
Programming Real-time Autofocus on a Massively
Parallel Reconfigurable Architecture using Occam-pi

Zain-ul-Abdin∗, Anders Ahlander† and Bertil Svensson∗
∗Centre for Research on Embedded Systems (CERES)

Halmstad University, Halmstad, Sweden
†Business Area Electronic Defence Systems, Saab AB, Gothenburg, Sweden

Abstract—Recently we proposed occam-pi as a high-level
language for programming massively parallel reconfigurable
architectures. The design of occam-pi incorporates ideas from
CSP and pi-calculus to facilitate expressing parallelism and
reconfigurability. The feasability of this approach was illustrated
by building three occam-pi implementations of DCT executing
on an Ambric. However, because DCT is a simple and well-
studied algorithm it remained uncertain whether occam-pi
would also be effective for programming novel, more complex
algorithms.

In this paper, we demonstrate the applicability of occam-pi
for expressing various degrees of parallelism by implementing
a significantly large case-study of focus criterion calculation in
an autofocus algorithm on the Ambric architecture. Autofocus
is a key component of synthetic aperture radar systems. Two
implementations of focus criterion calculation were developed
and evaluated on the basis of performance. The comparison
of the performance results with a single threaded software
implementation of the same algorithm show that the throughput
of the two implementations are 11x and 23x higher than the
sequential implementation despite a much lower (9x) clock
frequency. The two designs are, respectively, 29x and 40x more
energy efficient.

I. INTRODUCTION AND MOTIVATION

Embedded signal processing systems are facing the chal-
lenges of increased computational demands. Massively par-
allel reconfigurable architectures, which can be configured
to form application-specific hardware, offer high degree of
parallelism to meet the application requirements. However, the
applicability of reconfigurable processor arrays in embedded
and high performance computing is constrained by the need
for mastering low-level structural description languages and
the lack of support in these languages for expressing dynamic
reconfiguration. Clearly, all these challenges need to be taken
care of by using an appropriate programming model.

We proposed to use a concurrent programming model that
allows the programmer to express computations in a produc-
tive manner by matching it to the target hardware using high-
level constructs, and the language is further supported by a
compiler for providing portability across different hardware
resources. Occam [2] is a programming language based on
the Communicating Sequential Processes (CSP) [1] concur-
rent model of computation and was developed by Inmos for
their microprocessor chip Transputer. However, CSP can only
express a static model of the application, where processes syn-
chronize through communication over fixed channels. In con-
trast, the pi-calculus [3] allows modeling of dynamic construc-

tions of channels and processes, which enables the dynamic
connectivity of networks of processes. Thus, occam-pi [4],
combining CSP with pi-calculus, seems to be an interesting
approach to programming of run-time reconfigurable systems.
A program in occam-pi is a composition of processes in
which communication between the processes is managed by
unbuffered message passing channels. Occam-pi allows the
programmer to structure concurrent programs in such a way
that they can not only be more easily understood but also
more effectively use the concurrency features of the underlying
hardware.

In earlier work, we have demonstrated the feasability of
using the occam-pi language to program an emerging mas-
sively parallel reconfigurable architecture by implementing a
1D-DCT algorithm [5] [6]. In this paper we demonstrate
the applicability of the approach by programming compute-
intensive parts of Synthetic Aperture Radar (SAR) systems.
SAR image forming has been recognized as an application
requiring real-time performance [7]. A case study has been
performed by implementing autofocus criterion calculations
on the Ambric array of processors. In particular we have used
the dynamic parallelism feature of occam-pi in the form of
replicated parallel processes.

Ambric is an asynchronous array of so called brics, each
composed of two pairs of Compute Unit (CU) and RAM Unit
(RU) [8]. The CU consists of two 32-bit Streaming RISC
(SR) processors, two 32-bit Streaming RISC processors with
DSP extensions (SRD), and a 32-bit reconfigurable channel
interconnect for interprocessor and inter CU communications.
The RU consists of four banks of RAM along with a dynamic
channel interconnect to facilitate communication with these
memories. The Am2045 device has a total of 336 processors
in 42 brics. Using the proprietary tools the individual objects
are programmed in a sequential manner in a subset of the java
language, called aJava, or in assembly language [9]. Objects
communicate with each other using hardware channels without
using any shared memory. Each channel is unidirectional,
point-to-point, and has a data path width of a single word.
The individual software objects are then linked together using
a proprietary language called aStruct.

