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In the past 20 years there has been treftlen

dous progress in developing and analyzing

parallel algorithftls. Researchers have developed efficient

parallel algorithms to solve most problems for which efficient

sequential solutions are known. Although some of these algo

rithms are efficient only in a theoretical framework, many are

quite efficient in practice or have key ideas that have been used

in efficient implementations. This research on parallel algo

rithms has not only improved our general understanding ofpar

allelism but in several cases has led to improvements in

sequential algorithms. Unf:ortunately there has

been less success in developing good lan

guages f:or prograftlftling parallel algorithftls,

particularly languages that are well suited for teaching and pro-

totyping algorithms. There has been a large gap between lan

guages that are too low level, requiring specification of many

details that obscure the meaning of the algorithm, and languages

that are too high level, making the performance implications of

various constructs unclear. In sequential computing many stan

dard languages such as C or Pascal do a reasonable J·ob of bridg

ing this gap, but in parallel languages building such a bridge

has been significantly more difficult.
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Figure2. Summing 16 numbers on a tree. The total
depth (longest chain of dependencies) is 4 and the
total work (number of operations) is 15.

Figure 1. A diagram of a Parallel Random Access
Machine (PRAM). It is assumed in this model that all
the processors can access memory locations in the
shared memory simultaneously in unit time.

Work and Depth
Analyzing performance is a key part of studying algo

rithms. Although such analysis is not used to predict the

exact running time of an algorithm on a particular ma

chine, it is important in determining how the running

time grows as a function of the input size. To analyze per

formance, a formal model is needed to account for the

costs. In parallel computing, the most common models

are based on a set of processors connected either by a

shared memory, as in the Parallel Random Access Ma

chines (PRAM) (see Figure 1), or through a network, as

with the hypercube or grid models. In such pTocessoT-based

models, performance is calculated in terms of the number

of instruction cycles a computation takes (its running

time) and is usually expressed as a function of input size

and number of processors.

An important advance in parallel computing was the

introduction of the notion of viTtual models. A virtual

model is a performance model that does not attempt to

represent any machine that we would actually build but

rather is a higher-level model that can be mapped onto

various real machines. For example, the PRAM is often

viewed as a virtual model [25]. From this viewpoint, it is

agreed that a PRAM cannot be built directly, since in prac

tice it is unreasonable to assume that every processor can

access a shared memory in unit time. Instead, the PRAM

is treated as a virtual machine that can be mapped onto

more realistic machines efficiently by simulating multiple

processors of the PRAM on a single processor of a host

machine. This simulation imposes some slowdown K, but

requires a factor of K fewer processors, so the total cost

(processor-time product) remains the same. The advan

tage of virtual models over physical machine models is

that they can be easier to program.

Virtual models can be taken a step further and used to

define performance in more abstract measures than just

running time on a particular machine. A pair of such mea

sures are work and depth: WOTk is defined as the total

number of operations executed by a computation, and

depth is defined as the longest chain of sequential depen

dencies in the computation. Consider, for example, sum

ming 16 numbers using a balanced binary tree (see Figure

2). The work required by this computation is 15 operations

(the 15 additions). The depth of the computation is four

operations, since the longest chain of dependencies is the

depth of the summation tree-the sums need to be calcu

lated starting at the leaves and going down one level at a

time. In general, summing n numbers on a balanced tree

requires n - 1 work and log2n depth. Work is usually

viewed as a measure of the total cost of a computation

(integral of needed resources over time), and also specifies

the running time if the algorithm is executed on a sequen

tial processor. The depth represents the best possible run

ning time assuming an ideal machine with an unlimited

number of processors.

Work and depth have been used informally for many

years to describe the performance of parallel algorithms

[23], especially when teaching them [16, 17]. The claim is

that it is easier to describe, think about, and analyze algo-
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Our research involves developing a parallel language

that is useful for teaching as well as for implementing par

allel algorithms. To achieve this, an important goal has

been to develop a language that allows high-level descrip

tions of parallel algorithms but also has a well-understood

mapping onto a performance model (i.e., bridges the

gap). Based on our research, we believe that the following

two features are important for achieving this goal:

• A language-based performance model that uses wOTk

and depth rather than a machine-based model that uses

"running time."

• Support for nested data-pamllel constructs. This is the

ability to apply a function in parallel to each element of

a collection of data and the ability to nest such parallel

calls.

In this article we describe these features and explain why

they are important for programming parallel algorithms.

To make the ideas concrete, we describe the program

ming language NESL [5], which we designed based on the

features, and go through several examples of how to pro

gram and analyze parallel algorithms using the language.

We have been using NESL for three years in undergradu

ate and graduate courses on parallel algorithms [7]. The

algorithms we cover in this article are relatively straight

forward. Many more algorithms can be found through

the Web version of this article (available at http://web.scan

dal.cs.cmu.edu/www/cacm.html).
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procedure SUM(V):

n = length(V);

for i = I to log2n

begin

Yo= odd_elts(V);

Ve = even_elts( V);

V = vector_add(Vo, Ve);
end

return V

rithms in terms of work and depth than in terms of run

ning time on a processor-based model (a model based on

P processors). Furthermore, work and depth together tell

us a lot about expected performance on various machines.

We will return to these points, but we first describe in

more detail how work and depth can be incorporated into

a computational model. There are basically three classes

of such models-circuit models, vector machine models,

and language-based models-and we briefly describe

each.

