
VU Research Portal

Programming Languages for Distributed Computing Systems

Bal, H.E.; Steiner, J.G.; Tanenbaum, A.S.

published in
Computing Surveys

1989

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Bal, H. E., Steiner, J. G., & Tanenbaum, A. S. (1989). Programming Languages for Distributed Computing
Systems. Computing Surveys, 21(Sept.), 261-322.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 24. Aug. 2022

https://research.vu.nl/en/publications/1230fcf0-4548-4186-8ac4-0c5a6ac03261

Programming Languages for Distributed Computing Systems

HENRI E. BAL

Department of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

JENNIFER G. STEINER

Centrum uoor Wiskunde en Znformatica, Amsterdam, The Netherlands

ANDREW S. TANENBAUM

Department of Mathematics and Computer Science, Vrije Uniuersiteit, Amsterdam, The Netherlands

When distributed systems first appeared, they were programmed in traditional sequential

languages, usually with the addition of a few library procedures for sending and receiving

messages. As distributed applications became more commonplace and more sophisticated,

this ad hoc approach became less satisfactory. Researchers all over the world began

designing new programming languages specifically for implementing distributed

applications. These languages and their history, their underlying principles, their design,

and their use are the subject of this paper.

We begin by giving our view of what a distributed system is, illustrating with examples
to avoid confusion on this important and controversial point. We then describe the three

main characteristics that distinguish distributed programming languages from traditional

sequential languages, namely, how they deal with parallelism, communication, and partial

failures. Finally, we discuss 15 representative distributed languages to give the flavor of

each. These examples include languages based on message passing, rendezvous, remote

procedure call, objects, and atomic transactions, as well as functional languages, logic

languages, and distributed data structure languages. The paper concludes with

a comprehensive bibliography listing over 200 papers on nearly 100 distributed

programming languages.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems-distributed applications; D.1.3 [Programming Techniques]:

Concurrent Programming; D.3.3 [Programming Languages]: Language Constructs-

concurrent programming structures; D.4.7 [Operating Systems]: Organization and
Design-distributed systems

General Terms: Languages, Design

Additional Key Words and Phrases: Distributed data structures, distributed languages,

distributed programming, functional programming, languages for distributed

programming, languages for parallel programming, logic programming, object-oriented

programming, parallel programming

The research of H. E. Bal was supported in part by the Netherlands Organization for Scientific Research under
Grant 125-30-10.

J. G. Steiner’s current address: Open Software Foundation, Cambridge, MA.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0360-0300/89/0900-0261$00.75

ACM Computing Surveys, Vol. 21, No. 3, September 1989

262 . H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

CONTENTS

INTRODUCTION

1. DISTRIBUTED COMPUTING SYSTEMS

1.1 Classes of Distributed Applications

1.2 Requirements for Distributed Programming

support

1.3 Languages for Distributed Programming

2. LANGUAGE SUPPORT FOR PROGRAMMING

DISTRIBUTED SYSTEMS

2.1 Parallelism

2.2 Interprocess Communication and

Synchronization

2.3 Partial Failure

3. LANGUAGES FOR PROGRAMMING

DISTRIBUTED SYSTEMS

3.1 Languages with Logically Distributed

Address Spaces

3.2 Languages with Logically Shared

Address Spaces

4. CONCLUSIONS

APPENDIX

ACKNOWLEDGMENTS

REFERENCES

INTRODUCTION

During the past decade, many kinds of
distributed computing systems have been
proposed and built. These systems cover a
wide spectrum in terms of design goals,
size, performance, and applications. They
also differ considerably in how they are
programmed. Some are programmed in
conventional languages, possibly supple-
mented with a few new library routines.
Others are programmed in completely new
languages, specially designed for distrib-
uted applications. It is the intention of this
paper to describe and compare the methods
and languages that can be used for pro-
gramming distributed systems, and to pres-
ent in some detail several languages
representative of the research to date in
this area.

There is no consensus in the literature
as to the definition of a distributed com-
puting system, so we begin Section 1 by
defining our use of this term. We then
discuss the different kinds of distributed
computing systems that have been built,
the types of applications for which they are
intended, and the programming support re-

quired for implementing these applications.
This programming support may be pro-
vided either by the operating system or by
a programming language. We briefly ex-
amine the first option, and note several
disadvantages.

In Section 2 we discuss the second op-
tion-special language support for pro-
gramming distributed computing systems.
We identify three issues that must be ad-
dressed by a language intended to support
distributed applications programming: the
ability to execute different pieces of a pro-
gram on different processors, the ability for
these pieces to cooperate with one another,
and the ability to cope with (or take advan-
tage of) partial failure of the distributed
system. We show how different languages
have addressed these issues in very differ-
ent ways, and how the appropriateness of
one language over another depends primar-
ily on the type of application to be written
and, to a lesser extent, on the kind of dis-
tributed system on which the application is
to be implemented.

In Section 3 we look at some represent-
ative programming languages designed for
distributed computing systems. We divide
the languages into simple categories, de-
scribing one or two examples from each
category in some detail. We hope in this
way to give a flavor of current research in
this area. The languages we describe are
CSP, Occam, NIL, Ada,’ Concurrent C,
Distributed Processes, SR, Emerald,
Argus, Aeolus, ParAlfl, Concurrent PRO-
LOG, PARLOG, Linda, and Orca. Finally,
we present our conclusions and give an
extensive bibliography.

1. DISTRIBUTED COMPUTING SYSTEMS

We begin this section with our definition
of a distributed computing system. Noting
that there is a spectrum of such systems,
characterized by their interconnecting net-
work. We then discuss the kinds of appli-
cations for which these systems are used.
Next, we list the requirements for support-
ing the programming of these applications.

’ Ada is a registered trademark of the U.S. Department
of Defense.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Programming Languages for Distributed Computing Systems l 263

Finally, we discuss how programming lan-
guages can fulfill these requirements.

There is considerable disagreement in
the literature as to what constitutes a dis-
tributed system. Among the many defini-
tions that we have seen, there is only
one point of agreement: They all require
the presence of multiple processors. The
confusion may therefore be due to the large
number of different architectural models
one finds in multiple-processor systems.
Vector computers, for example, use many
processors that simultaneously apply the
same arithmetic operations to different
data [Russell 19781. They are best suited
for computation-intensive numerical appli-
cations. Dataflow and reduction machines
apply different operations to different data
[Treleaven et al. 19821. Multiprocessors
consist of several autonomous processors
sharing a common primary memory [Jones
and Schwarz 19801. These are well suited
for running different subtasks of the same
program simultaneously. Multicomputers
are similar to multiprocessors, except that
the processors do not share memory, but
rather communicate by sending messages
over a communications network [Athas and
Seitz 19881. As a final example, there are
systems comprised of workstations or min-
icomputers connected by a local- or wide-
area network. This type of system is fre-
quently the target for distributed operating
systems [Tanenbaum and van Renesse
19851. (We will refer to these latter
two systems as workstation-LANs and
workstation- WANs.)

Experts strongly disagree as to which of
these multiple processor architectures are
to be considered distributed systems. Some
people claim that all of the configurations
mentioned above fall under this category.
Others include only geographically distrib-
uted computers connected by a wide-area
network. Each combination in between
these two extremes probably also has its
defenders. The meaning we intend to con-
vey by our use of the term distributed com-
puting system is the following:

Definition. A distributed computing sys-
tem consists of multiple autonomous pro-
cessors that do not share primary memory,

but cooperate by sending messages over a
communications network.

Each processor in such a system executes
its own instruction stream(s) and uses its
own local data, both stored in its local
memory. Occasionally, processors may
need to exchange data; they do so by send-
ing messages to each other over a network.
Many different types of networks exist
(e.g., hypercube, local-area network, wide-
area networks), as will be discussed below.
Although these networks have very differ-
ent physical properties, they all fit into the
same model: each is a medium for trans-
ferring messages among processors (see
Figure la). Distributed systems can be con-
trasted with multiprocessors, in which pro-
cessors communicate through a shared
memory (see Figure lb).

Of the architectures mentioned in the
list of examples above, multicomputers,
workstation-LANs, and workstation-
WANs qualify as distributed computing
systems by our definition.

Distributed systems can be further char-
acterized by their communications net-
works. The network determines the speed
and reliability of interprocessor communi-
cation, and the spatial distribution of the
processors. Traditionally, a distributed ar-
chitecture in which communication is fast
and reliable and where processors, are phys-
ically close to one another is said to be
closely coupled; systems with slow and un-
reliable communication between processors
that are physically dispersed are termed
loosely coupled,’

Closely coupled distributed systems use
a communications network consisting of
fast, reliable point-to-point links, which
connect each processor to some subset of
the other processors. Examples of such sys-
tems are the Cosmic Cube [Seitz 19851,
hypercubes [Ranka et al. 19881, and trans-
puter networks [May and Shepherd 19841.
Communication costs for this type of sys-
tem used to be on the order of a millisecond,
but are expected to drop to less than a

*It must be noted that it is not entirely correct to
associate these two attributes with architectures, as,
for example, communication speed also depends very
much on the current hardware technology.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

264 . H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

Private 0 memory
Private

0

memory

‘9 NETWORK p

(a)

CPU
Shared

memory

7

CPU

Figure 1. Communication in distributed systems (a) versus shared-memory multiprocessors (b): (a) physical
communication by message passing; (b) physical communication through shared memory.

microsecond in the near future [Athas and
Seitz 19881.

A more loosely coupled type of distrib-
uted system is a workstation-LAN. The
local-area network (LAN) allows direct
communication between any two proces-
sors. Communication cost is typically on
the order of milliseconds. In many LANs,
communication is not totally reliable.
Occasionally, a message may be damaged,
arrive out of order, or not arrive at
its destination at all. Software protocols
must be used to implement reliable
communication.

A LAN limits the physical distance be-
tween processors to on the order of a few
kilometers. To interconnect processors that
are farther apart, a wide-area network
(WAN) can be used. A workstation-WAN
can be seen as a very loosely coupled dis-
tributed system. Communication in a WAN
is slower and less reliable than in a LAN;
communication cost may be on the order of
seconds. On the other hand, the increased
availability of wide-area lines at speeds
above 1 Mbit/s (e.g., Tl lines in the United
States), will blur the distinction between
LANs and WANs in the future.

In summary, there is a spectrum of dis-
tributed computing systems, ranging from
closely coupled to very loosely coupled sys-
tems. Although communication speed and
reliability decrease from one end of the
spectrum to the other, all systems fit into

the same model: autonomous processors
connected by some kind of network that
communicate by sending messages.

The main purpose of this paper is to
study languages for programming the sys-
tems that fit into this spectrum. As all
systems discussed here are conceptually
similar, their programming languages need
not be fundamentally different. At least in
principle, any one of these languages may
be used for programming a variety of dis-
tributed architectures. The choice of a suit-
able language depends very much on the
kind of application to be implemented.
Below, we first look at several classes of
applications that have been written for dis-
tributed systems. Then we consider what
kind of support is required for these appli-
cations and how this support can be pro-
vided by a programming language.

1.1 Classes of Distributed Applications

Distributed computing systems are used for
many different types of applications. We
first look at the reasons why a distributed
system might be favored over other archi-
tectures, such as uniprocessors or shared-
memory multiprocessors, and then classify
the distributed applications accordingly.
The reasons for programming applications
on distributed systems fall into four general
categories: decreasing turnaround time for
a single computation, increasing reliability

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Programming Languages for Distributed Computing Systems 265

and availability, the use of parts of the
systems to provide special functional-
ity, and the inherent distribution of the
application.

1.1.1 Parallel, High-Performance Applications

Achieving speedup through parallelism is a
common reason for running an application
on a distributed computing system. By ex-
ecuting different parts of a program on
different processors at the same time, some
programs will finish faster. In principle,
these parallel applications can be run just
as well on shared-memory multiprocessors.
Shared-memory systems, however, do not
scale to large numbers (thousands) of pro-
cessors, which explains the high interest in
implementing parallel programs on distrib-
uted systems.

Parallel applications can be further clas-
sified by the grain of parallelism they use.
The grain is the amount of computation
time between communications. Large-grain
parallel programs spend most of their time
doing computations and communicate in-
frequently; fine-grain parallel programs
communicate more frequently.

Large-grain parallelism, on the other
hand, is suitable for both closely and loosely
coupled distributed systems3 Most of the
research in this area has focused on imple-
menting large-grain parallel applications
on top of existing distributed operating sys-
tems [Tanenbaum and van Renesse 19851.

Fine-grain parallelism and medium-grain
parallelism are best applied to closely cou-
pled distributed systems; on loosely coupled
systems, the communication overhead be-
comes prohibitively expensive. The litera-
ture contains numerous papers discussing
applications that can benefit from this kind
of parallelism. Recent introductory papers
on this subject are Athas and Seitz [1988]
and Ranka et al. [19881.

3 If the grain of parallelism is large enough, even very
loosely coupled distributed systems might be consid-
ered for running parallel applications. Recently, an
international project was undertaken to find the prime
factors of a loo-digit number. The problem was solved
in parallel using 400 computers located at research
institutes on three different continents (New York
Times, Oct. 12, 1988).

Example applications are compilation of
modules of a given program in parallel on
different machines [Baalbergen 19881 and
implementation of heuristic search algo-
rithms [Bal et al. 1987; Finkel and Manber
19871. Also, some of the worlds best chess
programs run on loosely coupled distrib-
uted systems. ParaPhoenix, for example,
runs on a collection of SUNS connected by
an Ethernet [Marsland et al. 19861.

1.1.2 Fault-Tolerant Applications

For critical applications such as controlling
an aircraft or an automated factory, a uni-
processor may not be reliable enough. Dis-
tributed computing systems are potentially
more reliable, because they have the so-
called partial failure property: since the
processors are autonomous, a failure in one
processor does not affect the correct func-
tioning of the other processors. Reliability
can therefore be increased by replicating
the functions or data of the application on
several processors. If some of the processors
crash, the others can continue the job.

Research in this area has focused mainly
on software techniques for realizing the
potential increase in reliability and availa-
bility. Example projects are Circus [Cooper
19851, Clouds [LeBlanc and Wilkes 19851,
Argus [Liskov 19881, and Camelot [Spector
et al. 19861.

Some fault-tolerant applications may
also be run on other multiple-processor ar-
chitectures that can survive partial failures

(e.g., shared-memory multiprocessors).
However, if the system must survive natu-
ral disasters like fires, earthquakes, and
typhoons, one might want the processors
to be geographically distributed. To imple-
ment a highly reliable banking system, for
example, loosely coupled or very loosely
coupled distributed systems might be the
obvious choice.

1.1.3 Applications Using Functional
Specialization

Some applications are best structured as a
collection of specialized services. A distrib-
uted operating system like Amoeba, for ex-
ample, may provide a file service, a print

ACM Computing Surveys, Vol. 21, No. 3, September 1989

266 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

service, a, process service, a terminal serv-
ice, a time service, a boot service, and
a gateway service [Tanenbaum and van
Renesse :1985]. It is most natural to imple-
ment such an application on distributed
hardware. Each service can use one or more
dedicated. processors, as this will give good
performa.nce and high reliability. The serv-
ices can send requests to each other across
the network. If new functions are to be
added or if existing functions need extra
compute power, it is easy to add new pro-
cessors. As all processors can communicate
through the network, it is easy to share
special resources like printers and tape
drives.

1.1.4 inherently Distributed Applications

Finally, there are applications that are
inherently distributed. One example is
sending electronic mail between people’s
workstations. The collection of worksta-
tions can be regarded as a distributed com-
puting system, so the application (email)
has to run on distributed hardware. Simi-
larly, a company with multiple offices and
factories may need to set up a distributed
system so that people and machines at dif-
ferent sites can communicate.

1.2 Requirements for Distributed
Programming Support

We have described a spectrum of distrib-
uted architectures and several kinds of
applications that may be run on such hard-
ware. We now address the issue of how
these applications are to be implemented
on these architectures. We refer to this
activity as distributed programming.

Distributed programming requires sup-
port in several areas. We first give the
requirements for distributed programming
support and then discuss the disadvantages
of having these provided by the operating
system. Later on, we will see how program-
ming languages designed for distributed
systems can fulfill these requirements.

There are basically three issues that dis-
tinguish distributed programming from

ACM Computing Surveys, Vol. 21, No. 3, September 1989

sequential programming:

(1) The use of multiple processors.
(2) The cooperation among the processors.
(3) The potential for partial failure.

Each is discussed below
Distributed programs execute pieces of

their code in parallel on different proces-
sors. High-performance applications use
this parallelism for achieving speedups.
Here, the goal is to make optimal use of the
available processors; decisions regarding
which computations are to run in parallel
are of great importance. In fault-tolerant
applications, decisions to perform func-
tions on different processors are based on
increasing reliability or availability. For
special-function and inherently distributed
applications, functions may be performed
on a given processor because it has certain
capabilities or contains needed data. The
first requirement for distributed program-
ming support is therefore the ability to
assign different parts of a program to be
run on different processors.

The processes of a distributed system
need to cooperate while executing a dis-
tributed application. With parallel appli-
cations, processes sometimes have to
exchange intermediate results and syn-
chronize their actions. In a system that
controls an automated factory, for example,
processors have to keep an eye on each
other to detect failing processors. The serv-
ices of a distributed operating system will
need each other’s assistance: A process
service, for example, may need the help of
a file service to obtain the binary image file
of a process. With distributed electronic
mail, messages have to be forwarded be-
tween processess. In all these examples,
processess must be able to communicate
and synchronize with each other, a second
requirement for distributed programming
support.

In a uniprocessor system, if the CPU
fails, all work ceases instantly. But in a
distributed system some CPUs may fail
while others continue. This property can
be used to write programs that can tolerate
hardware failures. This is particularly im-
portant for fault-tolerant applications, but

Programming Languages for Distributed Computing Systems l 267

it is desirable for other applications as well.
For a distributed computer chess program
that participates in a tournament, for ex-
ample, the ability to survive processor fail-
ures is highly useful. The third and final
requirement for distributed programming
support, therefore, is the ability to detect
and recover from partial failure of the
system.

Ideally, programming support for imple-
menting distributed applications must ful-
fill all three of these requirements. The
support may either be provided by the (dis-
tributed) operating system or by a language
especially designed for distributed pro-
gramming. In the first case, applications
are programmed in a sequential language
extended with library routines that invoke
operating-system primitives. As a disad-
vantage of this approach, the control struc-
tures and data types of the sequential
language are usually inadequate for distrib-
uted programming. Below, we consider two
examples of friction between sequential
and distributed programming.

Simple actions, like forking off a subpro-
cess or receiving a message from a specific
sender, can be expressed relatively easily
through library calls. But problems arise,
for example, if a process wants selectively
to receive a message from one of a number
of other processes, where the selection
criteria depend on, say, the state of the
receiver and the contents of the message.
Although concise programming notations
exist for such cases (e.g., the select state-
ment discussed in Section 2.2.3), it would
probably take a number of complicated
library calls to convey such a request to the
operating system.

Problems with data types arise if one
tries to pass a complex data structure as
part of a message to a remote process. As
the operating system does not know how
data structures are represented, it is unable
to pack the data structure into a network
packet (i.e., a sequence of bytes). Instead,
the programmer has to write explicit code
that flattens the data structure into a
sequence of bytes on the sending end
and that reconstructs the original data
structure on the receiving end. A language

designed for distributed programming, on
the other hand, could do the conversion
automatically.

Using a special language for distributed
programming also gives other advantages,
such as improved readability, portability,
and static type checking. Finally and most
importantly, a language may present a pro-
gramming model that is higher level, more.
abstract, than the message passing model
supported by most operating systems. Sev-
eral such models are discussed in this paper.

1.3 Languages for Distributed Programming

A central question encountered by devel-
opers of distributed software is, “Given a
certain application that has to be imple-
mented on a certain distributed computing
system, which programming language
should be used?” A language can be consid-
ered as a candidate if

(1) the language is suitable for the appli-
cation, and

(2) the language can be implemented with
reasonable efficiency on the given
hardware.

A maze of languages for distributed pro-
gramming has evolved during the past dec-
ade, making the choice of the most suitable
language a difficult one. Most importantly,
the underlying models of the languages dif-
fer widely. Below, we look at several such
models. We begin by describing the basic
model, which is characterized by the use of
processes, message passing, and explicit
failure detection. Next, we look at alterna-
tive ways for dealing with parallelism, com-
munication, and processor failures.

The most basic model is that of a group
of sequential processes running in parallel
and communicating through message pass-
ing. This model directly reflects the distrib-
uted architecture, consisting of processors
connected through a communications net-
work. Languages based on this model in-
clude CSP and Occam.4 The language may
ease the programming task in many ways,

’ All languages mentioned in this section are described
in Section 3.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

268 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

for example, by supporting different kinds
of message passing (as discussed in Section
2), by masking communication errors, and
by type checking the contents of messages.
Such languages usually provide a simple
mechanism for detecting failures in proces-
sors (e.g., an exception is generated or an
error returned on attempt to communicate
with a faulty processor). An example of a
language supporting such features is SR.

For many applications, this basic model
of processes and message passing may
be just what is needed. The model can be
mapped efficiently onto the distributed ar-
chitecture, and it gives the programmer full
control over the hardware resources (pro-
cessors and network). For other applica-
tions, however, the basic model may be too
low level. Therefore, several alternative
models have been designed for parallelism,
communication, and partial failures, which
provide higher level abstractions. Below, we
give some examples of other models.

Several researchers have come to believe
that imperative (algorithmic) languages are
not the best ones for dealing with parallel-
ism. Because of the “one-word-at-a-time”
von Neumann bottleneck [Backus 19781,
imperative languages are claimed to be
inherently sequential. This has led to
research on parallelism in languages with
inherent parallelism, like functional, logic,
and objectoriented languages. The lack of
side effects in functional languages (like
ParAlfl) allows expressions to be evaluated
in any order, including in parallel. In logic
languages, different parts of a proof proce-
dure can be worked on in parallel, as ex-
emplified by Concurrent PROLOG and
PARLOG. Parallelism can also be intro-
duced into object-oriented (or object-based)
languages, by making objects active; this
approach is taken in Emerald. As a result,
models for expressing parallelism that are
quite different from the basic model have
been developed. The parallelism in these
models is usually much more fine grain
than in the basic model, however. These
languages can be made suitable for large-
grain distributed architectures by supple-
menting them with mapping notations, as
discussed in Section 2.1.2.

Likewise, some people are dissatisfied
with message passing as the basic commu-

ACM Computing Surveys, Vol. 21, No. 3, September 1989

nication primitive and have developed com-
munication models that do not directly
reflect the hardware communication model.
One step in this direction is to have proces-
sors communicate through a (generalized
form of) procedure call [Birrell and Nelson
19841; this approach is used in Distributed
Processes. A more fundamental break with
message passing is achieved through com-
munication models based on shared data.
Although implemented on a physically dis-
tributed system, such shared data systems
are logically nondistributed.

Let us make the following distinction
between logical and physical distribution:
As discussed above, distributed comput-
ing systems do not have shared memory;
the hardware of such systems is physically
distributed. Distributed systems can be
contrasted with multiprocessors or unipro-
cessors, which have a single systemwide
primary memory; these systems are physi-
cally nondistributed.

A similar distinction can be used for clas-
sifying software systems, only here the dis-
tinction concerns the logical distribution of
the data used by the software, rather than
the physical distribution of the memories.
For software systems the distinction is log-
ical rather than physical. We define a logi-
cally distributed system as follows:

Definition. A logically distributed soft-
ware system consists of multiple software
processes that communicate by explicit
message passing.

This is in contrast with a logically nondis-
tributed software system, in which software
processes communicate through shared
data.

There are four different combinations of
logical and physical distribution, each of
which is viable:

(1) logically distributed software running
on physically distributed hardware,

(2) logically distributed software running
on physically nondistributed hardware,

(3) logically nondistributed software run-
ning on physically distributed hard-
ware, and

(4) logically nondistributed software run-
ning on physically nondistributed
hardware.

Programming Languages for Distributed Computing Systems 269

Let us briefly examine each of these. The
first class is simple. A typical example is a
collection of processes, each running on
a separate processor and communicating
using SEND and RECEIVE primitives
that send messages over a network (e.g., a
Hypercube network, LAN, or WAN). The
second class has the same logical multiple-
process structure, only now the physical
message passing is simulated by imple-
menting message passing using shared
memory. The third class tries to hide the
physical distribution by making the system
look like it has shared memory with the
programmer. Finally, the fourth class also
uses communication through shared data,
only the existence of physical shared
memory makes the implementation much
easier.

In this paper we discuss languages for
physically distributed systems. Most of
these languages are based on logical distri-
bution. Several others, however, are logi-
cally nondistributed and allow processes to
communicate through some form of shared
data [Bal and Tanenbaum 19881. In such
languages, the implementation rather than
the programmer deals with the physical
distribution of data over several processors.
One example in this class is Linda, which
supports an abstract global memory called
the Tuple Space. Another example is Orca,
which allows processes to share variables
of abstract data types (objects). Other
members of this class are parallel logic
languages (e.g., Concurrent PROLOG
and PARLOG) and parallel functional
languages (e.g., ParAlfl).

The third important issue in the design
of a model for distributed programming-
besides parallelism and communication-
is handling of processor failures. The basic
method for dealing with such failures is to
provide a mechanism for failure detection.
With this approach, the programmer is
responsible for cleaning up the mess that
results after a processor crash. The major
problem is to bring the system back into a
consistent state. This usually can only be
done if processor crashes are anticipated
and precautions are taken during normal
computations (e.g., each process may have
to dump its internal state on secondary
storage at regular intervals). To release the

programmer from all these details, models
have been suggested to make recovery from
failures easier. Ideally, the system should
hide all processor failures from the pro-
grammer. Such models have in fact been
implemented [Borg et al. 19831. Alterna-
tively, the programmer can be given high-
level mechanisms for expressing which
processes and data are important and how
they should be recovered after a crash. Lan-
guages that use this approach are Argus
and Aeolus.

Which model of parallelism, interprocess
cooperation, and fault tolerance is most
appropriate for a certain application de-
pends very much on the application itself.
A distributed system that controls an air-
craft can probably do very well without
fancy constructs for parallelism. In a dis-
tributed banking system, the programmer
may want to “see” the distribution of the
hardware, so a language that hides this
distribution would be most inappropriate.
Finally, it makes no sense to apply expen-
sive techniques for fault tolerance to a par-
allel matrix-multiplication batch-program
that takes only a few seconds to execute.
On the other hand, there also are numerous
cases where these models are useful.

In the next section, we survey current
research in language models and notations
for distributed programming. Although we
discuss a variety of language primitives, one
should keep in mind that all primitives are
different solutions to the same three prob-
lems: dealing with parallelism, communi-
cation, and partial failures in distributed
computing systems.

2. LANGUAGE SUPPORT FOR

PROGRAMMING DISTRIBUTED SYSTEMS

In the previous section, we discussed our
definition of the term distributed computing
system and described the kinds of tasks that
might profitably be applied to these sys-
tems. We outlined the support required for
programming such applications, and what
kinds of languages might be expected to
provide it. Before describing several of
these languages in detail in Section 3, we
take this section to discuss in a general
way the methods that can be used by

ACM Computing Surveys, Vol. 21, No. 3, September 1989

270 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

Table 1. Overview of Language-Primitives Discussed in Section 2

Primitive Example languages

PARALLELISM
Expressing parallelism

Processes
Objects
Statements
Expressions
Clauses

Mapping
Static
Dynamic
Migration

COMMUNICATION
Message passing

Point-to-point messages
Rendezvous
Remote procedure call
One-to-many messages

Data sharing
Distributed data structures
Shared logical variables

Nondeterminism
Select statement
Guarded Horn clauses

PARTIAL FAILURES
Failure detection
Atomic transactions
Transparent fault tolerance

Ada, Concurrent C, Linda, NIL
Emerald, ConcurrentSmalltalk
Occam
ParAlfl, FX-87
Concurrent PROLOG, PARLOG

Occam, StarMod
Concurrent PROLOG, ParAlfl
Emerald

CSP, Occam, NIL
Ada, Concurrent C
DP, Concurrent CLU, LYNX
BSP, StarMod

Linda, Orca
Concurrent PROLOG, PARLOG

CSP, Occam, Ada, Concurrent C, SR
Concurrent PROLOG, PARLOG

Ada, SR
Argus, Aeolus, Avalon
NIL

programming languages to fulfill the re-
quirements set out in the preceding section.