The rest of the paper is organized as follows: Section II
describes the occam-pi language basics and in particular
extensions for supporting reconfigurability. Section III pro-
vides an overview of the compiler framework. Section IV

IEEE International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4301-7/11 $26.00 © 2011 IEEE

DOI 10.1109/FCCM.2011.20

194

describes the SAR system and the significance of the autofocus
algorithm. Section V presents the implementation methodol-
ogy and the two design approaches. Section VI discusses the
implementation results of the case study, and the paper is
concluded with some remarks and future work in Section VII.

II. Occam-pi LANGUAGE

Occam-pi [4] language is known for its simplicity, min-
imal run-time overhead and power to express parallelism.
Occam-pi has built in semantics for concurrency and in-
terprocess communication. Occam-pi can be regarded as an
extension of classical occam to include the mobility feature
of the pi-calculus. The mobility feature is provided by the
dynamic, asynchronous communication capability of the pi-
calculus. It is this property of occam-pi that is useful when
creating a network of processes in which the functionality of
processes and their communication network changes at run-
time.

A. Basic Constructs

The hierarchical modules in occam are composed of pro-
cedures and functions. The primitive processes provided by
occam include assignment, input process (?), output process
(!), skip process (SKIP), and stop process (STOP). In addition
to these there are also structural processes such as sequential
processes (SEQ), parallel processes (PAR), WHILE, IF/ELSE,
CASE, and replicated processes [2]. The feature of creating
replicated parallel processes helps in managing the amount of
parallel resources used in the given hardware architecture.

A process in occam contains both the data and the op-
erations it is required to perform on the data. The data in a
process is strictly private and can be observed and modified
by the owner process only. The communication between the
processes is handled via channels using message passing,
which helps in avoiding interference problems. In contrast, in
occam-pi the data can be declared as MOBILE, which means
that the ownership of the data can be passed between different
processes. Compared to the channel definition in classical
occam, the channel type definition has been extended to
include the direction specifiers, Input (?) and Output (!). Thus
a variable of channel type refers to only one end of a channel.
The channel types added to occam-pi are considered as
first class citizens in the type system. A channel direction
specifier is added to the type of a channel definition and not
to its name. Based on the direction specification, the compiler
performs its usage checking both outside and within the body
of the process. Channel direction specifiers are also used when
referring to channel variables as parameters of a process call.

Let us now take a look at an occam-pi program that
computes raise to the power 8 of integers. The main process
invokes three instantiations of a process square, which are
executed in parallel, as shown in Figure 1. The inputs to the
main process are passed through input channel-end in and
the results are retrieved from output channel-end out. The
square process contains a sequential block that takes one

input value, computes its square and passes the resulting value
at its output channel.

PROC main(CHAN INT in?, PROC square(CHAN INT c?,
out!) d!)

CHAN INT a,b: INT x,y:
PAR SEQ

square(in?, a!) c ? x
square(a?, b!) y = x * x
square(b?, out!) d ! y

: :

Fig. 1. An Occam-pi program.

B. Language Extensions to Support Reconfigurability

In this section, we will describe the semantics of the ex-
tensions in the occam-pi language, such as mobile data and
channels, dynamic process invocation, and process placement
attributes. These extensions are used in the programming
model to express the different configurations of hardware
resources, whose reconfiguration at run-time can be controlled
by using dynamic process invocation and process placement
attributes.

