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Programming real time applications withSIGNALPaul Le Guernic Thierry GautierMichel Le Borgne Claude Le MaireIRISACampus de Beaulieu35042 Rennes CEDEXFRANCEAbstractThis paper presents the main features of the Signal language and its compiler.Designed to provide safe real time system programming, the Signal language is basedon the synchronous principles. Its semantics is de�ned via a mathematical model ofmultiple-clocked 
ows of data and events. Signal programs describe relations onsuch objects, so that it is possible to program a real time application via constraints.The compiler calculates the solutions of the system and may thus be used as a proofsystem. Moreover, the equational approach is a natural way to derive multiprocessorexecutions of a program. Finally, this approach meets the intuition through a graphicalinterface of block-diagram style, and the system is illustrated on a speech recognitionapplication.1 IntroductionSignal is a block-diagram oriented synchronous language for real time programming. Ac-cording to the synchronous approach, time is handled according to the �rst two of its threefollowing characteristic aspects: partial order of events, simultaneity of events, and �nallydelays between events. In a synchronous framework, time is modeled as a chronology; du-rations are constraints to be veri�ed at the implementation. Then it is possible to considerthat computations (and in particular computations about time) have zero duration. Thishypothesis is acceptable if any operation of ideal zero duration has a bounded e�ectiveduration. We refer the reader to [1] for a discussion of the principles of synchronous pro-gramming. As discussed in this introductory paper, the styles of synchronous languagesmay be classi�ed into imperative ones and equational ones. The �rst style relies on modelsof the state-transition machine family. CSML [17], Esterel [18], and the Statecharts[20] follow this style. The second one relies on models of multiple-clocked interconnected1



dynamical systems. Lustre [19] follows this style, based on a strictly functional pointof view. In Signal, programming is performed via the speci�cation of constraints or re-lations on the involved signals. As a consequence, the Signal compiler performs formalcalculations on synchronization, logic, and data dependencies to check program correct-ness and produce executable code.The paper is organized as follows. The section 2 is devoted to an informal presenta-tion of the main features of the language. The mathematical model supporting Signalis brie
y discussed in section 3, further information may be found in [2, 3, 4, 11]; basedon this formal model, it is explained how the Signal compiler operates. Distributed codegeneration is discussed in the section 4. Finally, a speech recognition application that wasintroduced in [1] is described in section 5.2 The languageIn this section we introduce the reader to programming in Signal. For that purpose, weinvestigate the two examples introduced in [1], namely the digital �lter and the mouse.Finally the use of Signal as a proof system to verify temporal properties is introduced inthe last subsection.The Signal language handles (possibly in�nite) sequences of data with time implicit:such sequences will be referred to as signals. At a given instant, signals may have thestatus absent (denoted by ?) and present. Jointly observed signals taking the statuspresent simultaneously for any environment will be said to possess the same clock, andthey will be said to possess di�erent clocks otherwise. Hence clocks may be consideredas equivalence classes of signals that are always present simultaneously. Operators ofSignal are intended to relate clocks as well as values of the various signals involved in agiven dynamical system. Such systems have been referred to asMultiple-Clocked RecurrentSystems (MCRS) in [1]. To introduce the Signal operators, we �rst discuss single-clockedsystems, and then consider multiple-clocked ones.2.1 Getting started in SIGNAL programming: simple examples2.1.1 Monochronous signals: digital �lteringA classical second order digital �lter is a representative for the class of dynamical systemshaving a single time index:yn = a1yn�1 + a2yn�2 + b0un + b1un�1 + b2un�2 (1)It allows us to introduce the operators of Signal which handle what we will callmonochronous(or synchronous) signals, i.e., signals with a common time index.Such a �lter is built from two types of equations:1. yn = un + vn 2



2. zn = yn�1Corresponding to these two types of equations, we have two types of monochronous opera-tors in the Signal language: the \static" ones and the \dynamic" one. Provided that theequations refer to the same index n, it is possible to make it implicit. Then the operatorsare de�ned on sequences of values (the signals).Static monochronous operators are the extensions to sequences of the classical arith-metic or logical operators. Typical examples are +, -, *, /, **, or, and, not, =, <, etc. Forinstance, the Signal equationY := U + Vis nothing but the coding of 8n � 0 yn = un + vnwith implicit handling of the time index n.Dynamic monochronous operator: the delayThe Signal delay operator de�nes the output signal whose nth element is the (n � k)thelement of the input one (k is a positive integer), at any instant but the �rst one at whichit takes an initialization value. For example, the Signal equationZ := Y $1is the coding of 8n > 0 zn = yn�1(the initial value y0 is given in the declaration of Z).An example of the behavior of the delay operator (with zero as initial condition) isshown in the following diagram:Y : 2 5 1 0 4 1 3 7 9 . . .Z : 0 2 5 1 0 4 1 3 7 . . .To summarize, the $k operator corresponds to the z�k shift operator used in signal pro-cessing or in control.Composition of processesSignal equations such as those presented above de�ne elementary processes; the com-position 3



P1 | P2of two processes P1 and P2 de�nes a new process, where common names refer to commonsignals (P1 and P2 communicate through their common signals). This is just the notionof conjunction of equations in mathematics. This operator is thus associative and com-mutative.De�ning zyn = yn�1, zzyn = zyn�1 = yn�2, . . . makes the translation into Signal ofthe �lter (1) straightforward:(| ZY := Y $1| ZZY := ZY $1| ZU := U $1| ZZU := ZU $1| Y := A1 * ZY + A2 * ZZY + B0 * U + B1 * ZU + B2 * ZZU |)An alternative program uses the vector signals V Yn, V Un, and constant vectors A and B:V Yn = " yn�2yn�1 # ; V Un = 264 un�2un�1un 375 ; A = " A1A2 # ; B = 264 B0B1B2 375Those vector signals are handled in Signal with the following window operator:VU := U window 3de�nes a sliding window of length 3 on U.The alternative program is then the following:(| VY := Y $1 window 2| VU := U window 3| Y := PROD {A, VY} + PROD {B, VU} |)with initial values given in the declarations of the vectors VY and VU. (PROD fV1, V2g isan externally de�ned function which computes the inner product of the vectors V1 andV2).2.1.2 More advanced featuresThe model concept (or process declaration) encapsulates a set of equations; it allows theuser to isolate local de�nitions and provides parameterized descriptions. A process modelcan be expanded (an instance of a model is a process).4