As mentioned above, there are three
issues that must be addressed in designing
a language for distributed programming,
above and beyond other programming lan-
guage issues. These are parallel execution,
communication and synchronization be-
tween parallel parts of the program, and
exceptional conditions brought about by
partial failure of the system. As we shall
see, each of these issues may be addressed
to a greater or lesser degree in a given
language, and may be resolved in quite dif-
ferent ways, often depending on the class
of distributed application for which the lan-
guage is intended. Table 1 gives an overview
of the primitives described in this section,
together with some examples of languages
that use the primitives.

2.1 Parallelism

The first issue that must be dealt with in a
language for distributed programming is
parallel execution. Since a distributed sys-

tem has by definition more than one pro-
cessor, it is possible to have more than one
part of a program running at the same time.
This is what we mean by parallelism.

We begin by drawing a distinction be-
tween true parallelism and what we call
pseudoparallelism. It is sometimes useful to
express a program as a collection of pro-
cesses running in parallel, whether or not
these processes actually run at the same
time on different processors. For example,
a given problem might lend itself well to
being expressed as several largely indepen-
dent processes, running logically in paral-
lel, even though the program may in fact
be run on a uniprocessor with only one
piece of it running at a given moment in
time. The MINIX operating system, for
example, was built using this approach
[Tanenbaum 19871. We call this pseudo-
parallelism.5 This technique has been

’ Some authors (e.g., Scott [1985]) use the term con-
currency for denoting pseudoparallel execution. Other
authors use the term as a synonym for (real) parallel-
ism, however, so we will not use this term.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Programming Languages for Distributed Computing Systems l 271

employed in programming languages,
especially those intended for writing uni-
processor operating systems, for quite some
time.

Pseudoparallelism is just as useful in
distributed programming as it is in unipro-
cessor programming. But the difference
between true parallelism and pseudo-
parallelism must be kept in mind, despite
the fact that in some languages the distinc-
tion is hidden from the programmer. For
example, if a program consists of four pro-
cesses and is running on a distributed sys-
tem of four or more available processors,
the four processes may run in truly parallel
fashion-one on each processor. On the
other hand, the same program may be run-
ning on a system with only two processors,
in which case two processes may be as-
signed to run on each of the two processors.
In this case, there are two processes run-
ning in pseudoparallel on each processor.
At a given point in time, at most two of the
program’s four processes are running truly
in parallel.

In some languages, the distinction be-
tween parallelism and pseudoparallelism is
not hidden from the programmer. It may
be possible for the programmer to explicitly
assign (or map) pieces of programs to pro-
cessing units. This delivers more complex-
ity into the hands of the programmer, but
also provides more flexibility. For example,
given a language in which the programmer
controls the mapping of processes onto pro-
cessors, it is possible to support shared
variables among processes known to be
running on the same processor, and to dis-
allow the sharing of variables between pro-
cesses assigned to different processors.
This is the case with several languages dis-
cussed in Section 3 (e.g., SR, Argus).

The granularity of parallelism varies
from language to language, as mentioned
above. The unit of parallelism in a language
ranges from the process (e.g., in Concurrent
C!) to the expression (in ParAlfl and oth-
ers). In general, the higher the cost of com-
munication in a distributed system, the
larger the appropriate granularity of par-
allelism. For example, it may be possible to
efficiently support fine-grained parallelism
in a distributed system with low com-

munication costs, such as a hypercube;
whereas in a system with high com-
munication costs, such as a WAN, the
communication cost of fine-grained par-
allelism may outweigh the gain in parallel
computation.

Note that the fact of parallelism is dis-
tinct from parallelism as an objectiue. That
is, in some applications, a high degree of
parallelism is a goal, as it results in short-
ened computing time for an application.
However, not all distributed applications
have high parallelism as their main objec-
tive. Yet, even in these latter applications,
the ability to express parallelism may be
important, since this reflects what is ac-
tually occurring in the distributed system.

Finally, not all languages support explicit
control of parallelism. In some languages,
the dividing up of code into parallel seg-
ments is done by the compiler rather than
the programmer. Moreover, in some lan-
guages the sending of a message on behalf
of one process results in the implicit gen-
eration of another, parallel process on the
remote host to handle the request.

Below we describe several ways in which
parallelism can be expressed in program-
ming languages for distributed systems. We
then discuss the mapping of parallel com-
putations to physical processors. For a
discussion of the expression of pseudopar-
allelism, we refer the reader to Andrews
and Schneider [19831.

2.1.1 Expressing Parallelism

Parallelism can be expressed in a variety of
ways. An important factor is the language’s
unit of parallelism. In a sequential language,
the unit of parallelism is the whole pro-
gram. In a language for distributed pro-
gramming, however, the unit of parallelism
can be a process, an object, a statement, an
expression, or a clause (in logic languages).
We discuss each of these in turn, beginning
with the process, as it is intuitively the most
obvious.

Processes. In most procedural languages
for distributed programming, parallelism is
based on the notion of a process. Different
languages have different definitions of this

ACM Computing Surveys, Vol. 21, No. 3, September 1989

272 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

notion, but in general a process is a logical
processor that executes code sequentially
and has its own state and data. Processes
(or process types) are declared, just like
procedures (and procedure types).

Processes are created either implicitly by
their declaration or explicitly by some cre-
ate construct. With implicit creation, one
usually first declares a process type and
then creates processes by declaring vari-
ables of that type. Often, arrays of pro-
cesses may be declared. In some languages
based on implicit process creation, the total
number of processes is fixed at compile
time. This makes the efficient mapping of
processes onto physical processors easier,
but it imposes a restriction on the kinds of
applications that can be implemented in
the language, since it requires that the
number of processes be known in advance.

Having an explicit construct for creating
processes allows more flexibility than
implicit process creation. For example, the
creation construct may allow parameters to
be passed to the newly created process.
These are typically used for setting up com-
munication channels between processes. If
processes do not take parameters (as in Ada
[U.S. Department of Defense 1983]), the
parameters have to be passed to the newly
created process using explicit communica-
tion. A mechanism is needed to set up the
communication channel over which the
parameters are sent.

Another important issue is termination
of processes. Processes usually terminate
themselves, but some primitive may be pro-
vided to abort other processes too. Some
precautions may be needed to prevent pro-
cesses from trying to communicate with a
terminated process. In Section 2.2.3 we dis-
cuss mechanisms for cooperative termina-
tion of m.ultiple processes.

Objects. The notion object-oriented pro-
gramming causes as much confusion as the
term distributed system. In general, an ob-
ject is a self-contained unit that encapsu-
lates both data and behavior, and that
interacts with the outside world (i.e., other
objects) exclusively through some form of
message passing. The data contained in the
object are visible only within the object

ACM Computing Surveys, Vol. 21, No. 3, September 1989

itself. The behavior of an object is defined
by its class, which comprises a list of oper-
ations that can be invoked by sending a
message to the object. Inheritance allows a
class to be defined as an extension of an-
other (previously defined) class. Languages
that support objects but lack inheritance
are usually said to be object based.

Objects are primarily intended for struc-
turing programs in a clean and understand-
able way, reflecting the structure of the
problem to be solved as much as possible.
At least two different opinions exist on
what should be treated as an object. The
Smalltalk-806 view is simply to consider
everything an object, even integers and
Booleans [Goldberg and Robson 19831. The
second view (e.g., taken in Aeolus [Wilkes
and LeBlanc 19861) is less pure and lets
programmers decide what objects are.

Parallelism in object-oriented languages
can be obtained in one of two ways.
Smalltalk- includes the traditional no-
tion of a process and lets the programmer
deal with two kinds of modules: objects and
processes. A more orthogonal approach
is to use the object itself as the unit of
parallelism.

Sequential object-oriented languages are
based on a model of passive objects. An
object is activated when it receives a mes-
sage from another object. While the re-
ceiver of the message is active, the sender
is waiting for the result, so the sender is
passive. After returning the result, the
receiver becomes passive again and the
sender continues. At any point of time, only
one object in the system is active. Parallel-
ism can be obtained by extending the
sequential object model in any of the fol-
lowing ways:

(1) Allow an object to be active without
having received a message,

(2) allow the receiving object to continue
execution after it returns its result,

(3) send messages to several objects at
once, or

(4) allow the sender of a message to pro-
ceed in parallel with the receiver.

B Smalltalk- is a trademark of ParcPlace Systems.

Programming Languages for Distributed Computing Systems 273

Methods (1) and (2) effectively assign a
parallel process to each object, resulting in
a model based on active objects. Method (4)
can be implemented using asynchronous
message passing (instead of synchronous
message passing) or by letting a single ob-
ject consist of multiple threads of control.

Parallel Statements. Another way of ex-
pressing parallelism is by grouping together
statements that are to be executed in par-
allel. Occam [Inmos Ltd. 19841 allows con-
secutive statements to be executed either
sequentially, as in

SEQ
Sl
s2

or in parallel, as in the following:

PAR
Sl
s2

This method is easy to use and understand.
Initiation and termination of parallel com-
putations are well defined. However, this
method gives little support for the struc-
turing of large parallel programs.

The parallel statement described above
creates only a fixed number of parallel
units. Another method is to use a parallel
loop statement. Occam contains a parallel
for statement, similar to a traditional for
statement, except that all iterations of the
loop are executed in parallel, as in the
following:

PARi=OFORn
A[i] := A[i] + 1

Although this construct is easy to use, it is
not as general as other mechanisms.

Functional Parallelism. In a pure func-
tional (applicative) language, functions be-
have as mathematical functions: They
compute a result that depends only on the
values of their input data. Such functions
do not have any side effects. In contrast,
procedural (imperative) languages allow
functions to affect each other in various
ways, for example, through global variables

or pointer variables. Procedural languages
are claimed to be more flexible, whereas
functional languages have a sounder math-
ematical basis. We will not enter into the
holy war between these two schools of
thought, but we will concentrate on the way
functional languages can be used for pro-
gramming distributed systems.

If functions do not have any side effects,
it makes no difference (except perhaps for
termination) in which order they are exe-
cuted. For example, in the expression

Mf (3, 41, g(8))

it is irrelevant whether f or g is evaluated
first. Consequently, it is possible to evalu-
ate f and g in parallel. In principle, all
function calls can be executed in parallel,
the only restriction being that a function
using the result of another function wait
for that result to become available (e.g., h
waits for f and g). This implicit parallelism
is fine grained and is well suited for achi-
tectures supporting such parallelism, such
as data-flow computers. Several data-flow
languages are based on this principle, for
example, Id and VAL [Ackerman 19821.

For distributed systems (and to some ex-
tent also for other architectures), the func-
tional approach has some problems that
need to be resolved. First of all, blindly
evaluating all functions in parallel is not a
very good idea. If a function does relatively
little work (such as adding two integers),
the overhead of doing it in parallel and
communicating the result back to the caller
will far outweigh the savings in elapsed
computation time. If a certain function call
is selected for remote execution, there still
remains the choice between evaluating
its arguments either locally (and then
sending them to the remote processor) or
remotely (by dispatching the unevaluated
expressions).

Ideally the compiler should analyze the
program and decide on which processor to
perform each function call. Since current
compilers are not yet capable of taking
maximum advantage of parallelism in this
way, mechanisms have been proposed to
put control in the hands of the programmer
[Burton 1984; Hudak 19861.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

274 . H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

AND/QR-Parallelism. Logic program-
ming offers many opportunities for paral-
lelism [Takeuchi and Furukawa 19861. We
describe AND/OR parallelism, as this
mechanism is suitable for distributed
programming and has been incorporated
into many parallel logic programming
languages.

Logic programs can be read declaratively
as well as procedurally. In the code below,
two clauses for the predicate A are given:

(1) A :- B, C, D.
(2) A :- E, F.

The declarative reading of the clauses is “if
B, C, and D are true, then A is true” (Clause
(1)) and “if E and F are true, then A is
true” (Clause (2)). Procedurally, the clauses
can be interpreted as “to prove theorem A,
you either have to prove subtheorems (or
goals) B, C, and D, or you have to prove
subtheorems E and F.” From the proce-
dural reading, it becomes clear that there
are

(1)

(2)

two opportunities for parallelism:

The two clauses for A can be worked
on in parallel, until one of them suc-
ceeds, or both fail.
For each of the two clauses, the sub-
theorems can be worked on in parallel,
until they all succeed, or any one of
them fails.

The former kind of parallelism is called
OR-parallelism; the latter is called AND-
parallelism.

The parallel execution of a logic program
can also be described in terms of processes,
resulting in a third interpretation, the
process reading, of logic programs. If we
associate a separate process with every sub-
theorem to be proved, then Clause (1) sim-
ply states that a process trying to prove A
can be :replaced by three parallel pro-
cesses that try to prove B, C, and D. In
general, a clause like

PO :- PI, . . . , PN

causes a single process to be replaced by N
other processes. If N = 0, the original pro-
cess terminates. For N = 1, the process
effectively changes its state, going to work
on a different goal. If N > 1, then (N - 1)
new processes are created. Such processes

are very lightweight and similar in granu-
larity to a procedure call in a procedural
language.

If the goals of a clause share some vari-
ables, they cannot be evaluated indepen-
dently, because conflicts may arise when
several goals try to generate a value for a
shared variable. For example, in the clause

A :- B(X), C(X)

the variable X creates a dependency be-
tween the goals B and C. Several ap-
proaches have been suggested to deal with
this problem. One method is to have the
programmer restrict the rights of goals to
instantiate (or bind) shared variables. In
Concurrent PROLOG [Shapiro 19861, the
notation

A :- B(X), C(X?)

indicates that B is allowed to generate a
binding for X, but C is only allowed to read
X. This mechanism can be used for inter-
process communication and synchroniza-
tion, as discussed in Section 2.2.2. Another
method for dealing with conflicts is to solve
dependent goals sequentially. In general,
both compile-time analysis and run-time
checks are used to determine if two clauses
are independent. Both solutions-re-
stricted instantiation and sequential solu-
tion of dependent goals-necessarily
restrict parallelism.

2.1.2 Mapping Parallel Computations onto

Physical Processors

In the previous section, we described sev-
eral ways in which languages for distributed
programming can provide support for the
expression of parallelism. A related issue is
how these parallel computations are dis-
tributed over the available physical proces-
sors, in other words, which parallel unit is
executed on which processor at a given
point in time. We refer to the assignment
of computations to processors as mapping.
Some languages give the programmer con-
trol over mapping, and in this section we
describe some ways in which this can be
expressed.

ACM Computing Surveys, Vol. 21, No. 3. September 1989

Programming Languages for Distributed Computing Systems l 275

Mapping strategies vary depending on
the application to be implemented. The
assignment of processes to processors will
be quite different in an application whose
objective is to obtain maximum speedup
through parallelism, and in an application
whose objective is to obtain high availabil-
ity through replication, for example.

When the goal of a distributed program
is to speed up computation time through
parallelism, the mapping of processes to
processors is similar to load balancing in
distributed operating systems: Both at-
tempt to maximize parallelism through
efficient use of available computing power.
But there are important differences. An
operating system tries to distribute the
available processing power fairly among
competing processes from different pro-
grams and different users. It may try to
reduce communication costs by having
processes that communicate frequently run
in pseudoparallel on the same processor.
The goal of mapping, however, is to mini-
mize the execution time of a single distrib-
uted program. As all parallel units are part
of the same program, they are cooperating
rather than competing, so fairness need not
be an issue. In addition, the reduction of
communication overhead achieved through
mapping processes to the same processor
must be weighed against the resulting loss
of parallelism [Kruatrachue and Lewis
19881.

If the application’s goal is to increase
fault tolerance, an entirely different map-
ping strategy may be taken. Processes may
be replicated to increase availability. The
mapping strategy should at least assign
the replicas of the same logical process to
different physical processors.

An important choice in the design of a
parallel language is whether mapping will
be under user control. If not, mapping is
done transparently by the compiler and
language run-time system, possibly assisted
by the operating system. At first sight, this
may ease the programmer’s task, but the
system generally does not have any knowl-
edge about the problem being implemented,
so problem-specific mapping strategies
would be ruled out. This is a severe restric-
tion for many applications.

Programmable (i.e., user-controlled)
mappings usually consist of two steps. In
the first step, the parallel units are mapped
onto the physical processors. Several par-
allel units may be mapped onto the same
processor. In the second step, the units on
the same processor are scheduled by a local
mapping, usually based on priorities as-
signed to the parallel units.

There are three approaches for assigning
parallel units to processors, whether the
assignment is done by the programmer or
the system: The processor can either be
fixed at compile time, fixed at run time, or
not fixed at all. The first method is least
flexible, but has the distinct advantage that
it is known at compile time which parallel
units will run on the same processor, allow-
ing the programmer to take advantage of
the fact that these processes will have
shared memory available. StarMod uses the
notion of a processor module that groups
together processes located on the same pro-
cessor [Cook 19801. These processes are
allowed to communicate through shared
variables, whereas communication between
processes on different processors is re-
stricted to message passing.

With the run-time approach to mapping
computations to processors, a parallel unit
is assigned to a processor when that unit is
created. An example is the Turtle notation
designed by Shapiro for executing Concur-
rent PROLOG programs on an infinite grid
of processors, where each processor can
communicate with its four neighbors
[Shapiro 19841. Every process has a posi-
tion and a heading, just like a Turtle in the
LOGO programming language [Papert
19811. By default, the position and head-
ing of a process are those of its parent
(creator), but they can be altered using a
sequence of Turtle commands. For exam-
ple, if a process located on Processor P and
heading northward uses the rule

A :- B, C @ (left, forward),
D @ (right, forward).

to solve A, then Process B is created on
Processor P, Process C is created on the
processor to the west of P, and Process D
is created on the processor to the east of P.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

276 I. H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

B is headed northward, C westward, and D
eastward.7

Only a few languages support the third
approach to processor allocation, allowing
a process to execute on different processors
during its lifetime. Emerald, for example,
is an object-based language that allows
objects ,to migrate from one processor to
another [Jul et al. 19881. The language has
primitives to determine the current loca-
tion of an object, to fix or unfix an object
on a specific processor, and to move an
object to a different processor.

2.2 Interprocess Communication and

Synchronization

The second issue that must be addressed in
the design of a language for distributed
programming is how the pieces of a pro-
gram that are running in parallel on differ-
ent processors are going to cooperate. This
cooperation involves two types of interac-
tion: communication and synchronization.
For example, Process A may require some
data X t.hat is the result of some computa-
tion performed by Process B. There must
be some way of getting X from B to A. In
addition, if Process A comes to the point in
its execution that requires the information
X from Process B, but Process B has not
yet communicated the information to A for
whatever reason, A must be able to wait
for it. Synchronization and communication
mechanisms are closely related, and we
treat them together.

An issue related to synchronization is
nondeterminism. A process may want to
wait for information from any of a group of
other processes, rather than from one spe-
cific process. As it is not known in advance
which member (or members) of the group
will have its information available first,
such behavior is nondeterministic. In some
cases it i.s useful to dynamically control the
group of processes from which to take
input. For example, a buffer process may
accept a request from a producer process to
store an item in the buffer whenever the
buffer is not full; it may accept a re.quest

‘This Turtle notation was later generalized into a
layered method, using virtual machines [Taylor et al.
1987a]. The layered method is also suitable for other
architectures than a processor grid.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

from a consumer process to add an item
whenever the buffer is not empty. To pro-
gram such behavior, a notation is needed
to express and control nondeterminism. We
look at such notations in Section 2.2.3.

Expression of interprocess communica-
tion (IPC)8 falls into two general cate-
gories-shared data and message passing-
although this categorization is not always
clear-cut. Parallel logic languages that pro-
vide shared logical variables, for example,
are frequently used for programming in a
message-passing style (see Section 2.2.2).
Note that the model provided by the lan-
guage for expressing IPC and the imple-
mentation of that model may be two
entirely different things; in particular, since
we restrict our discussion to languages for
systems without shared memory, any
shared data model must be simulated in the
language implementation.

2.2.1 Message Passing

We first discuss communication through
message passing. Many factors come into
play in the sending of a message: who sends
it, what is sent, to whom is it sent, is it
guaranteed to have arrived at the remote
host, is it guaranteed to have been accepted
by the remote process, is there a reply (or
several replies), and what happens if some-
thing goes wrong. There are also many
considerations involved in the receipt of a
message: for which process or processes on
the host, if any, is the message intended; is
a process to be created to handle this mes-
sage; if the message is intended for an ex-
isting process, what happens if the process
is busy-is the message queued or dis-
carded; and if a receiving process has more
than one outstanding message waiting to
be serviced, can it choose the order in which
it services messages-be it FIFO, by sender,
by some message type or identifier, by the
contents of the message, or according to
the receiving process’s internal state.

‘We adopt the well-known term interprocess commu-
nication although it is somewhat misleading, since the
unit of parallelism is not always the process, as has
been discussed above. In the rest of this section, we
will use the term process as a shorthand for unit of
parallelism.

Programming Languages for Distributed Computing Systems l 277

We begin with a general discussion of
issues common to all message-passing
mechanisms. We then outline four specific
message-passing models: point-to-point
messages, rendezvous, remote procedure
call, and one-to-many messages.

General Issues. The most elementary
primitive for message-based interaction is
the point-to-point message from one pro-
cess (the sender) to another process (the
receiver). Languages usually provide only
reliable message passing. The language
run-time system (or the underlying oper-
ating system) automatically generates ac-
knowledgment messages, transparent at the
language level.

Most (but not all) message-based inter-
actions involve two parties, one sender and
one receiver. The sender initiates the inter-
action explicitly, for example, by sending a
message or invoking a remote procedure.
On the other hand, the receipt of a message
may either be explicit or implicit. With ex-
plicit receipt, the receiver is executing some
sort of accept statement specifying which
messages to accept and what actions to
undertake when a message arrives. With
implicit receipt, code is automatically in-
voked within the receiver. It usually creates
a new thread of control within the receiving
process. Whether the message is received
implicitly or explicitly is transparent to the
sender.

Explicit message receipt gives the re-
ceiver more control over the acceptance of
messages. The receiver can be in many
different states and accept different types
of messages in each state. More accurate
control is possible if the accept statement
allows messages to be accepted condition-
ally, depending on the arguments of the
message (as in SR [Andrews 19811 and
Concurrent C [Gehani and Roome 19891).
A file server, for example, may want to
accept a request to open a file only if the
file is not locked. In Concurrent C this can
be coded as follows:

accept open(f) suchthat not-locked(f) (
. . .

process open request
. . .

1

Some languages give the programmer con-
trol over the order of message acceptance.
Usually, messages are accepted in FIFO
order, but occasionally it is useful to change
this order according to the type, sender, or
contents of a message. For example, the file
server may want to handle read requests
for small amounts of data first:

accept read(f, offset, nr-bytes)
by nr-bytes (

. . .

process read request
. . .

The value given in the by expression
determines the order of acceptance. If con-
ditional or ordered acceptance is not sup-
ported by the language, an application
needing these features will have to keep
track of requests that have been accepted
but not handled yet.

Another major issue in message passing
is naming (or addressing) of the parties
involved in an interaction: to whom does
the sender wish to send its message and,
conversely, from whom does the receiver
wish to accept a message? These parties
can be named directly or indirectly. Direct
naming is used to denote one specific pro-
cess. The name can be the static name of
the process or an expression evaluated at
run time. A communication scheme based
on direct naming is symmetric if both the
sender and the receiver name each other.
In an asymmetric scheme, only the sender
names the receiver. In this case, the re-
ceiver is willing to interact with any sender.
Note that interactions using implicit re-
ceipt of messages are always asymmetric
with respect to naming. Direct naming
schemes, especially the symmetric ones,
leave little room for expressing nondeter-
ministic behavior. Languages using these
schemes therefore have a separate mecha-
nism for dealing with nondeterminism (see
Section 2.2.3).

Indirect naming involves an intermediate
object, usually called a mailbox, to which
the sender directs its message and to which
the receiver listens. In its simplest form, a
mailbox is just a global name. More ad-
vanced schemes treat mailboxes as values

ACM Computing Surveys, Vol. 21, No. 3, September 1989

278 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

that can be passed around, for example, as
part of a message. This option allows highly
flexible communication patterns to be
expressed. Mailing a letter to a post office
box rather than a street address illustrates
the difference between indirect and direct
naming. A letter sent to a post office box
can be collected by anyone who has a key
to the box. People can be given access to
the box by duplicating keys or by transfer-
ring existing keys (possibly through an-
other P.O. box). A street address, on the
other hand, does not have this flexibility.

Synchronous and Asynchronous Point-
to-Point Messages. The major design issue
for a point-to-point message-passing sys-
tem is the choice between synchronous and
asynchronous message passing. With syn-
chronous message passing, the sender is
blocked until the receiver has accepted the
message (explicitly or implicitly). Thus, the
sender and receiver not only exchange data,
but they also synchronize. With asynchron-
ous message passing, the sender does not
wait for the receiver to be ready to accept
its message. Conceptually, the sender con-
tinues immediately after sending the mes-
sage. The implementation of the language
may suspend the sender until the message
has at least been copied for transmis-
sion, but this delay is not reflected in the
semantics.

In the’ asynchronous model, there are
some semantic difficulties to be dealt with.
As the sender S does not wait for the re-
ceiver R to be ready, there may be several
pending messages sent by S, but not yet
accepted by R. If the message-passing prim-
itive is order preserving, R will receive the
messages in the order they were sent by S.
The pending messages are buffered by the
language run-time system or the operating
system. The problem of a possible buffer
overflow can be dealt with in one of two
ways. Message transfers can simply fail
whenever there is no more buffer space.
Unfortunately, this makes message passing
less reliable. The second option is to use
flow control, which means the sender is
blocked until the receiver accepts some
messages. This introduces a synchroniza-
tion between the sender and receiver and
may result in unexpected deadlocks.

In the synchronous model, there can be
only one pending message from any process
S to a process R. Usually, no ordering re-
lation is assumed between messages sent
by different processes. Buffering problems
are less severe in the synchronous model,
as a receiver need buffer at most one mes-
sage from each sender, and additional flow
control will not change the semantics of the
primitive. On the other hand, the synchro-
nous model also has its disadvantages.
Most notably, synchronous message pass-
ing is less flexible than asynchronous
message passing, because the sender always
has to wait for the receiver to accept the
message, even if the receiver does not have
to return an answer [Gehani 19871.

Rendezvous. A point-to-point message
establishes one-way communication be-
tween two processes. Many interactions be-
tween processes, however, are essentially
two-way in nature. For example, in the
client/server model the client requests a
service from a server and then waits for the
result returned by the server. This behavior
can be simulated using two point-to-point
messages, but a single higher level con-
struct is easier to use and more efficient to
implement. We will describe two such con-
structs, rendezvous and remote procedure
call.

The rendezvous model is based on three
concepts: the entry declaration, the entry
call, and the accept statement.g The entry
declaration and accept statement are part
of the server code, while the entry call is on
the client side. An entry declaration syn-
tactically looks like a procedure declara-
tion. An entry has a name and zero or more
formal parameters. An entry call is similar
to a procedure call statement. It names the
entry and the process containing the entry,
and it supplies actual parameters. An accept
siatement for the entry may contain a list
of statements, to be executed when the
entry is called, as in the following accept
statement for the entry incr:

accept incr(X: integer; Y: out integer)
do Y:=X+ 1;

end;

’ Here we use the terminology introduced by Ada.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Programming Languages for Distributed Computing Systems l 279

An interaction (called a rendezvous) be-
tween two processes S and R takes place
when S calls an entry of R, and R executes
an accept statement for that entry. The
interaction is fully synchronous, so the first
process that is ready to interact waits for
the other. When the two processes are syn-
chronized, R executes the do part of the
accept statement. While executing these
statements, R has access to the input pa-
rameters of the entry, supplied by S. R can
assign values to the output parameters,
which are passed back to S. After R has
executed the do statements, S and R con-
tinue their execution in parallel. R may
still continue working on the request of S,
although S is no longer blocked.