Circuit Models. In circuit models, an algorithm is speci

fied by designing a circuit of logic gates to solve the prob

lem. The circuits are restricted to have no cycles. For ex

ample, we could view Figure 2 as a circuit in which the

inputs are at the top, each + is an adder circuit, and each

of the lines between adders is a bundle of wires. The final

sum is returned at the bottom. In circuit models, the cir

cuit size (number of gates) corresponds to work, and the

longest path from an input to an output corresponds to

depth. Although for a particular input size one could build

a circuit to implement an algorithm, in general circuit

models are viewed as virtual models from which the size

and depth of the designs tell us sometime about the per

formance of algorithms on real machines. As such, the

models have been used for many years to study various

theoretical aspects of parallelism, for example; to prove

that certain problems are hard to solve in parallel (see [17]

for an overview). Although the models are well suited for

such theoretical analysis, they are not a convenient model

for programming parallel algorithms.

Vector Machine Models. The first programmable ma

chine model based on work and depth was the Vector

Random Access Machine (VRAM) [4]. The VRAM model

is a sequential random-access machine (RAM) extended

with a set of instructions that operate on vectors (see Fig

ure 3). Each location of the memory contains a whole vec

tor, and the vectors can vary in size during the computa

tion. The vector instructions include elementwise

operations, such as adding the corresponding elements of

two vectors, and aggregate operations, such as extracting

elements from one vector based on another vector of indi

ces. The depth of a computation in a VRAM is simply the

number of instructions executed by the machine, and the

Figure 5. A diagram of a vector Random Access
Machine IVRAMI and pseudocode for summing n
numbers on the machine. The vector processor
acts as a slave to the scalar processor. The func
tions od<Lelts and evelLelts extract the odd and
even elements from a vector, respectively. The
function vector_add elementwise adds two vec
tors. On each iteration through the loop the length
ofthe vector V halves. The code assumes n is a
power of 2, but it is not hard to generalize the code
to work With any n. The total work done by the
computation is Oln + nl2 + n/4 + ... I = Oln!, and
the depth is a constant times the number of itera
tions, which is O<log nl.

work is calculated by summing the lengths of the vectors

on which the computation operates. As an example, Fig

ure 3 shows VRAM code for taking the sum of n values.

This code executes the summation tree in Figure 2-each

loop iteration moves down the tree one level. The VRAM

is again a virtual model, since it would be impractical to

build the vector memory because of its dynamic nature.

Although the VRAM is a good model for describing many

algorithms that use vectors or arrays, it is not an ideal

model for directly expressing algorithms on more compli

cated data structures, such as trees or graphs.

Language-Based Models. A third choice for defining a

model in terms ofwork and depth is to define it directly in

terms oflanguage constructs. Such a language-based perfor

mance model specifies the costs of the primitive instructions

and a set of rules for composing costs across program ex

pressions. The use of language-based models is certainly

not new. Aho and Ullman, in their popular introductory

textbook Foundations of Computer Science [I], define such a

model for deriving running times of sequential algo

rithms. The approach allows them to discuss the running

time of the algorithms without introducing a machine

model. A similar approach can be taken to define a model

based on work and depth. In this approach, work and

depth costs are assigned to each primitive instruction of a

language and rules are specified for combining parallel

and sequential expressions. Roughly speaking, when exe

cuting a set of tasks in parallel, the total work is the sum of
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the work of the tasks and the total depth is the maximum

of the depth of the tasks. When executing tasks sequen

tially, both the work and the depth are summed. These

rules are made more concrete when we describe NESL'S

performance model in the next section, and the algo

rithms in this article illustrate many examples of how the

rules can be applied.

We note that language-based performance models

seem to be significantly more important for parallel algo

rithms than for sequential algorithms. Unlike Aho and

Ullman's sequential model, which corresponds almost di

rectly to a machine model (the RAM) and is defined

purely for convenience, there seems to be no satisfactory

machine model that captures the notion of work and

depth in a general way.

Why Work and Depth?

We now return to the question of why models based on

work and depth are better than processor-based models

for programming and analyzing parallel algorithms. To

motivate this claim we consider a particular algorithm,

Quicksort, and compare the code and performance analy

sis of a parallel version of the algorithm using the two

types of models. We argue that in the work-depth model

the code is very simple, the performance analysis is closely

related to the code, and the code captures the notion of

parallelism in Quicksort at a very high level. This is not

true with the processor-based model.

We start by reviewing sequential Quicksort, for which

pseudocode is shown in Figure 4. A standard perfor

mance analysis proves that for n keys the algorithm runs

in O(n log n) time on average (expected case). A similar

analysis proves that the maximum depth of recursive calls

is O(1og n) expected case; we will use this fact later. Quick

sort is not hard to parallelize. In particular, we can exe

cute the two recursive calls in parallel, and furthermore,

within a single Quicksort we can compare all the elements

of S to the pivot a in parallel when subselecting the ele

ments for Sl, and similarly for S2 and S3' The questions

remain: how do we program this parallel version, and

what is its performance?

We first consider programming and analyzing parallel

procedure QUICKSORT(S):

if Scontains at most one element then return S

else

begin

choose an element a randomly from S;

let Sl' S2 and S3 be the sequences of elements in Siess

than, equal to, and greater than a, respectively;

return (QUICKSORT(SI) followed by S2 followed by
QUICKSORT(S3) )

end

Figure 4. Pseudocode for Quicksort, from Aho,
Hopcroft, and Ullman [21. Although originally de
scribed as a sequential algorithm, the algorithm as
stated is not hard to parallelize.
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Quicksort with a model based on work and depth. Figure

5 illustrates the NESL code for the algorithm. This code

should be compared with the sequential pseudocode-the

only significant difference is that the N ESL code specifies

that the subselection for 81,82, and 83, and the two re

cursive calls to QUicksort should be executed in parallel

(in NESL, curly brackets {} signify parallel execution).