Modular programming: block-diagramsA graphical interface [5] has been designed to allow a user friendly de�nition of Signalprograms. A composition of processes has a hierarchical block-diagram representation(parallelism is thus a built-in concept in Signal); the processes are represented by boxes;interconnections between input-output ports (or input-output signals) of the processesare represented by lines. The processes may be de�ned using equations or compositionof equations (see �gure 1), references to previously declared processes (see �gure 4), orembedded graphical composition of processes.
Figure 1: A declaration of the process model FILTERThe �gure 1 depicts the graphical speci�cation of the process model FILTER corre-sponding to equation (1). It is built using the Signal graphical interface1. Note that Y isthe only output signal visible from the outside of the process (the other ones are \local"signals).Array of processesThe structure of \array of processes" is useful when specifying systolic algorithms orwhen describing regular architectures. As a simple example, the componentwise extensionto vectors of a given operator may be de�ned by an array expression. For instance,1In this paper, all block-diagram �gures, except for �gure 2, are copies of actual screens from the Signalgraphical interface. 5



array I to N of V := V1[I] * V2[I] endis the extension of the product, as represented in the �gure 2.V[N]:=V1[N]�V2[N]V[1]:=V1[1]�V2[1]V2 V1 ......... V...Figure 2: An array of processes2.1.3 SummaryAt this point, we are able to describe arbitrary dynamical systems possessing a singletime index. Their coding is straightforward in Signal. The modularity o�ered by thelanguage is equivalent to that of signal 
owgraphs or block-diagrams. Moreover, we canalso describe regular arrays of processes.Although these constructs are su�cient for classical digital signal processing or control,additional primitives are needed for developing complex real time applications. These willbe introduced next.2.2 Handling multiple-clocked systems2.2.1 A small example: clicking on a mouseWe consider the mouse handler described in [1]. Let us recall its speci�cations. Thisprocess has two inputs:� CLICK: a push-button,� TICK: a clock signal.The mouse handler has to repeatedly decide if, during some interval following an initialCLICK, some other CLICKs have been received; intervals are composed of a constant number� > 0 of TICKs and are disjoint. At the end of each such interval, the mouse emitsa signal DOUBLE when another CLICK has been received since the initial one, a signal6



SINGLE otherwise. In [1], it has been discussed how this example may be speci�ed usingMultiple-Clocked Recurrent Systems (MCRS), see section 4.3 of this paper and equations(6-9) therein. From this discussion follows that two additional fundamental primitives areneeded to specify such MCRS, namely:� extracting a new time index from an existing one (equations (7,8,9) are instances ofthis),� interleaving signals to produce the union of time indices (equation (6)).The reader may also convince himself that these are convenient primitives; it has beenargued in [2] that these are in fact the convenient primitives to provide a synchronous lan-guage with maximum expressive power for synchronization and control. These primitivesare indeed primitive operators of Signal. These are presented next.2.2.2 Polychronous operatorsThe extraction: the Signal processY := X when Bwhere X and Y are signals and B is a boolean signal, delivers Y = X whenever X and B arepresent and B is true, and delivers nothing otherwise. The behavior of the when operatoris illustrated in the following diagram:X : 1 2 ? 3 4 ? 5 6 9 . . .B : t f t f t f ? f t . . .Y : 1 ? ? ? 4 ? ? ? 9 . . .(? stands for \no value"). The when operator may be proved associative and idempotentin the set of events. When X is a constant, the clock of X when B is the clock of B whenB.The deterministic merge: the Signal processY := U default Vde�nes Y by merging U and V, with priority to U when both signals are present simultane-ously. It yields Y = U whenever U is available, and Y = V whenever V is available but U isnot; otherwise, Y is not delivered. The behavior of the default operator is illustrated inthe following diagram: U : 1 2 ? 3 4 ? 5 ? 9 . . .V : ? ? 3 4 10 8 9 2 ? . . .Y : 1 2 3 3 4 8 5 2 9 . . .The default operator may be proved associative (which avoids the use of parentheses).Moreover, when is right distributive on default. When V is a constant, the clock of Y isany clock greater than the clock of U. 7



2.2.3 Some extensionsWhen specifying time constraints, it may be useful to refer to the clock of some signal.The following derived operators are of particular interest in that case.� The variationT := when Bof the when operator de�nes the event type signal T which is present whenever theboolean signal B is present and has the value true and delivers nothing otherwise;it is equivalent to T := B when B. An event type signal (or \pure" signal) is analways true boolean signal. Hence not T denotes the boolean signal with clock Twhich always carry the value false.� Given any signal X,T := event Xde�nes the event type signal T whose occurrences are simultaneous with those of X:it represents the clock of X.� Finally constraints may be de�ned on the clocks of signals. In this paper, thefollowing notations are used:X ^= Y X and Y have the same clock 2;X ^< Y X is no more frequent than Y, which is equivalent to X ^= (X when event Y).The following derived operator speci�es a synchronized memory: the Signal processY := X cell Bwhere B is a boolean signal, delivers at the output Y either the present value of X (whenthe latter is present), or the last received value of X when B is present and true. It isequivalent to:(| Y := X default (Y $1)| Y ^= (event X) default (when B) |)2it is written synchro fX, Yg in the syntax of the current version8



