
The  function of programming  notation in systems  design  and  the 
characteristics of a suitable  language are discussed. 

A brief  introduction i s  given  to a particular  language (developed 
by the author  and detailed elsewhere)  which  has  many  of the  desired 
properties. 

Application of the language i s  illustrated by the  use of familiar 
examples. 

Programming  notation in systems design 
by K. E. Iverson 

In  any area of design, systematic design procedures are necessarily 
based upon methods  for the precise and formal description of 
the  entities being designed. Because complex systems commonly 
embrace elements from a number of disparate disciplines (e.g., 
computers, programming systems, servomechanisms, accounting 
systems), there exists no common terminology or  notation ade- 
quate for the description of an entire complex system, and hence 
no adequate basis for  systematic  “systems design”. 

Despite the variety  in  the components  involved,  there is an 
important element common to all  systems design; namely, the 
universal concern with the procedures or algorithms executed by 
the system. In a  fully  automatic  system  the procedures are,  by 
definition, explicit, and  the behavior of such a system  can be 
fully described by the explicit procedures, more commonly called 
programs. Even in semi-automatic  systems  a  program description 
can be used effectively to describe the  automatic portion and  to 
isolate and identify the variables  subject to specification by 
people or  other incompletely predictable  agents. 

The programming notation or language used in the description 
of a system  must be universal enough to conveniently describe 
programs appropriate  to each of the elements  embraced  in a 
system. It must also  be precise. To be truly effective in design it 
must  further be  concise and  subject  to formal  manipulation, 
i.e., statements in the language must satisfy a good many signifi- 
cant formal  identities. 
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It is important  that a language be easy to learn, to remember, 
and  to use. To  this end, the operations  incorporated should be 
a systematic extension of a  relatively  small  number of elementary 
operations, the operation symbols employed should be mnemonic 
(i.e., each symbol should itself suggest the operation it represents 
as well as  the relationships  with other operations), and  the language 
should be separable (i.e., it should be possible to learn and use 
part of the language applicable to some one area  without learning 
the  entire language). 

The present  paper is a brief introduction  to a  programming 
language more fully developed elsewhere.' It has been developed 
for, and already  applied  in,  a  variety of areas including micro- 
programming and computer  organization,  automatic  programming 
systems, data representation,  search and sorting procedures, 
matrix  algebra, and symbolic logic. These and  other  areas of appli- 
cation  are  outlined in Reference 2 and developed more fully in the 
sources indicated  in the bibliography. 

The  langmage 
The basic arithmetic  operations provided must obviously include 

basic the four  elementary  arithmetic  operations  (to be denoted by  the 
operations familiar symbols) as well as rounding to  the nearest  integer  (up 

and down) and maximization and minimization. The operations 
of rounding a number x down and  up will be called floor and 
ceiling and will be denoted by LxJ and [x1 respectively. The 
maximum of x and y will be denoted by x 1 y and  the minimum 

The symbols chosen for the four  operations just defined not 
only suggest the operations  denoted, but also suggest the  duality 
relations which hold among them, namely: 
L-XJ = -[X], and 

(-X> J (-Y) = -(x1 d .  
These  relations are easily verified for  the example X = 3.142, 
y = 2.718 as follows: 
L-3.142) = -4 = "r3.1421, and 

by x _I Y. 

(-3.142) J (-2.718) = -3.142 = "(3.1423 2.718). 
The basic logical operations provided must include the familiar 

and, or, and not  (negation). They  are defined only on logical 
variables, i.e., on  variables which take on only  two  values true 
and false. It is convenient to  use the integers 1 and 0 to denote 
true and false, respectively, so that arithmetic  operations  can also 
be performed upon logical variables. For example, if x, y, and z 
are logical variables, then n = x + y + x gives the number of 
them which are true. 

The symbols used for and, or and not are A , V , and  an over- 
bar,  respectively. Again, the symbols reflect the  important duality 
relation  (DeMorgan's Law) : 

x A y = (5 V g ) .  
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Logical variables are themselves  frequently  determined by 
the comparison of two  variables x and y (not necessarily logical) 
to find if they  satisfy some specified relation a. This  type of 
operation will be  denoted  by (xay) and defined to have the value 
1 or 0 according to  whether  the relation Gi holds or  not. For 
example, (2  < 3) = I, (2  > 3) = 0, and (x > y) = (x 5 y). 
Moreover, if x and y are themselves logical variables, then (z # y) 
clearly  denotes the exclusive-or function of x and y. 