1) Mobile Data and Channels: The assignment and com-
munication in classical occam follows the copy semantics,
i.e., for transferring data from the sender process to the
receiver both the sender and the receiver maintain separate
copies of the communicated data. The mobility concept of
the pi-calculus enables the movement semantics during as-
signment and communication, which means that the respective
data has moved from the source to the target and afterwards the
source loses the possession of the data. In case the source and
the target reside in the same memory space, then the movement
is realized by swapping of pointers, which is secure and no
aliasing is introduced.

In order to incorporate mobile semantics into the occam
language, the keyword MOBILE has been introduced as a
qualifier for data types [10]. The definition of the MOBILE
types is consistent with the ordinary types when considered in
the context of defining expressions, procedures and functions.
However the mobility concept of MOBILE types is applied
in assignment and communication. The syntax of mobile data
variables and channels of mobile data is given as:

MOBILE INT x:
CHAN OF MOBILE INT c:

The modeling of mobile channels is independent of the data
types and structures of the messages that they carry.

Mobile Assignment: Having defined the syntax of mobile
types, we are now going to illustrate the movement semantics
as applied in the case of the assignment operation. Let us
consider the assignment of a variable ‘y’ to ‘x’, where ‘x’
initially has a value ‘v0’ and ‘y’ has an initial value of ‘v1’.
According to the copy semantics of occam, ‘x’ will acquire
the value ‘v1’ after the assignment has taken place and ‘y’ will
retain its copy of value ‘v1’. Instead, applying the movement

195

semantics for mobile assignment, ‘x’ will acquire the value
‘v1’ after the assignment has taken place but the value of ‘y’
will become undefined.

Mobile Communication: Mobile communication is intro-
duced in the form of mobile channel types, and the data
communicated on mobile channels has to be of the mobile
data type. Channel type variables behave similarly to the other
mobile variables. Once they are allocated, communicating
them means moving the channel-ends around the network. In
terms of pi-calculus it has the same effect as if passing the
channel-end names as messages.

MOBILE parameter: Passing parameters in an ordinary
PROC call consisting of mobile types does not introduce any
new semantics implications and is treated as renaming when
mobile variables are passed to either functions or processes.

2) Dynamic Process Invocation: For run-time reconfig-
uration, dynamic invocation of processes is necessary. In
occam-pi concurrency can be introduced not only by using
the classical PAR construct but also by dynamic parallel
process creation using forking. Forking is used whenever there
is a requirement of dynamically invoking a new process that
can execute concurrently with the dispatching process. In order
to implement dynamic process creation in occam-pi, two
new keywords, FORK and FORKING, are introduced [11]. The
scope of the forked process is controlled by the FORKING
block in which it is being invoked.

The parameters that are allowed for a forked process can
be of VAL type or MOBILE type. The parameters of a
forked process follow the communication semantics instead
of the renaming semantics adopted by parameters of ordinary
processes.

• VAL data type: whose value is copied to the forked
process.

• MOBILE data type and channels of MOBILE data type:
which are moved to the forked process.

3) Process Placement Attribute: Having presented the ex-
tensions in the occam-pi language, we now introduce the
placement attribute, which is inspired by the placed parallel
concept of occam. The placement attribute is essential in
order to identify the location of the components that will
be reconfigured in the reconfiguration process. The qualifier
PLACED is introduced in the language followed by two
integers to identify the location of the hardware resource where
the associated process will be mapped. The identifying integers
are logical numbers which are translated by the compiler to
the physical address of the resource.

III. COMPILATION METHODOLOGY

In this section we will give a brief overview of a method for
compiling occam-pi programs to reconfigurable processor
arrays. The method is based on implementing a compiler
backend for generating native code.

A. Compiler for Ambric

When developing a compiler for Ambric, we have made
use of the frontend of an existing open-source Translator

from Occam to C from Kent (Tock) [12]. The compiler is
divided into front end, which consists of phases up to machine
independent optimization, and back end, which includes the
remaining phases that are dependent upon the target machine
architecture. In this case, we have extended the frontend for
supporting occam-pi and developed a new backend, target-
ing Ambric, thus generating native code in the proprietary
languages aJava, assembly, and aStruct.