Since the parallel algorithm does basically the same opera

tions as the sequential version, the work cost of the paral

lel version is within a small constant factor of the time of

the sequential version (O(n log n) expected case). The

depth cost of the algorithm can be analyzed by examining

the recursion tree in Figure 5. The depth of each of the

blocks represents the sum of the depths of all the opera

tions in a single call to Quicksort (not including the two

recursive calls). These operations are the test for termina

tion, finding the pivot a, generation 81, 82, and 83, and

the two appends at the end. As discussed in more detail in

the next section, in NESL each of these operations has con

stant depth (i.e., is fully parallel). The depth of each block

is therefore a constant, and the total depth is this constant

times the maximum number of levels of recursion, which

we mentioned earlier is O(log n) expected case. This com

pletes our analysis of Quicksort and says that the work of

quicksort is O(n log n) and the depth is O(log n), both

expected case. l Note that we have derived performance

measures for the algorithm based on very high-level code

and without talking about processors.

We now consider code and analysis for parallel Quick

sort based on a parallel machine model with P processors.

We claim that in such a model the code will be very long,

will obscure the high-level intuition of the algorithm, and

will make it hard to analyze the performance of the algo

rithm. In particular, the code ~ l l have to specify how the

sequence is partitioned across processor (in general, the

input length does not equal P and needs to be broken up

into parts), how the subselection is implemented in paral

lel (for generating Sl, S2, and S3 in parallel), how the re

cursive calls get partitioned among the processors and

then load-balanced, how the subcalls are synchronized,

and many other details. This is complicated by the fact

that in Quicksort the recursive calls are typically not of

equal sizes, the recursion tree is not balanced, and the S2

sets have to be reinserted on the way back up the recur

sion. Although coding these details might help optimize

the algorithm for a particular machine, they have little to

do with core ideas. Even if we assume the simplest pro

cessor-based model with unit-time access to shared mem

ory and built-in synchronization primitives, the fully par

allel code for Quicksort in just about any language would

require hundreds ofJines of code. This is not just a ques

tion of verbosity but a question of how we think about the

algorithm.

Relationship of work and depth to running time. Work

and depth can be viewed as the running time of an algo-

'We note that the parallel version of Quicksort requires more memory
than a good implementation of the sequential version. In particular, the
sequential version can be implemented in place, while the parallel version
requires about n scratch space.



function Quicksort(S) =

if (#S <= 1J then S
else

let a = S[rand (#S)];
51 = Ie in SI e < a };
52 = Ie in SI e == a};
53 = Ie in SI e > a};
R = IQuicksort(v); v in [Sl,S3]};

in R[O] ++ 52 ++ R[l];

Work = 0 (n log n) (expected)

Depth = 0 (log n) (expected)

Quicksort

Quicksort

rithm at two limits: one processor (work) and an unlimited

number of processors (depth). In fact, the costs are often

referred to as T1 and Too. In practice, however, we want to

know the running time for some fixed number ofproces

SOl'S. A simple but important result of Brent [9] showed

that knowing the two limits is good enough to place rea

sonable bounds on running time for any fixed number of

processors. In particular, he showed that if we know that a

computation has work Wand depth D, then it will run

with P processors in time T such that

W W
-:5: T<- + D.
P P

This result makes some assumptions about communica

tion and scheduling costs, but the equation can be modi

fied if these assumptions change. For example, with a

machine that has a memory latency (the time between

making a remote request and receiving the reply), of L,

the equation is W/P :5: T:5: W/P + L . D.

Let's return to the example of summing. Brent's equa

tion, along with our previous analysis of work and depth

(W = n - 1, D = log2n), tells us that n numbers can be

summed on P processors within the time bounds

(,n_-_I.:-) (n - 1)
- P :5: T < P + log2n .

For example 1,000,000 elements can be summed on 1,000

processors in somewhere between 1,000 (106/103
) and

1,020 (106/103 + log2I06) cycles, assuming we count one

cycle per addition. For many parallel machine models,

such as the PRAM or a set of processors connected by a

hypercube network, this is indeed the case. To implement

the addition, we could assign 1,000 elements to each pro

cessor and sum them, which would take 999 cycles. We

Figure 5. The Quicksort algorithm in NESL. The opera
tor # returns the length of a sequence. The func
tion rand(n) returns a random number between 0
and n (the expression 8[rand(#8)] therefore re
turns a random element of 81. The notation {e in
81 e < a} is read: "in parallel find all elements e in 8
for which e is less than a". This operation has con
stant depth, and work proportional to the length
of 8. The notation {Quicksort(v): v in [81, 83]} is
read: "in parallel forv in 81 and 83, Quicksort v".
The reSUlts are returned as a pair. The function + +
appends two sequences.

could then sum across the processors using a tree ofdepth

log2I,000 = 10, so the total number of add cycles would

be 1,009, which is within our bounds.

Communication Costs. A problem with using work and

depth as cost measures is that they do not directly account

for communication costs and can lead to bad predictions

of running time on machines where communication is a

bottleneck. To address this question, let's separate com

munication costs into two parts: latency, as defined previ

ously, and bandwidth, the rate at which a processor can

access memory. If we assume that each processor may

have multiple outstanding requests, then latency is not a

problem. In particular, latency can be accounted for in

the mapping of the work and depth into time for a ma

chine (see the preceding), and the simulation remains

work-efficient (i.e., the processor-time product is propor

tional to the total work). This is based on hiding the la

tency by using few enough processors such that on aver

age each processor has multiple parallel tasks (threads) to

execute and therefore has plenty to do while waiting for

replies. Bandwidth is a more serious problem. For ma

chines where the bandwidth between processors is very
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much less than the bandwidth to the local memory, work

and. depth by themselves will not in general give good

predictions of running time. However, the network band

width available on recent parallel machines, such as the

Cray T3E and SCI Power Challenge, is great enough to

give reasonable predictions, and we expect the situation

to improve with rapidly improving network technology.