Remote Procedure Call. Remote proce-
dure call (RPC) is another primitive for
two-way communication. It resembles a
normal procedure call, except that the
caller and receiver are different processes.
When a process S calls a remote procedure
P of a process R, the input parameters of
P, supplied by S, are sent to R. When R
receives the invocation request, it executes
the code of P and then passes any output
parameters back to S. During the execution
of P, S is blocked. S is reactivated by the
arrival of the output parameters. This is in
contrast with the rendezvous mechanism,
where the caller is unblocked as soon as the
accept statement has been executed. Like
rendezvous, RPC is a fully synchronous
interaction. Acceptance of a remote call is
usually (but not always) implicit and cre-
ates a new thread of control within the
receiver.

A major design choice is between a trans-
parent and a nontransparent RPC mecha-
nism. Transparent RPC offers semantics
close to a normal procedure. This model,
advocated by Nelson and Birrell, has sig-
nificant advantages [Nelson 1981; Birrell
and Nelson 19841. Foremost, it gives the
programmer a simple, familiar primitive for
interprocess communication and synchro-
nization. It also is a sound basis for porting
existing sequential software to distributed
systems.

Unfortunately, achieving exactly the
same semantics for RPC as for normal pro-
cedures is close to impossible [Tanenbaum

and van Renesse 19881. One source of
problems is that, in the absence of shared
memory, pointers (address values) are
meaningless on a remote processor. This
makes pointer-valued parameters and call-
by-reference parameters highly unattrac-
tive. De-referencing a pointer passed by the
caller has to be done at the caller’s side,
which implies extra communication. An
alternative implementation is to send a
copy of the value pointed at the receiver,
but this has subtly different semantics and
may be difficult to implement if the pointer
points into the middle of a complex data
structure, such as a directed graph. In lan-
guages lacking strong type checking, it
may not even be clear what type of object
the pointer points to. Similarly, call-by-
reference can be replaced by copy-in/copy-
out, but also at the cost of slightly different
semantics. The issue of passing arguments
to a remote procedure is discussed further
by Herlihy and Liskov [1982].

The possibility of processor crashes
makes it even more difficult to obtain the
same semantics for RPC as for normal pro-
cedures. If S calls a remote procedure P of
a process R and the processor of R crashes
before S gets the results back, then S
clearly is in trouble. First, the results S is
waiting for will never arrive. Second, it is
not known whether R died before receiving
the call, during the execution of P, or after
executing P (but before returning the
results). The first problem can be solved
using time-outs. The second problem is
more serious. If P has no side effects, the
call can be repeated, perhaps on a different
processor or after a certain period of time.
If P does have side effects (e.g., increment-
ing a bank account in a database), execut-
ing (part of) P twice may be undesirable.

Because of these difficulties in achieving
normal call semantics for remote calls,
Hamilton argues that remote procedures
should be treated differently from the start,
resulting in a nontransparent RPC mech-
anism [Hamilton 19841. Almes describes an
RPC implementation in the context of an
existing language (Modula-2) and distrib-
uted operating system (the V system)
[Almes 19861. Although the goal of the
implementation was to make remote calls
as similar to normal calls as possible,

ACM Computing Surveys, Vol. 21, No. 3, September 1989

280 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

special features for remote calls had to be
added to obtain an efficient implementa-
tion. Almes’s RPC system therefore is also
nontransparent.

One-to-Many Message Passing. Many
networks used for distributed computing
systems support a fast broadcast or multi-
cost facility. A broadcast message is sent to
all processors connected to the network. A
multicast message is sent to a specific sub-
set of these processors. It takes about the
same time to broadcast or multicast a mes-
sage as to send it to one specific processor.
Unfortunately, it is not guaranteed that
messages are actually delivered at all des-
tinations. The hardware attempts to send
the messages to all processors involved,
but messages may get lost due to com-
munication errors or because some re-
ceiving processors were not ready to accept
a message.

Despite being unreliable, broadcast and
multicast are useful for operating system
kernels and language run-time systems. For
example, to locate a processor providing a
specific service, an enquiry message may be
broadcast. In this case, it is not necessary
to receive an answer from every host: Just
finding one instance of the service is suf-
ficient. Broadcast and multicast are also
useful for implementing distributed algo-
rithms, so some languages provide a one-
to-many message-passing primitive.

One-to-many communication has several
advantages over point-to-point message
passing. If a process needs to send data to
many other processes, a single multicast
will be faster than many point-to-point
messages. More importantly, a broadcast
primitive may guarantee a certain ordering
of messages that cannot be obtained easily
with point-to-point messages [Birman and
Joseph 19871. A broadcast primitive that
delivers messages at all destinations in the
same order, for example, is highly useful
for consistent updating of replicated data
[Joseph and Birman 1986; Bal and Tanen-
baum 19881. Finally, broadcasting may lead
to new programming styles.

Gehani describes a system of Broadcast-
ing Sequential Processes (BSP) based on
CSP and the concept of broadcast program-

ACM Computing Surveys, Vol. 21, No. 3, September 1989

ming [Gehani 1984b]. In CSP a message is
sent to one specific process. In BSP a mes-
sage can also be sent to all processes or
to a list of processes. Both primitives are
reliable (i.e., messages are delivered at all
destinations). If the underlying hardware is
not reliable, extra software protocols have
to be added by the operating system or
language run-time system. Broadcast in
BSP is asynchronous, because the sender
normally does not want to wait until all
other processes are ready to receive a mes-
sage. Two forms of broadcast are defined.
An unbuffered broadcast message is only
received by those processes ready to accept
one. Buffered broadcast messages are buff-
ered by the receiving processes, so each
process will eventually receive the message.
A receiver may accept messages from any
process, or it may screen out messages
based on their contents or on the identity
of the sender (passed as part of the
message).

2.2.2 Data Sharing

In the previous section, we discussed
models of interprocess communication
based on message passing. In this section,
we describe how parts of a distributed pro-
gram can communicate and synchronize
through the use of shared data. If two pro-
cesses have access to the same variable,
communication can take place by one pro-
cess setting the variable and the other
process reading it. This is true whether
the processes are running on the host where
the variable is stored and can manipulate
it directly, or if the processes are on differ-
ent hosts and access the variable by sending
a message to the host on which it resides.
The use of shared variables for the com-
munication and synchronization of pro-
cesses running in pseudoparallel on a
uniprocessor has been studied extensively.
We assume a familiarity with this material;
the uninitiated reader is referred to
Andrews and Schneider [1983] for an ex-
cellent overview.

As mentioned above, many distributed
languages support processes running in
pseudoparallel on the same processor, and
these often use traditional methods of com-

Programming Languages for Distributed Computing Systems 281

munication and synchronization through
shared variables. See, for example, the
description of mutex in Argus and sema-
phores in SR in Section 3. What we are
interested in here, however, is the use of
shared data for communication and syn-
chronization of processes running on
different processors,

At first sight it may seem to be unnatural
to use shared data for communication in a
distributed system, as such systems do not
have physically shared memory. However,
the shared data paradigm has several ad-
vantages (as well as disadvantages) over
message passing [Bal and Tanenbaum
19881. Whereas a message generally trans-
fers information between two specific pro-
cesses, shared data are accessible by any
process. Assignment to shared data concep-
tually has immediate effect; in contrast,
there is a measurable delay between send-
ing a message and its being received. On
the other hand, shared data require precau-
tions to prevent multiple processes from
simultaneously changing the same data. As
neither of the paradigms is universally bet-
ter than the other one, both paradigms are
worth investigating.

Simple shared variables, as used, for ex-
ample, in Algol 68 [van Wijngaarden et al.
19751, are not well suited for distributed
systems. In principle, they can be imple-
mented by simulating shared physical
memory, using, for example, a method such
as Li’s shared virtual memory [Li and
Hudak 19861. None of the languages we
know of does this, however, probably due to
performance considerations. Several other
communication models based on shared
data exist, however, that are better suited
for distributed systems. These models place
certain restrictions on the shared data,
making a distributed implementation fea-
sible. Below we describe two methods for
providing shared data to distributed pro-
cesses: distributed data structures and
shared logical variables. Both models are
used in several languages for distributed
programming (see Section 3) that have
been implemented on different kinds of
distributed architectures. These languages
are mainly useful for applications where
the programmer need not be aware of the

physical distribution of main memory, as
discussed in Section 1.

Note that objects, whose role in express-
ing parallelism was discussed in Section
2.1.1, may also be thought of as imple-
menting shared data in a distributed pro-
gram. Just as with the shared data models
that are discussed in this section, two pro-
cesses may communicate indirectly with
one another by invoking operations on a
given object. Objects, since they control
access to the data they manage, can also
implement synchronization of access to
those data by other processes, analogously
to the synchronization of pseudoparallel
processes accessing data controlled by a
monitor.

A different approach to the synchroni-
zation of distributed access to shared data
is taken by languages that implement
atomic transactions. Since this approach
also involves dealing with partial failures
of the distributed systems, we will treat it
in the section on atomic transactions.

Distributed Data Structures. Distributed
data structures are data structures that can
be manipulated simultaneously by several
processes [Carrier0 et al. 19861. This para-
digm was first introduced in the language
Linda, which uses the concept of a Tuple
Space for implementing distributed data
structures [Ahuja et al. 19861. We will use
the Tuple Space model for discussing the
distributed data structures paradigm.

The Tuple Space (TS) is conceptually a
shared memory, although its implementa-
tion does not require physical shared mem-
ory. The TS is one global memory shared
by all processes of a program [Gelernter
19851. The elements of TS, called tupks,
are ordered sequences of values, similar
to records in Pascal [Wirth 19711. For
example,

[“jones”, 31, true]

is a tuple with three fields: a string, an
integer, and a Boolean.

Three atomic operations are defined on
TS: out adds a tuple to TS, read reads a
tuple contained in TS, and in reads a tuple
and also deletes it from TS. Unlike normal

ACM Computing Surveys, Vol. 21, No. 3, September 1989

282 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

shared variables, tuples do not have ad-
dresses. Rather, tuples are addressed by
their contents. A tuple is denoted by spec-
ifying either the value or the type of each
field. This is expressed by supplying an
actual parameter (a value) or a formal
parameter (a variable) to an operation. For
example, if age is a variable of type integer
and married is a variable of type Boolean,
then the tuple shown above can be read in
the operation

read(“jones”, var age, var married)

or read and removed in the operation

in(“jones”, var age, var married).

In both operations, the variable age is as-
signed the value of the second field (31)
and the variable married gets the value of
the last field (true). Both the in and the
read operations try to find a matching
tuple in ‘IS. A tuple matches if each field
has the value or type passed as parameter
to the operation. If several matching tuples
exist, one is chosen arbitrarily. If there are
no matching tuples, the operation (and the
invoking process) blocks until another pro-
cess adds a tuple that does match (using
out).

There is no operation that modifies a
tuple in place. To change a tuple, it must
first be removed from TS, then modified,
and then put back into TS. Each read, in,
or out operation is atomic: The effect of
several simultaneous operations on the
same tuple is the same as that of executing
them in some (undefined) sequential order.
In particular, if two processes want to re-
move the same tuple, only one of them will
succeed, and the unlucky one will block.
These two properties make it possible to
build distributed data structures in TS. For
example, a distributed array can be built
out of tuples of the form [name, index,
value]. The value of element i of array A
can be read into a local integer variable X
with a sirnple read operation:

read(“A”, i, var X)

To assign a new value Y to element i, the
current tuple representing A[i] is removed
first; then a tuple with the new value is

ACM Computing Surveys, Vol. 21, No. 3, September 1989

generated:

in(“A”, i, var void)
out(“A”, i, Y)

To increment element i, the current tuple
is removed from TS, its value is stored in a
temporary variable, and the new value is
computed and stored in a new tuple:

in(“A”, i, var tmp)
out(“A”, i, tmp + 1)

If two processes simultaneously want to
increment the same array element, the ele-
ment will indeed be incremented twice.
Only one process will succeed in doing the
in, and the other process will be blocked
until the first one has put the new value of
A[i] back into TS.

In a distributed implementation of TS,
the run-time system takes care of the dis-
tribution of tuples among the processors.
Several strategies are possible, such as rep-
licating the entire TS on all processors,
hashing tuples onto specific processors, or
storing a tuple on the processor that did
the out operation [Gelernter 19851.

In contrast with interprocess communi-
cation accomplished through message pass-
ing, communication through distributed
data structures is anonymous. A process
reading a tuple from TS does not know or
care which other process inserted the tuple.
Neither did the process executing an out
on a tuple specify which process the tuple
was intended to be read by. This informa-
tion could in principle be included in a
distributed data structure, for example, by
having sender and receiver fields as part of
the structure, but it is not an inherent part
of the model.

Shared Logical Variables. Another
shared data model is the shared logical
variable. Logical variables have the “single-
assignment” property. Initially, they are
unbound, but once they receive a value (by
unification), they cannot be changed. In
Section 2.1.1 we noted that this property
can cause conflicts between parallel pro-
cesses sharing logical variables. Below,
we show how such variables can be
used as communication channels between
processes.

Programming Languages for Distributed Computing Systems l 283

As an example, assume the three goals of
the conjunction

goal-1(X, Y), goal-2(X, Y), goal-3(X)

are solved in parallel by Processes Pl, P2,
and P3. The variable X (initially unbound)
is a communication channel between the
three processes. If any of them binds X to
a value, the other processes can use this
value. Likewise, Y is a channel between Pl
and P2.

Processes synchronize by suspending on
unbound variables. If Y is to be used to
send a message from Pl to P2, then P2 can
suspend until Y is bound by Pl. There are
several ways to realize suspension on
shared variables, but the general idea is to
restrict the rights of specific processes
to generate bindings for variables (i.e., to
unify them with anything but an unbound
variable). If a process wants to unify two
terms, the unification may need to generate
a binding for some variables. If the process
does not have the right to bind one of these
variables, the process suspends until some
other process that does have this right gen-
erates a binding for the variable. The first
process can then continue its unification
of the two terms. Examples of mechanisms
to restrict the rights for binding variables
are the read-only variables of Concurrent
PROLOG [Shapiro 19861 and the mode
declarations of PARLOG [Clark and
Gregory 19861.

At first sight, shared logical variables
seem to be capable of transferring only a
single message, as bindings cannot be
undone. But, in fact, the logical variable
allows many communication pattern&o be
expressed. The key idea is to bind a logical
variable to a term containing other (un-
bound) variables, which can be used as
channels for further communication. A log-
ical variable is like a Genie, from which you
can ask one wish. What would you ask such
a Genie? To have two more wishes! Then
use one of them, and iterate.”

This idea has been used to develop sev-
eral programming techniques. For example,
a stream of messages between a producer

” This analogy was contributed by Ehud Shapiro.

and a consumer is created by having the
producer bind a shared variable to a list cell
with two fields, head and tail. The head is
bound to the message, and the tail is the
new stream variable, used for subsequent
communications (wishes). This is illus-
trated in Figure 2 where the first call, pro-
ducer(1, S), will cause S to be bound to
[l] Sl], where Sl is an unbound variable.
The next (recursive) call, producer(2, Sl),
binds Sl to [4] S2], where S2 is unbound.
The call, consumer(S), will cause the con-
sumer process to be blocked until S is
bound by the producer. When S is bound
to [l] Sl], the consumer wakes up, calls,
use(l), followed by the recursive call, con-
sumer(S1). The latter call blocks until Sl
is bound to [4] S2], and so on.

Other techniques implementable with
shared logical variables are bounded-buffer
streams [Takeuchi and Furukawa 19851,
one-to-many streams, and incomplete mes-
sages. An incomplete message contains
variables that will be bound by the receiver,
thus returning reply values. The sender can
wait for replies by suspending on such a
variable. Incomplete ‘messages can be used
to implement many different message pro-
tocols (e.g., remote procedures and rendez-
vous, discussed above) and to dynamically
set up communication channels between
processes.

The shared logical variable model also
has some disadvantages, as discussed by
Gelernter [1984]. Only a single process can
append to a stream implemented through
logical variables (e.g., in Figure 2 only the
producer can append to S:. Applications
based on the client/server model, however,
require multiple clients to send messages
to a single server (many-to-one communi-
cation). To implement this in a parallel
logic language, each client must have its
own output stream. There are two alterna-
tives for structuring the server: First, the
server may use a separate input stream for
each client and accept messages sent
through each of these streams. This re-
quires the server to know the identities of
all clients and thus imposes a limit on the
number of clients. The second alterna-
tive is to merge the output streams of all
clients and present it as a single input

ACM Computing Surveys, Vol. 21, No. 3, September 1989

284 8 H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

/+ the consumer is not allowed to bind 5 w/

mode producer(N?, S^), consumer(S?).

producer(N, [XIXs]) :- /* produce stream of squares */

X is NwN, N2 is N+l, producer(N2,Xs).

consumer([XlXs]) :-

use(X), consumer(Xs).

/w start consumer end producer in parallel */

main :- producer(l,S), consumer(S).

Figure 2. Implementation of streams with shared logical variables.

stream to the server. Such merge opera-
tions can be expressed in parallel logic lan-
guages [Shapiro and Safra 19861, but
Gelernter argues that the resulting pro-
grams are less clear and concise than sim-
ilar prOgXinS in languages supporting
streams with multiple readers and writers.

2.2.3 Expressing and Controlling

Nondeterminism

As discussed in Section 2.2, the interac-
tion patterns between processes are not al-
ways deterministic, but sometimes depend
on run-time conditions. For this reason,
models for expressing and controlling non-
determinism have been introduced. Some
communication primitives that we have al-
ready seen are nondeterministic. A message
received indirectly through a port, for ex-
ample, may have been sent by any process.
Such primitives provide a way to express
nondeterminism, but not to control it. Most
programming languages use a separate con-
struct for controlling nondeterminism. We
will look at two such constructs: the select
statement, used by many algorithmic lan-
guages, and the guarded Horn clause, used
by most parallel logic programming lan-
guages. Both are based on the guarded com-
mand statement, introduced by Dijkstra as
a sequen.tial control structure [Dijkstra
19751.

The Select Statement. A select state-
ment consists of a list of guarded com-
mands of the following form:

guard + statements

ACM Computing Surveys, Vol. 21, No. 3, September 1989

The guard consists of a Boolean expression
and some sort of “communication request.”
The Boolean expression must be free of
side effects, as it may be evaluated more
than once during the course of the select
statement’s execution. In CSP [Hoare
19781, for example, a guard may contain an
explicit receipt of a message from a specific
process P. Such a request may either suc-
ceed (if P has sent such a message), fail (if
P has already terminated), or suspend (if P
is still alive but has not sent the message
yet). The guard itself can either succeed,
fail, or suspend: The guard succeeds if
the expression is “true” and the request
succeeds; the guard fails if the Boolean
expression evaluates to “false” or if the
communication request fails; or the guard
suspends if the expression is “true” and the
request suspends. The select statement as
a whole blocks until either all of its guards
fail or some guards succeed. In the first
case, the entire select statement fails and
has no effect. In the latter case, one suc-
ceeding guard is chosen nondeterministi-
tally, and the corresponding statement part
is executed.

In CSP, the select statement can be used
to wait nondeterministically for specific
messages from specific processes. The se-
lect statement contains a list of input re-
quests and allows individual requests to be
enabled or disabled dynamically. For ex-
ample, the buffer process described above
can interact with a consumer and a pro-
ducer as shown in Figure 3. Communication
takes place as soon as either (1) the buffer
is not full and the producer sends a mes-

Programming Languages for Distributed Computing Systems l 285

not full(buffer); producer?DepositItem(x) +

add x 10 end of buffer;

[] not empty(buffer); consumer?AskForItemO +

consumer!SendItem(first item of buffer);

remove first irem from buffer;

1

Figure 3. A select statement in CSP used by a buffer process.
The statement consists of two guarded commands, separated by
a “[I.” The ‘I?” is the input (receive) operator. The “!” is the
output (send) operator.

sage, DepositItem; or (2) the buffer is not same process are willing to terminate and
empty and the consumer sends a message, the process that created them has finished
AskForItem. In the latter case, the buffer the execution of its statements, all these
process responds by sending the item to the processes are terminated. This mechanism
consumer. presumes hierarchical processes.

CSP’s select statement is asymmetric in
that the guard in CSP can only contain an
input operator, not an output operator.
Thus, a process P can only wait to receive
messages nondeterministically; it cannot
wait nondeterministically until some other
process is ready to accept a message from
P [Bernstein 19801. Output guards are ex-
cluded from most languages, because they
usually complicate the implementation.
Languages that do allow output guards
include Joyce [Brinch Hansen 19871 and
Pascal-m [Abramsky and Bornat 19831.

Select statements can also be used for
controlling nondeterminism other than
communication. Some languages allow a
guard to contain a time-out instead of a
communication request. A guard contain-
ing a time-out of T seconds succeeds if no
other guard succeeds within T seconds.
This mechanism sets a limit on the time a
process will wait for a message. Another
use of select statements is to control
termination of processes. In Concurrent C,
a guard may consist of the keyword ter-
minate. A process that executes a select
statement containing a terminate guard is
willing to terminate if all other guards fail
or suspend. If all processes are willing to
terminate, the entire Concurrent C pro-
gram terminates. Ada uses a similar mech-
anism to terminate parts of a program.
Roughly, if all processes created by the

A final note: Select statements in most
languages are unfair. In the CSP model, for
example, if several guards are successful,
one of them is selected nondeterministi-
tally. No assumptions can be made about
which guard is selected. Repeated execution
of the select statement may select the same
guard over and over again, even if there are
other successful guards. An implementation
may introduce a degree of fairness, by
assuring that a successful guard will be
selected within a finite number of itera-
tions, or by giving guards equal chances.
On the other hand, an implementation may
evaluate the guards sequentially and always
choose the first one yielding “true.” The
semantics of select statements do not guar-
antee any degree of fairness, so program-
mers cannot rely on it.

Proposals have been made for giving pro-
grammers explicit control over the selec-
tion of succeeding guards. Silberschatz
suggests a partial ordering of the guards
[Silberschatz 19841. Elrad and Maymir-
Ducharme propose prefixing every guarded
command with a compile-time constant
called the preference control value [Elrad
and Maymir-Ducharme 19861. If several
guards succeed, the one with the highest
preference control value (i.e., priority) is
chosen. If there are several guards with
this value, one of them is chosen nondeter-
ministically. This feature is useful if some

ACM Computing Surveys, Vol. 21, No. 3, September 1989

286 . H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

requests are more urgent than others.
For example, the buffer process may wish
to give consumers a higher priority than
producers.

Guarded Horn Clauses. Logic programs
are inherently nondeterministic. In reduc-
ing a goal of a logic program, there are often
several clauses to choose from (see Section
2.1.1). Intuitively, the semantics of logic
programming prescribe that the underlying
execution machinery must simply choose
the “right” clause, the one leading to a
proof. This behavior is called don’t know
nondeterminism. In sequential logic lan-
guages (e.g., PROLOG), these semantics
are implemented using backtracking. At
each choice point, an arbitrary clause is
chosen, and if it later turns out to be the
wrong one, the system resets itself to the
state before the choice point and then tries
another clause.

In a parallel execution model, several
goals may be tried simultaneously. In this
model, backtracking is very complicated to
implement. If a binding for a variable has
to be undone, all processes that have used
this binding must backtrack too. Most par-
allel logic programming languages therefore
avoid backtracking altogether. Rather than
trying the clauses for a given predicate one
by one and backtracking on failure, parallel
logic languages (1) search all these clauses
in parallel and (2) do not allow any bindings
made during these parallel executions to be
visible to the outside until one of the par-
allel executions is committed to. This is
called OR-parallelism (see Section 2.1.1).
Unfortunately, this cannot go on indefi-
nitely, because the number of search paths
worked on in parallel will grow exponen-
tially with the length of the proof.

A popular technique to control OR-
parallelism is committed-choice nondeter-
minism (or don’t care nondeterminism),
which nondeterministically selects one al-
ternative clause and discards the others. It
is based on guarded Horn clauses of the
following form:

A :- G1, . . . , G, (B1, . . . , B,,

n Z 0, m Z 0.

The conjunction of the goals Gi is called the
guard; the conjunction of the goals Bi is the

ACM Computing Surveys, Vol. 21, No. 3, September 1989

body. Declaratively, the commit operator
‘I n . 1 is also a conjunction operator.

Just like the guards of a select statement,
the guard of a guarded Horn clause can
either succeed, fail, or suspend. A guard
suspends if it tries to bind a variable that
it is not allowed to bind, as explained in
Section 2.2.2. If a goal with a predicate A
is to be reduced, the guards of all clauses
for A are tried in parallel, until some guards
succeed. The reduction process then
chooses one-of these guards nondetermin-
istically and commits to its clause. It aborts
execution of the other guards and executes
the body of the selected clause.

So far, this all looks much like the select
statement, but there are some subtle differ-
ences. A guard should not be allowed to
affect its environment until it is selected.
Guards that are aborted should have no
side effects at all. Precautions must be
taken against guards that try to bind vari-
ables in their environment. For. example,
consider the following piece of code:

A W :- G(X) 1 B(X).
A(X) :- H(X) I C(X).
G(1) :- P(1).
H(2) :- Q(2).

The guard G of the first clause binds X to
1 and then calls P. Guard H of the second
clause binds X to 2 and calls Q. These
bindings should not be made visible to the
caller of A until one of the guards G or H
is committed to. PARLOG ensures this
by using mode-declarations to distinguish
between input and output variables of a
clause. The compiler checks that guards (or
any other goals in the body) do not bind
input variables. If a guard binds an output
variable, this binding is initially made to a
temporary variable. When a clause is com-
mitted to, the bindings made by its guard
are made permanent, and the bindings gen-
erated by the other guards (to temporaries)
are thrown away. If a guard is ultimately
not selected, it has no effect at all.

Concurrent PROLOG, on the other
hand, allows variables in the environment
to be changed before commitment. But the
effects only become visible outside the
clause if the clause is committed to. The
semantics and distributed implementation
of commitment in Concurrent PROLOG

Programming Languages for Distributed Computing Systems l 287

are similar to those of atomic transactions
[Taylor et al. 1987131.

Committed-choice nondeterminism has
one severe drawback: It gives up complete-
ness of search. In the code above, if P(l),
C(2), and Q(2) are true (i.e., can be proven),
but B (1) is false, then the goal A(X) logi-
cally should succeed. The conjunction
“H(X) and C(X)” is true for X = 2 (recall
that “] ” is logically equivalent to “and”).
As both guards G(X) and H(X) succeed,
however, the system may select G(X) and
abandon the second clause. As B(1) turns
out to be false, the first clause will fail, and
no solution will be found. The programmer
must ensure that, at the time of commit-
ment, either the right clause is selected or
no clause resulting in a proof exists. This
can be achieved by extending the guards to
include B(X) and C(X):

A(X) :- G(X), B(X) I.
A(X) :- H(X), C(X) I.

This technique should not be used indis-
criminately, because it restricts the effec-
tive parallelism. The binding to variable X
is not made known to the caller of A(X)
until commitment, so in the new scheme,
the caller will have to wait longer for this
value to be available. This implies that, in
general, guards should be kept as small as
possible.

For reasons of simplicity and ease of
implementation, most of the recent efforts
in parallel logic programming languages
center on their so-called “flat” subsets.
In a flat guarded Horn clause, guards
are restricted to simple predefined test
predicates.