2.2.4 Programming the mouseFigure 3: A chronogram of the mouseA \chronogram" of the mouse is described in the �gure 33. This shows the sequence ofintervals where CLICKs are monitored (in the �gure, the number of TICKs in an intervalis � = 10). As it appears in the �gure, we introduce naturally the two following puresignals:� START, which indicates the beginning of a new interval,� RELAX, which indicates the end of the current interval.Then, consider a �rst module which aims at producing the outputs of the MOUSE, namelySINGLE and DOUBLE. This module gets as its inputs CLICK, START and RELAX. The corre-sponding speci�cation is:(| DOUBLE_CLICK := ((not START) default (CLICK in ]START, RELAX])) cell RELAX| SINGLE := RELAX when (not DOUBLE_CLICK)| DOUBLE := RELAX when DOUBLE_CLICK |)The meaning of these equations is the following. DOUBLE CLICK is a boolean signal whichstates at the end of the elapsed time whether a single (status false) or several (statustrue) CLICKs have been received. For this purpose, each START sets DOUBLE CLICK to false(not START is taken with priority). Since STARTs are also CLICKs, at least one CLICK hasbeen received in the considered interval. Then if a second CLICK is received within theallowed delay, DOUBLE CLICK is set to true. Testing for this is performed by the expression\CLICK in ]START, RELAX]" de�ned as follows:X in ]S,T] (i)delivers those X's which belong to the left-open and right-closed interval ]S,T], whereS and T are both pure signals. Note the cell RELAX expression which delivers at everyRELAX the current status of DOUBLE CLICK.What remains now is to indicate how to produce the events START and RELAX. For thispurpose, two operators are introduced:X not in ]S,T] (ii)#X in ]S,T] (iii)3this �gure depicts a simulation environment for the mouse written in Signal under SunView9



Expression (ii) delivers those X's which do not belong to ]S,T]. Expression (iii) countsthe occurrences of X within the mentioned interval and is reset to zero every S; this signalis delivered exactly when equation (i) delivers its output. Using these operators, thesecond module of the MOUSE program is presented next:(| START := CLICK not in ]START, RELAX]| (| N := (#TICK in ]START, RELAX]) cell event N| ZN := N $1 % initial value 0 %| N ^= CLICK default TICK| RELAX := TICK when (ZN = (DELTA-1)) |)|)The �rst equation selects those CLICKs that are also STARTs, and selects also the �rstCLICK. The other equations count the TICKs and deliver the result as frequently as needed(thanks to cell event N). A graphical editing of the resulting MOUSE program is shownin the �gure 4 using the Signal graphical interface. In this �gure, the two modules weintroduced are labelled SIMPLE MOUSE and GO respectively. Note that CLICK and TICK areindependent inputs of this program.
Figure 4: The process model MOUSEComments: the text of the two above modules should be taken as a speci�cation sincethe operators we introduced are not available in the current version of the language. Theywill be available however in a forthcoming version of it, with all variations on the shapeof the considered interval ([S,T[, [S,T], etc.). Thus we shall present without furtherdiscussion this program written in the current version of Signal where these macros arebuilt as Signal processes. Then we shall provide the expansion in Signal of the operator(i). 10



The actual program is the following:process MOUSE = (integer DELTA){ ? event TICK, CLICK! event SINGLE, DOUBLE }(| (| START := NOT_IN_INTERVAL {CLICK, START, RELAX}| (| N := COUNT_IN_INTERVAL {TICK, START, RELAX} cell event N| ZN := N $1| N ^= CLICK default TICK| RELAX := TICK when (ZN = (DELTA-1)) |)| (| DOUBLE_CLICK := ((not START) default IN_INTERVAL {CLICK, START, RELAX})cell RELAX| SINGLE := RELAX when (not DOUBLE_CLICK)| DOUBLE := RELAX when DOUBLE_CLICK |)|)where event START, RELAX; integer N, ZN init 0; logical DOUBLE_CLICKendThe �rst three lines speci�e the name of the process model and its interface (DELTA is aparameter; ? stands for \input" and \!" for \output"). IN INTERVAL, NOT IN INTERVALand COUNT IN INTERVAL are instances of subprocesses corresponding respectively to theoperators (i), (ii) and (iii) presented above.As an example, the process IN INTERVAL, corresponding to the expression X in ]S,T],may be de�ned as follows:process IN_INTERVAL = { ? X; event S, T! Y }(| BELONGS_TO_INTERVAL ^= (S default T default (event X))| (| WILL_BELONG := (not T) default S default BELONGS_TO_INTERVAL| BELONGS_TO_INTERVAL := WILL_BELONG $1 |)| Y := X when BELONGS_TO_INTERVAL|)where logical WILL_BELONG, BELONGS_TO_INTERVAL init falseendProcesses NOT IN INTERVAL and COUNT IN INTERVAL corresponding to operators (ii) and(iii) are de�ned similarly.Using Signal for specifying a Multiple Clocked Recurrent System [1] releases the pro-grammer from the burden of handling explicitly multiple time indices. Every signal in thelanguage has an implicit time index and the Signal operators de�ne relations between thetime indices. 11



2.3 Summary: SIGNAL-kernelTo summarize, the kernel-language Signal possesses only �ve basic constructions whichare recalled here:Y := f(X1,...,Xn) extending instantaneous functions to signals with common clockY := X $N delay (shift register)Y := X when B condition based downsamplingY := U default V merge with priorityP | Q composition of processesAll other operators are built as macros on this kernel-language and model declarations.Moreover the language allows modular programming and external functions calls. It canbe used to describe internally or externally generated interruption or exception handling,data-dependent down- and upsampling [3], mixed passive/active communications with theexternal world [4]. Thus the Signal language has all the features needed for real timeapplications programming. It has been proved in [2] that Signal possesses maximumexpressive power for synchronization mechanisms, in particular data dependent upsamplingcan be expressed in Signal which proved very useful in most of the applications wedeveloped.The following feature of Signal programming style should be emphazised. Since thecompiler synthesizes the global timing from the programmer's speci�cations, the followingprogramming style is recommanded: specify local timing constraints involving very fewdi�erent clocks, and let the compiler do the rest. This is di�erent from Lustre's pro-gramming style, where the programmer must have a global view of the timing to writethe program.2.4 Specifying logical temporal propertiesVarious techniques are used to verify programs: temporal logic [6, 13] in CSML and theStatecharts, automata reductions and veri�cation [14, 15] in Esterel and Lustre forinstance. The Lustre language also uses assertions to express constraints on booleansignals, and o�ers tools to compute boolean dynamical expressions written in Lustreitself [8]. Thanks to the powerful model of Signal, the Signal language itself can beused as a partial proof system.As an example, consider a memory M, which can be written (signal WRITE) and read(signal READ):(| M := WRITE default (M $1)| READ := M when (event READ) |)Each value written in M (�rst line) is read when needed (second line).12