Nested Data-Parallelism and NESL

Many constructs have been suggested for expressing par

allelism in programming languages, including fork-and

join constructs, data-parallel constructs, and futures,

among others. The question is which of these are most

useful for specifying parallel algorithms? Ifwe look at the

parallel algorithms that are described in the literature and

their pseudocode, we find that nearly all are described as

parallel operations over collections of values. For example

"in parallel for each vertex in a graph, find its minimum

neighbor", or "in parallel for each row in a matrix, sum

the row". Of course, the algorithms are not this simple

they usually consist of many such parallel calls interleaved

with operations that rearrange the order of a collection,

and can be called recursively in parallel, as in Quicksort.

This ability to operate in parallel over sets of data is often

referred to as data-parallelism [IS], and languages based on

it are often referred to as data-parallel languages, or collec

tion-oriented languages [24]. We note that many parallel

languages have data-parallel features in conjunction with

other forms of parallelism [3, 10, 12, 18].

Before we come to the rash conclusion that data-paral

lel languages are the panacea for programming parallel

algorithms, we make a distinction between flat and nested

data-parallel languages. In flat data-parallel languages, a

function can be applied in parallel over a set ofvalues, but

the function itself must be sequential. In nested data-paral

lel languages [4], any function including parallel func

tions, can be applied over a set ofvalues. For example, the

summation of each row of the matrix mentioned previ

ously could itself execute in parallel using a tree sum. We

claim that the ability to nest parallel calls is critical for

expressing algorithms in a way that matches our high

level intuition of how they work. In particular, nested par

allelism can be used to implement nested loops and di

vide-and-conquer algorithms in parallel. (Five out of the

seven algorithms described in this article use nesting in a

crucial way.) The importance of allowing nesting in data

parallel languages has also been observed by others [13].

However, most existing data-parallel languages, such as

High Performance Fortran (HPF) [14] or C* [21], do not

have direct support for such nesting.2

NESL

This article uses NESL [5] as an example of a nested data

parallel language. This section gives an overview of the

language, and the next section gives several examples of

parallel algorithms described and analyzed with NESL.

"The current HPF 1.0 has some limited support for nested calls, and fu
ture versions are likely to have significantly better support.

NESL was designed to express nested parallelism in a sim

ple way with a minimum set of structures and was there

fore designed as a language on its own rather than as an

extension of an existing sequential language. The ideas,

however, can clearly be used in other languages. NESL is

loosely based on ML [19], a language with a powerful type

system, and on SETL [22], a language designed for con

cisely expressing sequential algorithms. As with ML, NESL

is mostly functional (has only limited forms of side effects),

but this feature is tangential to the points made in this

article.

NESL supports data-parallelism by means of operations

on sequences-one-dimensional arrays. All elements of a

sequence must be of the same type, and sequence indices

are zero-based (a[O] extracts the first element of the se

quence a). The main data-parallel construct is apply-to

each, which uses a set-like notation. For example, the ex

pressIOn

{a * a : a in [3, -4, -9, 5]};

squares each element of the sequence [3, -4, -9, 5]

returning the sequence [9, 16,81,25]. This can be read:

"in parallel, for each a in the sequence [3, -4, -9, 5],

square a". The apply-to-each can be used over multiple

sequences. The expression

{a + b : a in [3, -4, -9, 5]; b in [1,2,3, 4]};

adds the two sequences elementwise returning [4, -2,

-6, 9]. The apply-to-each construct also provides the

ability to subselect elements of a sequence based on a fil

ter. For example.

{a * a : a in [3, -4, -9, 5] I a > O};

can be read: "in parallel, for em::h a in the sequence [3,

-4, -9, 5] such that a is greater than 0, square a". It

returns the sequence [9, 25]. The elements that remain

maintain their relative order. Such filtering was used in

the Quicksort example.

Any function, whether primitive or user defined, may

be applied to each element of a sequence. So, for example,

we could define

function factorial en) =
if en == 1) then 1

else n*factorial en - 1);

and then apply it over the elements of a sequence, as in

{factorialei) : i in [3, 1, 7]};

which returns the sequence [6, 1, 5040].

In addition to the parallelism supplied by apply-to

each, N ESL provides a set of functions on sequences, each

ofwhich can be implemented in parallel. For example, the

function sum adds the elements of a sequence, and the

function reverse reverses the elements of a sequence.

Perhaps the most important function on sequences is

write, which supplies the only mechanism to modify mul

tiple values of a sequence in parallel. The function write

takes two arguments: the first is the sequence to modify,

and the second is a sequence of integer-value pairs that
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amming

23

1

Depth = I + max (Dfact(3) , Dfaet(I), D fact (5), D fact (2»

= I + max(I3, 3, 23, 8)

=24

Work = I + sum(Wfaet (3), Wfact(I), Wfact (5), Wfact (2»

= I + sum(I3, 3, 23, 8)

= 48

Wfact(n) =Dfact(n) =5n - 2

inserts the -2, 5, and 9 into the sequence at locations 4,

2, and 5, respectively, returning

[0, 0, 5, 0, -2, 9, 0, 0].

If an index is repeated, then one value is written

nondeterministically. For readers familiar with the vari

ants of the PRAM model, we note that the write function

is analogous to an "arbitrary" concurrent write. NESL also

includes a function e_write that does not allow repeated

indices and is analogous to an exclusive write. Ifrepeated

indices are used with e_write, the current implementa

tion reports an error.