2.3 Partial Failure

The final issue that must be addressed by
languages for programming distributed sys-
tems is the potential for partial failure of
the system. Distributed computing systems
have the potential advantages over central-
ized systems of higher reliability and avail-
ability. If some of the processors involved
in a distributed computation crash, then,
in principle, the computation can still con-
tinue on the remaining processors, provided
that all vital information contained by the

failing processors is also stored on some
healthy ones. Thus, the system as a whole
becomes more reliable. This principle of
replication of information can be used to
increase the availability of the system. A
system is said to be fault tolerant if it still
continues functioning properly in the face
of processor crashes, allowing distributed
programs to continue their execution and
allowing users to keep on using the system.

In general, it is not an easy task to
write programs that can survive processor
crashes and continue as if nothing had hap-
pened. The responsibility for achieving re-
liability can be split up among the operating
system, the language run-time system, and
the programmer. Numerous research pa-
pers have been published about how oper-
ating systems can support fault tolerance
[LeBlanc and Wilkes 1985; Powell and
Presotto 19831. In the following sections,
we discuss how programming languages can
contribute their part.

2.3.1 Programming Fault Tolerance

The simplest approach to handling proces-
sor failures is to ignore them altogether.
This means that a single crash will cause
the entire program to fail. Typically, pro-
cesses trying to interact with a sick proces-
sor will either be blocked forever or discover
an unexpected communication failure and
terminate. A program running in parallel
on several processors has a higher chance
of failing than its single processor counter-
part (although the shorter execution time
of the parallel version may compensate a
bit). Still, as processor crashes are rare, for
many applications this is not a problem.

The next simplest approach to imple-
menting fault tolerance is to let the pro-
grammer do it. The operating system or
language run-time system can detect pro-
cessor failures and return an error status
to every process that wants to communicate
with a crashed processor. The programmer
can write code to deal with this contin-
gency. For some programs, this approach is
quite adequate. As an example, consider a
distributed chess program in which each
processor repeatedly chooses one possible
move in the current board position, evalu-
ates the new position, and returns some

ACM Computing Surveys, Vol. 21, No. 3, September 1989

288 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

score. If a processor crashes before return-
ing the result, all that need be done is to
have another processor analyze the posi-
tion. This simple scheme only works be-
cause the processors have no side effects

except for returning the score. No harm is
done if a position is examined twice.

A possible improvement to this scheme
is to let the language run-time system take
care of repeating requests to do some work.
Nelson has studied this approach in the
context of the Remote Procedure Call
model [Nelson 19811. If the run-time sys-
tem detects that Processor P has crashed,
P’s processes are restarted, either on P or
on another processor. Furthermore, all out-
standing RPCs to P are repeated.

As procedures can have side effects, it is
important to specify accurately the seman-
tics of a call that may have been executed
(entirely or partially) more than once.
Nelson gives a classification of these call
semantics. The simplest case is a local pro-
cedure call (the caller and callee are on the
same processor). If the processor does not
crash, the call is executed exactly once (ex-
actly-once semantics). If the processor does
crash, the run-time system restarts all proc-
esses of the crashed processor, including
the caller and the callee of the procedure.
The call will eventually be repeated, until
it succeeds without crashing. Clearly, the
results of the last executed call are used by
the caller, although earlier (abandoned)
calls may have had side effects that sur-
vived the crash (e.g., changing a file in the
processor’s local disk). These semantics are
called last-one semantics.

For RPCs, where the caller and callee are
on different processors, the best that can
be hoped for is to have the same semantics
as for local calls, which are exactly-once
semantics without crashes and last-one
semantics with crashes. The former is not
very hard to obtain, but achieving last-one
semantics in the presence of crashes turns
out to be tricky, especially if more than two
processors are involved. Suppose Processor
Pl calls Procedure f on Processor P2, which
in turn calls Procedure g on Processor P3.
While P3 is working on g, P2 crashes. P2’s
processes will be restarted, and Pl’s call to
f will be repeated. The second invocation

ACM Computing Surveys, Vol. 21, No. 3, September 1989

will again call procedure g on P3. Unfortu-
nately, P3 does not know that P2 has
crashed. P3 executes g twice and may
return the results in any order, possibly
violating last-one semantics. The problem
is that, in a distributed environment, a
crashed processor may still have outstand-
ing calls to other processors. Such calls are
appropriately called orphans, because their
parents (callers) have died. To achieve last-
one semantics, these orphans must be
terminated before restarting the crashed
processes. This can be implemented either
by waiting for them to finish or by tracking
them down and killing them (“orphan ex-
termination”). As this is not an easy job,
other (weaker) semantics have been pro-
posed for RPC. Last-of-many semantics is
obtained by neglecting orphans. It suffers
from the problem described above. An even
weaker form is at-least-once semantics,
which just guarantees that the call is exe-
cuted one or more times, but does not spec-
ify which results are returned to the caller.

One key idea is still missing from our
discussion. Procedure calls (local as well as
remote) can have side effects. If a call is
executed many times (because of processor
crashes), its side effects also are executed
many times. For side effects like incre-
menting a bank account stored in a data-
base, this may be highly undesirable (or
highly desirable, depending on one’s point
of view). A mechanism is needed to specify
that a call either runs to completion or
has no effects at all. This is where atomic
transactions come in.

2.3.2 Atomic Transactions

A distributed program can be regarded as a
set of parallel processes performing opera-
tions on data objects. Usually, a data object
is managed by a single process, but other
processes can operate on the object indi-
rectly (e.g., by issuing an RPC requesting
the managing process to do the operation).
In general, the effects of an operation be-
come visible immediately. Moreover, oper-
ations affecting objects on secondary
storage become permanent once the oper-
ation has been performed. Sometimes this
behavior is undesirable. Consider a pro-

Programming Languages for Distributed Computing Systems l 289

gram that transfers a sum of money from
one bank account (stored on disk) to an-
other, by decreasing the first one and in-
creasing the second one. This simple
approach has two dangers. First, if another
parallel process adds up all accounts in the
database while the first process is in the
middle of its transaction, it may observe
the new value of the first account and the
old value of the second, so that it uses
inconsistent values. Second, if the process
doing the transfer crashes immediately
after decreasing the first account, it leaves
the database in an inconsistent state. If it
is restarted later, it may try to decrease the
first account once more.

A solution to these problems is to group
operations together in atomic transactions
(also called atomic actions or simply trans-
actions). A group of operations (called a
transaction) is atomic if it has both the
property of indivisibility and the property
of recoverability. A transaction is indivisible
if, viewed from the outside, it has no inter-
mediate states. For the outside world (i.e.,
all other transactions), it looks as if either
all or none of the operations have been
executed. A transaction is recoverable if all
objects involved can be restored to their
initial state if the transaction fails (e.g.,
due to a processor crash), so that the
transaction has no effect at all.

Recoverability can be achieved as fol-
lows: If a transaction contains an operation
that tries to change an object, the changes
are not applied to the original object, but
to a new copy of the object, called a version.
If the entire transaction fails (aborts), the
new versions are simply discarded. If the
transaction succeeds, it commits to these
new versions. All objects changed by the
transaction retain the value of their new
version. Furthermore, the latest value of
each object is also placed on stable storage
[Lampson 19811, which has a very high
chance of surviving processor crashes and
is accessible by all processors.

Indivisibility can be trivially assured by
executing all atomic transactions sequen-
tially. In our bank account example, we
could deny other processes access to the
database while the first process is doing the
transfer. Unfortunately, this severely limits

parallelism and hence degrades perfor-
mance. A more efficient approach is to syn-
chronize processes by using finer-grained
locks. The process doing the transfer first
locks the two accounts. Other processes
trying to access these two accounts are
automatically suspended when they at-
tempt to lock them.

Atomic transactions originated in the
database world, but they are also used by
some programming languages, such as Ar-
gus [Liskov 19881, Aeolus [Wilkes and
LeBlanc 19861, and Avalon [Detlefs et al.
19881. A programming language can pro-
vide convenient abstractions for data
objects and invocations of atomic trans-
actions. The language run-time system can
take care of many details, like locking and
version management. These issues are dis-
cussed in Section 3.1.7.

2.3.3 Transparent Fault Tolerance

The mechanisms discussed above provide
linguistic support for dealing with partial
failures. Some of the problems are solved
by the operating system or the language
run-time system, but programmers still
have to do part of the work. This work has
to be done for every new application. Other
systems relieve programmers from all wor-
ries, by supporting fault tolerance in a fully
transparent way.

Borg et al. describe a fauit-tolerant
message-passing system [Borg et al. 19831.
For each process, an inactive backup pro-
cess is created on another processor. All
messages sent to the primary process are
also sent to its backup. The backup also
counts the messages sent by the primary
process. If the primary processor crashes,
the backup process becomes active and
starts repeating the primary process’s com-
putations. Whenever it wants to receive a
message, the backup process reads the next
message saved while the primary process
was still alive. If the backup process needs
to send a message, it first checks to see if
the primary process had already sent it, to
avoid sending messages twice. During nor-
mal computations, the primary and backup
processes periodically synchronize, to copy
the entire state of the primary process (a

ACM Computing Surveys, Vol. 21, No. 3, September 1989

290 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

checkpoint) to the backup. The backup pro-
cess then can forget all messages previous
to the checkpoint.

This approach requires extra processors
and will sometimes delay computation
while a checkpoint is being made. Strom
and Yemini propose a different technique,
optimistic recovery, to be used in systems
consisting of processes that interact only
by message passing [Strom and Yemini
1985b]. (This model is used in their lan-
guage NIL.) Their technique involves
periodic checkpointing and logging of mes-
sages on stable storage, rather than to a
backup process. As a fundamental depar-
ture from Borg’s approach, these activities
proceed asynchronously with the normal
computations. This has the advantage that,
if I/O bandwidth to stable storage is high
enough, the normal computation will not
slow down. However, the technique re-
quires some bookkeeping overhead to allow
a consistent system state to be restored
after a crash.

3. LANGUAGES FOR PROGRAMMING

DISTRIBUTED SYSTEMS

In this section we take a closer look at
several languages that were designed for
programming distributed systems. It is dif-
ficult to determine exactly how many such
languages exist; we know of nearly 100 rel-
evant languages, but there are probably
many more. We have selected a subset for
closer study. These languages together are
representative of research in this area. We
have chosen these languages to cover a
broad spectrum of ideas. Although we have
attempted to focus on languages that have
been well documented and cited in the lit-
erature, we fully admit that any selection
of this kind contains a certain amount of
subjective choice. We include references to
languages not discussed in detail here. An
overview of the languages for distributed
programming cited in this paper is given in
the Appendix.

We have organized the languages in a
simple classification scheme. First, we dis-
tinguish between logically distributed and
logically nondistributed languages, as dis-
cussed in Section 1.3. In languages based

ACM Computing Surveys, Vol. 21, No. 3, September 1989

on logical distribution, parallel computa-
tions (e.g., processes) communicate by
sending messages to each other. The ad-
dress spaces of different computations do
not overlap, so the address space of the
whole program is distributed. In a logically
nondistributed language, the parallel units
have a logically shared address space and
communicate through data stored in the
shared address space. Note that this dis-
tinction is based on the logical model of the
language; the presence of logically shared
data does not imply that physical shared
memory is needed to implement the lan-
guage. All languages described below that
are based on logically shared data have
been implemented on distributed comput-
ing systems, that is, on computers without
shared primary memory.

The languages in the two categories are
further partitioned into a number of
classes, based on their communication
mechanisms. In the first category, we in-
clude synchronous message passing, asyn-
chronous message passing, rendezvous,
RPC!, multiple communication primitives,
objects, and atomic transactions. In the
second category, we distinguish between
implicit communication through function-
results (used in parallel functional lan-
guages), shared logical variables (parallel
logic languages), and distributed data struc-
tures. The classification is illustrated in
Figure 4.

In each of the following subsections, we
discuss one class of languages. Each sub-
section starts with a table containing sev-
eral languages of that class together with
references to papers on these languages.
Each table corresponds with one specific
leaf in the tree of Figure 4. We have selected
at least one language from each table for
closer study. We describe the most distinc-
tive features of the example language(s)
and discuss how it differs from other mem-
bers of its class. We emphasize the seman-
tics, rather than the syntax. Our intention
is to expose the new key ideas in the
language, not to provide a full language
description.

For each language, we first provide back-
ground information on its design. Next, we
describe how parallelism is expressed in the

Programming Languages for Distributed Computing Systems l 291

Synchronous message passing

Asynchronous message passing

distributed

address space

Rendezvous

Remote Rocedure Call

Multiple primitives

distributed

.languages

Objects

Atomic transactions

shared

address space

Functional languages

Logic languages

Distributed data structures

Figure 4. Classification of languages for distributed programming.

language and how parallel units are mapped even multiway) communication primitives.
onto processors (if the language addresses Object-based languages also support one or
this issue). Subsequently, the communica- more of the above primitives. Unlike other
tion and synchronization primitives are languages, communication is between ob-
discussed. If relevant, we also discuss how jects rather than processes. As objects en-
the language deals with fault tolerance. capsulate both data and behavior, these
Finally, we give information on implemen- languages may also be thought of as provid-
tations and user experiences with the lan- ing some form of data sharing. Finally, we
guage. Issues like support for distributed discuss languages based on atomic trans-
debugging and commercial availability of actions; these languages are mainly in-
language implementations are outside the tended for implementing fault-tolerant
scope of this paper and are not discussed. applications.

3.1 Languages with Logically Distributed 3.1.1 Synchronous Message Passing
Address Spaces

We discuss seven classes of languages
with logically distributed address spaces:
languages supporting synchronous mes-
sage passing, asynchronous message pass-
ing, rendezvous, RPC, multiple communi-
cation primitives, operation invocations
on objects, and atomic transactions.
Languages in the first two classes pro-
vide point-to-point messages. Rendezvous-
based languages support two-way commu-
nication between senders and receivers. An
RPC is also a two-way interaction, but
its semantics are closer to a normal proce-
dure call. Languages in the fifth class use
a variety of one-way and two-way (or

In 1978 Hoare wrote what was later to
become a very influential paper, although
it described only a fragment of a language
[Hoare 19781. The language, called Com-
municating Sequential Processes (CSP),
generated some criticism [Kieburtz and
Silberschatz 1979; Bernstein 19801, but
also stimulated the design of many other
languages and systems (see Table 2). The
CSP model consists of a fixed number of
sequential processes that communicate
only through synchronous message passing.
Joyce differs from the other languages of
Table 2 by supporting recursiue processes.
Below, we describe CSP in some detail and
discuss one of its descendants, Occam.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

292 ’ H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

Table 2. Languages Based on Synchronous
Message Passing

Synchronous message passing

Language References

CCSP
CSM
CSP
CSP-s
CSPS
CSP/80
ECSP
GDPL
Joyce
LIMP
Occam
Pascal-m
Pascal + CSP

[Hull and Donnan 19861
[Zhongxiu and Xining 19871
[Hoare 19781
[Patniak and Badrinath 19841
[Roman et al. 19871
[Jazayeri et al. 19801
[Baiardi et al. 19841
[Ng and Li 19841
[Brinch Hansen 19871
[Hunt 19791
[Inmos Ltd. 19841
[Abramsky and Bornat 19831
[Adamo 19821
[Crookes and-Elder 19841
[Roper and Barter 19811

Planet
RBCSP

CSP. CSP was designed by Hoare as a
simple language that allows an efficient
implementation on a variety of architec-
tures [Hoare 1978, 19851.”

(1) Parallelism. CSP provides a simple
parallel command to create a fixed number
of parallel processes. A process consists of
a name, local variables, and a sequence of
statements (body). CSP processes take no
parameters and cannot be mapped onto
specific processors. An array of similar
processes can be created, but their number
must be a compile-time constant. As a
simple example of a parallel statement,

[writer :: 1~: real; . . .]] reader(i: 1 . . 2) :: . . .]

creates three processes, called “writer,”
“reader(l),” and “reader(2).” The writer
has a local variable x. The subscript vari-
able i can be used within the body of the
reader processes.

(2) Communication and synchronization.
CSP processes may not communicate by
using global variables. All interprocess
communication is done using synchronous
receive and send. The sending process
specifies the name of the destination pro-
cess and provides a value to be sent. The

I1 We describe the original language, outlined by Hoare
[1978]; the 1985 version has a clearer syntax and uses
named channels.

receiving process specifies the name of the
sending process and provides a variable to
which the received value is assigned. A
process executing either a send or a re-
ceive is blocked until its partner has
executed the complementary statement.
Consider the following example:

[X :: Y! 3]] Y :: n: integer; X ? n]

In Process X’s statement, the value 3 is
sent to Y. In Process Y’s statement, input
is read from Process X and stored in the
local variable n. When both X and Y have
executed their statements, the one-way
communication occurs. The net result is
assigning 3 to n.

Both simple and structured data may be
communicated (and assigned), as long as
the value sent is of the same type as the
variable receiving it. The structured data
can be given a name (a constructor), such
as pair in the following example:

[X :: Y ! pair(35, 60)]I Y :: n, m: integer;
X ? pair(n, m)]

An empty constructor may be used to syn-
chronize two processes without transfer-
ring any real data.

The alternative construction provides for
nondeterminism in CSP. It consists of sets
of guards followed by actions to be per-
formed. The guards may contain Boolean
expressions and an input statement, as
explained in Section 2.2.3. CSP allows
a process to receive selectively, based
on the availability of input and the
name field (constructor) of the incoming
communication.

(3) Implementation and experience.
CSP is essentially a paper design, but it
has influenced the design of several langu-
ages (see Table 2) that have been imple-
mented and used, most notably the Occam
language.

Occam. Occam is modeled on Hoare’s
CSP and was designed for programming
Inmos’s transputer [Inmos Ltd. 1984; May
19831. Occam is essentially the assembly
language of the transputer. The language
lacks features that have become standard
in most modern programming languages,

ACM Computing Surveys, Vol. 21, NO. 3, September 1989

Programming Languages for Distributed Computing Systems 9 293

such as data typing, recursive proce-
dures, and modules.

(1) Parallelism. There are three basic
actions in Occam: assignment, input, and
output. Each action is considered to be a
little process. Processes can be grouped to-
gether in several ways to form more com-
plex processes. Any process can be named
by prefixing its definition with the keyword
PROC, followed by its name and a list of
formal parameters. When subsequently
referenced, a new instance of the named
process is created, with the parameters
specified in the reference. Both parallel and
sequential execution of a group of processes
must be explicitly stated, by heading the
group with a PAR or SEQ, respectively.

Arrays of similar processes can be ex-
pressed in Occam. In the construct

PARi=OFORn
process . . .

n parallel processes are created, each with
a different value for i.

Occam provides a facility for assigning
processes to processors. Parallel processes
may be prioritized by prefixing the group
with PRI PAR. The first process in the
group is given highest priority; the second,
second highest priority; and so on.

(2) Communication and synchronization.
Unlike CSP, parallel processes communi-
cate indirectly through channels. A channel
is a one-way link between two processes.
Channel communication is fully synchron-
ous. Only one process may be inputting
from, and one outputting to, a channel at a
given time. Channels are typed, and their
names can be passed as parameters to
PROC calls.

Occam provides an ALT construct, sim-
ilar to CSP’s alternative statement, to ex-
press nondeterminism. The constituents of
this construct can be prioritized. If input
is available on more than one channel,
the one with the highest priority will be
accepted.

The current time can be read from an
input-only channel declared as a TIMER.
A delay until a certain time can be made

with the “WAIT AFTER t” construct. This
can be used as a constituent of an ALT
construct, for example, to prevent a pro-
cess from hanging forever if no input is
forthcoming.

(3) Implementation and experience.
Occam was intended for use with multiple
interconnected transputers, where a chan-
nel would be implemented as a link between
two transputers [May and Shepherd 19841.
The transputer implementation is quite ef-
ficient (e.g., a context switch takes a few
microseconds). This efficiency has been
achieved by using a simple communication
model (CSP) and by requiring the number
of processes and their storage allocation to
be determined at compile time. Occam has
also been implemented on nontransputer
systems [Fisher 19861.

Occam is used extensively for applica-
tions like signal processing, image pro-
cessing, process control, simulation, and
numerical analysis. A major criticism of the
first version of Occam is the inability to
pass complex objects (e.g., arrays) as part
of a single message. Occam-2 has addressed
this problem through the introduction of
channel protocols, which describe the types
of objects that may be transferred across a
channel [Burns 19881. The compiler (some-
times with the help of the run-time system)
checks that the input and output operations
on a channel are compatible with the chan-
nel protocol.

3.1.2 Asynchronous Message Passing

The synchronous message-passing model
proposed by Hoare and adapted by Occam
prevents the sending process from contin-
uing immediately after sending the mes-
sage. The sender must wait until the
receiving process is willing to accept the
message. This design decision has a major
impact on both the programming style and
the implementation of a language. Several
language designers have chosen to remove
this restriction and support asynchronous
message passing, sometimes in addition to
synchronous message passing. Languages
in this class are shown in Table 3. We
discuss NIL in more detail.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

294 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

Table 3. Languages Based on Asynchronous Message Passing

Asynchronous message passing

Language

AMPL
CMAY
Concurrent C
CONIC

DPL-82
FRANK
GYPSY
LADY
MENYMA/S
NIL
ParMod
PCL
Platon
PLITS
Port Language
Pronet
ZEN0

References

[Dannenberg 1981; Milewski 19841
[Bagrodia and Chandy 19851
[Tsujino et al. 19841
[Kramer and Magee 1985; Sloman and

Kramer 19871
[Ericson 19821
[Graham 19851
[Ambler et al. 19771
[Nehmer et al. 19871
[Koch and Maibaum 19821
[Strom and Yemini 19831
[Eichbolz 19871
[Lesser et al. 19791
[Staunstrup 19821
[Feldman 19791
[Kerridge and Simpson 19861
[LeBlanc and Maccabe 19821
[Ball et al. 19791

NIL. NIL (Network Implementation
Language) is a high-level language for the
construction of large, reliable, distributed
software systems [Strom and Yemini 1983,
1984, 1985a, 19861. NIL was designed by
Robert Strom and Shaula Yemini at the
IBM T. J. Watson Research Center.

NIL is a secure language, which means
that one program module cannot affect the
correctness of other modules (e.g., by a
“wild store” through a bad pointer). The
importance of security is pointed out by
Hoare [1981]. Security in NIL is based on
an invention called the typestate [Strom
and Yemini 19861. A typestate is a compile-
time property that captures both the type
of a variable and its state of initialization.
In the program fragment

1. X, Y: INTEGER,
2. if condition then X := 4; end if
3. Y := x + 3;

statement 3 is marked as illegal by the
compiler, because variable X might still be
uninitialized at this point. X has the right
type (integer), but the wrong state. The
typestate mechanism imposes some con-
straints on the structure of the programs
(especially on the control flow), but the
designers claim that these constraints are
not overly restrictive and usually lead to
better structured code. NIL avoids features

ACM Computing Surveys, Vol. 21, No. 3, September 1989

that would make compile-time checking of
typestates impossible. It does not provide
explicit pointer manipulation (it does pro-
vide a higher level construct for building
general data structures), and it has an IPC
model that disallows sharing of variables.

(1) Parallelism. Parallelism in NIL is
based on the so-calledprocess model [Strom
et al. 1985; Strom 19861. A NIL system
consists of a network of dynamically cre-
ated processes that communicate only by
message passing over communication chan-
nels. In NIL, a process is not only the unit
of parallelism, but also the unit of modular-
ity. The division of a NIL program into pro-
cesses should be based on software engi-
neering principles rather than on perfor-
mance considerations. The mapping of
processes onto processors is considered to
be an implementation issue, to be dealt
with by the compiler and run-time system.
This process model makes NIL concep-
tually simpler than languages that have
separate mechanisms for parallelism and
modularity (e.g., tasks and packages in
Ada).

(2) Communication and synchronization.
Configuration of the communication paths
between processes is done dynamically. A
port in NIL is a queued communication
channel. At a given time, a port has one

Programming Languages for Distributed Computing Systems l 295

specific owner. Ownership of a port can be
transferred to another process, by passing
the port as part of a message or by passing
the port as an initialization parameter to a
newly created process. A process can con-
nect input ports and output ports owned
by it.

Both synchronous communication and
asynchronous communication are sup-
ported. A single input port may be con-
nected to several output ports, so there can
be multiple pending messages on an input
port; these messages therefore have to be
queued. A guarded-command style state-
ment is provided for waiting for messages
on any of a set of input ports.

(3) Fault tolerance. Recovery from pro-
cessor failures is intended to be handled
transparently by the NIL run-time system,
using the optimistic recovery technique
discussed in Section 2.3.3.

(4) Implementation and experience. A
NIL compiler generating code for a unipro-
cessor (IBM 370) has been implemented.
Research on distributed implementations
has focused on transformation strategies,
which optimize NIL programs for specific
target configurations [Strom and Yemini
1985a]. NIL has been used to implement a
prototype communication system, consist-
ing of several hundred modules [Strom and
Yemini 19861. The implementors found
the typestate mechanism highly useful in
integrating this relatively large number of
modules.

3.1.3 Rendezvous

The rendezvous mechanism was first used
in Ada and later employed in some other
languages, as shown in Table 4. We discuss
Ada and Concurrent C below.

Ada. The language Ada was designed on
behalf of the Department of Defense by a
team of people led by Jean Ichbiah [U.S.
Department of ,Defense 19831. Since its
first (preliminary) definition appeared in
1979, Ada has been the subject of an ava-
lanche of publications. A substantial part
of the discussion in these publications re-
lates to parallel and distributed program-
ming in Ada (e.g., [Yemini 1982; Gehani

Table 4. Languages Based on Rendezvous

Rendezvous

Language

Ada

BNR Pascal
Concurrent C
MC

References

[U.S. Department of Defense
19831

[Gammage et al. 19871
[Gehani and Roome 19891
[Rizk and Halsall 19871

1984a; Mundie and Fisher 1986; Burns et
al. 19871) and to the implementation of
Ada’s multitasking. van Katwijk reviews
more than 30 papers of the latter category
[van Katwijk 19871.

(1) Parallelism. Parallelism is based on
sequential processes, called tasks in Ada.
Each task has a certain type, called its task
type. A task consists of a specification part,
which describes how other tasks can com-
municate with it, and a body, which con-
tains its executable statements. Tasks can
be created explicitly or can be declared, but
in neither case is it possible to pass any
parameters to the new task. Limited con-
trol over the local scheduling of tasks is
given, by allowing a static priority to be
assigned to task types. There is no notation
for mapping tasks onto processors.

(2) Communication and synchronization.
Tasks usually communicate through the
rendezvous mechanism. Tasks can also
communicate through shared variables, but
updates of a shared variable by one task
are not guaranteed to be immediately visi-
ble to other tasks. An implementation that
does not have physically shared memory
may keep local copies of shared variables
and defer updates until tasks explicitly syn-
chronize through a rendezvous.

The rendezvous mechanism is based on
entry declarations, entry calls, and accept
statements, as discussed in Section 2.2.1.
Entry declarations are only allowed in the
specification part of a task. Accept state-
ments for the entries appear in the body of
the task. They contain a formal parameter
part similar to that of a procedure. It is not
possible to accept an entry conditionally
depending on the values of the actual pa-
rameters, or to control the order in which
outstanding requests are accepted. Gehani

ACM Computing Surveys, Vol. 21, No. 3, September 1989

296 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

and Cargill show that an array of entries
with the same formal part (a so-called fam-
ily) can sometimes be used instead of con-
ditional acceptance, although in general
this leads to polling [Gehani and Cargill
19841.

A task can call an entry of another task
by using an entry call statement, similar to
a procedure call statement. An entry call
specifies the name of the task containing
the entry, as well as the entry name itself.
Entry names cannot be used in expressions
(e.g., ‘they cannot be passed around as
parameters). A program can use a pointer
to an explicitly created task as a name for
that task. Pointers are more flexible than
static identifiers, but they cannot point to
declared tasks or to entries.

Ada uses a select statement similar to
CSP’s alternative command for expressing
nondeterminism. Ada’s select statement is
actually used for three different purposes:
to select an entry call nondeterministically
from a set of outstanding requests, to call
an entry conditionally (i.e., only if the
called task is ready to accept it immedi-
ately), and to set a time-out on an entry
call. So Ada essentially supports input
guards and conditional and timed entry
calls, but not output guards.