Although the  number of distinct  variables  occurring  in  a 
complex system is normally  very large, they  tend  to  fall  into a 
much  smaller number of classes such that all  members of any one 
class receive similar treatment.  The  system is rendered  more 
tractable  by grouping  each class into a  list or table  and specifying 
the operations in the system  as  operations  on  entire  arrays. In  
an accounting  system,  for example, a ledger is a collection of 
similar  accounts and  any  “updating” process specified for the 
ledger implies that  the process is to be applied to each  account 
in  the ledger.  Similarly, the main  memory of a computing  system 
is a collection of registers, and since each  register is itself a col- 
lection of characters it  may be considered as a two-way array or 
table whose ith row corresponds to  the  ith memory  register and 
whose jth column corresponds to  the  jth character of all  registers 
in memory. 

In mathematics, the  terms vector and matrix  have been given 
to the one-way array (list) and  the two-way array  (table), re- 
spectively. Since precise, convenient, and well-known conventions 
have long been established  for  vectors and matrices,  these terms 
will be used in preference to  the less formal  notions of “list” 
and “table.” 

A vector will be  denoted  by a boldface lower case italic letter 
(as  opposed to lightface lower case italic  for  a single element, 
or scalar), and a matrix will be denoted  by boldface upper case 
italic. The  ith component of a  vector x is denoted  by xi, the  ith 
row of the  matrix M by M . ,  the  jth column of M by Mi, and 
the element  in the  ith row and  jth column by MI. Clearly, 1” 
and M i  are themselves  vectors and M: is a  scalar. 

For example, if the vectors x and y are defined by 

X = (3, 6, 12, 4), 

Y = (a,  e, i, 0 7 4 ,  

t hen x3 = 12, and y, = i. Moreover, if M is the logical matrix 

then MZ = (1, 0, 0, l), M2 = (1, 0, 0), and Mi = 1. 
The dimension of a  vector x is denoted by v ( x )  and defined 

as the  number of components of x. A matrix M has  two dimensions; 
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Figure 1 Binary search 
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the row dimension v(M) denoting the common dimension of the 
row vectors 1M” (i.e., the  number of columns in M), and  the column 
dimension p ( M )  denoting the dimension of the columns of M .  
In  the examples x,  y, M of the preceding paragraph, Y ( X )  = 4, 
v(y) = 5, p ( M )  = 3, and v (M)  = 4. 

The well-known binary search provides an elementary illu- 
stration of the operations  introduced thus  far.  The objective is 
to determine where an  argument a occurs  in an ordered  list of 
numbers, i.e., to determine the index j such that x i  = a, where 
the vector x is the list of numbers in ascending order. The  binary 
search procedure restricts the search to  an  interval x i ,  . . . , x k .  
At each stage the restriction is strengthened by comparing a 
with x i ,  where j is the index of the (approximate)  midpoint of 
the  interval,  and  then restricting the search to x i ,  
if a < x i  or  to x i + , ,   x j C z ,  . , xk if a > xi. 

The  entire process is described by the program  appearing  in 
Figure 1. The indices i and IC are first set  by  steps 1 and 2 to in- 
clude the entire list x .  At each  repetition of the loop beginning 
at  step 3, the midpoint j is  determined as  the floor of the average 
of i and j. The three-way  branch at step 4 terminates  the process 
if x i  = a, and respecifies either  the upper  limit IC or the lower 
limit i by  branching to step 5 or to  step 6 as appropriate.  The 
convenience of the  notation for the dimension of a  vector  in  setting 
or testing indices is apparent from  step 2. 

The convenience of extending the  addition  operator  to vectors 
in a component-by-component fashion is well known. Formally, 

z + x + y  

is defined (for all  numerical  vectors x and y having  a common 
dimension) by  the relation zi = x ,  + yi, for i = 1, 2,  * . . , . (X).  
In programming it is convenient to extend all of the basic opera- 
tions  on  two  variables  in precisely the same way. For example, 
if x = (6, 3, 1, 4) and y = (1, 3, 5, 4), then x + y = (7, 6, 6,  S), 
x X Y = (6, 9, 5,  161, ( x  1 Y) = ( 6 ,  3 ,  5 ,  4), ( x  > Y) = (1, 0, 0, 01, 
a n d ( x > y ) V ( ~ < y ) = ( 1 , 0 , 0 , O ) V ( O , 0 , 1 , 0 ) = ( 1 , 0 , 1 , 0 )  = 

( x  # Y). 
Each of the basic operations  are similarly extended element- 

by-element to matrices (e.g., X + Y, X X Y,  ( X  # Y ) ) ,  to yield 
a matrix  result. 