Now suppose that writing in the memory is allowed only when the previous value ofthe memory has been read. Let us encode the status (being written or being read) of thememory as follows:FULL := (event WRITE) default (not (event READ))Then the above constraint is expressed by the following equation:WRITE ^= when (not (FULL $1))Conversely, if we want any written value to be read at most once, we have to write:READ ^= when (FULL $1)Finally, putting these three additional equations together speci�es a single token bu�er, itturns out that this is also its programming.This example illustrates an important feature of the Signal language. To insure thata property is veri�ed on a Signal program, encode this property as Signal equations.This equations may be used in di�erent ways. First it could be checked whether thecorresponding constraints are already implied by the program. Second the equations maybe simply added to the program to make sure that the desired property be satis�ed. Wewill see in the next section how Signal's \clock calculus" can be used for this purpose.3 The Signal compiler as a formal calculus system3.1 The formal modelThe reasoning mechanisms of Signal handle (i) the presence/absence, (ii) boolean valuessince they are important in modifying clocks, and (iii) the dependency graphs to encodedata dependencies in non-boolean functions. Dependency graphs are needed to detectshort circuits such as in X := X+1, and to generate the execution schemes. Three labelsare used to encode absent, true, false as well as the status present we consider as a non-determinate \true or false" value. The �nite �eld F3 of integers modulo 3 is used for thispurpose4: true! +1; false! �1; absent! 0; present ! �1For instance, using this mapping, (a or b) = event a and y := u+v are respectivelyencoded as follows: a2 = b2 ; ab(a� 1)(b� 1) = 0 (2)y2 = u2 = v2 ; u y2��! y ; v y2��! y (3)In these equations, the variables a; b; . . . refer to in�nite sequences of data in F3 with timeindex implicit. The �rst equation of (2) expresses that the two signals a and b must have4elements of F3 are written f�1; 0; 1g 13



the same clock, while the second one encodes the particular boolean relation. The �rstequation of (3) again expresses that all signals must have the same clock, while the labelledgraph expresses that the mentioned dependencies hold when y2 = 1, i.e., when all signalsare present. This is referred to as the conditional dependency graph, since signals maybe related via di�erent dependencies at di�erent clocks. Let us describe how the otherprimitive operators of Signal are encoded in this way.Process y := x $1.As easily checked, boolean shift registers are encoded as follows:�n+1 = (1� x2)�n + x ; �0 = yoy = x2�nIn this equation, �n is the current state, and �n+1 is its next value according to any (hidden)clock which is more frequent than the clock of x (�0 = yo is the initial value). This is anonlinear dynamical system over F3. The non-boolean shift register is just encoded viathe equality of clocks: y2 = x2.Process y := x when b.In the boolean case, we get the codingy = x(�b� b2)while in the non-boolean case, we must encode the constraints on clocks and dependencies:y2 = x2(�b� b2) ; x y2��! yProcess y := u default v.In the boolean case we get y = u+ v(1� u2)while in the non-boolean case we get:y2 = u2 + v2(1� u2) ; u u2��! y ; v (1�u2)v2��������! yProcess P | Q.Here P, Q denote Signal processes. The graph of the process P|Q is the union of graphs ofP and Q; in the same way, the equations associated with the process P|Q are the equationsof P and those of Q.Moreover, in addition to dependencies between signals, dependencies relating signals and14



clocks must be considered. In particular, any signal y depends on its clock y2, as expressedby the dependency: y2 y2��! yFinally we end up with the general form to encode any Signal program:8><>: �n+1 = A(�n; Yn)0 = B(�n ; Yn)0 = C(�0; Y0)Y(i) H(i;j)������! Y(j) ; Y (i)2 Y (i)2�����! Y(i) (4)In this system, �; Y are vectors with components in F3, A;B;C denote polynomial vectorson the components �(i); Y (j) of �; Y . The components of � are the states of the booleanregisters, and the components Y (j) of Y are the encoding in F3 of all signals Y(j) involvedin the program. The time index n may be any time index which is more frequent than theclocks of all components of Y. The two last equations speci�e the conditional dependencies,where H(i; j) = 1 speci�es the clock where the referred dependency holds. The equations(4) show why the work of the Signal compiler relates to formal calculus on dynamicalsystems involving the �nite �eld F3 and graphs.It is shown in [3, 4, 9] how this coding can be used, with the help of polynomial idealtheory, to answer fundamental questions about the properties of a given program:1. Does the program exhibit contradictions? Consider for instance the following pro-gram:(| x := a when (a > 0)| y := a when not (a > 0)| z := x + y |)Writing � for short instead of (a > 0), its clock calculus yields �� � �2 = �� �2whence � = 0: this means that a must be always absent, the program refuses itsinputs and does nothing.2. Are there short circuits? Consider the following program:(| x := sin {y} + b| y := a default x |)The clock calculus and conditional dependency graph areh = x2 = b2 = y2 = a2 + (1� a2)b215



a2x2 (1� a2)x2x2 a2h ayxbDue to the short circuit including x and y, this program is deadlocked unless theclock of this short circuit is always absent, i.e., (1 � a2)x2 = 0, or equivalently,(1� a2)b2 = 0. Hence, y2 = a2, and this program implements:(| y := a| x := sin {a} + b |)3. Is the program setting constraints on its inputs? Consider the program:(| x := a when (a > 0)| z := a + x |)Writing � instead of (a > 0), the clock calculus isz2 = a2 = x2 ; x2 = a2(�� � �2) ; �2 = a2which forces �2 = 0 or 1 + � + �2 = 0 i.e. � = 1Hence when a is present, we must have a > 0 otherwise the program is deadlockedby a contradiction. However Signal cannot reason on non-boolean data types.Hence, considering that � is the output of a non-boolean function (testing a > 0),the constraint �2(1 � �) = 0 is replaced by the stronger one �2 = 0, which doesnot involve the value (true or false) of � any more: a is then refused so that thisprogram refuses to do anything.4. Is the program deterministic, i.e., is it a function? Consider the following program(which speci�es a counter with external reset):process P = { ? s ! t }(| nt := (0 when s) default (t+1)| t := nt $1 |)endIts clock calculus yields nt2 = t2 = s2 + (1� s2)t2which is equivalent to t2 � s2: if s is the speci�ed input, the clock of the outputt is not a function of any external signal. Hence this program is not a function.Inserting the following synchronization equation, t ^= (s default u), where u isanother input) completely speci�es the timing and we get a function.16