Nested parallelism is supplied in NESL by allowing se

quences to be nested and allowing parallel functions to be

used in an apply-to-each. For example, we could apply the

sum function in parallel'Dver a nested sequence, as in

specify what to modify. For each pair (i,v), the value v is

inserted into position i of the destination sequence. For

example,

write([O, 0, 0, 0, 0, 0, 0, 0], [(4,-2),(2,5),(5,9)]);

{sum(a) : a in [[2,3], [8,3,9], [7JJ},

which would return [5, 20, 7]. Here, there is parallelism

both within each sum and across the sums. The Quicksort

algorithm showed another example of nested calls-the

algorithm is itself used in an apply-to-each to invoke two

recursive calls in parallel.

The Performance Model

We now return to the issue of performance models, this

time in the context of NESL. As mentioned earlier, NESL

defines work and depth in terms of the work and depth of

the primitive operations and rules for composing the

measures across expressions. We will use W(e) and D(e) to

refer to the work and depth of evaluating an expression e.

In most cases, the work and depth of an expression are

the sums of the work and depth of the subexpressions. So,

for example, if we have an expression el + e2, where el

and e2 are subexpressions, then the work of the expres

sIOn IS

Figure 6. Calculating the work and depth of {fae

torial(n) : n in [3, 1, 5, 2]}

where the 1 is the cost of the add. A similar rule is used for

depth. The interesting rules concerning parallelism are

the rules for an apply-to-each expression:

({ in ( > ~

D({el(a) : a in e2}) = 1 + D(e2) + max D(el(a». (2)
tI in",'.!

Figure 7. List of some of the sequence functions
supplied by NESL. The work required for each function is
given in the Work column: L(v) refers to the length
of the sequence v. The work of the write(d, a) func
tion actually depends on whether the argument d
needs to be copied or not, but in the examples in
this article the difference has no effect.

Operation I Description I 'fork I Depth

dist(a,O

#a
a[i]

[s:e]

[s:e:d]

sum (a)

write (d,a)

a++ b
drop (a,n)

interleave(a,b)

flatten (a)

Create a sequence ofas oflength 1.

Return length ofsequence a.

Return element at position i ofa.

Return integer sequence from s to e.

Return integer sequence from s to e Uy d.

Return sum ofsequence a.

Place elements a in d.

Append sequences a and b.

Drop first n elements ofsequence a.

Interleave elements ofsequences a and b.

Flatten nested sequence a.

1

1

1

(e - s)

(e-s)/d

L(a)

L(a)

L(a) + L(b)

L(result)

L(result)

L(result)

1

1

1

1

1

log L(a)

1

1

1

1

1
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(3)

1 procedure PRIMES(n):

2 let A be an array of length n

3 set all but the first elemerit of A to TRUE

4 for i from 2 to -fYi
5 begin
6 ifA[i] is TRUE

7 then set all multiples of i up to n to FALSE

8 end

Figure 8. Pseudocode for the sieve of Eratosthe
nes

The first rule specifies that the work is the sum of the

work of each of the applications of ej to an element of a,

plus the work of e2, plus 1 to account for overheads. The

rule for depth is similar, but takes the maximum of the

depth of each application of ej. This supports our intui

tion that the applications are executed in parallel and that

the evaluation of the apply-to-each completes when the

last call completes. The other interesting rules are the

rules for an if expression, which for work is

W(if e I then e2 else eg)

{

w(e2 ) ej = TRUE

= 1 + W(el) +
W(eg) otherwise,

with a similar rule for depth. The work and depth for a

function call and for scalar primitives are each I. The costs

of the NESL functions on sequences are summarized in

Figure 7. We note that the performance rules can be more

precisely defined using an operational semantics [6].

As an example of composing work and depth, consider

evaluating the expression

e = {factorialCn) : n in a},

where a = [3,1,5,2]. Using the rules for work and the

code for factorial given earlier, we can write the follow

ing equation for work:

Wfact(n) = {I ~ I+ W == n = I

+ W.+W-+Wfact(n-l)n>1

where W ~ ~ , W" and W_ are the work for = = , *, and -,

and are all I. The two unit constants come from the cost of

the function call and the if-then-else rule.. \dding up the

terms and solving the recurrence gives Wfact(n) = 5n - 2.

Since there is no parallelism in the factorial function, the

depth is the same as the work. To calculate work and

depth for the full expression {factorialCn) : n in a}, we

can use equations I and 2. This calculation is shown in
Figure 6.

Examples of Parallel Algorithms in NESL

Several parallel algorithms are described and analyzed

here, providing examples of how to analyze algorithms in

terms of work and depth and of how to use nested data

parallel constructs. They also introduce some important

ideas concerning parallel algorithms. Again, the main

goals are to have the code closely match the high-level

intuition of the algorithm and to make it easy to analyze

the asymptotic performance from the code.

Primes

Our first algorithm finds all prime numbers less than n.

This example demonstrates a common technique used in

parallel algorithms-solving a smaller case of the same

problem to speed the solution of the full problem. We also

use the example to introduce the notion of work effi

ciency. An important aspect of developing a good parallel

algorithm is designing one whose work is close to the time

for a good sequential algorithm that solves the same prob

lem. Without this condition we cannot hope to get good

speedup of the parallel algorithm over the sequential al

gorithm. Parallel algorithms are referred to as work-effi

cient relative to a sequential algorithm if their work is

within a constant factor of the time of the sequential algo

rithm. All the algorithms we have discussed so far are

work-efficient relative to the best sequential algorithms. In

particular, summingn numbers took O(n) work and paral

lel Quicksort took O(n log n) expected work, both of which

are the same as required sequentially. For finding primes,

our goal should again be to develop a work-efficient algo
rithm. We therefore start by looking at efficient sequential

algorithms.