1) Frontend: The frontend of the compiler, which analyzes
the occam-pi source code, consists of several modules for
parsing and for syntax and semantic analysis. We have ex-
tended the parser and the lexical analyzer to take into account
the additional constructs for introducing mobile data types,
dynamic process invocation and process placement attributes.
We have also introduced new grammar rules corresponding
to these additional constructs to create Abstract Syntax Trees
(AST) from tokens generated at the lexical analysis stage.
Steps for resolving names and type checking are performed
at this stage. The frontend also tests the scope of the forking
block and whether the data passed to a forked process is
of MOBILE data type, thus fulfilling the requirement for
communication semantics.

In order to support the channel end definition, we have
extended the definition of channel type to include the direction
whenever a channel name is found followed by a direction
token, i.e., ‘?’ for input and ‘!’ for output.

2) Ambric backend: The Ambric backend is further divided
into two main passes. The first pass generates declarations of
aStruct code including the top-level design, the interface
and binding declarations for each of the composite as well
as primitive objects corresponding to the different processes
specified in the occam-pi source code. Thus each process
occam-pi is translated to a primitive object, which can
then be executed on either the SR or SRD processor of
Ambric. Before generating the aStruct code, the backend
traverses the AST to collect a list of all the parameters passed
in procedure calls specified for processes to be executed in
parallel. This list of parameters, along with the list of names
of procedures called, is used to generate the structural interface
and binding code for each of the parallel objects.

The next pass makes use of the structured composition of
the occam-pi constructs, such as SEQ, PAR, and CASE,
which allows intermingling processes and declarations and
replicating constructs like (SEQ, PAR, IF). In case of the
FORK construct, the backend generates the background code
for managing the loading of the successive configuration from
the local storage and communicating it to the concerned
processing elements. The translation of REAL data type to
fixed-point numbers and the subsequent generation of code
for fixed-point arithmetics is also performed by the backend.

Floating-point representation is supported in the occam-pi
language (in the form of REAL data types); however, it is
not supported by Ambric architecture. Thus, a transformation
from floating-point numbers to fixed-point numbers has been
developed and added to this pass of the Ambric backend. The
supported arithmetic operations are explained as follows:

196

Fig. 2. Simplified illustration of stripmap SAR.

• The assignment operation converts the constant value on
the right side of the operator to the selected fixed-point
format. If the selected format of the left side variable does
not have enough precision for representing the constant
value, then attributes such as saturation, overflow and
rounding are performed on the constant.

• The add and subtract operation are applied directly with-
out any loss of accuracy during the operation.

• The multiply operation is implemented as an assembly
module and each instance of the multiply operator is
replaced by a function call to the assembly module.
The word length of the product is equal to the sum of
word lengths of the two operands. The multiply module
consists of shift operations to align the decimal point and
throw away the superfluous sign bit.

• The division operation is also implemented as an as-
sembly module. The divider module consists of shift
operations to align the decimal part of the result.

IV. SAR AND AUTOFOCUS

SAR systems can be used to create high-resolution radar
images from low-resolution aperture data. A SAR system
produces a map of the ground while the platform is flying
past it. The radar transmits a relatively wide beam to the
ground, illuminating each resolution cell over a long period
of time. The effect of this movement is that the distance
between a point on the ground and the antenna varies over the
data collection interval. This variation in distance is unique
for each point in the area of interest. This is illustrated in
Figure 2 where the area to be mapped is represented by MxN
resolution cells. The cells correspond to paths in the collected
radar data. The task for the signal processor is to integrate, for
each resolution cell in the output image, the responses along
the corresponding path. The flight path is assumed linear.

A. Image forming

A computationally efficient method for creating the image
is the Fast Factorized Back-Projection (FFBP) [13]. In FFBP,

Fig. 3. Illustration of Autofocus and focus criterion.

the whole image initially consists of a large number of
small subimages with low angular resolution. These subimages
are iteratively merged into larger ones with higher angular
resolution, until the final image with full angular resolution is
obtained.