5. Does the program verify some property?|the speci�cation of the bu�er presented insection 2.4 is a good exercise.3.2 The work of the compilerWe have brie
y described the mathematical model supporting the work of the compiler.The way the compiler uses this model is the following. The compiler uses a very e�cientalgorithm to construct a hierarchy of clocks with respect to the following rules:� If C is a free boolean signal (i.e., it results from the evaluation of a function withnon-boolean arguments, or it is an input signal of the program, or it is the statusof a boolean memory), then the clock de�ned by the true values of C (i.e., when C)and the clock de�ned by the false values of C (i.e., when not C) are put under theclock of C; both are called downsamplings.� If a clock K lies under a clock H then every clock which lies under K also lies under H.� Let H be a clock de�ned as a function of downsamplings H1,. . . , Hn, if all thesedownsamplings lie under a clock K, then H also lies under K.The resulting hierarchy is a collection of interconnected trees, say a forest. The partialorder de�ned by this forest represents dependencies between clocks: the actual value ofa clock H may be needed to compute the actual value of a given clock K only if H liesabove K according to this partial order. No hierarchy is de�ned on the roots of the trees,but constraints can exist. When this forest reduces to a single tree, then a single masterclock does exist, from which other clocks derive. In this latter case, the program can beexecuted in master mode, i.e., by requiring the data from the environment. If several treesremain, additional synchronization has to be provided by the external world (e.g. smallreal time kernels, see [1]) or by another Signal program.The conditional dependency graph is attached to the forest in the following way. Thesignals available at a given clock are attached to this clock, and so are the expressionsde�ning these signals. The so obtained \conditional hierarchical graph" is the basis forsequential as well as parallel code generation.Moreover, the proper syntax of Signal can be used to represent this graph. For thatpurpose, the compiler rewrites the clock expressions as Signal boolean expressions: theoperator default represents the upper bound of clocks (sum) and the operator when rep-resents the lower bound (product); then, any clock expression may be recursively reducedto a sum of monomials, where each monomial is a product of downsamplings (otherwise,the clock is a root). The de�nitions of the signals are also rewritten to make explicit theclocks of the calculations that de�ne these signals.The rewritten process is equivalent to the initial one, but the clock and dependencycalculus is now solved, and all the clocks handled in the program are made preciselyexplicit. The so obtained process will be referred to as the solved form of the consideredprogram. 17



An example taken from the MOUSE is developed in the appendix. Its solved form, whichexhibits a forest of several clock trees, is detailed. Then, a simulated real-time monitoris provided which delivers the inputs CLICK and TICK to this program. This simulator isitself written in Signal. The pair fprogram, monitorg is then processed by the compilerand produces a single tree for its solved form. This solved form is shown and the sequentialC code generated from this program is given.4 Toward parallel implementationA distributed implementation of a Signal program P consists of a de�nition of P asP = (j P1 j . . . j Pn j)into modules P1, . . . , Pn which will be one to one mapped onto a set of n processors.Thanks to the equational approach, the modules Pi can be built either downwards bybreaking, or upwards by clustering subprocesses. Hence we have developed a systematicmethod to serialize such modules, while avoiding possible deadlocks. This method, whichgeneralizes the use of semi-granules such as presented in [10], is outlined next. It turnsout that the same method can be used to improve the e�ciency of the implementation,by reducing the overhead due to process scheduling.4.1 Some issues on distributionThe following notations will be used for the �gures throughout this section: solid arrowsdenote data dependencies enforced by the considered programs, dashed arrows indicateadditional ordering that results from a given implementation. For instance, in �gure 5-a,the program speci�es that a must be received �rst before producing x (and similarly forb and y), and the dashed arrows express that in the considered implementation, it is �rstwaited for both a and b, and then x and y are produced. Adding dashed lines within adependency graph will be referred to in the sequel as performing order enhancement.Using these notations, consider the following program, where f and g are some arbitraryfunctions:P = (| y := g(b) | x := f(a) |)The sequence of getting values followed by putting results, repeated forever, is a correctexecution scheme of P if we assume that any input signal is available whenever needed;each step is described in �gure 5-a.Unfortunately, the context of P may for instance be the following Signal program:R = (| a := h(y) |)where h is again some function. Its only correct execution scheme is the sequence of gettingy followed by putting a, repeated forever as described in �gure 5-b.18



b) obj-Ra) obj-P c) Deadlock!a?y!y?b ?a!x !x?a?b!y ?y!aFigure 5: Context dependent implementationThe Signal source program P|R is certainly a correct one. However, the concurrent5execution of their sequential implementation obj P and obj R, is obviously deadlocked(�gure 5-c): obj P is waiting for a; to produce a, obj R needs y which cannot be deliveredby obj P. This is depicted by the cycle in the �gure 5-c. Now if we consider the followingprogram (see �gure 6-a):Q = (| y := g(a,b) | x := f(a,b) |)then for any program R' such that y or x is needed to calculate a or b, the program Q |R' is incorrect. Thus any implementation of this program Q in which communications areserialized in agreement with the local partial order speci�ed by the graph of �gure 6-a isa correct one. For instance, sequence of fgetting b ; getting a ; putting y ; putting xgrepeated forever does not cause additional deadlocks whatever the environment is. Thisimplementation obj Q is depicted by the added dashed lines in �gure 6-b.This is what we call order enhancement of the graph. Thus the key to code distributionis the dependency graph, and possible deadlocks with the environment that might resultfrom an unclever order enhancement must be prevented. Appropriate tools for the generalcase of multiple clocks are brie
y presented in the next section.4.2 Conditional dependency graph, interface conditional graph, andcode distributionMotivated by the discussion of this simple example, we present now the following methodfor code distribution. We assume that the distribution of the graph of the program hasbeen performed according to suitable criteria we don't consider here. Then we concentrate5in the sense of multitasking systems 19