The most common sequential algorithm for finding

primes is the sieve of Eratosthenes, which is specified in

Figure 8. The algorithm returns an array in which the ith

position is set to TRUE if i is a prime and to FALSE otherwise.

The algorithm works by initializing the array A to TRUE

and then setting to FALSE all multiples of each prime it

finds. It starts with the first prime, 2, and works up to vn.
The algorithm only needs to go up to vn, since all com

posite numbers (nonyrimes) less than n must have a fac

tor less or equal to Yn. Ifline 7 is implemented by looping

over the multiples, then the algorithm can be shown to

take O(n log log n) time, and the constant is small. The

sieve of Eratosthenes is not the theoretically best algo

rithm for finding primes, but it is close, and we would be

happy to derive a parallel algorithm that is work-efficient

relative to it (i.e., does O(n log log n) work).

It turns out that the algorithm as described has some

easy parallelism. In particular, line 7 can be implemented

in parallel. In N ESL, the multiples of a value i can be gen

erated in parallel with the expression

[2*i:n:i]

and can be written into the array A in parallel with the

write function. Using the rules for costs (see Figure 7),

the depth of these operations is constant and the work is

the number of multiples, which is the same as the time of

the sequential version. Given the parallel implementation

of line 7, the total work of the algorithm is the same as the

sequential algorithm, since it does the same number of

operations, and the depth ofthe algorithm is O(vn), since
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each iteration of the loop in lines 5-8 has constant depth

and the number of iterations is \hi,. Note that thinking of

the algorithm in terms of work and depth allows a simple

analysis (assuming we know the running time of the se

quential algorithm) without our having to worry about

how the parallelism maps onto a machine. In particular,

the amount of parallelism varies greatly from the first iter

ation, in which we have n/2 multiples of 2 to knock out in

parallel, to the last iteration, where we have only \hi, mul

tiples. This varying parallelism would make it messy to

program and analyze on a processor-based model.

We now consider improving the depth of the algorithm

without giving up any work. We note that if we were given

all the primes from 2 up to \hi" we could then generate all

the multiples of these primes at once. The NESL code for

generating all the multiples is

{[2*p:n:p]: pin sqr_primes};

where sqr_primes is a sequence containing all the primes

up to \hi,. This computation has nested parallelism, since

there is parallelism acrosS'the sqr_primes (outer parallel

ism) and also in generating the multiples of each prime

(inner parallelism). The depth of the computation is con

stant, since each subcall has constant depth, and the work

is O(n log log n), since the total number of multiples when

summed across the subcalls is the same as the number of

multiples used by the sequential version.

We have assumed that sqr_primes was given, but to

generate these primes we can simply call the algorithm

function primes(n) =
if n == 2 then ([] int)

else

recursively on \hi,. Figure 9 shows the full algorithm for

finding primes based on this idea. Instead of returning a

sequence of flags, the algorithm returns a sequence with

the values of the primes. For example, primesClO)

would return the sequence [2,3,4,7]. The algorithm re

cursively calls itself on a problem of size \hi, and termi

nates when a problem of size 2 is reached. The work and

depth can be analyzed by looking at the picture at the

bottom of Figure 9. Clearly most of the work is done at the

top level of recursion, which does O(n log log n) work. The

total work is therefore also O(n log log n). Now let's con

sider the depth. Since each recursion level has constant

depth, the total depth is proportional to the number of

levels. To calculate this number, we note that the size of

the problem at level i is n 1/2' and that when the size is 2, the

algorithm terminates. This gives us the equation n 1/2" = 2,

Figure 9. The code for the primes algorithm, an
example of one level ofthe recursion, and a dia
gram ofthe work and depth. In the code [ I int indi
cates an empty sequence of integers. The function
isqrt takes the square root of an integer. The func
tion flatten takes a nested sequence and flattens it.
The function dist (a,n) distributes the value a to a
sequence of length n. The expression {I in [O:nl i fl
in flags Ifl} can be read as "for each i from 0 to n
and each fl in flags return the i if the corresponding
fl is true". The function drop(a,n) drops the first n
elements of the sequence a.

let sqr_primes = primes(isqrt(n»;

composites = {[2*p:n:p]: p in sqr_primes};

flat_camps = flatten (composites);

flags = write (dist( true, n), {(i,false): i in flat_comps});

indices = Ii in [O:n]; fl in flags I fl}

in drop (indices, 2);

Example for primes(20):

sqr_primes

composites

flat_camps

flags

indices

result

= [2,3]

= [[4,6,8,10,12,14,16,18] , [6,9,12,15,18]]

= [4,6,8,10,12,14,16,18,6,9,12,15,18]

= [t, t, t, t,f, t,f, t,f,f,f, t,f, t,f,f,f, t,f, t]

= [0,1,2,3,5,7,11,13,17,19]

= [2,3,5,7,11,13,17,19]

Depth

primes( n) 1::=:::==::;:;:;:-_n_IO_g__IO_g_n ~

primes (n l / 2 ) I nl/2 log log n
l
/

2 ~

primes (nI/4
) 0

primes(2) 0
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where d is the depth we seek. Solving for d, this method

gives d = log log n. The costs are therefore:

W = O(n log log n)

D O(log log n)

This algorithm remains work-efficient relative to the se

quential sieve of Eratosthenes and greatly improves the

depth.