The summation of all  components of a  vector x is frequently 
used and is commonly denoted by x i .  In order to extend this 
type of process (called reduction) to  all  binary operations it is 
necessary to employ a symbolism which incorporates the basic 
operator  symbol (in this case +), thus: + / x .  For example, if 
x = (6, 3, 1, 4), and y = (1, 3, 5 ,  4), then + / X  = 14, X / X  = 72, 

and + / ( x  # y) = 2 .  
1 / ~ = 6 =  - ( J / ( - X ) ) ,   V / ( X  + Y) = 1, A / ( x  # Y) = 0, 

Reduction  by  a relation a is defined similarly: 

a/x = ( a  * * ( (x1ax2)ax3)  * . axy). 
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For example, if x = (1, 0, 1, 1), then # / x  denotes the application 
of the exclusive-or operation  to x ,  and 

# / x  = (((1 # 0) # 1) # 1) 

= ((1 # 1) # 1) 

= (0 # 1) 

= 1. 

The  fact  that  an  even-parity check (odd-parity codes are illegiti- 
mate) is equivalent  to  the exclusive-or may now be expressed 
(using the definition of residue from  Table 1) as 

# / x  = 2 I + / x .  

Reduction of a  vector  by  any  operator 0 is extended to a 
matrix M in two  ways: to each of the rows (denoted  by O / M  
and called row reduction)  or to each of the columns  (denoted  by 
o//M and called column reduction).  Each yields a vector  result. 

For example, if 

0, 1, 1, 0 170, 1, 1 
M =  l , I , l , O  and N =  l , l , I , O ,  lo, 0, I ,  II 11, O , O ,  II 
then + / / M  = ( I ,  2, 3, l), + / M  = (2, 3, 21, # / M  = (0, 1, O), 
and A / ( M  = N )  = (0,1,0). Moreover, an  even-parity check on all 
rows of M would be denoted  by V / # / M ,  and in this example  a 
check failure would be noted, Le., V / # / M  = V/(O, 1, 0) = 1. 

Although  all  elements of an  array  may normally receive the 
same treatment,  it is frequently necessary to select subarrays 
for special treatment.  The selection of a single element  can be 
indicated  by a subscript (e.g., x i ) ,  but for the selection of groups 
of elements it is convenient to introduce the compression  opera- 
t ion u/x. This is defined for an arbitrary  vector x and a logical 
vector u of the same  dimension: 

Y +- u/x 

denot,es that y is obtained  from x by  suppressing  each  component 
xi for which ui = 0. For example, if x = (d,  e, s, i, g ,  n),  and 
u = (1, 0, 0, 1,  1, 0 ) ,  then u/x = (d, i, g). Moreover, (z # y)/z 
denotes the selection from z of those  components which differ 
from the corresponding components of y, and +/(z # y)/z 
denotes the sum of such  components.  Operations are performed 
in  order  from  right  to  left unless parentheses  indicate  otherwise. 

Selection operations  are extended to  arrays in the same  manner 
as reduction  operations.  Thus, if u = (1, 0, 1, 0), u = ( I ,  0, 1), 
and M and N are the matrices  just employed in the examples 
of reduction,  then 
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and N 3 / M  = 11, 01. 

For example, if Z is a  3 x 15 logical matrix  representing the 
3 index registers in a computer  (e.g., the  IBMB 7090), and if 
t is the 3-bit tag vector which selects the rows of Z to be  ored 
together  to produce the vector z finally used in indexing, then 

2 = v//t / /z. 
Certain  essential  operations converse to compression (mesh, 

mask ,  and expansion) are easily defined in  terms of the compres- 
sion operator itself and  are extended to matrices  in the established 
manner (Reference 1, p. 19). 

To specify fixed formats it is  convenient to  adopt  notation 
for  several special logical vectors, each of a specifiable dimension n. 
Thus d ( n )  denotes a prejiiz vector of j leading l's, o'(n) a sufiz 
vector of j trailing l's, e i (n)  a unit vector  with  a 1 in position j ,  
and e ( n )  a full vector of all 1's. Hence, a3(5) = (1, 1,  1, 0, 0), 
0 3 ( 5 )  = (0, 0, 1, 1, l ) ,  ~ ' ( 4 )  = (0, 1,0,0), and s(n) is a zero vector. 
If the dimension n is clear from  compatibility  requirements it 
may be elided. Thus, if c is the 36-bit command register of the 
IBM 7090 (which contains the next command to be executed), 
then o15/c denotes the address  portion. 

