped term is well-formed if every variable appearing free in it has type Dyn,
and if every typed subterm has type Dyn. We write Γ 
 M wf to indicate that M is
well-formed.

A simple mapping takes untyped terms into typed terms. An untyped term M is
well-formed if and only if the corresponding typed term �M� is well-typed with type
Dyn.

Lemma 1. We have Γ 
 M wf if and only if Γ 
 �M� : Dyn.

It is straightforward to define reduction for untyped terms, and show that the embedding
preserves and reflects reductions.
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S <:+ T s safe for p

〈T ⇐ S〉ps safe for p

S <:− T s safe for p

〈T ⇐ S〉p̄s safe for p

p = q p̄ = q s safe for p

〈T ⇐ S〉qs safe for p

v safe for p

DynG(v) safe for p

s −→∗ true

s �p v{x:B|t} safe for p

q = p s safe for p

s �q v{x:B|t} safe for p

x safe for p c safe for p

t safe for p

λx : S. t safe for p

t safe for p s safe for p

t s safe for p

Fig. 7. Safe terms

3.5 Type Safety

We have usual substitution and canonical forms lemmas, and preservation and progress
results.

Lemma 2. (Substitution) If Γ 
 v : S and Γ, x : S 
 t : T , then Γ 
 t[x := v] : T .

Lemma 3. (Canonical forms) Let v be a value that is well-typed in the empty context.
One of three cases applies.

– If 
 v : S → T then either
• v = λx : S. t, with x : S 
 t : T , or
• v = c, with ty(c) = S → T , or
• v = 〈S → T ⇐ S′ → T ′〉p v′ with 
 v′ : S′ → T ′.

– If 
 v : {x : B | t} then v = v′{x:B|t} with 
 v′ : B and t[x := v′] −→∗ true.
– If 
 v : Dyn then v = DynG(v′) with 
 v′ : G.

Proposition 5. (Preservation) If Γ 
 s : T and s −→ t then Γ 
 t : T .

Proposition 6. (Progress) If 
 s : T then either

– s is a value, or
– s −→ t for some result t, or
– s −→ ⇑ p for some blame label p.

In this case, preservation and progress do not guarantee a great deal, since they do
not rule out blame as a result. However, Section 4 gives results that let us identify
circumstances where certain kinds of blame cannot arise.

4 The Blame Theorem

Subtyping factors into positive and negative subtyping, and naive subtyping also factors
into positive and negative subtyping, this time with the direction of negative subtyping
reversed.

Proposition 7. (Factoring subtyping) We have S <: T if and only if S <:+ T and
S <:− T .
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Proposition 8. (Factoring naive subtyping) We have S <:n T if and only if S <:+ T
and T <:− S.

The following is the central result of this paper and depends on the definition of the
safe for relation. A term t is safe for a blame label p if all of the casts that have the label
p are positive subtypes, all of the casts that have the label ¬p, are negative subtypes,
and all of the predicate tests with the label p succeed. The precise definition is given in
Figure 7.

Proposition 9. (Preservation of safe terms) For any well-typed term t and blame label
p, if t safe for p and t −→ t′ then t′ safe for p.

Proposition 10. (Progress of safe terms) For any well-typed term t and blame label p,
if t safe for p then t �−→ ⇑ p.

Corollary 1. (Well-typed programs can’t be blamed) Let t be a well-typed term with a
subterm 〈T ⇐ S〉p s containing the only occurrences of p in t.

– If S <:+ T then t �−→∗ ⇑ p.
– If S <:− T then t �−→∗ ⇑ p̄.
– If S <: T then t �−→∗ ⇑ p and t �−→∗ ⇑ p̄

In particular, since S <:+ Dyn, any failure of a cast from a well-typed term to a
dynamically-typed context must be blamed on the dynamically-typed context. And
since Dyn <:− T , any failure of a cast from a dynamically-typed term to a well-typed
context must be blamed on the dynamically-typed term.

Further, consider a cast from a more precise type to a less precise type, which we can
capture using naive subtyping. Since S <:n T implies S <:+ T , any failure of a cast
from a more-precisely-typed term to a less-precisely-typed context must be blamed on
the less-precisely-typed context. And since T <:n S implies S <:− T , any failure of a
cast from a less-precisely-typed term to a more-precisely-typed context must be blamed
on the less-precisely-typed term.

5 Related Work

Integrating static and dynamic typing is not new, and previous work includes type
Dynamic [1], soft types [21], and partial types [16]. Contracts for dynamic testing of
specifications were popularized by the language Eiffel [12]. Findler and Felleisen [4]
introduced the use of higher-order contracts with blame in functional programming.

Henglein [9] lays much of the theoretical ground work for combining typed and un-
typed program fragments in a single program. Our work’s principal technical debt con-
cerns canonical coercions and the results surrounding them which justify our writing of
casts as just a pair of types, instead of a pair of types combined with an explicit coer-
cion (as Henglein does). Due to a coincidence of terminology, it is natural to compare
Henglein’s positive and negative coercions with our positive and negative subtyping re-
lations, but they are essentially unrelated. Henglein’s positive and negative coercions
simply characterize naive subtyping [9, Proposition 23].



Well-Typed Programs Can’t Be Blamed 15

Siek and Taha [15] introduced gradual types, inspired by Gray et al [6]. Our results
augment theirs, since we show how the blame for a failed cast always lies with the less-
typed portion of the code. Siek, Garcia, and Taha [14] compare various approaches to
subtyping for gradual types, including the one considered in this paper.

Flanagan et al [5, 8] introduced hybrid types and a new programming language, Sage.
Ou et al [13] present a closely-related language with dynamically-checked dependent
types. These support dependent function types, while our work here is restricted to
ordinary function types.
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