B. Autofocus

In reality, the flight path is not perfectly linear. This can,
however, be compensated for in the processing. In the FFBP,
the compensations typically are based on positioning infor-
mation from GPS. If this information is insufficient or even
missing, autofocus can be used. The autofocus calculations
use the image data itself and are done before each subaperture
merge. One autofocus method, which assumes a merge base
of two, relies on finding the flight path compensation that
results in the best possible match between the images of
the contributing subapertures in a merge. Several flight path
compensations are thus tested before a merge. The image
match is checked according to a selected focus criterion as
shown in Figure 3. The criterion assumed in this study is
maximization of correlation of image data. As the criterion
calculations are carried out many times for each merge, it is
important that these are done efficiently. Here, the effect of a
path error is approximated to a linear shift in the data set. Thus
a number of correlations between subimages that are slightly
shifted in data are to be carried out. See Section V for more
about the calculations. Autofocus in FFBP for SAR is further
discussed in [14].

C. Performance Requirements

The integration time may be several minutes. The computa-
tional performance demands are tens or hundreds of GFLOPS.
The large data sets themselves represent a challenge but
also the complicated memory addressing scheme due to, e.g.,
changing geometric proportions during the processing. The
exact computational requirements are dependent on the chosen
detailed algorithms and radar system parameters.

V. IMPLEMENTATION METHODOLOGY

In order to realize the autofocus algorithm on the Ambric
platform, the first step in the development process is to deter-
mine the dataflow patterns of the algorithm and estimate an
approximate amount of resources to be used. The next step is

197

Fig. 4. Usage of cubic interpolation kernel to calculate contributing pixel
data points.

to write the occam-pi application code in terms of processes
based on the dataflow diagram and compose these processes
to be executed either in sequence or in parallel to each other.
The occam-pi application is tested for functional correctness
by using the Kent Retargetable occam Compiler (KRoC)
[15] run-time system and finally the occam-pi application
code is compiled by our compiler to the native languages of
Ambric. The generated code can then be compiled to generate
binaries for the Ambric platform using its proprietary design
environment.

We have implemented two versions of the same algorithm,
with a different degree of parallelism exploited by the two
approaches. We have used a parameterized approach for both
of the designs, so the amount of parallelism can be varied by
using the construct of replicated PAR of occam-pi based on
parameters such as area of interest (N) and number of pixels
processed per interpolation kernel (M). In addition there are
the other parameters of degree of shift and degree of tilt which
are to be passed to the algorithm. Both design approaches take
as an input, two 6x6 blocks of image pixels from the area of
interest of the contributing image. Cubic interpolation based
on Neville’s algorithm [16] is performed in the range direction
followed by the beam direction to estimate the value of the
contributing pixels along the tilted lines, and the resulting
subimages are to be correlated according to the autofocus
criterion. Figure 4(a) illustrates how an interpolated value is
computed from samples in the contributing data set, and Figure
4(b) indicates how intermediate results of interpolation can be
reused. Each pixel data comprises two 32-bit floating-point
numbers corresponding to the real and imaginary components.
These floating-point numbers are represented by the REAL
data type in occam-pi and the REAL data values are trans-
lated to Q16 format fixed-point representation. For fixed-point
arithmetics specialized assembly language code is inserted in
place of arithmetic operations in the generated code by the
compiler backend. Following is a description of the two design
approaches:

A. Design-I

In the first design we have used six range interpolators to
calculate the cubic interpolation along the six rows of pixel
data in one of the two input pixel blocks, as shown in Figure
5. The input pixel data is fed to the range interpolators through
two splitters, which route the pixel data values received from
the source distributor block. Since there are no arithmetic com-
putations performed by the source and splitter blocks, when
mapped on the Ambric array these blocks are implemented on
SR processors.