The successive digits  in the decimal representation of a 
number number  such as 1776 may be treated  as  the components of a 
systems vector q = (I, 7, 7, 6) and  the  number  they represent  is then  the 

base ten value of the vector q. More generally, a  vector I may be 
evaluated  in a mixed base system  with radices specified by a 
radix  vector r .  This  operation will be called the base r value of t 
and will be denoted by r I f. To define it by example, consider the 
system of temporal  units  up  to  the  day,  for which r = (24, 60, 60). 
Then if t = (2, 3, 4) is the elapsed time  in  hours,  minutes  and 
seconds, s = r I t = ( 2  X 60 X 60 + 3 X 60 + 4) = 7384 
is the elapsed time  in seconds. 

In a fixed base b number  system, r = be. Hence (10 e) I X 

is the base 10  value of x and (2 e)  I y is the base 2 value of y. 
In  the  important case of base 2, elision of the radix  vector 2 E 

is permitted. Hence if the 215 x 36 logical matrix M is the memory 
of the IBM 7090 and c is the command  register, then 

" L w  1 ' / C  

describes the  transfer of the operand  to  the storage  register S. 

If y is any  number (not necessarily integral),  then (y E) I a 
obviously  denotes the polynomial in y with coefficients a. 
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A reordering of the components of a  vector x is called permuta- 
tion. Any  permutation  can  be specified by a permutation vector 
whose components take  on  the  value of its indices in some order. 
Thus, q = (3, 1, 4, 2) and r = (1, 4, 5, 2, 3) are  permutation 
vectors. Permutation of x by  a  permutation  vector p is denoted 
by x p  and defined as follows. If 

Y + 

then yi  = x p , .  For example, xq = (x3 ,  xl, x4, x* ) .  It is clear  from 
the definition that permutation  is  conveniently  executed  by in- 
direct  addressing. 

Rotation is a  particularly  important case of permutation 
which warrants special notation.  Thus k 1 x denotes cyclic left 
shift by k places and k J X denotes cyclic right  shift.  For example, 
2 T (t ,   e,   a) = (a ,   t ,  e ) .  Rotation of prefix and suffix vectors  can be 
used to define in& vectors;  e.g., 2 J a3(6) = (0, 0, 1,  1, 1, 0), 
and I = (18 5 a3))/c denotes the index tag portion of the com- 
mand c in the IBM 7090. 

Permutation is extended  to  matrices  by rows ( X p )  and by 
columns (X#) in the established  manner, as is rotation (k  X 
and h fi X ) .  

The  ordinary  matrix  product, usually  denoted by AB,  can  be 
defined conveniently using the reduction  operation: 

(AB) :  = + / ( A i  X B ; ) .  

To make explicit the role of the elementary  operators + and x, 
this  product will be written  as A B, and  the definition will be 
extended  more generally to A 2 B, where 0 and O2 are  any 
pair of binary  operators. 

Applications of the generalized matrix  product  abound: if 
U is a square logical matrix representing the direct  connections 
in a network (node i is  connected to node j if = l), then 
M = U U is the  matrix of connections  via paths of length two; 
if D is a distance matrix (0: is the direct  distance  from city i 
to  city j ) ,  then T = D D is the  matrix of distances  for the 
shortest trip of exactly  two legs. The well-known identities of 
matrix algebra  can be easily and usefully extended to operators 
other  than (;). 

Conclusion 
In  comparing this programming  language  with  others, it is neces- 
sary  to consider not  only  its use in description and analysis (which 
has been emphasized  here), but also its use in the execution of 
algorithms,  i.e., its use as a source language to be translated  into 
computer code for the purpose of automatic execution. 

In  description and analysis  (and hence in exposition), the 
advantages over other  formal languages  such as FORTRAN and 
ALGOL reside mainly  in  the conciseness, formalism,  variability 
of level, and capacity  for  systematic  extension. 

The conciseness and  its  utility in the comprehension and  the 
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debugging of programs are  both fairly obvious. The  advantage of 
formalism (i.e., of numerous  formal  identities) in a programming 
language is not so clearly recognized. Programme 2 of Reference 3 
provides an example of the use of formal  identities  in  establishing 
the behavior of an algorithm; a similar treatment could easily 
be provided  for  Program 2 (matrix inversion by Gauss-Jordan) 
of Reference 2 .  Indeed,  any valid  algorithm  for a specified process 
is itself an outline of a  formal  constructive proof of its own validity, 
the details being provided by  the formal  identities of the language 
in which the algorithm is presented. 