Sparse Matrix Multiplication

Sparse matrices, which are common in scientific applica

tions, are matrices in which most elements are zero. To

save space and running tillIe it is critical to store only the

nonzero elements. A standard representation of sparse

matrices in sequential languages is an array with one ele

ment per row, each of which contains a linked-list of the

nonzero values in that row along with their column num

ber. A similar representation can be used in parallel. In

NESL a sparse matrix can be represented as a sequence of

rows, each of which is a sequence of (column-number,

value) pairs of the nonzero values in the row. The matrix

A [i:~ ~:~ l.~ ~ ]
o 1.0 2.0 -1.0

o 0 1.0 2.0

is represented in this way as

A = [[(0, 2.0), (1, 1.0)],

[(0, -1.0), (1, 2.0), (2, -1.0)],

[(1, 1.0), (2, 2.0), (3, -1.0)],

[(2, 1.0), (3, 2.0)]],

where A is a nested sequence. This representation can be

used for matrices with arbitrary patterns of nonzero ele

ments, since each subsequence can be of a different size.

A common operation on sparse matrices is to multiply

them by a dense vector. In such an operation, the result is

the dot-product of each sparse row of the matrix with the

dense vector. The NESL code for taking the dot-product of

a sparse row with a dense vector x is:

sum({v*x[i] : (i,v) in row})

This code takes each index-value pair (i,v) in the sparse

row, multiplies v by the i th value of x, and sums the re

sults. The work and depth is easily calculated using the

performance rules. If n is the number of nonzero ele

ments in the row, then the depth of the computation is the

depth of the sum, which is O(log n), and the work is the

SUlll of the work across the elelllents, which is O(n).

The full code for multiplying a sparse matrix A repre

sented by a dense vector x requires that we apply the code

to each row in parallel, which gives

{sum({v*x[i] : (i,v) in row})

: row in A}.

This exalllple has nested parallelism, since there is paral

lelislll both across the rows and within each row for the

dot products. The total depth of the code is the maximum
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of the depth of the dot products, which is the logarithm of

the size of the largest row. The total work is proportional

to the total number of nonzero elements.

Planar Convex-Hull

Our next example solves the planar convex hull problem:

Given n points in a plane, find which of them lie on the

perimeter of the smallest convex region that contains all

points. This example shows another use of nested paral

lelism for divide-and-conquer algorithms. The algorithm

we use is a parallel Quickhull [20], so named because of its

similarity to the Quicksort algorithm. As with Quicksort,

the strategy is to pick a "pivot" element, split the data

based on the pivot, and recurse on each of the split sets.

Also as with Quicksort, the pivot element is not guaran

teed to split the data into equally sized sets, and in the

worst case the algorithm requires O(n
2

) work; however, in

practice the algorithm is often very efficient.

Figure 10 shows the code and an example of the Quick

hull algorithm. The algorithm is based on the recursive

routine hsplit. This function takes a set of points in the

plane «x,y) coordinates) and two points pI and p2 known

to lie on the convex hull and returns all the points that lie

on the hull clockwise from pI to p2, inclusive of pI, but

not ofp2. In Figure 10, given all the points [A, B, 0, . . . ,

P], pI A, and p2 = P, hsplit would return the se

quence [A, B, J, 0]. In hsplit, the order of pI and p2

matters, since if we switch A and P, hsplit would return

the hull along the other direction [P, N, 0].

The hsplit function first removes all the elements that

cannot be on the hull because they lie below the line be

tween pI and p2 (which we denote by pl-p2). This is

done by removing elements whose cross product with the

line between pI and p2 is negative. In the case pI = A

and p2 P, the points [B, D, F, G, H, J, K, M, 0] would

remain and be placed in the sequence packed. The algo

rithm now finds the point pm farthest from the line pl

p2. The point pm must be on the hull, since as a line at

infinity parallel to pl-p2 moves toward pl-p2, it must

first hit pm. The point pm (J in the running example) is

found by taking the point with the maximulll cross prod

uct. Once pm is found, hsplit calls itself twice recursively

using the points (p1, pm) and (pm, p2) (in the example,

(A, J) and (J, P)). When the recursive calls return,

hsplit flattens the result, thereby appending the two

subhulls.

The overall convex-hull algorithm works by finding

the points with minilllum and maximum x coordinates

(these points must be on the hull) and then using hsplit to

find the upper and lower hull. Each recursive call has con

stant depth and O(n) work. However, since many points

might be deleted on each step, the work could be signifi

cantly less. As with Quicksort, the worst-case costs are W =
O(n2

) and D = O(n). For m hull points the best case times

are O(log m) depth and O(n) work.' It is hard to state the

average-case time, since it depends on the distribution of

the inputs. Other parallel algorithms for the convex-hull

problem run in D = O(log n), and W = O(n) in the worst

case [16], but have larger constants.
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W(n) = W(n/2) + kn = O(n)

D(n) = D(n/2) + k = O(log n)

Figure 11. Code for the fast Fourier transforms,
the scan operation, and for finding the J<!h smallest
element of a set

The particular code shown works only on sequences that

have a length equal to a power of two, but it is not hard to

generalize it to work on sequences of any length.

Work = O(n)

Depth = O(Jog n)

Work = O(n)

(expected)

Depth = 0 (Jog n)

(expected)

Work = O(nlog n)

Depth = O(Jog n)

function scan (a) =

if#a == 1 then [0]

else

let e = even_elts(a);

0= odd_elts(a);

s = scan({e + 0: e in e; 0 in oj)

in interleave(s,ls + e: s in s; e in e));

function ffHa,w) =

if#a == 1 then a

else

let r = {fft(b, even_elts(w»:

bin [even_elts(a) ,odd_elts(a)]}

in fcadd(a, cmult(b, w»:

a in r[O] ++ do];
bin r[I) ++ r[I);

winwl;

function kth_smallest(s, k) =

let pivot = s[#s/2];

lesser = Ie in sl e < pivot);

greater = Ie in sl e > pivot!;

in if (k < #Iesser) then

kth_smallestOesser, k)

else if (k >= #s - #greater) then

kth_smallest(greater, k -' (#S-#greater»

else pivot;

as a containing all the complex nth roots of unity. The FFT

is called recursively on the odd and even elements of a.