b) obj-Qa) Q?b!y !x?a !x?a?b!yFigure 6: Second exampleon one particular module. For this module, the method consists of the three followingstages:1. calculate transitive dependencies of external signals: this yields the interface condi-tional graph;2. given this interface conditional graph, calculate all legal order enhancements (thatare guaranteed compatible with any arbitrary correct environment);3. from these legal order enhancements, calculate a proper execution scheme of theconsidered module.The so-obtained object code can be stored as a reusable executable module. Steps 1, 2, 3are also the way to separate compilation of modules.4.2.1 Getting the interface conditional graphIt is easily derived using the two following rules:rule of series X h�! Y k�! Z ) X hk��! Z (5)(X precedes Z whenever X precedes Y, at the instants where h = 1, and Y precedes Z, atthe instants where k = 1).rule of parallel X h�! YX k�! Y 9=; ) X h_k����! Y (6)where h_ k = h+ (1� h)k denotes the supremum of the two clocks h and k (h and k arepolynomial functions in F3 taking 0; 1 as only values): X precedes Y whenever X precedesY at the instants where h = 1, or X precedes Y at the instants where k = 1.20



Successive applications of these rules yield the kind of graph depicted as solid branchesin the �gure 7 (in which local nodes do not appear).
hY;jhi;X hoe(X; Y )hi;j YX !sp!sj!s1 h+h� ?ei?e1 ?en

Figure 7: Order enhancement4.2.2 The legal order enhancementsReferring to the �gure 7, let us concentrate on two interface signals, say X and Y. Denotegenerically by hoe(X; Y) the clock of some legal order enhancement that puts X before Yin the execution scheme. The conditions which must be satis�ed by hoe(X; Y) are thefollowing:1. No internal cycle should result from the additional clock hoe(X; Y) in the graph. Thisyields the condition: hoe(X; Y) h� = 0 (7)2. No possibility of an additional cycle due to the environment results from hoe(X; Y);this yields the inequalities:8i; j hi;X hoe(X; Y) hY;j � hi;j (8)(every input ei which precedes X also precedes every output sj following Y: thisinsures that, in any context, no dependency from an output sj to an input ei canbe introduced, which could create a deadlock).21



Elementary algebra shows that (7,8) can be summarized as the single inequality:hoe(X; Y) � h+ +X2Y 2(1� h� � h+)Yi;j (1� hi;XhY;j(1� hi;j)) (9)We will say that a conditional dependency graph G1 is lower than another one G2if and only if they have the same nodes, and each time x �! y occurs in G1 (when itslabel h1 is equal to 1), then x �! y occurs in G2 (h2 = 1); so h1 � h2. Applying orderenhancement results in a graph where each hoe(X; Y) takes its maximal value (it is not thegraph of a partial order but the upperbound of the maximal order enhancements).4.2.3 Getting execution schemesConsider again the program P above, and denote by h the clock of all solid branches inthe �gure 5-a. The original graph coincides with the interface conditional graph, and theformula (9) shows that no legal order enhancement does exist in this case, so that the onlyreusable form is the source code.
a) S!y c) execution schemeb) applying order enhancementh hh?b !x?a !x?a?b!y h hh hh h h h!y?b !x?ahFigure 8: Sequential order enhancementNow, consider some program S whose conditional dependency graph is shown in the�gure 8-a ; the resulting order enhancement is depicted in the �gure 8-b. S has the uniquesequential execution scheme shown in the �gure 8-c. It is obtained by picking the subgraphof the dashed or solid branches that is both a path and covers all nodes.For some programs, the order enhancement may result in a cyclic graph as shown in the�gure 9-b. Such cycles do not express that deadlocks have been created, but just indicatethat external communications within the cycle can be performed in an arbitrary order,depending on the environment's o�er or request at a particular instant. For instance, wemay equally well �rst receive a and then b or the converse: this is depicted in the �gure9-c. 22



c) execution schemea) Qhh hh?b!y !x?a h ?a?b !x!y!x?a?b!y h hh hhhh hb) applying order enhancementFigure 9: Cyclic order enhancement4.2.4 The lazy evaluation of a moduleSimilar techniques may be used to calculate the clock hZ of those instants where it is reallyneeded to compute a signal Z at the execution: Z must be computed when it is needed tocompute some output of the module or some state variable, and the corresponding clockis calculated using the \rule of series" (5) and \rule of parallel" (6) we have shown before.4.2.5 Getting a methodology for distributed implementationsFrom the discussion above emerges the following method:� Separate compilation may be performed following the method we outlined above:synthesizing the interface conditional graph, and then deducing the scheduling fromthe order enhancements yields a control process C associated with a given programP, this module can then be used as executable code in any environment.� Alternatively, it is also possible to specialize this control process using some priorinformation on the environment (e.g. other Signal modules or the properties oftheir interfaces) that are also stated in suitable control processes.5 Programming environmentWe present here a realistic experience with Signal, which has been used to describe theacoustic-phonetic decoder of an automatic speech recognition system. Our purpose is notto detail the program (which would be much too long|the interested reader is referredto [12]), but rather, to give a 
avour of how a large project could be developed with theSignal environment. 23



burst phoneticplosivesignal latticeVQ+labellingeventdetectionsilentunvoiced-voiced-detectionFFTsegmentationsegmentation�lteringhigh passFigure 10: Modular description of an acoustic-phonetic decoder
Figure 11: A graphical view of the DECODER process model which is composed ofan automatic segmentation (SEGMENTATION MODULE), a voiced-unvoiced-silent decision(VOICE MODEL), a detection of plosive bursts (BURST MODEL), a coordination between bound-aries labelling (LABELLING) and vector quantization (VQ MODULE)5.1 A speech-to-phoneme recognition system: global descriptionThe reader is referred to [1] for a more detailed description of this application. The�gure 10 depicts a block-diagram of a part of the speech-to-phoneme recognition system asdeveloped at IRISA. The FFT box involves a sliding-block processing of the speech signal.The filtering and segmentation boxes process the speech signal sample-by-sample. The! (resp. ! ) inside the segmentation boxes indicates that the signal is processed forwardonly (resp. forward-backward): the data-dependent upsampling mechanism is used in thecorresponding Signal programs. The detection and event labelling boxes involveevent detection. Thus several sophisticated mechanisms that are provided by Signal24