(3) Fault tolerance. Ada has an excep-
tion-handling mechanism for dealing with
software failures, but the language defini-
tion does not address the issue of hardware
failures [Burns et al. 19871. If the processor
on which a task T executes crashes, an
implementation may (but need not) treat
T like an aborted task (i.e., a task that
failed because of software errors). If so,
other tasks that try to communicate with
T will receive a tasking-error exception
and conclude that T is no longer alive;
however, they do not know the reason
(hardware or software) why T died, so this
support for dealing with processor failures
is very rudimentary.

(4) Implementation and experience.
Given the fact that the Department of De-
fense intends to have Ada replace 300 or so
other languages currently in use and that
industry has also shown some interest in
Ada, the language probably will be used

ACM Computing Surveys, Vol. 21, No. 3, September 1989

extensively in the future. Many implemen-
tations of Ada are now available, and sev-
eral million lines of Ada code have already
been written for uniprocessor applications
[Myers 19871.

Burns et al. cite 18 papers addressing the
issue of how to use Ada in a distributed
environment [Burns et al. 19871. They also
review many problems with parallel and
distributed programming in Ada. The
synchronization mechanism receives a
substantial part of the criticism: It is asym-
metric (input guards but not output guards
in select statements), entry calls are al-
ways serviced in FIFO order and cannot be
accepted conditionally, and it is not possi-
ble to assign priorities to alternatives of a
select statement. Distribution of programs
among multiple processors is not addressed
by the definition of Ada, but is left to
configuration tools.

Concurrent C. Concurrent C extends the
C language [Kernighan and Ritchie 19781
by adding support for distributed program-
ming. The language is being developed at
AT&T Bell Laboratories, by Narain Ge-
hani and others [Gehani and Roome 1986a,
19891. Concurrent C is based on Ada’s ren-
dezvousmodel,butitsdesignerstriedtoavoid
the problems they observed in this model
[Gehani and Roome 19881.

(1) Parallelism. A process in Concur-
rent C has a specification part and a body,
just like tasks in Ada. The specification
part consists of the process’s name, a list
of formal parameters, and a list of trans-
actions. (A transaction is Concurrent C’s
equivalent to an Ada entry.) Processes are
created explicitly, using the create primi-
tive, which can pass parameters to the cre-
ated process. The new process can be given
a priority (which can later be changed by
itself or by other processes) and can be
assigned to a specific processor. The create
primitive returns an identifier for the new
process instantiation. This value can be
assigned to a variable of the same pro-
cess type and can be passed around as a
parameter. For example,

process buffer pid;
pid = create buffer(lOO) priority(l)

processor (3);

Programming Languages for Distributed Computing Systems l 297

starts a process of type buffer on processor
3, giving it priority 1 and passing the num-
ber 100 as a parameter to it. A reference to
the process is returned in pid, which might
be passed to another process to use for
subsequent communication with the buffer
process.

(2) Communication and synchroniza-
tion. Processes communicate through the
rendezvous mechanism. (Communication
through shared variables is not forbidden,
but no special language support is provided
for it, and it will only work correctly
on shared-memory machines.) A transac-
tion in Concurrent C differs from an Ada
entry in that a transaction may return a
value. In addition, Concurrent C supports
asynchronous transactions (equivalent
to asynchronous message passing); such
transactions may not return a value
[Gehani 19871.

Concurrent C supports a more powerful
accept statement than Ada. Transactions
can be accepted conditionally, based on
the values of their parameters, as in the
following example:

accept tname(a, b, c) suchthat (a < b)

Only outstanding transaction calls for
which the expression after the suchthat
evaluates to “true” will be accepted. The
order of acceptance can be controlled using
a by clause:

accept tname(a, b, c) by(c) (. . .)

Of all outstanding calls to transaction
tname, the one with the lowest third
parameter will be accepted.

A transaction call is similar to a function
call and can be used as part of an expression
(since transaction calls may return values).
The transaction call specifies the name of
the called process along with the transac-
tion name and supplies actual parameters.
The process name can be any expression
that yields a process identifier. The trans-
action name is a static identifier. A specific
transaction of a specific process can be
assigned to a transaction pointer variable,
which can subsequently be used instead of
these two names in an indirect transaction
call. With this mechanism, the caller need

not know the type or name of the called
process.

The caller can specify the amount of time
it is willing to wait for its request to be
carried out, using the following construct:

within N ? pid.tname(params) : expr

If process pid does not accept the tname
transaction call within N seconds, the call
is canceled, and the expression expr is eval-
uated instead. This construct is equivalent
to Ada’s timed entry call, although with an
entirely different syntax.

Nondeterminism is expressed through a
select statement, similar to the one used
by Ada. Concurrent C’s select statement is
somewhat cleaner, because it is used only
for dealing with nondeterminism, not for
timed or conditional transaction calls.

(3) Fault tolerance. A fault-tolerant
version of Concurrent C (called FT Con-
current C) based on replication of processes
has been designed [Cmelik et al. 19871.

(4) Implementation and experience.
Concurrent C has been implemented on a
uniprocessor, a group of executable-code-
compatible machines connected by an Eth-
ernet, and a multiprocessor providing
shared global memory [Cmelik et al. 19861.

Concurrent C has been used in several
nontrivial applications, such as a distrib-
uted version of “make” [Cmelik 19861, a
robot system [Cox and Gehani 19861, dis-
crete event simulation [Roome 19863, and
a window manager [Smith-Thomas 19861.
The language is being merged with C++
[Stroustrup 19861 to create a programming
language supporting both distributed pro-
gramming and classes [Gehani and Roome
1986b].

3.1.4 Remote Procedure Call

RPC was first introduced by Brinch Han-
sen for his language Distributed Processes
(see below) and has been studied in more
detail by Nelson and Birrell [Nelson 1981;
Birrell and Nelson 19841. Remote pro-
cedure calls are also used in several other
languages, as shown in Table 5. (Most
languages based on atomic transactions
also use RPCs; these are discussed in
Section 3.1.7.)

ACM Computing Surveys, Vol. 21, No. 3, September 1989

298 . H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

Table 5. Languages Based on Remote
Procedure Call

Remote procedure call

Lanauaee References

Cedar [Swinehart et al. 19851
Concurrent CLU [Hamilton 1984, Cooper and

Hamilton 19881
Distributed Processes [Brinch Hansen 19781
LYNX [Scott 1985,1986,1987, Scott

and Cox 19871
P’ [Carpenter and Cailliau 19841

Distributed Processes. Brinch Hansen’s
Distributed Processes (DP) [Brinch Han-
sen 19783 is the successor to Concurrent
Pascal [Brinch Hansen 19753. Like Con-
current Pascal, DP is oriented toward real-
time systems programming. Instead of
Concurrent Pascal’s monitor-based com-
munication scheme, DP processes commu-
nicate using RPC.

(1) Parallelism. In DP the number of
processes is fixed at compile time. The
intention is that there be one processor
dedicated to executing each process. Each
process, however, can contain several
threads of control running in pseudoparal-
lel. A process definition contains an initial
statement, which may be empty; this is the
first thread. It may continue forever, or it
may finish executing at some point, but in
either case the process itself continues to
exist; DP processes never terminate. Addi-
tional threads are initiated by calls from
other processes. Arrays of processes may be
declared. A process can determine its array
index using the built-in function this.

(2) Communication and synchroniza-
tion. DP processes communicate by call-
ing one another’s common procedures. Such
a call has the form

call P.f (exprs, vars)

where P is the name of the called process
and f is the name of a procedure declared
by P. The expressions are input param-
eters; the return values of the call are
assigned to the (output) variables.

The calling process (and all its threads)
is blocked during the call. A new thread of
control is created within P. P’s initial

statement and the threads created to
handle remote calls execute as pseudo-
parallel processes, scheduled nonpre-
emptively. They communicate through P’s
global variables and synchronize through
guarded regions.

Like the select statement of CSP and
Ada, a guarded region in DP is based on
Dijkstra’s guarded command. A guarded re-
gion allows a thread to wait until one of a
number of guards (conditional expressions)
is true. When a thread is blocked in a
guarded region, other threads in its process
can continue their execution. The guards
have access to the input parameters of the
remote call and to the process’s global vari-
ables. Since other threads can change the
global variables, the guards are repeatedly
evaluated, until one or more of them is true.
This is a major difference with the select
statement and makes the guarded region
somewhat more powerful.

Two forms of guarded regions are sup-
ported by DP. The when statement non-
deterministically selects one true guard and
executes the corresponding statement. The
cycle statement is an endless repetition of
the when statement.

(3) Implementation and experience.
DP is a paper design and has not been
implemented. An outline of a possible im-
plementation is given by Brinch Hansen
[1978].

3.1.5 Multiple Communication Primitives

As can be seen from the previous sections,
many different communication and syn-
chronization mechanisms exist, each with
its own advantages and disadvantages. As
there is no general agreement on which
primitive is best, some language designers
have taken the approach of providing a
range of primitives, from which the pro-
grammer can choose the one most suited to
the application. In addition, programmers
can experiment with different primitives
while still using the same language. An
important issue in the design of such a
language is how to integrate all these prim-
itives in a clean and consistent way. Ex-
amples of languages in this class are shown
in Table 6. We discuss SR below.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Programming Languages for Distributed Computing Systems l 299

Table 6. Languages Based on Multiple
Communication Primitives

Multiple communication primitives

Language

Dislang
Pascal-FC
StarMod

SR

References

[Li and Liu 19811
[Burns and Davies 19881
[Cook 1980, LeBlanc and Cook

19831
[Andrews 19811

Synchronizing Resources. Synchronizing
Resources (SR) was developed by Gregory
Andrews et al. at the University of Arizona
[Andrews 1981, 1982; Andrews and Olsson
1986; Andrews et al. 19881. SR is a language
for programming distributed operating sys-
tems and applications. It is based on Mod-
ula, Pascal, and DP, and provides several
models of interprocess communication.

(1) Parallelism. An SR program con-
sists of one or more resources. A resource
is a module run on one physical node (either
a single processor or a shared-memory mul-
tiprocessor). Resources are dynamically
created (parameters may be passed), and
optionally assigned to run on a specific
machine. An identifier for the resource in-
stance is returned by the create command.

A resource can contain several processes,
and these may share data. Synchronization
among these processes is supported by the
use of semaphores. Communication with
processes in other resources is restricted to
operations, discussed below. A resource may
contain an initialization and a termination
process. These are created and run implic-
itly. A resource terminates when it is killed
by the destroy command. A program ter-
minates when all its processes terminate or
block.

(2) Communication and synchroniza-
tion. An SR operation definition looks
like a procedure definition. Its implemen-
tation can look like either a procedure or
an entry point. When implemented as a
procedure, the operation is serviced by an
implicitly created process. When imple-
mented as an entry point, it is serviced by
an already running process in a rendezvous.
The two types of implementation are trans-

parent to the invoker of the operation. On
the invoker’s side, an operation may be
called asynchronously using a send or syn-
chronously using a call. A send blocks
until the message has been delivered to
the remote machine; a call blocks until the
operation has been completed and any
return values have been received. Several
calls can be grouped in a parallel call state-
ment, which terminates when all calls have
been completed. The operation and its re-
source instance must be named explicitly
in the invocation. This is done using the
identifier for the resource returned by the
create command.

By combining the two modes of servicing
operations and the two modes of invoking
them, four types of interprocess commu-
nication can be expressed as shown in
Table 7.

SR uses a construct similar to the select
statement (see Section 2.2.3) to deal with
nondeterminism. The SR guarded com-
mand, or alternative, has the following
form:

entry-point(params) and bool-expr
by expr + statements

A guard may contain an entry point for an
operation, a Boolean expression, and a
priority expression. The two expressions
can refer to the actual parameters of the
operation. An alternative is enabled if there
is a pending invocation of the operation
and the Boolean expression evaluates to
true. The expression in the by part is used
for priorization when there are several
pending invocations of the same operation.
If all Boolean expressions are false, the
process suspends.

(3) Fault tolerance. SR supports two
rudimentary mechanisms for handling fail-
ures [Andrews et al. 19881. Exception han-
dlers can be used to handle failures detected
by the run-time system. For example, a
handler attached to an operation invoca-
tion is called if the invocation fails. A
when-statement can be used to ask the
run-time system to monitor a certain
source (e.g., a process or processor) and to
invoke a user-supplied operation if the
source fails.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

300 ’ H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

Table 7. Four Types of Interprocess Communication in SR

Call (synchronous) Send (asynchronous)

Entry (synchronous)
Process (asynchronous)

Rendezvous
RPC

Message passing
Fork

(4) Implementation and experience. An
implementation of SR on top of UNIXl’ is
described by Andrews et al. [19881. It runs
on collections of SUNS or VAXes and on
the Encore Multimax. SR has been used to
implement a parallel PROLOG interpreter
and the file system of the Saguaro distrib-
uted operating system [Andrews et al.
19881.

3.1.6 Object-Based Languages

The object-based approach to programming
is becoming increasingly popular, not only
in the world of sequential programs, but
also for building distributed applications.
The need for distributed objects arises
when, for example, operating systems and
distributed problem solvers are modeled.
Exploiting parallelism to speed up pro-
grams is usually considered to be a second-
ary issue, to be dealt with by the language
implementation.

In most parallel object-based or object-
oriented13 languages (see Table 8), parallel-
ism is based on assigning a parallel process
to each object, so objects become active
components. This method is used, for ex-
ample, in the languages Concurrent Small-
talk, CLIX, Emerald, Hybrid, Ondine,
POOL, Sloop, and in the actor languages
Act 1, Cantor, and CSSA. Concurrent
Smalltalk (based on Smalltalk- [Gold-
berg and Robson 19831) also supports
asynchronous message passing to increase
parallelism even further. Actor languages
[Hewitt 1977; Agha 19861 are related to
object-oriented languages, but arrange ob-
jects in dynamically changing hierarchies,
rather than in static classes. Athas and

” UNIX is a registered trademark of AT&T Bell Lab-
oratories.
I3 As discussed in Section 2.1.1, we define a language
to be object oriented if it has inheritance, and object
based if it supports objects but lacks inheritance.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Seitz discuss the usage of the actor lan-
guage Cantor for programming fine-grain
multicomputers [Athas and Seitz 19881.

ABCL/l uses asynchronous message
passing and an explicit construct for send-
ing several messages simultaneously to
different objects. Orient84/K is a multipar-
adigm language for programming knowl-
edge-based systems, integrating object-
oriented, logic, and parallel programming.
OIL is the intermediate language for the
FAIM-1 symbolic multiprocessor system.
OIL integrates parallel, object-oriented,
logic, and procedural programming. Raddle
is a language for the design of large distrib-
uted systems. EPL is an object-based lan-
guage based on Concurrent Euclid [Holt
19821. EPL is used with the Eden distrib-
uted operating system [Almes et al. 19851.
It influenced the design of Emerald (dis-
cussed below) and Distributed Smalltalk,
which is based on Smalltalk-80.

Emerald. Emerald is an objeci-based
programming language for the implemen-
tation of distributed applications. It was
developed at the University of Washington
by Andrew Black and others [Black et al.
1986, 1987; Hutchinson 1987; Jul et al.
1988; Jul19881.

Like Smalltalk-80, Emerald considers all
entities to be objects. For the programmer,
both a file accessible by many processes
and a Boolean variable local to a single
process are objects. Objects can either be
passive (data) or active. Unlike Smalltalk-
80, Emerald is a strongly typed language
and has no classes or inheritance.

Abstract types are used to define the in-
terface to an object. An abstract type can
be implemented by any object supporting
at least the operations specified in the
interface. The type system was designed to
allow multiple implementations of the same
type to coexist; new implementations can
be added to a running system. The pro-

Programming Languages for Distributed Computing Systems 301

Table 8. Object-Oriented, Object-Based, and Actor Languages

Objects

Language

ABCL/l
Act 1
ALPS
Cantor
CLIX
Cluster 86
ConcurrentSmalltalk

CSSA
Distributed Smalltalk
Emerald
EPL
Hybrid
Mentat
OIL
Ondine
Orient84/K
POOL
Raddle
SINA
Sloop

References

[Yonezawa et al. 19861
[Lieberman 19871
[Vishnubhotia 19881
[Athas and Seitz 19881
[Hur and Chon 19871
[Lujun and Zhongxiu 19871
[Yokote and Tokoro 1986,1987a,

1987b]
[Nehmer et al. 19871
[Bennett 19871
[Black et al. 19861
[Black et al. 19841
[Nierstrasz 19871
[Grimshaw and Liu 19871
[Davis and Robison 19851
[Ogihara et al. 19861
[Ishikawa and Tokoro 19871
[America 19871
[Forman 19861
[Aksit and Tripathi 19881
[Lucco 19871

grammer can supply different implemen-
tations, each tailored to a specific use.
Alternatively, the compiler can automati-
cally generate different implementations
from the same source code, tailored for local
objects or distributed objects.

(1) Parallelism. Parallelism is based on
the simultaneous execution of active ob-
jects. Since objects in Emerald can be
moved from one processor to another (as
discussed below), the language essentially
supports process migration. This is the
most flexible mapping strategy discussed in
Section 2.1.2.

(2) Communication and synchroniza-
tion. An object consists of four parts: a
name, a representation, a set of operations,
and an optional process. The name uniquely
identifies the object within the distributed
system. The representation contains the
data of the object. Objects communicate by
invoking each other’s operations. There
can be multiple active invocations within
one object. The optional process runs in
parallel with all these invocations. The
invocations and the data shared by these
invocations can be encapsulated in a mon-

itor construct. The internal process can
enter the monitor by calling an operation
of its own object. Within a distributed
system, many objects can run in parallel.
Emerald provides the same semantics for
local and remote invocations.

At any given time, an object is on a single
processor, called its location. In general,
programmers do not have to worry about
locations, because the semantics of opera-
tion invocations are location independent.
Some applications, however, are better off
when they can control the locations of
objects. For example, two objects that com-
municate frequently can be put on the same
processor. Conversely, objects that are rep-
licas of the same data should be located on
different processors, to reduce the chance
of losing the data after a processor crash.

In Emerald, global objects can be moved
from one processor to another. Such a move
may be initiated either by the compiler
(using compile-time analysis) or by the pro-
grammer, using a few simple language
primitives. One important case is where an
object is passed as a parameter in a remote
operation. Every access to the parameter
object will result in an extra remote invo-
cation. The obvious solution is to pass a

ACM Computing Surveys, Vol. 21, No. 3, September 1939

302 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

copy of the object as a parameter, but this
changes the parameter mechanism into
call-by-value. For object-based languages,
call-by-reference is more natural. The so-
lution in Emerald is to optimize such calls
by first moving the parameter object to the
destination processor, then doing the call,
and optionally moving the object back. As
this case occurs frequently, Emerald intro-
duces a new parameter passing mode, called
call-by-move, to accomplish this efficiently
(i.e., with low message-passing overhead).

(3) Implementation and experience. An
important goal of a good implementation
of Emerald is to recognize simple opera-
tions on small objects and to treat them
efficiently. For example, an addition of two
local integer variables is compiled to inline
code. Local calls to objects that cannot
move essentially take a local procedure call.
Global objects (which are allowed to move)
are referenced indirectly through an object
descriptor, which either contains the ad-
dress of the object if it is local, or tells
where to find the object in the distributed
system. When an object moves to another
processor, the descriptors on its old and
new locations are updated.

A prototype distributed implementation
of Emerald has been built, running on DEC
MicroVax II and SUN workstations con-
nected by Ethernet.

Emerald has been used to implement a
mail system, a replicated name server, a
shared appointment calendar system, and
several other applications [Jul et al. 19881.

3.1.7 Atomic Transactions

Several languages that were specifically
designed for building fault-tolerant appli-
cations support atomic transactions in
combination with RPC (see Table 9).
Aeolus and Avalon are built on top of ex-
isting systems that already support atomic
transactions. Aeolus provides language
support for the Clouds operating system
[LeBlanc and Wilkes 19851. Avalon is being
implemented on top of the Camelot distrib-
uted transaction management system
[Spector et al. 19861. Camelot applications
can also use the Camelot Library, which is

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Table 9. Languages Based on Atomic Transactions

Atomic transactions

Language

Aeolus

Argus

Avalon
Camelot Library

References

[Wilkes and LeBlanc
19861

[Liskov and Scheifler
19831

[Detlefs et al. 19881
[Bloch 19881

a collection of macros and subroutines em-
bedded in the C language. The Camelot
Library takes care of many low-level details
of transaction and object management,
thus facilitating the implementation of
Camelot servers and applications. This ap-
proach avoids designing a totally new lan-

guage, while providing higher level
primitives than traditional system calls.

Argus. Argus [Liskov 1982; Liskov and
Scheifler 1983; Liskov 1984, 1988; Weihl
and Liskov 19851, being developed at MIT
by Barbara Liskov and colleagues, is based
on CLU [Liskov et al. 19771 and Extended
CLU [Liskov 19791. It provides support for
fault-tolerant distributed programming, in
particular for applications requiring a high
degree of reliability and availability, such
as banking, airline reservation, and mail
systems. Its main features are guardians
(modules that can survive crashes) and ac-
tions (groups of atomic executions).

(1) Parallelism. An Argus module,
called a guardian, contains data objects and
procedures for manipulating those objects.
A guardian may contain background and
recover sections and may have several
creator and handler procedures. A crea-
tor procedure is run when an instance of
the guardian is being made. The handler
procedures are run on behalf of processes
outside of the guardian. The recover section
is executed when the guardian is started
up again after a crash. The background
section is intended for doing periodic tasks
and is run continually during the life of the
guardian.

A guardian instance is created dynam-
ically by a call to a creator procedure.
A creator may take parameters, and the

Programming Languages for Distributed Computing Systems 303

guardian may be explicitly placed on a
node:

guardianType$creator(params)
Q, machinex

More than one process may be running
in a guardian instance at a given time. If
the guardian contains a background sec-
tion, a process is created to run it. In ad-
dition, each time a call is made to one of
the guardian’s handlers, a process is created
to run the appropriate handler proce-
dure. A guardian can terminate itself by
executing the terminate statement.

Parallelism results from simultaneous
execution of guardians. Pseudoparallelism
results from the implicit creation of a new
process for each handler call within a
guardian. Pseudoparallel execution can
also be expressed using a coenter state-
ment. A coenter terminates when all its
components have finished, and one com-
ponent may terminate the rest prematurely
by transferring control out of the coenter
statement.

(2) Communication and synchroniza-
tion. Processes running in the same
guardian instance can communicate using
shared variables. Processes belonging to
different guardians, however, can only com-
municate using handler calls. A handler call
is a form of RPC, with arguments passed
by value. Guardian and handler names may
be passed as parameters. Argus provides
synchronization mechanisms at two levels:
one for pseudoparallel processes; the other
for parallel actions.

The mutex type provides mutually ex-
clusive access to objects shared by processes
within a guardian. The seize construct de-
lays a process until it can gain possession
of the given mutex object; the process gives
up possession again when it finishes exe-
cuting the seize body. The pause call can
be made when a process encounters a delay
(such as an unavailable resource) and
wants to give up the mutex object while it
suspends for a while.

In order to allow parallelism of actions,
while retaining their atomic semantics,
atomic objects are used, which are instances

of atomic data types. Argus has some built-
in atomic types, and users can define their
own. The types of atomic objects deter-
mine the amount of parallelism of actions
permitted.

(3) Fault tolerance. Some of the guard-
ian’s objects may be declared as stable;
they are kept on stable storage. If a node
crashes, the guardian can be brought up
again by retrieving its stable objects from
store and executing its recover section.

Argus supports two types of atomic exe-
cutions: topactions and nested subactions
[Moss 19811. Changes only become per-
manent (and stable objects written back to
stable storage) when a topaction commits.
A subaction is indivisible, but its effects are
not made permanent until its top-level ac-
tion commits. If a top-level action aborts,
its subactions have no effect at all. On the
other hand, if a subaction aborts, its parent
action is not forced to abort. Nested sub-
actions can be used for dealing with com-
munication failures and for increasing par-
allelism. An action can also start up a new
topaction.

(4) Implementation and experience. A
UNIX-based implementation of Argus on
a collection of MicroVax II workstations is
described by Liskov et al. [19871.

One Argus application reported in the
literature is a distributed collaborative ed-
iting system (CES), which allows a group
of coauthors to edit a shared document
[Greif et al. 19861. A number of problems
with the language design were identified
during this experiment. When an action
aborts, for example, no user code is acti-
vated, the run-time system does all the
processing automatically. In some cases,
however, the application also needs to do
some processing after an abort (e.g., in CES
an abort sometimes implies updating a
screen). The implementors of CES reported
that their task would have been signifi-
cantly simplified had Argus provided more
explicit control over action aborts and
commits.

Another application implemented in
Argus, a distributed mail repository, is
described by Day [19871.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

304 ’ H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

Aeolus. Aeolus is a systems program-
ming language for implementing fault-tol-
erant servers for the Clouds distributed
operating system. Aeolus provides abstrac-
tions for the Clouds notions of objects,
actions, and processes, and provides access
to the recoverability and synchronization
features supported by Clouds. Both Clouds
and Aeolus are being developed at Georgia
Institute of Technology by Richard
LeBlanc and colleagues [LeBlanc and
Wilkes 1985; Wilkes and LeBlanc 1986,
19881.

(1) Parallelism. Aeolus is object based
in the sense that it supports data abstrac-
tions. Unlike in Emerald, however, objects
in Aeolus are passive (see Section 2.1.1).
Aeolus therefore supports aprocess concept
for providing parallel activity.

(2) Communication and synchronization.
Communication and synchronization in
Aeolus are expressed through operation in-
vocations on objects, as discussed below.

(3) Fault tolerance. We first give a brief
description of salient features of Clouds
related to fault tolerance and then discuss
how Aeolus supports these features. The
Clouds distributed operating system sup-
ports atomic transactions on objects. As in
Argus, actions can be nested. A Clouds
object is a passive entity that encapsulates
data. The data of an object can only be
manipulated by invoking operations (re-
mote procedures) defined for the object.
Objects are created dynamically. Each
instance of an object type has its own state,
consisting of the global variables used by
the implementation of the operations. Ob-
jects may be replicated in order to increase
availability [Wilkes and LeBlanc 19881.

Clouds supports so-called recoverability
and synchronization of objects. Recovera-
bility allows objects to survive processor
crashes. Synchronization ensures that par-
allel operation invocations are ordered such
that they do not interfere with each other.
Both features can be handled automatically
by the Clouds kernel or can be custom
programmed for higher efficiency, using se-
mantic knowledge about the problem being
implemented. Automatic recovery is based
on checkpointing the entire state of the

ACM Computing Surveys, Vol. 21, No. 3, September 1989

object, whereas custom recovery need only
checkpoint those parts of the object state
that have been indicated by the program-
mer. Automatic synchronization allows
multiple read-operations to execute simul-
taneously, but serializes all operations that
modify any part of the object state.

Aeolus gives programming language sup-
port for Clouds objects and actions. An
object type in Aeolus consists of a definition
part and an implementation part. The for-
mer contains the name of the object type
and the operations allowed on objects of
that type. It also specifies whether recovery
should be done by the system, by the pro-
grammer, or not at all, and it may specify
that synchronization is to be done auto-
matically. Programmed synchronization is
based on critical sections (for mutual exclu-
sion) and on explicit locking using various
lock types. The declaration of a lock type
specifies a number of modes, a compatibility
relation between the nodes, and (option-
ally) a domain of values to be locked. For
example, a read-write lock type over file
names of 14 characters can be declared as
follows:

type rw-lock is
lock (read: [read], write: [1)

domain is string(14)

This declaration introduces two modes,
“read” and “write,” and specifies that sev-
eral “read” locks on file names may be
obtained, but that “write” locks are exclu-
sive, as they are compatible with no other
mode. The usage of a domain allows a lock
to be separated from the data being locked.