The  ability  to describe a process a t  various levels of detail  is 
an  important  advantage of a language. Reference 2 illustrates 
this  ability  in  the specification of a computer;  Programs 6.32 and 
6.33 of Reference 1 illustrate it at a quite different level, involving 
the description of the repeated-selection  sort in terms of tree opera- 
tions  and in terms of a representation of the  tree suitable  for 
execution on a computer. 

The capacity  for  systematic extension is extremely important 
because of the impossibility of producing a workable language 
which incorporates  directly  all  operations required in  all  areas 
of application; the best that can be hoped for  is  a common core 
of operations which can be extended  in a systematic  manner 
consistent  with the core. As a simple example, consider the  intro- 
duction of exponentiation. Since this is a binary  operation, an 
operator  symbol,  say m, is adopted  and is used between the 
operands; thus y - x denotes x raised to  the power y. Then 
y - x ,  Y - X , ~ / X ,  etc.,  are  automatically defined. As a further 
example, consider the adoption (in the  treatment of number 
theory) of operators  for  greatest common divisor (x 1 y) and 
for  least common multiple (x 1 y). Then l / x  is the g.c.d. of the 
numbers xl, x2, . x,.  Moreover, if p is the vector of the first 
v(P) primes (e.g., P = (2, 3, 5 ,  7, ll)), and f is the vector of ex- 
ponents  in  the prime  factorization of a number n, then n = f & p .  
Similarly, if Fi is the factorization of ni, then n = F & p ,  and 
clearly, l /n  = ( J //F) 5 P, and Tln = ( 1 //F) 5 P. 

Compared to ordinary English, this  notation  shares  with  other 
formal languages the  important  advantage of being explicit. 
Moreover, it is rich enough to provide a description which is as 
straightforward  as,  and easily related to,  the looser expression in 
English. For example, indirect addressing (via a table of ad- 
dresses #) is  denoted by X P ; .  

In  the  matter of execution, the advantages of this  notation 
in analysis and exposition are,  in some areas a t  least, sufficient 
to  justify  its use even at  the cost of a subsequent  translation  (to 
another source language  for which a compiler exists) performed 
by a programmer. However, for  direct use as a source language, 
two distinct problems arise: transliteration of a  program  in  charac- 
ters available on keyboards and  printers,  and compilation. 

Because operator symbols were chosen for their mnemonic 
value rather  than for  availability,  most of them require  translitera- 
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tion.  However, because the symbols are used economically (e.g., 
the solidus “/” denotes compression as well as reduction, the 
symbol-doubling convention  eliminates the need  for special sym- 
bols for column operations, and  the  relational  statement  obviates 
special operators  for exclusive-or,  implication, etc.) the  total  num- 
ber of symbols is small. (Note  that  the  set of basic symbols 
employed in a language  such as ALGOL includes  each of the specially 
defined words such as IF, THEN, etc.) 

Reference 4 outlines  one of many possible simple transliteration 
schemes. The mnemonic value of the original  symbols must be 
sacrificed to some extent  in  transliteration, but  the transliteration 
need not impair the structure of the language-a matter of much 
greater  moment. 

The complexity of the compilation of a source language  is 
obviously  increased as the language becomes richer  in basic opera- 
tions, but is decreased by  the adoption of a systematic  structure. 
The generalized matrix  product X 2 Y, for  example,  greatly in- 
creases the power of the source language, but  the compiler need 
produce only the same  skeleton  program  required  for the ordinary 
matrix  product,  permitting  the specification of O1 and O2 as 
any of the basic operations in its repertoire.  Moreover, the direct 
provision of array  operations  frequently simplifies rather  than 
complicates the  task of the compiler. For example, the operation 
X Y could be compiled so as to execute the basic arithmetic 
operations  in  any one of several  orders and could therefore choose 
one  best  suited  to the indexing and  other facilities  available. On 
the  contrary,  the use of DO statements  as  in FORTRAN or ALGOL, 

although it requires the programmer to specify more detail (i.e., 
the indexing), makes it difficult or impossible for the compiler 
to determine  whether the particular  order of execution specified 
by  the indexing of the loops is essential, and hence inviolable. 

In  this brief exposition it  has been impossible to explore many 
extensions of the  notation such as  set  operations, files, general 
index-origins, and directed graphs  and  trees. Likewise, it has 
been impossible to include  extended examples. However, a mastery 
of the simple  operations  introduced  here  should  permit the inter- 
ested designer to  try  the  notation in  his own work,  referring to 
the papers  indicated  in the bibliography  for  extensions of the 
notation  and for guidance  from its previous use in  applications 
similar to his own. The  portion of the  notation essential to micro- 
programming  is  summarized  in  Table 1. 
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