were used in this application. We should emphasize that the IRISA speech group wasreluctant to write any real time oriented Fortran programming of this application, onlySignal allowed us to develop such a real time programming. Finally, the Signal graphicalinterface proved well suited for developing this application. The �gure 11 shows a graphicalview of the decoder as written in Signal.5.2 Building a control panel for experimentationTo take advantage of the Signal approach, a tool-box for the on-line scanning of theresults has been developed using Signal. These developments were intended to allow anon-line interaction of the user during the execution, with both the program itself and thedisplay of its results. This is achieved without modifying the source program, but just byconnecting \probe" and \debug" modules we describe brie
y:� \probe" processes allow to monitor the program without disturbing its execution.Such a process is associated with a port of the program. The �gure 12 shows a probeprocess associated with the speech signal. A probe process is a Signal process withno output, which is declared as an external process to be analyzed by the displaysystem (X-windows or SunView).Figure 12: A probe process is associated with the speech signal� \debug" processes allow to control the running of the program through a panel-drivendown- or upsampling of some signals, or the on-line change of some parameters. Sucha process is associated with a link between two ports (�gure 13).Figure 13: A debug process is associated with the backward signal� An intermediate tool consists of a \pace maker", which makes only the programrunning slower by encapsulating it in a program accessing a physical clock. Thelogical time may be a subset of this clock managed by up and down buttons.25



Figure 14: Synchronous environment for an acoustic-phonetic decoder (pronounced digit:\6")The �gure 14 shows an environment for the acoustic-phonetic decoder, developed underthe SunView window management system.6 ConclusionWe have presented the Signal synchronous programming language for real time systemsdevelopment. The following key features should be mentioned:� Signal is a block-diagram oriented language. As such, it is provided with a graphicalinterface for program editing and execution.� Since block-diagrams naturally specify constraints or relations between the involvedsignals, Signal is a language of equational style. This has several important conse-quences we list now:{ The programmer has only to specify local synchronization constraints involvingfew signals; synthesizing the whole synchronization is the task of the compiler.26



{ Signal is its own proof system: desired properties can be expressed as (pos-sibly non deterministic) Signal programs, and processed by the compiler asadditional equations. Checking for contradictions in the resulting program isthe mechanism for proofs.{ The behavior of a program P in a context C may be easily studied as a programC | P (proofs, simulation. . . ).� The conditional graph associated with control equations is the universal tool forproving, distributing, optimizing Signal programs.To summarize, various services such as proof, compilation, distributed implementation,are all supported by the Signal formal system. This releases the user from handlingdi�erent formalisms and associated tools for these tasks.Signal is currently available under two di�erent versions that were developed with di�er-ent objectives. The INRIA H2 Signal system provides the interface used in this article,and produces the intermediate level hierarchical code we have discussed. Sequential For-tran or C code is currently produced. Developments on distributed implementation arein progress based on this version. Tools for proving dynamical properties will be integratedin a short time.The CNET-TNI V3 version is commercially available. A multiple windowing systemof Macintosh style is provided for both program editing and on-line monitoring and super-vision of the execution. Sequential C code is produced. Experiments have been performedbased on this version to produce distributed Occam [16] code for a multi-Transputersystem.The Signal environment has been experimented on signi�cant applications in the areaof signal processing and control: a speech recognition system, a radar system, a digitalwatch, a rail road crossing were the major ones.Finally, the Syndex system [7] has been developed at INRIA to distribute automat-ically Signal programs onto multiprocessor architectures; it uses the hierarchical condi-tional graph as input.Appendix: a sample work of the compilerLet us consider an excerpt of the MOUSE process presented in section 2.2.4, namely theSIMPLE MOUSE process in which we specify also the subprocess IN INTERVAL; moreover, weadd the constraint (which is veri�ed in the overall MOUSE process) that STARTs are alsoCLICKs:START ^< CLICKThe SIMPLE MOUSE process is the following:27



process SIMPLE_MOUSE = { ? event START, CLICK, RELAX! event SINGLE, DOUBLE }(| START ^< CLICK| DOUBLE_CLICK := ((not START) default IN_INTERVAL {CLICK, START, RELAX})cell RELAX| SINGLE := RELAX when (not DOUBLE_CLICK)| DOUBLE := RELAX when DOUBLE_CLICK|)where logical DOUBLE_CLICKprocess IN_INTERVAL = { ? X; event S, T! Y }(| BELONGS_TO_INTERVAL ^= (S default T default (event X))| (| WILL_BELONG := (not T) default S default BELONGS_TO_INTERVAL| BELONGS_TO_INTERVAL := WILL_BELONG $1 |)| Y := X when BELONGS_TO_INTERVAL|)where logical WILL_BELONG, BELONGS_TO_INTERVAL init falseendendIts solved process, as calculated by the compiler, is as follows:process SIMPLE_MOUSE_TRA = { ? event START, CLICK, RELAX! event SINGLE, DOUBLE }(| (| START ^= START |)| (| CLICK ^= (START default CLICK) |)| (| RELAX ^= RELAX |)| (| H_12_H := START default RELAX |)| (| H_15_H := CLICK default H_12_H| H_15_H() |)| (| SINGLE := RELAX when H_28_H |)| (| DOUBLE := RELAX when H_27_H |)| (| Y := CLICK when H_21_H |)| (| H_25_H := START default Y |)| (| H_26_H := RELAX default H_25_H| H_26_H() |)| (| H_14_H := when ((not H_12_H) default CLICK) |)| (| H_18_H := when ((not RELAX) default START) |)| (| H_24_H := when ((not START) default Y) |)|)whereprocess H_15_H = { ? event H_15_H, H_14_H, H_18_H, RELAX! event H_21_H }(| H_15_H ^= WILL_BELONG ^= BELONGS_TO_INTERVAL| (| H_21_H := when BELONGS_TO_INTERVAL |)| (| BELONGS_TO_INTERVAL := WILL_BELONG $1| WILL_BELONG := (not RELAX) default H_18_Hdefault (BELONGS_TO_INTERVAL when H_14_H) |)|)where logical WILL_BELONG, BELONGS_TO_INTERVAL init falseend; 28