The results are then combined using cadd and CIDuit

(complex addition and multiplication). Assuming that

cadd and cIDult take constant work and depth, then the

recursion gives us the costs:

W(n) = 2W(n/2) + kn = O(n log n)

D(n) = D(n/2) + k = O(log n).

The plus-scan operation (called all-prefix-sums) takes a

sequence of values and returns a sequence of equal length

for which each element is the sum of all previous elements

in the original sequence. For example, executing a plus

scan on the sequence [3, 5, 3, 1, 6] returns [0, 3, 8, I I,

12]. This can be implemented as shown in Figure I I. The

algorithm works by elementwise adding the odd and even

elements and recursively solving the problem on these

sums. The result of the recursive call is then used to gen

erate all the prefix sums. The costs are:

P

function cross_product(o,line) =

let (xo,yo) = 0;

«xl,yl),(x2,y2» = line
in (xl-xoh(y2-yo) - (yl-yoh(x2-xo);

function convex_hull (points) =
let x = Ix : (x,y) in points};

minx = points(min_index(x)];
maxx =points (max_index(x) ]

in hsplit(points,minx,maxx) ++ hsplit(points,
maxx,minx) ;

A

(AB CD E FGR I]KL MN 0 p]

A (BDFGRJKMO] P [CEILN]

A (B FJ] (0] P N (C E]

ABJOPNC

function hsplit(points,pl,p2) =

let cross = lcross_produet(p,(pI,p2»: p in points};
packed ={p:p in points; c in cross I plusp(c)}

in if (#packed < 2) then [pI] ++ packed

else
let pm =points [max_index(cross) ]
in flatten ({hsplit(packed,pl,p2):

pi in [pI,pm]; p2 in [pm,p2]});

Three Other Algorithms

We conclude our examples with brief discussions of three

other algorithms: the fast Fourier transform (FFT), the

scan operation (all prefix sums), and an algorithm for

finding the k th smallest element of a set. All the code is

shown in Figure II. These algorithms further demon

strate the conciseness of nested data-parallel constructs.

We use the standard recursive version for the FFT [I I].

The second argument w is a sequence of the same length

Figure 10. Code and example ofthe Quickhull al
gorithm. Each sequence in the example shows one
step of the algorithm. Since A and P are the two x
extrema, the line AP is the original split line. J and N

are the farthest points in each subspace from AP

and are, therefore, used for the next level of splits.
The values outside the brackets are hull points that
have already been found.
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A variation of Quicksort can be used to find the kth

smallest element of a sequence [11]. This algorithm calls

itself recursively only on the set ofelements containing the

result. Here we consider a parallel version of this algo

rithm. Mter selecting the lesser elements, if #lesser is

greater than k, then the k
th

smallest element must belong

to that set. In this case, the algorithm calls kth smallest
recursively on lesser using the same k. Otherwise, the

algorithm selects the elements that are greater than the

pivot, and can similarly find if the k th element belongs in

greater. If it does belong in greater, the algorithm calls

itself recursively but must now readjust k by subtracting

the number of elements less than or equal to the pivot. If

the k th element belongs in neither lesser nor greater,
then it must be the pivot, and the algorithm returns this

value. For sequences of length n, the expected work of this

algorithm is O(n), which is the same as the time of the

serial version. The expected depth is O(log n), since the

expected depth of recursion is O(log n).

summary
The N ESL language was designed to be useful for pro

gramming and teaching parallel algorithms. For these

purposes, it was important that it allow simple descrip

tions of algorithms that ciosely match our high-level intui

tion, and also that it supply a well-defined model for ana

lyzing performance. We believe the language has

successfully achieved these goals. There are many aspects

of N ESL, and the purpose of this article was to extract the

two features that are most important for programming

parallel algorithms. They are:

• A performance model based on work and depth. An

important aspect is that the model is defined directly in

terms of language constructs rather than trying to ap

peal to any intuition of a machine. As discussed, the

model is a virtual one for which we give mappings onto

running times for various physical machine models.

• The use of data-parallel constructs for expressing paral

lelism and the ability to nest such constructs. We cer

tainly do not mean to exclude any other parallel con

structs, but having some way of mapping a function

over a set of values in parallel seems critical for express

ing many parallel algorithms.

This article is suggesting a change in the underlying mod

els we use for analyzing parallel algorithms. In particular,

it suggests that we move away from using theoretical per

formance models based on machines to using models

based on languages. As mentioned in the article, some ref

erence works already informally analyze parallel algo

rithms in terms of work and depth before mapping them

onto a PRAM [16, 17]. We suggest that the extra step be

taken of formalizing a model based on work and depth.

With this formal model, the PRAM can be cut out of the

loop, directly mapping the model onto more realistic ma

chines. We furthermore argue that language-based mod

els seem to be the most reasonable way to define a pro

grammingmodel based on work and depth.

A full implelnentation of N ESL is currently available on
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the World-Wide Web. The compiler is based on a tech

nique called flattening nested parallelism [4] and compiles

to an intermediate language called VCODE. Benchmark

results for this implementation for the Connection Ma

chines CM-2 and CM-5 and the Cray C90 are described in

[8]. These results show that NESL'S performance is com

petitive with that of machine-specific codes for those

benchmarks.
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