The support provided by Aeolus for pro-
gramming with actions is rather low level.
The language provides direct access to the
Clouds primitives. Programmers may write
their own action event handlers, procedures
that are called when an action event (such
as commit or abort) happens.

Aeolus gives the programmer more flex-
ibility than Argus for optimizing recovery
and synchronization. On the negative side,
the many features thus introduced make
Aeolus a fairly complex language.

(4) Implementation and experience. A
compiler and run-time system for Aeolus

Programming Languages for Distributed Computing Systems l 305

have been implemented. Aeolus has not
yet been used for any major distributed
applications.

3.2 Languages with Logically Shared
Address Spaces

We now turn our attention from languages
with logically distributed address spaces to
languages providing logically shared ad-
dress spaces. In particular, we look at three
subclasses: parallel functional languages,
parallel logic languages, and languages
based on distributed data structures (see
Figure 4). Languages based on shared vari-
ables (e.g., Algol68 [van Wijngaarden et al.
19751, Concurrent Pascal [Brinch Hansen
19751, and MESA [Geschke et al. 19771)
are not discussed here. They can (at least
in principle) be implemented on a distrib-
uted system, using techniques like Shared
Virtual Memory [Li and Hudak 19861, but
they were designed for shared-memory
multiprocessors. (For a detailed discussion
of shared-variable languages, we refer the
reader to Andrews and Schneider [1983].)

3.2.1 Parallel Functional Languages

Pure functional languages are being studied
in several parallel programming projects
(see Table 10). The implicit parallelism in
functional languages is especially suited for
closely coupled architectures like dataflow
machines; whereas distributed computing
systems are in general more coarse grained.
Nevertheless, functional languages can be
used for programming distributed systems
by providing a mapping notation that effi-
ciently distributes computations among
processors. This approach is taken by the
language ParAlfl (discussed below).

Nonpure functional languages can also
be based on functional parallelism, but they
require a mechanism for determining which
expressions can be evaluated in parallel.
The language FX-87 uses an effect system
for this purpose. An effect is a static de-
scription of the side effects of an expres-
sion. The effect of a function can be
specified by the programmer and checked
by the compiler. The compiler uses the
effect information to do certain optimiza-

Table 10. Parallel Functional Languages

Parallel functional languages

Language

Blaze

Concurrent LISP
FX-87
Lisptalk
Multilisp
ParAlfl
PML
QLISP

Symmetric LISP

References

[Mehrotra and van Rosen-
dale 19871

[Sugimoto et al. 19831
[Jouvelot and Gifford 1988]
[Li 19881
[Halstead 19851
[Hudak 19861

[Reps 19881
[Gabriel and McCarthy
1984,1988]
[Gelernter et al. 1987a,

1987b]

tions and to determine which expressions
to evaluate in parallel.

Multilisp, QLISP, and Concurrent LISP
are intended primarily for shared-memory
machines and would be less efficient on
distributed systems. Blaze is a Pascal-based
language for parallel scientific program-
ming that supports the functional program-
ming model. It uses functional parallelism
as well as explicit parallelism through a
parallel loop-construct.

ParAlfl. ParAlfl [Hudak and Smith
1986; Hudak 1986, 19881 is a parallel func-
tional language developed by Paul Hudak
at Yale University.

(1) Parallelism. ParAlfl employs im-
plicit, functional parallelism. Functional
parallelism is usually fine grained, resulting
in many small tasks that can be done in
parallel. As there may be far more parallel
tasks than physical processors, ParAlfl
uses a mapping notation to specify which
expressions are to be evaluated on which
processors. An expression followed by the
annotation $on proc will be evaluated on
the processor determined by the expression
proc. This proc expression can be relative
to the currently executing processor. For
example, if the expression

(f(x) $on (&elf - 1))

+ k(y) Son (@elf + 1))

is executed by Processor P, then Processor
P - 1 executes f(x), Processor P + 1

ACM Computing Surveys, Vol. 21, No. 3, September 1989

306 . H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

executes g(y) (in parallel), and Processor
P itself performs the addition.

(2) Communication and synchroniza-
tion. Communication and synchroniza-
tion between parallel computations are
implicit, so there is no need for explicit
language constructs. A computation auto-
matically blocks when it needs the result
of another computation that is not yet
available.

The semantics of ParAlfl are based on
lazy evaluation, which means that an
expression is not evaluated until its result
is needed. In general, the programmer need
not be concerned with the order in which
computations are done. For efficiency rea-
sons, he or she may want to control the
evaluation order, however. For this pur-
pose, ParAlfl supports eager expressions,
which are evaluated before their results
are needed, and synchronizing expressions,
which constrain the evaluation order.

ParAlfl programs are fully deterministic,
provided that a few simple restrictions on
proc expressions are satisfied. This means
that the results of such programs do not
depend on how the computations are dis-
tributed among the processors. In particu-
lar, the results of a program will be the
same whether executed on a uniprocessor
or on a parallel system.

(3) Implementation and experience.
ParAlfl has been implemented on the En-
core Multimax multiprocessor and on two
distributed architectures (hypercubes): the
Intel iPSC and the NCube [Goldberg and
Hudak 19861. The language has been used
for implementing several parallel algo-
rithms (e.g., divide-and-conquer, linear
equations, partial differential equations)
[Hudak 19861.

3.2.2 Parallel Logic Languages

Many of the underlying ideas of paralle114
logic programming languages (see Table 11)
were introduced by Clark and Gregory for

I4 The logic programming community has adopted the
term concurrent logic language rather than parallel
logic language; for consistency with the rest of the
paper, we use the latter term, however.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Table 11. Parallel Logic Languages

Parallel logic languages

Language References

BRAVE [Reynolds et al. 19881
Concurrent PROLOG [Shapiro 19871
Delta PROLOG [Pereira et al. 19861
Guarded Horn clauses [Ueda 19851
Mandala [Ohki et al. 19871
oc [Takeuchi and Furukawa

19861
PARLOG [Clark and Gregory 19861
P-PROLOG [Yang and Aiso 1986, Yang

19881

QW [Sato 19871
Relational Language [Clark and Gregory 19811
Vulcan [Kahn et al. 19861

their Relational Language. Most parallel
logic languages are based on AND/OR
parallelism, shared logical variables, and
committed choice nondeterminism (see
Sections 2.1.1, 2.2.2, and 2.2.3). Examples
are Concurrent PROLOG and Flat Concur-
rent PROLOG (discussed below), PAR-
LOG (also discussed below), guarded Horn
clauses (GHC), and Oc. P-PROLOG is also
based on shared logical variables, but uses
a mechanism called exclusive guarded Horn
clauses for controlling OR-parallelism. For
a normal guarded Horn clause, if several
clauses for a given goal have a guard that
evaluates to “true,” then one of them is
chosen nondeterministically. For an exclu-
sive guarded Horn clause, however, the ex-
ecution of the goal suspends, until exactly
one guard evaluates to “true.” (Note that a
guard that initially succeeds can later fail,
if one of the variables used by the guard
gets bound.)

BRAVE is a parallel logic language that
does not use committed choice nondeter-
minism, but supports true OR-parallelism.
Mandala combines object-oriented and
logic programming. Quty combines func-
tional and logic programming.

Delta PROLOG is significantly different
from the languages mentioned above. It is
based on message passing rather than on
shared logical variables, it uses only AND-
parallelism, and it supports PROLOG’s
completeness of search by using distributed
backtracking.

Programming Languages for Distributed Computing Systems l 307

Concurrent PROLOG. Concurrent PRO-
LOG was designed by Ehud Shapiro of the
Weizmann Institute of Science in Rehovot,
Israel [Shapiro 1983, 1986, 19871. Concur-
rent PROLOG uses many of the ideas pro-
posed by Clark and Gregory for their
Relational Language. Shapiro and his
group, however, have developed several new
programming techniques for languages like
Concurrent PROLOG.

(1) Parallelism. Parallelism in Concur-
rent PROLOG comes from the AND-par-
allel evaluation of the goals of a conjunction
and from the OR-parallel evaluation of the
guards of a guarded Horn clause, as dis-
cussed in Sections 2.1.1 and 2.2.3. There is
no sequential AND-operator, so every goal
of a conjunction creates a new parallel pro-
cess. The textual ordering of the goals has
no semantic significance. A mapping nota-
tion has been designed for assigning pro-
cesses to processors, as discussed in Section
2.1.2.

(2) Communication and synchroniza-
tion. Parallel processes communicate
through shared logical variables. Synchro-
nization is based on suspension on read-
only variables. A variable is marked as read-
only by suffixing it with a “?.” Unification
of two terms suspends if an attempt is made
to instantiate a read-only variable. Thus,
Concurrent PROLOG extends the unifica-
tion algorithm of PROLOG [Robinson
19651 with a test for read-only variables.

Concurrent PROLOG uses guarded Horn
clauses to deal with nondeterminism. There
is no restriction on the kinds of goals that
may appear in a guard, so a guard may
create other AND-parallel processes. As
these processes may invoke new guards,
this may lead to a system of arbitrarily
nested guards. This creates a problem, as
only the guard of the clause that is com-
mitted to may have side effects (see Section
2.2.3). Therefore, a new environment is cre-
ated for every guard of a guarded Horn
clause, containing the bindings made by
that guard. On commitment, the environ-
ment of the chosen guard is unified with
the goal being solved. The environments of
all other guards are discarded. Maintenance

of these separate environments is difficult
to implement, even on a single-processor
machine. The need for environments has
been eliminated in a subsequent language,
called Flat Concurrent PROLOG (FCP)
[Mierowsky et al. 19851. In FCP, guards
may only contain a predefined set of pred-
icates, rather than user-defined predicates,
so nesting of guards is ruled out. This also
virtually eliminates OR-parallelism, but a
method has been designed to compile OR-
parallel programs into AND-parallel pro-
grams [Codish and Shapiro 19861.

(3) Implementation and experience. A
uniprocessor implementation of Flat Con-
current PROLOG exists for several types
of UNIX machines [Houri and Shapiro
19861. The implementation supports the
Logix programming environment and op-
erating system [Silverman et al. 19861. The
novelty in the implementation is its effi-
cient support for the creation, suspension,
activation, and termination of lightweight
processes. The performance is comparable
to conventional uniprocessor PROLOG
implementations.

A distributed implementation of FCP
was developed for the Intel iPSC hypercube
[Taylor et al. 1987b]. The key concepts in
the implementation are data distribution
by demand-driven structure copying and
the use of a specialized two-phase lock-
ing protocol to implement FCP’s atomic
unification.

Several applications have been written in
Concurrent PROLOG. Shapiro [19871 con-
tains separate papers on Concurrent
PROLOG implementations of systolic al-
gorithms, the Maxflow problem (determin-
ing the maximum flow through a network),
region finding in a self intersecting polygon,
image processing, the Logix system, a
distributed window system, a public-key
system, an equation solver, a compiler
for FCP, and a hardware simulator. Most
experiences reported are quite positive;
actual performance measurements are ab-
sent in nearly all papers.

Several programming techniques have
been developed that can be used for sys-
tems and application programming in

ACM Computing Surveys, Vol. 21, No. 3, September 1989

308 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

Concurrent PROLOG. Streams, bounded
buffers, and incomplete messages were
mentioned in Section 2.2.2. Streams and
merging of streams can be expressed
in Concurrent PROLOG [Shapiro and
Mierowsky 1984; Shapiro and Safra
19861. The “short-circuit” technique imple-
ments distributed termination detection.
“Metaprogramming” and “metainterpre-
ters” are studied by Safra and Shapiro
[1986]. Systolic programming is a well-
known technique for executing numerical
algorithms in parallel on special-purpose
hardware [Kung 19821. Shapiro [1984]
shows that systolic algorithms can also be
expressed in Concurrent PROLOG, so they
can be run on general-purpose hardware.
Concurrent PROLOG can also be used for
object-oriented programming [Shapiro and
Takeuchi 19831. Kahn et al. have designed
a preprocessor language for Concurrent
PROLOG (called Vulcan), which allows
object-oriented programs to be written with
less verbosity [Kahn et al. 19861.

PARLOG. PARLOG is a parallel logic
programming language being developed at
Imperial College, London, by Keith Clark
and Steve Gregory [Clark and Gregory
1985,1986; Foster et al. 1986; Gregory 1987;
Ring-wood 1988; Clark 19881. It is a descen-
dant of IC-PROLOG [Clark et al. 19821
and the Relational Language [Clark and
Gregory 19811. Like Concurrent PROLOG,
PARLOG is based on AND/OR parallelism
and committed choice nondeterminism.
The main innovation introduced by the
language is the use of mode declarations to
control synchronization.

(1) Parallelism. PARLOG uses AND/
OR parallelism that can be controlled by
the programmer. There are two different
conjunction operators: “,” evaluates both
conjuncts in parallel, and “8~” evaluates
them sequentially (left to right). The
clauses for a relation can be separated
either by a “.” or by a ‘I;” operator. In
finding a matching clause for a goal, all
clauses separated by a “.” are tried in par-
allel (OR-parallelism). Clauses after a “;”
are only tried if all clauses before the sep-

arator do not match. In the example below,

1. A t (B & C), (D & E);
2. A+F,G.
3. AtH& J.

Clause 1 is tried first, by doing “(B & C)”
and “(D & E)” in parallel. If Clause 1 fails,
Clauses 2 and 3 are tried in parallel. F and
G are evaluated in parallel, but Hand J are
done sequentially.

The presence of sequential AND/OR op-
erators requires the implementation to de-
termine when a group of parallel processes
has terminated, which is not a trivial task
in a distributed environment. For example,
in “B & C,” all the processes created by B
must have terminated before C is started.
This additional complexity is the main rea-
son why Concurrent PROLOG supports
only the parallel operators.

(2) Communication and synchroniza-
tion. Processes communicate through
shared logical variables and synchronize by
suspending on unbound shared variables.
PARLOG has a mechanism for specifying
which processes may generate a binding for
a variable. For every relation, a mode dec-
laration must be given that specifies which
arguments are input and which are output.
For example, the declaration

mode append(listl?, list2?,
appended-list-).

defines the first two arguments to the ap-
pend relation to be input and the third one
to be output. An actual argument appearing
in an input position will only be used for
input matching. If unification of the argu-
ment with the corresponding term in the
head can only succeed by binding a variable
appearing in the input argument, then the
unification will suspend. The unification
will be resumed when some other process
generates a binding for the variable. After
commitment, any actual argument appear-
ing in an output position is unified with the
output argument in the head of the clause.

PARLOG uses three specialized unifica-
tion primitives for input matching, equality
testing, and output unification. In contrast,
Concurrent PROLOG has a general unifi-

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Programming Languages for Distributed Computing Systems 309

cation algorithm, which also has to take Table 12. Languages Based on Distributed

care of read-only variables. Data Structures

Like Concurrent PROLOG, PARLOG
uses guarded Horn clauses for nondeter-
minism. A guard in PARLOG may test any
input variables and bind local variables of
the clause, but it may not bind variables
passed in an input argument. This is
checked at compile time, using mode dec-
larations. If a guard tries to bind an output
variable, the actual binding is established
only after commitment. Unlike Concur-
rent PROLOG, no environments need be
maintained.

Distributed data structures

Language References

Linda [Ahuja et al. 19861
Orca [Bal and Tanenbaum 19881
SDL [Roman et al. 19881
Tuple Space Smalltalk [Matsuoka and Kawai 19881

(3) Implementation and experiertce.
The compiler can use the information in a
mode declaration to increase efficiency. A
sequential implementation of PARLOG is
described by Foster et al. [19861. The com-
piler first compiles PARLOG programs
into a subset called Kernel PARLOG, in
which all unifications are performed by ex-
plicit unification operators. Kernel PAR-
LOG programs are subsequently compiled
to code for an abstract machine, called the
Sequential PARLOG Machine (SPM),
which is emulated on a real machine.

University [Gelernter 1985; Ahuja et al.
1986; Carrier0 et al. 19861. Linda is not
based on shared variables or message pass-
ing, but uses a novel communication mech-
anism: the Tuple Space. It supports (but
does not enforce) a programming method-
ology based on distributed data structures
and replicated workers. The goal of this
methodology is to release the programmer
from thinking in terms of parallel compu-
tations and simultaneous events, hence
making parallel programming conceptually
similar to sequential programming.

A distributed implementation of PAR-
LOG on a network of SUNS is described by
Foster [19881. The implementation uses
some of the ideas of the distributed FCP
implementation (see above), but differs in
supporting distributed termination and
deadlock detection. Also, as PARLOG does
not have atomic unification, distributed
unification is implemented without using a
two-phase locking protocol.

(1) Parallelism. Linda provides a sim-
ple primitive (called eval) to create a se-
quential process.15 Linda does not have a
notation for mapping processes to proces-
sors. With the replicated worker model
(discussed below), there is no need for such
a notation, as each processor executes a
single process.

PARLOG has been used for discrete
event simulation, the specification and
verification of communication protocols,
a medical diagnosis expert system, and
natural-language parsing [Gregory 1987;
Clark 19881.

(2) Communication and synchroniza-
tion. Linda’s underlying communication
model, the Tuple Space (TS), was discussed
in Section 2.2.2. Processes communicate by
inserting new tuples into TS and by reading
or removing existing tuples. Processes
synchronize by waiting for tuples to be
available, using blocking read and in op-
erations.

3.2.3 Distributed Data Structures

Distributed data structures are used in
Linda, Orca (both discussed below), SDL,
and Tuple Space Smalltalk (see Table 12).

Linda. Linda is being developed by
David Gelernter and colleagues at Yale

Traditional communication primitives
(e.g., message passing and remote proce-
dures) can be simulated using operations
on TS [Gelernter 19851, so algorithms that
split up the work among several communi-
cating processes can be expressed in Linda.

I5 An earlier version of Linda provided constructs for
parallel execution of a group of statements [Gelernter
19851. We describe the current version here, which is
based on C.

ACM Computing Surveys, Vol. 21, No. 3, September 1939

310 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

Alternatively, Linda programs can use the
so-called replicated workers style [Ahuja et
al. 19861. Such a program consists of P
identical (replicated) worker processes, one
for each processor. The work to do is stored
in a distributed data structure, which is
implemented in TS and is accessible by all
worker processes. Each process repeatedly
takes some work from the data structure,
performs it, puts back the results into the
data structure, and possibly generates some
more work. All workers essentially perform
the same kind of task, until all work is
done. The workers are loosely coupled; they
only interact indirectly through the data
structure. This model is claimed to have
several advantages [Carrier0 et al. 19861.
In principle, any number of processors can
be used (including just one). Also, the work
is automatically and fairly distributed
among the workers. Finally, process man-
agement is easy, as there usually is only
one process per processor.

(3) Fault tolerance. A fault-tolerant
network kernel for Linda, based on repli-
cation of the TS, has been designed by Xu
[Xu 19881.

(4) Implementation and experience.
Implementations exist for running Linda
programs on Bell Labs’ S/Net [Carrier0
and Gelernter 19861, an Ethernet-based
MicroVax network, the iPSC hypercube
[Gelernter and Carrier0 19861, the Encore
Multimax, the Sequent Balance, and other
configurations. Different implementation
strategies are discussed by Carrier0 [19871.

A hardware coprocessor has been de-
signed by Venkatesh Krishnaswamy that
supports Linda communication patterns
and tuple matching [Ahuja et al. 19881.
Several (on the order of thousands) nodes,
consisting of some CPU and the Linda
coprocessor, can be arranged into a grid
using this new hardware to form a highly
parallel Linda Machine.

One of Linda’s main goals is to achieve
high speedups for real-life problems. Appli-
cations for which Linda programs have
been written include DNA-sequence com-
parison, database search, VLSI simulation,
heuristic monitoring, the Traveling Sales-

ACM Computing Surveys, Vol. 21, No. 3, September 1989

man problem, parameter sensitivity anal-
ysis, ray tracing, numerical problems
[Gelernter and Carrier0 19881, and a dis-
tributed backtracking package [Kaashoek
and Bal 19881.

Orca. Orca is being developed by Henri
Bal and Andrew Tanenbaum.at the Vrije
Universiteit in Amsterdam [Bal and Ta-
nenbaum 1988; Bai 19891. The language is
primarily intended for the implementation
of parallel algorithms on distributed sys-
tems. Orca allows processes on different
processors to share data structures that are
engapsulated in passive objects, which are
instances of abstract data types.

(1) Parallelism. Parallelism in Orca is
based on sequential processes. Orca pro-
vides an explicit fork primitive for spawn-
ing a new child process and passing
parameters to it. Parameters may be value
or shared, as specified in the declaration
of the child process.

With value parameters, a copy of the
actual parameter is created and passed to
the child process. This mode is allowed for
any type of parameter, including data struc-
tures like sets and graphs. Unlike most
procedural languages, Orca does not pro-
vide pointers for building graphs; instead,
graphs are built-in data types, just like
arrays and sets. This eliminates the prob-
lem described in Section 2.2.1 of pass-
ing complex data structures around in a
distributed system.

The second parameter mode-shared-
is only allowed for parameters of (user-
defined) abstract data types. The actual
parameter must be a variable of the same
abstract type. The variable, called a data
object, is shared by the parent and child
process. A child process may pass the object
as shared parameter to its children, and so
on, so, in general, there will be a hierarchy
of processes sharing objects.

(2) Communication and synchroniza-
tion. Processes communicate indirectly
through shared data objects. As described
above, such objects are instances of ab-
stract data types. An abstract data type
definition consists of a specification part
and an implementation part. The speci-

Programming Languages for Distributed Computing Systems 9 311

fication part lists the operations that can
be applied to objects of the given type. Each
operation is applied to a single object; other
objects (or regular data) can be passed as
value parameters. All operations to the
same object are executed indivisibly. For
example, if X is a shared object of type
IntegerObject, and the specification part
of IntegerObject contains the operation

operation increment(by: integer);

then the invocation

X$increment(lB);

applies the operation increment to object
X, using the constant 12 as value parame-
ter. If multiple processes simultaneously
try to increment object X, then all these
invocations will (at least conceptually) be
serialized.

The implementation part of an abstract
data type specifies the data contained in
each variable (object) of the abstract type
and contains code implementing the oper-
ations. An operation implementation may
consist of one or more guarded statements.
If so, an invocation of the operation blocks
until at least one of the guards succeeds;
next, one true guard is chosen nondeter-
ministically, and its statements are exe-
cuted without blocking again. An operation
cannot block halfway during its execution.

(3) Implementation and experience.
The shared data-object model can be im-
plemented efficiently on a distributed sys-
tem by replicating objects. If a shared object
is changed infrequently, communication
overhead is decreased by maintaining cop-
ies of the object on those processors that
read it frequently and by applying read-
only operations to the local copy. There are
several different ways of deciding where to
store copies of an object and how to update
all these copies in a consistent way [Bal
and Tanenbaum 19881. One prototype im-
plementation of Orca exists that replicates
all objects on all processors and updates the
copies using a reliable, ordered broadcast
primitive (see Section 2.2.1). Orca has also
been implemented on top of the Amoeba
distributed operating system [Tanenbaum
and van Renesse 19851. This implementa-
tion uses selective replication of objects,

based on statistics collected during execu-
tion by the run-time system.

A compiler front-end for Orca has been
built using the Amsterdam Compiler Kit
[Tanenbaum et al. 19831. The compiler
translates Orca programs into a machine-
independent intermediate code, which is
subsequently compiled into object code and
linked with a machine-specific run-time
system. The compiler also generates de-
scriptive information to be used by the
run-time system, such as which opera-
tions modify their objects and which are
read-only.

Orca has been used for the implementa-
tion of several applications, including par-
allel branch-and-bound, computer chess,
and graph algorithms.

4. CONCLUSIONS

The main reasons for running an applica-
tion on a distributed computing system are
high speed through parallelism, high relia-
bility through replication of processes
and data, and functional specialization. In
addition, there are applications that are
inherently distributed, such as sending
electronic mail between geographically sep-
arated computers. The main issues distin-
guishing distributed programming from
sequential programming are parallelism,
communication and synchronization, and
partial failures.

Parallelism was already employed in lan-
guages designed for implementing unipro-
cessor operating systems, which are easier
to understand as collections of processes
than as monolithic programs. The earliest
languages were based on pseudoparallelism
(no two processes are ever executed simul-
taneously), but with the advent of multiple-
processor systems, interest shifted toward
employing real parallelism to speed up pro-
grams. Parallelism was also welcomed by
the designers of programming languages
based on paradigms like logic program-
ming, functional programming, and object-
oriented programming. They realized that
parallelism might be the solution to the
problem of obtaining an efficient imple-
mentation of their languages. This has led
to languages in which the details of man-
aging parallelism are handled more by the

ACM Computing Surveys, Vol. 21, No. 3, September 1989

312 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

run-time system and less by the program-
mer, yielding a higher level of abstraction.

The early pseudoparallel languages and
operating systems used shared variables for
interprocess communication. Mechanisms
like semaphores and monitors were in-
vented for synchronizing access to shared
data in a clean way. A different approach
was taken in the RC4000 operating system
[Brinch Hansen 19731, which used message
passing for interprocess communication.
Later, message passing was also introduced
as a programming language primitive
[Hoare 19781. This resulted in many
Pascal-like languages based on some form
of message passing. These languages were
used for programming distributed systems
as well as shared-memory multiprocessors.
The next step was the development of
higher level paradigms for interprocess
communication, such as rendezvous, re-
mote procedure calls (RPC), and distrib-
uted data structures.

A similar development took place in the
area of techniques for fault-tolerant dis-
tributed applications. Early languages for

distributed programming left the program-
mer to deal with fault tolerance. Later on,
languages based on atomic transactions
were introduced. The atomic transaction is
a powerful mechanism for managing par-
allel access to data. Languages based on
this abstraction take care of a lot of low-
level details, such as locking and version
management.