process H_26_H = { ? event H_26_H, H_24_H, START! event H_27_H, H_28_H }(| H_26_H ^= DOUBLE_CLICK| (| H_27_H := when DOUBLE_CLICK| H_28_H := when (not DOUBLE_CLICK) |)| (| DOUBLE_CLICK := ((not START) default H_24_H) cell H_26_H |)|)where logical DOUBLE_CLICKendend The hierarchy is represented as the embedding of declared subprocesses. If a clock isan external event, its name is the name of this external signal, otherwise it is named H i H.For each clock named X, the solved process contains:� its de�nition (for instance, H 12 H := START default RELAX) or constraint (CLICK^= (START default CLICK));� a process with the same name containing the graph and clocks depending on X (seethe processes H 15 H and H 26 H), or directly the subgraph of synchronous calcula-tions (cf. the body of declared subprocesses).Let us comment the SIMPLE MOUSE TRA process. In the hierarchy,� events START and RELAX are free clocks; it is the reason why they appear at the topof SIMPLE MOUSE TRA with the constraint X ^= X;� CLICK is constrained to be greater than START and thus is also placed at the top level(it would also be possible to consider that CLICK is free and START constrained);� H 12 H and H 15 H are clocks built on more than one of those free clocks and thenalso appear at the top of SIMPLE MOUSE TRA with their de�nition;� H 15 H is the clock of the boolean signals WILL BELONG and BELONGS TO INTERVAL, itis used to build the clock H 21 H de�ned by the true values of BELONGS TO INTERVAL:H 21 H is under H 15 H; its de�nition and that of the signals BELONGS TO INTERVALand WILL BELONG are contained in the subprocess H 15 H;� RELAX, H 18 H and H 14 H are \computation clocks" of WILL BELONG; computationclocks associated with a given signal are exclusive clocks, i.e., clocks which do nothave common instants (for instance, H 18 H is the \complementary" of RELAX inSTART); the expressions of de�nition of the signals (for example, WILL BELONG :=(not RELAX) default H 18 H default (BELONGS TO INTERVAL when H 14 H)) pro-vide as a byproduct the conditional data dependencies;� SINGLE (for instance) is built on RELAX, which appears at the top level, and H 28 H,which is under H 26 H, and thus it also appears at the top level (see also DOUBLE, Y,H 25 H and H 26 H); �nally, the computation clocks H 14 H, H 18 H and H 32 H alsoappear at the top level. 29



The compiler does not synthesize a unique master clock for the SIMPLE MOUSE process:no synchronization requirement is speci�ed on the inputs START, CLICK and RELAX. Thisprocess is used as a subprocess of the MOUSE process. It can also be directly executed.We have then to de�ne a communication protocol with its asynchronous environment.A scanning mode of asynchronous execution is described in the following process (tosimplify the presentation, we consider that the process SIMPLE MOUSE delivers the signalDOUBLE CLICK as output):process S_SIMPLE_MOUSE = { ? logical S_CLICK, S_RELAX, S_START! logical DOUBLE_CLICK }(| (| S_CLICK ^= S_RELAX| CLICK := when S_CLICK| RELAX := when S_RELAX| (| S_START ^= CLICK| START := when S_START |)|)| SIMPLE_MOUSE()|)endHere, the compiler synthesizes a single master clock: this process can be run in amaster mode. The solved process is the following (we have kept only the skeleton of theprogram, dropping the de�nitions of the signals and the clocks which are only computationones):process S_SIMPLE_MOUSE_TRA = { ? logical S_START, S_CLICK, S_RELAX! event SINGLE, DOUBLE }(| (| H_6_H := event S_CLICK| H_6_H ^= S_RELAX| H_6_H() |)|)whereprocess H_6_H = { ? event H_6_H; logical S_START, S_CLICK, S_RELAX! event SINGLE, DOUBLE }(| (| CLICK := when S_CLICK| CLICK ^= S_START| CLICK() |)| (| RELAX := when S_RELAX |)| (| H_33_H := CLICK default RELAX| H_33_H() |)| (| Y := CLICK when H_27_H |)| (| H_36_H := RELAX default START |)| (| H_37_H := Y default H_36_H| H_37_H ^= DOUBLE_CLICK |)|)whereprocess CLICK = { ? event CLICK; logical S_START! event START }(| (| START := when S_START |)|)end; 30



process H_33_H = { ? event H_33_H! event H_27_H }(| H_33_H ^= WILL_BELONG ^= BELONGS_TO_INTERVAL| (| H_27_H := when BELONGS_TO_INTERVAL |)|)endendend The clock H 6 H (which is the clock of the signals S CLICK and S RELAX) is the singleroot of the hierarchy; the clocks CLICK (which is the clock of the signal S START), RELAX,H 33 H (which is the clock of the signals WILL BELONG and BELONGS TO INTERVAL), Y,H 36 H, and H 37 H (which is the clock of the signal DOUBLE CLICK) lie under H 6 H; theclock START lies under CLICK; the clock H 27 H lies under H 33 H.As an example of sequential code generation, the C code generated from this simpli�edprogram is a loopwhile(cs_simple_mouse());with this function de�ned as follows:extern logical cs_simple_mouse(){ h_6_h = TRUE;rs_click(&s_click,&h_4_h);if (!h_4_h) return FALSE;rs_relax(&s_relax,&h_4_h);if (!h_4_h) return FALSE;start = FALSE;h_33_h = s_click || s_relax;h_27_h = FALSE;if (s_click){rs_start(&s_start,&h_4_h);if (!h_4_h) return FALSE;start = s_start;}if (h_33_h){if (s_relax) will_belong = FALSE;else if (start) will_belong = TRUE;else will_belong = belongs_to_interval;h_27_h = belongs_to_interval;belongs_to_interval = will_belong;}y = s_click && h_27_h;h_37_h = y || s_relax || start;if (h_37_h){if (start) double_click = FALSE;else if (y) double_click = TRUE;wdouble_click(double_click); 31
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