As a result of all these developments,
we see several languages that differ sig-
nificantly from their Pascal-based pred-
ecessors and that provide high-level
abstractions for distributed programming.
Unlike many of their predecessors, how-
ever, most novel languages have yet to es-
tablish themselves as practical tools for the
development of distributed software. As the
advances in hardware technology do not
show any signs of slowing down, we expect
distributed architectures to continue to be-
come more widely available, more generally
used, and to be programmed in increasingly
advanced languages. A summary of the lan-
guages mentioned in this paper is given in
Table 13.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

APPENDIX

Language

Programming Languages for Distributed Computing Systems

Table 13. Overview of Languages for Distributed Systems

Section Description

l 313

ABCL/l 3.1.6
Act 1 3.1.6
Ada 3.1.3
Aeolus 3.1.7

ALPS
AMPL
Argus
Avalon

3.1.6
3.1.2
3.1.7
3.1.7

transaction system
Blaze 3.2.1 Language for scientific programming, based on parallel loops and functional

(implicit) parallelism
BNR Pascal 3.1.3 Language based on rendezvous
BRAVE 3.2.2 Logic language for artificial-intelligence applications
Camelot Library 3.1.7 Language based on atomic transactions, used for Camelot distributed

Cantor
CCSP
Cedar
CLIX
Cluster 86
CMAY
Concurrent C
Concurrent C
Concurrent CLU
Concurrent LISP
Concurrent PROLOG
ConcurrentSmalltalk
CONIC
CSM
CSP-s
CSP/SO
CSP
CSPS
CSSA
Delta PROLOG
Dislang
Distributed Smalltalk
DP
DPL-82
ECSP
Emerald
EPL
FRANK
FX-87
GDPL
GHC
GYPSY

3.1.1
3.1.6
3.2.2
3.1.5
3.1.6
3.1.4
3.1.2
3.1.1
3.1.6
3.1.6
3.1.2
3.2.1
3.1.1
3.2.2
3.1.2

Hvbrid 3.1.6
Joyce 3.1.1
LADY 3.1.2
LIMP 3.1.1
Linda 3.2.3
Lisntalk 3.2.1
LYNX 3.1.4
MC 3.1.3
Mandala 3.2.2
Mentat 3.1.6
MENYMA/S 3.1.2

3.1.6
3.1.1
3.1.4
3.1.6
3.1.6
3.1.2
3.1.2
3.1.3
3.1.4
3.2.1
3.2.2
3.1.6
3.1.2
3.1.1
3.1.1
3.1.1
3.1.1

Object-oriented language for modeling distributed systems
Language based on actor model
Language based on rendezvous
Language based on atomic transactions, used for Clouds distributed oper-
ating system
Object-oriented language for parallel and distributed systems
Language based on asynchronous message passing
Language based on atomic transactions
Language based on atomic transactions, used for Camelot distributed

transaction system
Language based on actor model
CSP-based language for operating-system design
Language based on remote procedure calls
Object-oriented language
Object-oriented language
FORTRAN-based language with asynchronous message passing
Language based on asynchronous message passing
Extension of C with processes and rendezvous
Language based on remote procedure calls
Functional language with processes and shared variables
Logic language based on read-only variables
Object-oriented language
Configuration language with asynchronous message passing
Language based on synchronous message passing
Language based on synchronous message passing
Language based on synchronous message passing
Language based on synchronous message passing
CSP-based language for modeling distributed systems
Pascal-based language using actor model, used for INCAS project
Logic language based on message passing and distributed backtracking
Language with multiple communication primitives
Object-oriented language
Language based on remote procedure calls
Language based on asynchronous message passing
Language based on synchronous message passing
Object-based language, employs object mobility
Object-based language, used for Eden distributed operating system
Language based on asynchronous message passing
Functional language based on effect system
Language based on synchronous message passing
Logic language based on guarded Horn clauses
Language for implementing verifiable programs, based on asynchronous

message passing
Object-oriented language
Secure language based on CSP and Pascal
Language based on asynchronous message passing, used for INCAS project
Language based on synchronous message passing
Language based on Tuple Space model
Functional language based on CSP and LISP
Language based on remote procedure calls
Language based on rendezvous
Logic/object-oriented language for knowledge programming
Object-oriented language based on macro data flow
Language based on asynchronous message passing

ACM Computing Surveys, Vol. 21, No. 3, September 1989

314 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

Table 13. (Continued)

Language Section Description

Multilisp 3.2.1

NIL 3.1.2

Functional language
Secure language based on process model, typestates, and asynchronous

oc 3.2.2

Occam 3.1.1

message passing
Logic language
Language based on synchronous message passing, used for Inmos

transputers
OIL 3.1.6 Object-oriented/logic/procedural language, used for FAIM-1

Ondine
Orca

::ient&4’K
P-PROLOG
ParAlfl
PARLOG
ParMod
Pascal+CSP
Pascal-FC
Pascal-m
PCL
Planet
Platon
PLITS
PML
POOL
Port Language
Pronet

Qut y
QLISP
Raddle
RBCSP
Relational Language
SDL

3.1.6

3.2.3

3.1.6

3.1.4

3.2.2

3.2.1

3.2.2

3.1.2

3.1.1

3.1.5

3.1.1

3.1.2

3.1.1

3.1.2

3.1.2

3.2.1

3.1.6

3.1.2

3.1.2

3.2.2

3.2.1

3.1.6

3.1.1

3.2.2

3.2.3

multiprocessor
Object-oriented language
Language based on shared data objects
Object-oriented language for modeling knowledge systems
Language based on remote procedure calls
Logic language based on exclusive guarded Horn clauses
Functional language with mapping notation
Logic language based on mode declarations
Pascal-based language with modules and asynchronous message passing
Language integrating Pascal and CSP
Language with multiple communication primitives
Language with synchronous message passing through mailboxes
Language based on asynchronous message passing
Pascal-based language with synchronous message passing through links
Pascal-based language with asynchronous message passing
Language based on asynchronous message passing
Functional language
Object-oriented language, used for Philips DOOM machine
Language with asynchronous message passing through ports
Language based on asynchronous message passing
Language combining logic and functional programming
Functional language
Object-based language for designing large distributed systems
Language based on synchronous message passing
Logic language, predecessor of PARLOG and Concurrent PROLOG
Language based on shared dataspace, extends tuple space with atomic

transactions
SINA 3.1.6 Object-oriented language
Sloop 3.1.6 Object-oriented language based on virtual object space
SR 3.1.5 Language with multiple communication primitives
StarMod 3.1.5 Language with multiple communication primitives
Symmetric LISP 3.2.1 Parallel functional language
Vulcan 3.2.2 Logic object-oriented language
ZEN0 3.1.2 Language based on asynchronous message passing

ACKNOWLEDGMENTS

We would like to thank Ehud Shapiro for his contri-

bution to our discussion of parallel logic programming
languages. Peter Wegner suggested many improve-

ments to the paper, including the distinction between

logical and physical distribution. We are grateful to

Nick Carriero, David Cheriton, Per Brinch Hansen,
and the anonymous referees, who gave us useful com-

ments on various parts of the paper. Greg Andrews,

Andrew Black, Narain Gehani, Steve Gregory, Tony

Hoare, Paul Hudak, Norman Hutchinson, Gary

Leavens, Barbara Liskov, and Tom Wilkes helped us
in getting the description of their languages accurate

and up-to-date. Erik Baalbergen, Susan Flynn Hum-

mel, Dick Grune, Frans Kaashoek, Robert Halstead,

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Clifford Neuman, Robbert van Renesse, Guido van

Rossum, Irvin Shizgal, Chris Steketee, Kuo-Chung

Tai, and Hans Tebra were very kind to read and

comment on earlier versions of the paper. Finally, we
would like to thank the usenet mod.os readership for

contributions to the “what is a distributed system”
discussion.

REFERENCES

ABRAMSKY, S., AND BORNAT, R.1983. Pascal-m: A
language for loosely coupled distributed systems.
In Distributed Computing Systems, Y. Paker and
J.-P. Verjus, Eds. Academic Press, London, pp.
163-189.

Programming Languages for Distributed Computing Systems 315

ACKERMAN, W. B. 1982. Data flow languages. Com-
puter 15, 2 (Feb.), 15-25.

ADAMO, J.-M. 1982. Pascal+CSP, merging Pascal
and CSP in a parallel processing oriented lan-
guage. In Proceedings of the 3rd Znternational
Conference on Distributed Computing Systems
(Miami/Ft. Lauderdale, Fla., Oct. 18-22). IEEE,
New York, pp. 542-547.

AGHA, G. 1986. An overview of actor languages. SZG-
PLAN Not. (ACM) 22, 10 (Oct.), 58-67.

AHUJA, S., CARRIERO, N., AND GELERNTER, D. 1986.
Linda and friends. Computer Z9,8 (Aug.), 26-34.

AHUJA, S., CARRIERO, N., GELERNTER, D;, AND
KRISHNASWAMY, V. 1988. Matching language
and hardware for parallel computation in the
Linda machine. IEEE Trans. Comput. C-37, 8
(Aug.), 921-929.

AKSIT, M., AND TRIPATHI, A. 1988. Data abstraction
mechanisms in SINA/st. In Proceedings of Ob-
ject-oriented Programming Systems, Languages
and Applications 1988. SZGPLAN Not. (ACM)
23, 11 (Nov.), 267-275.

ALMES, G. T. 1986. The impact of language and
system on remote procedure call design. In Pro-
ceedings of the 6th International Conference on
Distributed Computing Systems (Cambridge,
Mass., May 19-23). IEEE, New York, pp.
414-421.

ALMES, G. T., BLACK, A. P., LAZOWSKA, E. D., AND
NOE, J. D. 1985. The Eden system: A technical
review. IEEE Trans. Softw. Eng. SE-II, 1 (Jan.),
43-59.

AMBLER, A. L., GOOD, D. I., BROWNE, J. C., BURGER,
W. F., COHEN, R. M., HOCH, C. G., AND WELLS,
R. E. 1977. GYPSY: A language for specifica-
tion and implementation of verifiable programs.
SZGPLAN Not. (ACM) 12,3 (Mar.), l-10.

AMERICA, P. 1987. POOL-T: A parallel object-
oriented language. In Object-Oriented Concurrent
Programming, A. Yonezawa and M. Tokoro, Eds.
MIT Press, Cambridge, Mass., pp. 199-220.

ANDREWS, G. R. 1981. Synchronizing resources.
ACM Trans. Program. Lang. Syst. 3, 4 (Oct.),
405-430.

ANDREWS, G. R., 1982. The distributed program-
ming language SR-Mechanisms, design and im-
plementation. Softw. Prac. Exper. 12, 8 (Aug.),
719-753.

ANDREWS, G. R., AND OLSSON, R. A. 1986. The
evolution of the SR programming language. Dis-
trib. Comput. 1, 3 (July), 133-149.

ANDREWS, G. R., AND SCHNEIDER, F. B. 1983.
Concepts and notations for concurrent program-
ming. ACM Comput. Suru. 15, 1 (Mar.), 3-43.

ANDREWS, G. R., OLSSON, R. A., COFFIN, M., EL-
SHOFF, I., NILSEN, K., PURDIN, T., AND TOWN-
SEND, G. 1988. An overview of the SR language
and implementation. ACM Trans. Program.
Lang. Syst. 20, 1 (Jan.), 51-86.

ATHAS, W. C., AND SEITZ, C. L. 1988.
Multicomputers: Message-passing concurrent
computers. Computer 21, 8 (Aug.), 9-24.

BAALBERGEN, E. H. 1988. Design and implementa-
tion of parallel make. Comput. Syst. 1, 2 (Spring),
135-158.

BACKUS, J. 1978. Can programming be liberated
from the von Neumann style? A functional style
and its algebra of programs, Commun. ACM 21,
8 (Aug.), 613-641.

BAGRODIA, R., AND CHANDY, K. M. 1985. A micro-
kernel for distributed applications. In Proceed-
ings of the 5th International Conference on Dis-
tributed Computing Systems (Denver, Colo., May
13-17). IEEE, New York, pp. 140-149.

BAIARDI, F., RICCI, L., AND VANNESCHI, M. 1984.
Static type checking of interprocess communica-
tion in ECSP. In Proceedings of the SIGPLAN
84 Symposium on Compiler Construction. SZG-
PLAN Not. (ACM) 29,6 (June), 290-299.

BAL, H. E. 1989. The shared data-object model as a
paradigm for programming distributed systems.
Ph.D. dissertation, Dept. of Mathematics and
Computer Science, Vriie Universiteit. Amster-
dam,.the Netherlands. -

BAL, H. E., AND TANENBAUM, A. S. 1988.
Distributed programming with shared data. In
Proceedings of the IEEE CS 1988 International
Conference on Computer Languages (Miami, Fla.,
Oct. 9-13). IEEE, New York, pp. 82-91.

BAL, H. E., VAN RENESSE, R., AND TANENBAUM, A.
S. 1987. Implementing distributed algorithms
using remote procedure calls. In Proceedings of
the AFZPS National Computer Conference (Chi-
cago, Ill., June 15-18). AFIPS Press, Reston, Va.,
pp. 4999506.

BALL, J. E., WILLIAMS, G. J., AND Low, J. R.
1979. Preliminary ZEN0 language description.
SZGPLAN Not. (ACM) 14, 9 (Sept.), 17-34.

BENNETT, J. K. 1987. The design and implementa-
tion of distributed Smalltalk. In Proceedings of
Object-Oriented Programming Systems, Lan-
guages and Applications 1987. SZGPLAN Not.
(ACM) 22,12 (Dec.), 318-330.

BERNSTEIN, A. J. 1980. Output guards and non-
determinism in “Communicating Sequential Pro-
cesses”. ACM Trans. Program. Lang. Syst. 2, 2
(Apr.), 234-238.

BIRMAN, K. P., AND JOSEPH, T. A. 1987. Reliable
communication in the presence of failures. ACM
Trans. Comput. Syst. 5, 1 (Feb.), 47-76.

BIRRELL, A. D., AND NELSON, B. J. 1984.
Implementing remote procedure calls. ACM
Trans. Comput. Syst. 2, 1 (Feb.), 39-59.

BLACK, A., HUTCHINSON, N., JUL, E., AND LEVY, H.
1986. Object structure in the Emerald system.
In Proceedings of Object-Oriented Programming
Systems, Languages and Applications 1986. SZG-
PLAN Not. (ACM) 21, 11 (Nov.), 78-86.

BLACK, A. P., HUTCHINSON, N. C., MCCORD, B. C.,
AND RAJ, R. K. 1984. EPL Programmer’s Guide.
Univ. of Washington, Seattle, June.

BLACK, A., HUTCHINSON, N., JUL, E., LEVY, H., AND
CARTER, L. 1987. Distribution and abstract
types in Emerald. IEEE Trans. Softw. Eng. SE-
13, 1 (Jan.), 65-76.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

316 l H. E. Bal, J, G. Steiner, and A. S. Tanenbaum

BLOCH, J. J. 1988. The Camelot library. In Guide to
the Camelot Distributed Transaction Facility: Re-
lease 1, A. Z. Spector and K. R. Swedlow, Eds.
Carnegie-Mellon University, Pittsburgh, Pa.,
pp. 29-62.

BORG, A., BAUMBACK, J., AND GLAZER, S. 1983. A
message system supporting fault tolerance. In
Proceedings of the 9th Symposium on Operating
Systems Principles (Bretton Woods, N.H., Oct.
10-13). ACM-SIGOPS, New York, pp. 90-99.

BRUNCH HANSEN, P. 1973. Operating System Prin-
ciples. Prentice-Hall, Englewood Cliffs, N.J.

BRINCH HANSEN, P. 1975. The programming lan-
guage concurrent Pascal. IEEE Trans. Softw.
Eng. SE-I, 2 (June), 199-207.

BRINCH, HANSEN, P. 1978. Distributed processes:
A concurrent programming concept. Commun.
ACM 22,ll (Nov.), 934-941.

BRINCH HANSEN, P. 1987. Joyce-A programming
language for distributed systems. Softw. Pratt.
Exper. 17, 1 (Jan.), 29-50.

BURNS, A. 1988. Programming in Occam 2. Addison-
Wesley, Wokingham, England.

BURNS, A., AND DAVIES, G. 1988. Pascal-FC: A lan-
guage for teaching concurrent programming. SIG-
PLAN Not. (ACM) 23, 1 (Jan.), 58-66.

BURNS, A., LISTER, A. M., AND WELLING, A. J.
1987. A review of Ada tasking. Lecture Notes in
Computer Science, Vol. 262. Springer-Verlag,
Berlin.

BURTON, F. W. 1984. Annotations to control par-
allelism and reduction order in the distributed
evaluation of functional programs. ACM Trans.
Program. Lang. Syst. 6, 2 (Apr.), 159-174.

CARPENTER, B. E., AND CAILLIAU, R. 1984.
Experience with remote procedure calls in a real-
time control system. Softw. Pratt. Exper. 14, 9
(Sept.), 901-907.

CARRIERO, N. 1987. The implementation of tuple
space machines. Res. Rep. 567, Ph.D. disserta-
tion, Dept. of Computer Science, Yale Univ., New
Haven, Conn., Dec.

CARRIERO, N., AND GELERNTER, D. 1986. The
S/Net’s Linda kernel. ACM Trans. Comput. Syst.
4,2 (May), 110-129.

CARRIERO, N., GELERNTER, D., AND LEICHTER, J.
1986. Distributed data structures in Linda. In
Proceedings of the 13thACM Symposium on Prin-
ciples of Programming Languages (St. Petersburg,
Fla., Jan. 13-15). ACM, New York, pp. 236-242.

CLARK, K. L. 1988. PARLOG and its applications.
IEEE Trans. Softw. Eng. SE-14,12, (Dec.), 1792-
1804.

CLARK, K. L., AND GREGORY, S. 1981. A rela-
tional language for parallel programming. In
Proceedings of the 1981 ACM Conference on Func-
tional Programming Languages and Computer Ar-
chitecture (Portsmouth, N.H., Oct.). ACM, New
York, pp. 171-178.

CLARK, K. L., AND GREGORY, S. 1985. Notes on the
implementation of PARLOG. J. Logic Program.
2, 1 (Apr.), 17-42.

CLARK, K. L., AND GREGORY, S. 1986. PARLOG:
Parallel programming in logic. ACM Trans. Pro-
gram. Lang. Syst. 8, 1 (Jan.), 1-49.

CLARK, K. L., MCCABE, F. G., AND GREGORY, S.
1982. IC-PROLOG language features. In Logic
Programming, S.-A. Tarnlund, Ed. Academic
Press, London, pp. 253-266.

CMELIK, R. F., 1986. Concurrent Make: The Design
and Implementation of a Distributed Program-in
Concurrent C. AT&T Bell Laboratories. Murrav
Hill, N.J.

CMELIK, R. F., GEHANI, N. H., AND ROOME, W. D.
1986. Experience with Distributed Versions of
Concurrent C. AT&T Bell Laboratories, Murray
Hill, N.J. (Also to appear in IEEE Trans. Softw.

Ew.)

CMELIK, R. F., GEHANI, N. H., AND ROOME, W. D.
1987. Fault Tolerant Concurrent C: A Tool for
Writing Fault Tolerant Distributed Prozrams.
AT&T-Bell Laboratories, Murray Hill, N.i.

CODISH, M., AND SHAPIRO, E. 1986. Compiling OR-
parallelism into AND-parallelism. In Proceedings
of the 3rd International Conference on Logic Pro-
gramming (London, July 14-18), Springer-
Verlag, Berlin, pp. 283-297.

COOK, R. P. 1980. *MOD-A language for distrib-
uted programming. IEEE Trans. Softw. Eng. SE-
6, 6 (Nov.), 563-571.

COOPER, E. C. 1985. Replicated distributed pro-
grams. In Proceedings of the 10th Symposium on
Operating Systems Principles (Rosario Resort
Orcas Island, Wash., Dec.). New York, ACM-
SIGOPS, pp. 63-78.

COOPER, R. C. B.. AND HAMILTON, K. G. 1988.
Preserving abstraction in concurrent program-
ming. IEEE Trans. Softw. Enc. SE-14. 2 (Feb.).
258-1263.

,.

Cox, I. J., AND GEHANI, N. H. 1986. Concurrent
programming and robotics. AT&T Bell Labora-
tories, Murray Hill, N.J.

CROOKES, D., AND ELDER, J. W. G. 1984. An exper-
iment in language design for distributed systems.
Softw. Pratt. Exper. 14, 10 (Oct.), 957-971.

DANNENBERG, R. B. 1981. AMPL: Design, imple-
mentation and evaluation of a multiprocessing lan-
guage. Carnegie-Mellon University. Pittsburgh,
Pa.

DAVIS, A. L., AND ROBISON, S. V. 1985. The archi-
tecture of the FAIM-1 symbolic multiprocessing
system. In 9th International Joint Conference on
Artificial Intelligence (Los Angeles, Calif., Aug.
13-18). pp. 32-38.

DAY, M. S. 1987. Replication and reconfiguration in
a distributed mail repository. TR-376, MIT Lab-
oratory for Computer Science, Cambridge, Mass.,
Apr.

DEPARTMENT OF DEFENSE, U.S. 1983. Reference
manual for the Ada programming language.
ANSI/MIL-STD-1815A, DoD,Washington, D.C.,
Jan.

DETLEFS, D. L., HERLIHY, M. P., AND WING, J. M.
1988. Inheritance of synchronization and recov-

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Programming Languages for Distributed Computing Systems l 317

ery properties in Avalon/C++. Computer 21, 12
(Dec.), 57-69.

DIJKSTRA, E. W. 1975. Guarded commands, nonde-
terminacy, and formal derivation of programs.
Commun. ACM 18,s (Aug.), 453-457.

EICHHOLZ, S. 1987. Parallel programming with
ParMod. In Proceedings of the 1987 International
Conference on Parallel Processing (St. Charles,
Ill., Aug. 17-21). Penn State University, pp.
377-380.

ELRAD, T., AND MAYMIR-DUCHARME, F. 1986.
Distributed languages design: Constructs for con-
trolling preferences. In Proceedings of the 1986
International Conference on Parallel Processing
(St. Charles, Ill., Aug. 19-22). Penn State Uni-
versity, pp. 176-183.

ERICSON, L. W. 1982. DPL-82: A language for dis-
tributed processing. In Proceedings of the 3rd
International Conference on Distributed Comput-
ing Systems (Miami/Ft. Lauderdale, Fla., Oct.).
pp. 526-531.

FELDMAN, J. A. 1979. High level programming for
distributed computing. Commun. ACM 22, 6
(June), 353-368.

FINKEL, R., AND MANBER, U. 1987. DIB-A distrib-
uted implementation of backtracking. ACM
Trans. Program. Lang. Syst. 9, 2 (Apr.), 235-256.

FISHER, A. J. 1986. A multi-processor implementa-
tion of Occam. Softw. Pratt. Exper. 16, 10 (Oct.),
875-892.

FORMAN, I. R. 1986. On the design of large distrib-
uted systems. In Proceedings of the IEEE CS 1986
International Conference on Computer Languages
(Miami, Fla., Oct. 27-30). IEEE, New York, pp.
84-95.

FOSTER, I. 1988. Parallel implementation of PAR-
LOG. In Proceedings of the International Confer-
ence on Parallel Processing (Vol. ZZ) (St. Charles,
Ill., Aug. 15-19). Penn State University, pp.
9-16.

FOSTER, I., GREGORY, S., RINGWOOD, G., AND SATOH,
K. 1986. A sequential implementation of PAR-
LOG. In Proceedings of the 3rd International Con-
ference on Logic Programming (London, July
14-18). Springer-Verlag, Berlin, pp. 149-156.

GABRIEL, R. P., AND MCCARTHY, J. 1984. Queue-
based multi-processing Lisp. In Proceedings of
the 1984 ACM Sympostum on Lisp and FuncsonaZ
Programming (Austin. Tex.. Aua. 6-8). ACM,
New York, pp. 25-43. -

GABRIEL, R. P., AND MCCARTHY, J. 1988. QLISP.
In Parallel Computation and Computers for Arti-
ficial Intelligence, J. Kowalik, Ed. Kluwer Aca-
demic Publishers, Deventer, The Netherlands,
pp. 63-89.

GAMMAGE, N. D., KAMEL, R. F., AND CASEY, L. M.
1987. Remote rendezvous. Softw. Pratt. Exper.
17, 10 (Oct.), 741-755.

GEHANI, N. H. 1984a. Ada: Concurrent Program-
ming. Prentice-Hall, Englewood Cliffs, N.J.

GEHANI, N. H. 1984b. Broadcasting sequential pro-
cesses (BSP). IEEE Trans. Softw. Eng. SE-IO, 4
(July), 343-351.

GEHANI, N. H. 1987. Message Passing: Synchronous
uersus Asynchronous. AT&T Bell Laboratories,
Murray Hill, N.J.

GEHANI, N. H., AND CARGILL, T. A. 1984.
Concurrent programming in the Ada language:
The polling bias. Softw. Pratt. Exper. 24,5 (May),
413-427.

GEHANI, N. H., AND ROOME, W. D. 1986a.
Concurrent C. Softw. Pratt. Exper. 26, 9 (Sept.),
821-844.

GEHANI, N. H., AND ROOME, W. D. 198613.
Concurrent C++: Concurrent Programming with
Class(es). AT&T Bell Laboratories, Murray Hill,
N.J.

GEHANI, N. H., AND ROOME, W. D. 1988.
Rendezvous facilities: Concurrent C and the Ada
language. IEEE Trans. Softw. Eng. SE-14, 11
(Nov.), 1546-1553.

GEHANI, N. H., AND ROOME, W. D. 1989. The Con-
current C Programming Language. Silicon Press,
Summit, N.J.

GELERNTER, D. 1984. A note on systems program-
ming in Concurrent Prolog. In Proceedings of the
Znte&ational Symposium on Logic Programming
(Atlantic City, N.J., Feb. 6-S). IEEE, New York,
pp. 76-82.

GELERNTER, D. 1985. Generative communication in
Linda. ACM Trans. Program. Lang. Syst. 7, 1
(Jan.), 80-112.

GELERNTER, D., AND CARRIERO, N. 1986. Linda on
hypercube multicomputers. In Proceedings of the
1985 SIAM Conference (Knoxville, Tenn.). Soci-
ety for Industrial and Applied Mathematics, Phil-
adelphia, Pa., pp. 45-55.

GELERNTER, D., AND CARRIERO, N. 1988.
Applications experience with Linda. In Proceed-
ings of PPEALS 1988. SZGPLAN Not. (ACM) 23,
9 (Sept.), 173-187.

GELERNTER, D., JAGANNATHAN, S., AND LONDON, T.
1987a. Environments as first class objects. In
Proceedings of the 14thACM Symposium on Prin-
ciples of Programming Languages (Munich, West
Germany, Jan. 21-23). ACM, New York.

GELERNTER, D., JAGANNATHAN, S., AND LONDON, T.
1987b. Parallelism, persistence and meta-clean-
liness in the symmetric Lisp interpreter. In Pro-
ceedings of the Symposium on Interpreters and
Interpretive Techniques. SZGPLAN Not. (ACM)
22, 7 (July), 274-282.

GESCHKE, C. M., JR., MORRIS, J. H., AND SATTER-
THWAITE, E. H. 1977. Early experience with
Mesa. Commun. ACM 20,s (Aug.), 540-553.

GOLDBERG, A., AND ROBSON, D. 1983. Smalltalk-80:
The Language and Its Implementation. Addison-
Wesley, Reading, Mass.

GOLDBERG, B., AND HUDAK, P. 1986. Alfalfa: Dis-
tributed graph reduction on a hypercube multi-
processor. Lecture Notes in Computer Science,

ACM Computing Surveys, Vol. 21, No. 3, September 1989

318 . H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

vol. 279 (Proceedings of t/m Santa Fe Graph Re-
duction Workshop). Springer-Verlag, New York,
pp. 94-113.

GRAHAM, P. C. J. 1985. Using BINS for inter-
process communication. SZGPOiN Not. (ACM)
20, 2 (Feb.), 32-41.

GREGORY, S. 1987. Parallel Logic Programming in
PARLOG. Addison-Wesley, Wokingbam, Eng-
land.

GREIF, I., SELIGER, R., AND WEIHL, W. 1986.
Atomic data abstractions in a distributed collab-
orative editing system. In Proceedings of the 13th
ACM Symposium on Principles of Programming
Lunguages (St. Petersburg, Fla., Jan.). ACM, New
York, pp. 160-172.

GRIMSHAW, A. S., AND LIU, J. W. S. 1987. Mentat:
An object-oriented macro data flow system. In
Proceedings of Object-Oriented Programming
Systems, Languages and Applications 1987. SIG-
PLAN Not. (ACM) 22, 12 (Dec.), 35-47.

HALSTEAD, R. H., JR. 1985. Multilisp: A language
for concurrent symbolic computation. ACM
Trans. Program. Lung. Syst. 7, 4 (Oct.), 501-538.

HAMILTON, K. G. 1984. A remote procedure call
system. Tech. Rep. 70, Ph.D. dissertation, Com-
puter Laboratory, Univ. of Cambridge, Cam-
bridge, U.K., Dec.

HERLIHY, M., AND LISKOV, B. 1982. A value trans-
mission method for abstract data types. ACM
Trans. Program. Lang. Syst. 4, 4 (Oct.), 527-551.

HEWITT, C. 1977. Viewing control structures as pat-
terns of passing messages. Artif. Zntell. 8,3 (June),
323-364.

HOARE, C. A. R. 1978. Communicating sequential
processes. Commun. ACM 21,8 (Aug.), 666-677.

HOARE, C. A. R. 1981. The emperor’s old clothes.
Commun. ACM 24,2 (Feb.), 75-83.

HOARE, C. A. R. 1985. Communicating Sequential
Processes. Prentice-Hall, Englewood Cliffs, N.J.

HOLT, R. C. 1982. A short introduction to Concur-
rent Euclid. SZGPLAN Not. (ACM) 27, 5 (May),
60-79.

HOURI, A., AND SHAPIRO, E. 1986. A sequential
abstract machine for Flat Concurrent Prolog.
Rep. CS86-20, Dept. of Computer Science, The
Weizmann Institute of Science, Rehovot, Israel,
July.

HUDAK, P. 1986. Para-functional programming.
Computer 19,8 (Aug.), 60-70.

HUDAK, P. 1988. Exploring parafunctional program-
ming: Separating the what from the how. IEEE
Softw. 5, 1 (Jan.), 54-61.

HUDAK, P., AND SMITH, L. 1986. Para-functional
programming: A paradigm for programming mul-
tiprocessor systems. In Proceedings of the 13th
ACM Symposium on Principles of Programming
Languages (St. Petersburg, Fla., Jan. 13-15).
ACM, New York, pp. 243-254.

HULL, M. E. C., AND DONNAN, G. 1986.
Contextually communicating sequential proc-
esses-a software engineering approach. Softw.
Pratt. Exper. 16, 9 (Sept.), 845-864.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

HUNT, J. G., 1979. Messages in typed languages.
SIGPLAN Not. (ACM) 14, 1 (Jan.), 27-45.

HUR, J. H., AND CHON, K. 1987. Overview of a
parallel object-oriented language CLIX. Lecture
Notes in Computer Science, Vol. 276 (Proceedings
of the European Conference on Object-Oriented
Programming). Springer-Verlag, Berlin, pp.
265-273.

HUTCHINSON, N. C. 1987. Emerald: An object-based
language for distributed programming. Tech.
Rep. 87-01-01, Ph.D. dissertation, Dept. of Com-
puter Science, Univ. of Washington, Seattle, Jan.

INMOS LTD. 1984. Occam Programming Manual.
Prentice-Hall, Englewood Cliffs, N.J.

ISHIKAWA, Y., AND TOKORO, M. 1987. Orient84/K:
An object-oriented concurrent programming lan-
guage for knowledge representation. In Object-
Oriented Concurrent Programming, A. Yonezawa
and M. Tokoro, Eds. MIT Press, Cambridge,
Mass., pp. 159-198.

JAZAYERI, M., GHEZZI, C., HOFFMAN, D., MIDDLE-
TON, D., AND SMOTHERMAN, M. 1980. CSP/80:
A language for communicating sequential pro-
cesses. In Proceedings of IEEE COMPCON Full
1980 (New York, Sept.). IEEE, New York, pp.
736-740.

JONES, A. K., AND SCHWARZ, P. 1980. Experience
using multiprocessor systems-A status report.
ACM Comput. Suru. 12, 2 (June), 121-165.

JOSEPH, T. A., AND BIRMA~, K. P. 1986. LOW cost
management of replicated data in fault-tolerant
distributed systems. ACM Trans. Comput. Syst.
4, 1 (Feb.), 54-70.

JOUVELOT, P., AND GIFFORD, D. K. 1988. The FX-
87 interpreter. In Proceedings of the IEEE CS
1988 International Conference on Computer Lan-
guuges (Miami, Fla., Oct. 9-13). IEEE, New York,
pp. 65-72.

JUL, E. 1988. Object mobility in a distributed object-
oriented system. Tech. Rep. 88-12-06, Ph.D. dis-
sertation, Univ. of Washington, Seattle, Dec.

JUL, E., LEVY, H., HUTCHINSON, N., AND BLACK, A.
1988. Fine-grained mobility in the Emerald
system. ACM Trans. Comput. Syst. 6, 1 (Feb.),
109-133.

KAASHOEK, M. F., AND BAL, H. E. 1988. An evalu-
ation of the distributed data structure paradigm
in Linda. IR-173, Dept. of Mathematics and Com-
puter Science, Vrije Universiteit, Amsterdam,
Dec.

KAHN, K., TRIBBLE, E. D., MILLER, M. S., AND
BOBROW, D. G. 1986. Objects in concurrent
logic programming languages. Proceedings of Ob-
ject-oriented Programming Systems, Languages
and Applications 1986. SIGPLAN Not. (ACM)
22, 11 (Nov.), 242-257.

VAN KATWIJK, J. VAN 1987. The Ada compiler. Ph.D.
dissertation, Dept. of Mathematics and Computer
Science, Delft Univ. of Technology, Delft, The
Netherlands, Sept.

KERNIGHAN, B. W., AND RITCHIE, D. M. 1978. The
C Programming Language. Prentice-Hall, Engle-
wood Cliffs, N.J.

Programming Languages for Distributed Computing Systems 319

KERRIDGE, J., AND SIMPSON, D. 1986. Operating Systems Principles (Pacific Grove,
Communicating parallel processes. Softw. Pratt. Calif., Dec. 10-12). ACM-SIGOPS, New York,
Exper. 16, 1 (Jan.), 63-86. pp. 33-42.

KIEBURTZ, R. A., AND SILBERSCHATZ, A. 1979.
Comments on “Communicating Sequential Pro-
cesses.” ACM Trans. Program. Lang. Syst. 1, 2
(Oct.), 218-225.

LISKOV, B. 1982. On linguistic support for distrib-
uted programs. IEEE Trans. Softw. Eng. SE-8, 3
(May), 203-210.

KOCH, A., AND MAIBAUM, T. S. E. 1982. A message
oriented language for system applications. In Pro-
ceedings of the 3rd International Conference on
Distributed Computing Systems (Fort Lauderdale,
Fla., Oct. 18-22). IEEE, New York, pp. 824-832.

KRAMER, J., AND MAGEE, J. 1985. Dynamic config-
uration for distributed systems. IEEE Trans.
Softw. Eng. SE-II, 4 (Apr.), 424-436.

KRUATRACHLJE, B., AND LEWIS, T. 1988. Grain size
determination for parallel processing. IEEE
Softw. 5, 1 (Jan.), 23-32.

KUNG, H. T. 1982. Why systolic architectures? Com-
puter 15, 1 (Jan.), 37-46.

LAMPSON, B. W. 1981. Atomic transactions. In Dis-
tributed Systems-Architecture and Implementa-
tion, B. W. Lampson, Ed. Springer-Verlag, New
York, pp. 246-265.

LISKOV, B. 1984. Overview of the Argus language
and system. Programming Methodology Group
Memo 40, MIT Laboratory for Computer Science,
Cambridge, Mass., Feb.

LISKOV, B. 1988. Distributed programming in Argus.
Commun. ACM 31,3 (Mar.), 300-312.

LISKOV, B., AND SCHEIFLER, R. 1983. Guardians and
actions: Linguistic support for robust, distributed
programs. ACM Trans. Program. Lang. Syst. 5,3
(July), 381-404.

LEBLANC, R. J., AND MACCABE, A. B. 1982. The
design of a programming language based on con-
nectivity networks. In Proceedings of the 3rd In-
ternational Conference on Distributed Computing
Systems (Fort Lauderdale, Fla., Oct. 18-22).
IEEE, New York, pp. 532-541.

LISKOV, B., CURTIS, D., JOHNSON, P., AND
SCHEIFLER, R. 1987. Implementation of Argus.
In Proceedings of the Zlth Symposium on Oper-
ating Systems Principles (Austin, Tex., Nov.
S-11). ACM-SIGOPS, New York, pp. 111-122.

LISKOV, B., SNYDER, A., ATKINSON, R., AND SCHAF-
FERT, C. 1977. Abstraction mechanisms in
CLU. Commun. ACM 20,8 (Aug.), 564-576.

LUCCO, S. E., 1987. Parallel programming in a vir-
tual object space. In Proceedings of Object-
Oriented Programming Systems, Languages and
Applications 1987. SIGPLAN Not. (ACM) 22, 12
(Dec.), 26-34.

LEBLANC, R. J., AND WILKES, T. 1985. Systems
programming with objects and actions. In Pro-
ceedings of the 5th International Conference on
Distributed Computing Systems (Denver, Colo.,
May 13-17). IEEE, New York, pp. 132-139.

LEBLANC, T. J., AND COOK, P. An analysis of lan-
guage models for high-performance communica-
tion in local-area networks. SZGPLAN Not.
(ACM) 18,6 (June), 65-72.

LUJUN, S., AND ZHONGXIU, S. 1987. An object-
oriented programming language for developing
distributed software. SIG’PLAN Not. (ACM) 22,
8 (Aug.), 51-56.

LESSER, V., SERRAIN, D., AND BONAR, J. 1979.
PCL-A process oriented job control language.
In Proceedings of the 1st International Conference
on Distributed Computing Systems (Huntsville,
Ala., Oct. l-5). IEEE, New York, pp. 315-329.

LI, C. 1988. Concurrent programming language Lisp-
talk. SIGPLAN Not. (ACM) 23, 4 (Apr.), 71-80.

LI, C.-M., AND LIU, M. T. 1981. Dislang: A distrib-
uted programming language/system. In Proceed-
ings of the 2nd International Conference on
Distributed Computing Systems (Paris, France,
Apr. S-10). IEEE, New York, pp. 162-172.

LI, K., AND HUDAK, P. 1986. Memory coherence in
shared virtual memory systems. In Proceedings of
the 5th Annual ACM Symposium on Principles of
Distributed Computing (Calgary, Canada, Aug.
13-18). ACM, New York, pp. 229-239.

LIEBERMAN, H. 1987. Concurrent object-oriented
programming in Act 1. In Object-Oriented Con-
current Programming. A. Yonezawa and M.
Tokoro, Eds. MIT Press, Cambridge, Mass.,
pp. 9-36.

LISKOV, B. 1979. Primitives for distributed comput-
ing. In Proceedings of the 7th Symposium on

MARSLAND, T. A., OLAFSSON, M., AND SCHAEFFER,
J. 1986. Multiprocessor tree-search experi-
ments. In Aduances in Computer Chess 4, D. F.
Beal, Ed. Pergamon Press, Oxford, pp. 37-51.

MATSUOKA, S., AND KAWAI, S. 1988. Using tuple
space communication in distributed object-
oriented languages. In Proceedings of Object-
Oriented Programming Systems, Languages and
Applications 1988. SZGPLAN Not. (ACM) 23, 11
(Nov.), 276-284.

MAY, D. 1983. Occam. SIGPLAN Not. (ACM) 18, 4
(Apr.), 69-79.

MAY, D., AND SHEPHERD, R. 1984. The transputer
implementation of Occam. In Proceedings of the
International Conference on Fifth Generation
Computer Systems 1984 (Tokyo, Japan, Nov.
6-9), pp. 533-541.

MEHROTRA, P., AND ROSENDALE, J. VAN. 1985. The
Blaze language: A parallel language for scientific
programming. Parallel Comput. 5, 3 (Nov.),
339-361.

MIEROWSKY, C., TAYLOR, S., SHAPIRO, E., LEVY, J.,
AND SAFRA, M. 1985. The design and imple-
mentation of Flat Concurrent Prolog. Rep. CS85-
09, Dept. of Computer Science, The Weizmann
Institute of Science, Rehovot, Israel, July.

MILEWSKI, J. 1984. Loglan implementation of the
AMPL message-passing system. SIGPLAN Not.
(ACM) 19, 9 (Sept.), 21-29.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

320 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

MOSS, J. E. B. 1981. Nested transactions: An ap-
proach to reliable distributed computing. Tech.
Ren. MlT/LCS/TR-260. Ph.D. dissertation. MIT
Laboratory for’ Computer Science, Camdridge,
Mass.

MUNDIE, D. A., AND FISHER, D. A. 1986. Parallel
processing in Ada. Computer 19, 8 (Aug.), 20-25.

MYERS, W. 1987. Ada: First users-Pleased; Pro-
spective users-Still hesitant. Computer 20, 3
(Mar.), 68-73.

NEHMER, J., HABAN, D., MATTERN, F., WYBRANIETZ,
D., AND ROMBACH, H. D. 1987. Key concepts
in the INCAS multicomputer project. IEEE
Trans. Softu~. Eng. SE-13,8 (Aug.), 913-923.

NELSON, B. J. 1981. Remote procedure call. Rep.
CMU-CS-81-119, Dept. of Computer Science,
Carnegie-Mellon Univ., Pittsburgh, Pa., May.

NC, K.-W., AND LI, W. 1984. GDPL-A generalized
distributed programming language. In Proceed-
ings of the 4th International Conference on Dis-
tributed Computing Systems (San Francisco,
Calif., May 14-18). IEEE, New York, pp. 69-78.

NIERSTRASZ, 0. M. 1987. Active objects in hybrid.
In Proceedings of Object-Oriented Programming
Systems, Languages and Applications 1987. SZG-
PLAN Not. (ACM) 22,12 (Dec.), 243-253.

OGIHARA, T., KAJIHARA, Y., NAGANO, S., AND ARI-
SAWA, M. 1986. Concurrency introduction to an
object-oriented language system ondine. In 3rd
National Conference Record A-5-l. Japan Society
for Software Science and Technology, Japan.

OHKI, M., TAKEUCHI, A., AND FURUKAWA, K. 1987.
An object-oriented programming language based
on the parallel logic programming language KLl.
In Proceedings of the 4th International Conference
on Logic Programming (Melbourne, Australia
(May 25-29). MIT Press, Cambridge, Mass., pp.
894-909.

PAPERT, S. 1981. Mindstorms: Children, Computers
and Powerful Ideas. Basic Books, New York.

PATNIAK, L. M., AND BADRINATH, B. R. 1984.
Implementation of CSP-S for description of dis-
tributed algorithms. Comput. Lang. 9,3, 193-202.

PEREIRA, L. M., MONTEIRO, L., CUNHA, J., AND
APARICIO, J. N. 1986. Delta Prolog: A distrib-
uted backtracking extension with events. In Pro-
ceedings of the 3rd Znternationnl Conference
on Logic Programming (London, July 14-19).
Springer-Verlag, Berlin, pp. 69-83.

POWELL, M. L., AND PRESOTTO, D. L. 1983.
Publishing: A reliable broadcast communication
mechanism. In Proceedings of the 9th Symposium
on Operating Systems Principles (Bretton Woods,
N.H., Oct.). ACM-SIGOPS, New York, pp.
100-109.

RANKA, S., WON, Y., AND SAHNI, S. 1988.

Programming a hypercube multicomputer. IEEE
Softw. 5, 5 (Sept.), 69-77.

REPPY, J. H. 1988. Synchronous operations as first-
class values. In Proceedings of the SZGPLAN 88
Conference on Programming Language Design

and Implementation (Atlanta, Ga., June 22-24).
ACM, New York, pp. 250-259.

REYNOLDS, T. J., BEAUMONT, A. J., CHENG, A. S. K.,
DELGADO-RANNAURO, S. A., AND SPACEK, L. A.
1988. BRAVE-A parallel logic language for
artificial intelligence. Future Generations Com-
put. Syst. 4, 1 (Aug.), 69-75.

RINGWOOD, G. A. 1988. PARLOG and the dining
logicians. Commun. ACM 31, 1 (Jan.), 10-25.

RIZK, A., AND HALSALL, F. 1987. Design and imple-
mentation of a C-based language for distributed
real-time systems. SZGPLAN Not. (ACM) 22, 6
(June), 83-96.

ROBINSON, J. A. 1965. A machine-oriented logic
based on the resolution principle. J. ACM 12, 1
(Jan.), 23-41.

ROMAN, G.-C., CUNNINGHAM, H. C., AND EHLERS,
M. E. 1988. A shared dataspace language sup-
porting large-scale concurrency. In Proceedings
of the 8th International Conference on Distributed
Computing Systems (San Jose, Calif., June
13-17). IEEE, New York, pp. 265-272.

ROMAN, G.-C., EHLERS, M. E., CUNNINGHAM, H. C.,
AND LYKINS, R. H. 1987. Toward comprehen-
sive specification of distributed systems. In Pro-
ceedings of the 7th International Conference on
Distributed Computing Systems (Berlin, Sept.
21-25). IEEE, New York, pp. 282-289.

ROOME, W. D. 1986. Discrete event simulation in
Concurrent C. AT&T Bell Laboratories, Murray
Hill, N.J.

ROPER, T. J., AND BARTER, J. 1981. A communicat-
ing sequential process language and implemen-
tation. Softw. Pratt. Exper. 12, 11 (Nov.),
1215-1234.

RUSSELL, R. M. 1978. The CRAY-1 computer sys-
tem. Commun. ACM 21, 1 (Jan.), 63-72.

SAFRA, S., AND SHAPIRO, E. 1986. Meta interpreters
for real. In Proceedings of ZFIP Congress ‘86
(Dublin, Ireland, Sept.). IFIP, pp. 271-278.

SATO, M. 1987. Quty: A concurrent language based
on logic and function. In Proceedings of the 4th
International Conference on Logic Programming
(Melbourne, Australia, May 25-29). MIT Press,
Cambridge, Mass., pp. 1034-1056.

SCOTT, M. L. 1985. Design and implementation of a
distributed systems language. Tech. Rep. 596,
Ph.D. dissertation, Computer Science Dept.,
Univ. of Wisconsin at Madison, May.

SCOTT, M. L. 1986. The interface between distrib-
uted operating system and high-level program-
ming language. In Proceedings of the 1986
International Conference on Parallel Processing
(St. Charles, Ill., Aug. 19-22). Penn State Uni-
versity, pp. 242-249.

SCOTT, M. L. 1987. Language support for loosely-
coupled distributed programs. IEEE Trans.
Softw. Eng. SE-13, 1 (Jan. 1987), 88-103.

SCOTT, M. L., AND COX, A. L. 1987. An empirical
study of message-passing overhead. In Prked-
ings of the 7th Znternational Conference on Dis-

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Programming Languages for Distributed Computing Systems l 321

tributed Computing Systems (Berlin, Sept.
21-25). IEEE, New York, pp. 536-543.

SEITZ, C. L. 1985. The cosmic cube. Commun. ACM
28, 1 (Jan.), 22-33.

SHAPIRO, E. 1983. A subset of Concurrent Prolog
and its interpreter. ICOT TR-003, Institute for
New Generation Computer Technology, Tokyo,
Japan, Feb.

SHAPIRO, E. 1984. Systolic programming: A para-
digm of parallel processing. In Proceedings of
International Conference on Fifth Generation
Computer Systems 1984 (Tokyo, Japan, Nov.
6-9). pp. 458-471.

SHAPIRO, E. 1986. Concurrent Prolog: A progress
report. Computer 19,8 (Aug.), 44-58.

SHAPIRO, E. 1987. Concurrent Prolog: Collected Pa-
pers. MIT Press, Cambridge, Mass.

SHAPIRO, E., AND MIEROWSKY, C. 1984. Fair,
biased, and self-balancing merge operators: Their
specifications and implementation in Concurrent
Prolog. J. New Generation Comput. 2,3,221-240.

SHAPIRO, E., AND SAFRA, S. 1986. Multiway merge
with constant delay in Concurrent Prolog. J. New
Generation Comput. 4,3, 211-216.

SHAPIRO, E., AND TAKEUCHI, A. 1983. Object-ori-
ented programming in Concurrent Prolog. J. New
Generation Comput. I, 1, 25-48.

SILBERSCHATZ, A. 1984. Cell: A distributed comput-
ing modularization concept. IEEE Trans. Softw.
Eng. SE-IO, 2 (Mar.), 178-185.

SILVERMAN, W., HIRSCH, M., HOURI, A., AND SHAP-
IRO, E. 1986. The Logix system user manual.
Rep. CS86-21, Dept. of Computer Science, The
Weizmann Institute of Science, Rehovot, Israel.

SLOMAN, M., AND KRAMER, J. 1987. Distributed
Systems and Computer Networks. Prentice-Hall,
Englewood Cliffs, N.J.

SMITH-THOMAS, B. 1986. Managing I/O in concur-
rent programming: The Concurrent C window
manager. AT&T Bell Laboratories, Murray Hill,
N.J.

SPECTOR, A. Z., BLOCH, J. J., DANIELS, D. S.,
DRAVES, R. P., DUCHAMP, D., EPPINGER, J. L.,
MENEES, S. G., AND THOMPSON, D. S.
1986. The Camelot project. Rep. CMU-CS-86-
166, Dept. of Computer Science, Carnegie-Mellon
Univ., Pittsburgh, Pa., Nov.

STAUNSTRUP, J. 1982. Message passing communi-
cation versus procedure call communication.
Softw. Pratt. Erper. 12, 3, (March) 223-234.

STROM, R. E. 1986. A comparison of the object-
oriented and process paradigms. SZGPLAN Not.
(ACM) 21, 10 (Oct.), 88-97.

STROM, R. E., AND YEMINI, S. 1983. NIL: An inte-
grated language and system for distributed pro-
gramming. SZGPLAN Not. (ACM) 28, 6 (June),
73-82.

STROM, R. E., AND YEMINI, S. 1984. The NIL dis-
tributed systems programming language: A status
report. In Proceedings of the NSF/SRC Seminar

Semantics of Concurrency (Pittsburgh, Pa., July
9-11). Springer-Verlag, New York, pp. 512-523.

STROM, R. E., AND YEMINI, S. 1985a. Synthesizing
distributed and parallel programs through opti-
mistic transformations. In Proceedings of the
1985 International Conference on Parallel Pro-
cessing (St. Charles, Ill. Aug. 20-23). Penn State
University, pp. 632-641.

STROM, R. E., AND YEMINI, S. 1985b. Optimistic
recovery in distributed systems. ACM Trans.
Comput. Syst. 3, 3 (Aug.), 204-226.

STROM, R. E., AND YEMINI, S. 1986. Typestate: A
programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. SE-
12, 1 (Jan.), 157-171.

STROM, R. E., YEMINI, S., AND WEGNER, P. 1985.
Viewing Ada from a process model perspective.
In Proceedings of the Conference on Ada in Use
(Paris, France, May 14-18). ACM, New York.

STROUSTRUP, B. 1986. The C++ Programming Lan-
guage. Addison-Wesley, Reading, Mass.

SUGIMOTO, S., AGUSA, K., TABATA, K., AND OHNO,
Y. 1983. A multi-processor system for Concur-
rent Lisp. In Proceedings of the 1983 International
Conference On Parallel Processing (Bellaire,
Mich.). pp. 135-143.

SWINEHART, D. C., ZELLWEGER, P. T., AND HAG-
MANN, R. B. 1985. The structure of Cedar. In
Proceedings of ACM SIGPLAN 85 Symposium
on Language Issues in Programming Environ-
ments. SZGPLAN Not. (ACM) 20, 7 (July),
230-244.

TAKEUCHI, A., AND FURUKAWA, K. 1985. Bounded
buffer communication in Concurrent Prolog. J.
New Generation Comput. 3, 2, 145-155.

TAKEUCHI, A., AND FURUKAWA, K. 1986. Parallel
logic programming languages. In Proceedings of
the 3rd International Conference on Logic Pro-
gramming (London, July 14-18). Springer-
Verlag, Berlin, pp. 242-254.

TANENBAUM, A. S. 1987. Operating Systems: Design
and Implementation. Prentice-Hall, Englewood
Cliffs, N.J.

TANENBAUM, A. S., AND VAN RENESSE, R. 1985.
Distributed operating systems. ACM Comput.
Sum. 17, 4 (Dec.), 419-470.

TANENBAUM, A. S., AND VAN RENESSE, R. 1988. A
critique of the remote procedure call paradigm.
In Proceedings of the EUTECO 88 Conference
(Vienna, Austria, Apr. 20-22). North-Holland,
Amsterdam, pp. 775-783.

TANENBAUM, A. S., VAN STAVEREN, H., KEIZER,
E. G., AND STEVENSON, J. W. 1983. A practical
toolkit for making portable compilers. Commun.
ACM 26,9 (Sept.), 654-660.

TAYLOR, S., Av-RON, E., AND SHAPIRO, E. 1987a. A
layered method for process and code mapping.
J. New Generation Comput. 5, 2, 185-205.

TAYLOR, S., SAFRA, S., AND SHAPIRO, E. 198713. A
parallel implementation of Flat Concurrent
Prolog. Znt. J. Parallel Program. 15, 3, 245-275.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

322 l H. E. Bal, J. G. Steiner, and A. S. Tanenbaum

TRELEAVEN, P. C., BROWNBRIDGE, D. R., AND HOP-
KINS, R. P. 1982. Data-driven and demand-
driven computer architectures. ACM Comput.
Sure. 14, 1 (Mar.), 93-143.

TSUJINO, Y., ANDO, M., ARAKI, T., AND TOKURA, N.
1984. Concurrent C: A programming language
for distributed systems. Softw. Pruct. Exper. 14,
11 (Nov.), 1061-1078.

UEDA, K. 1985. Guarded Horn clauses. ICOT TR-
103, Institute for New Generation Computer
Technology, Tokyo, Japan, June.

XU, A. S. 1988. A fault-tolerant network kernel for
Linda. Tech. Rep. 424, MIT Laboratory for Com-
puter Science, Cambridge, Mass., Aug.

YANG, R. 1988. P-Prolog: A Parallel Logic Program-

ming Language. World Scientific Publishing Co.,
Singapore.

YANG, R., AND Also, H. 1986. P-Prolog: A parallel
logic language based on exclusive relation. In
Proceedings of the 3rd International Conference
on Logic Programming (London, July 14-18).
Springer-Verlag, Berlin, pp. 255-269.

VISHNUBHOTIA, P. 1988. Synchronization and
scheduling in ALPS objects. In Proceedings of the
8th International Conference on Distributed Com-
puting Systems (San Jose, Calif.. June 13-19).
IEEE, New York, pp. 256-264.

YEMINI, S. 1982. On the suitability of Ada multi-
tasking for expressing parallel algorithms. In
Proceedings of the AdaTec Conference on Ada
(Arlington, Va., Oct. 6-8). ACM, New York, pp.
91-97.

YOKOTE, Y., AND TOKORO, M. 1986. The design and
implementation of ConcurrentSmalltalk. In
Proceedings of Object-Oriented Programming
Systems, Languages and Applications 1986. SIG-
PLAN Not. (ACM) 21,ll (Nov.), 331-340.

YOKOTE, Y., AND TOKORO, M. 1987a. Concurrent
programming in ConcurrentSmalltalk. In Object-
Oriented Concurrent Programming, A. Yonezawa
and M. Tokoro, Eds. MIT Press, Cambridge,
Mass., pp. 129-158.

WEIHL, W., AND LISKOV, B. 1985. Implementation
of resilient, atomic data types. ACM Trans. Pro-
gram. Lang. Syst. 7,2 (Apr.), 244-269.

VAN WIJNGAARDEN, A., MAILLOUX, B. J., PECK, J. E.
L., KOSTER, C. H. A., SINTZOFF, M., LINDSEY,
C. H., MEERTENS, L. G. L. T., AND FISKER,
R. G. 1975. Revised report on the algorithmic
language Algol 68. Acta Znf. 5, l-236.

WILKES, C. T., AND LEBLANC, R. J. 1986. Rationale
for the design of Aeolus: A systems programming
language for an action/object system. In Proceed-
ings of the IEEE CS 1986 International Confer-
ence on Computer Languages (Miami, Fla., Oct.).
IEEE, New York, pp. 107-122.

WILKES, C. T., AND LEBLANC, R. J. 1988.

Distributed locking: A mechanism for construct-
ing highly available objects. In Proceedings of the
7th Symposium on Reliable Distributed Systems
(Columbus, Ohio, Oct. 10-12). IEEE, New
York.

WIRTH, N. 1971. The programming language Pascal.
Acta Inf. 1, 35-63.

YOKOTE, Y., AND TOKORO, M. 1987b. Experience
and evolution of ConcurrentSmalltalk. In
Proceedings of Object-Oriented Programming
Systems, Languages and Applications 1987. SIG-
PLAN Not. (ACM) 22,12 (Dec.), 406-415.

YONEZAWA, A., BRIOT, J.-P., AND SHIBAYAMA, E.
1986. Object-oriented concurrent programming

in ABCL/l. In Proceedings of Object-Oriented
Programming Systems, Languages and Applica-
tions 1986. SZGPLAN Not. (ACM) 21,ll (Nov.),

258-268.

ZHONGXIU, S., AND XINING, L. 1987. CSM: A dis-
tributed programming language. IEEE Trans.
Softw. Eng. SE-13, 4 (Apr.), 497-500.

Received June 1988; final revision accepted April 1989.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