The range interpolators perform the same operation on
different rows of pixel data. During the first iteration each
range interpolator takes data values corresponding to four
pixels from their inputs and performs the cubic interpolation;
then the resultant interpolated pixel data values are passed
to the beam interpolation stage. Each range interpolator is
implemented on a set of three SRD processors which are
connected in a pipeline manner. Since the computed results
of the different range interpolators are to be used by multiple
beam interpolators, some of the range interpolator blocks have
multiple outputs and the resulting interpolated data is copied
to these multiple outputs.

The next stage in the dataflow diagram is to perform
the cubic interpolation in the beam direction. Three beam
interpolators are implemented to perform the beam interpo-
lation on the resulting output of the range interpolation stage.
Similar to the range interpolator, each beam interpolator block
is also composed of three SRD processors connected in a
pipeline. Each beam interpolator takes four inputs from four
different range interpolators and it receives its input data values
corresponding to four range interpolated pixels on these input
ports. The resulting data values of the beam interpolation
stage is passed to the three correlators. Each correlator is
implemented on one SRD processor and takes pixel data
values from each of the pixel data blocks, calculates their
correlation and passes the result to the summation block to
calculate the final autofocus criterion. The summation block
is implemented on a single SRD processor. Three iterations
of the range interpolation, beam interpolation, correlation and
summation stages are performed in order to compute the
autofocus criterion for the entire 6x6 image block.

The parameters of area of interest (N) and number of pixels
processed per interpolation kernel (M) have been used in
the construct of replicated PAR of occam-pi to control the
resource usage as shown in Figure 6. Figure 6 also illustrates
the generation of static interconnections between different
processes based on the given parameters.

B. Design-II

The second design uses three times the number of range and
beam interpolators as compared to the first design, as shown in
Figure 7, so that only one iteration of execution of each of the
stages will result in computation of the autofocus criterion for
the complete 6x6 pixel block. However, due to the limitation
of the maximum number of SRD processors available on the
Am2045 chip that we are using as a target for realization, we

198

PROC autofocus(VAL INT N, M, VAL REAL xintr, xinti, CHAN REAL dinp0?, dinp1?, CHAN REAL res!)
[(N/M)*2] CHAN REAL doutp:
[N*2] CHAN REAL32 soutp:
[N*4] CHAN REAL routp:
[N] CHAN REAL boutp:
[N/2] CHAN REAL coutp:
PAR

datadist(N,dinp0?,doutp[0]!,doutp[]!)
PAR i=0 FOR ((N/M)-1)

PAR j=0 FOR ((N/M)-1)
PAR

split(N,doutp[(i*2)+j]?,soutp[(i*3)+(j*3)]!,soutp[((i*3)+(j*3))+1]!, soutp[((i*3)+(j*3))+2]!)
rangeintp1(xintr,xinti,soutp[(i*6)+(j*5)]?,routp[(i*12)+(j*11)]!)
rangeintp2(xintr,xinti,soutp[((i*6)+(j*3))+1]?,routp[((i*12)+(j*8))+1]!,routp[((i*12)+(j*8))+2]!)
rangeintp3(xintr,xinti,soutp[((i*6)+(j*1))+2]?,routp[((i*12)+(j*3))+3]!,routp[((i*12)+(j*3))+4]!,

routp[((i*12)+(j*3))+5]!)
PAR j=0 FOR (N/M)

beamintp(xintr,xinti,routp[(i*12)+(j*4)]?,routp[((i*12)+(j*4))+1]!,routp[((i*12)+(j*4))+2]!,
boutp[(i*3)+j]!)

PAR j=0 FOR (N/M)
corr(boutp[i]?,boutp[i+3]?,coutp[i]!)

corrsum(coutp[0]?,coutp[1]?,coutp[2]?,res!)
:

Fig. 6. Simplified illustration of Autofocus criterion calculation Design-I implementation in Occam-pi.

Fig. 5. Dataflow diagram of Design-I.

have to reduce the number of pipelined processors within each
of the range and beam interpolation blocks to two.

The increase in the number of range interpolators is also
reflected in the increase in the number of splitters, so there are
six splitters used to feed the 18 range interpolators performing
the cubic interpolation in the range direction of one of the input
6x6 pixel blocks. The six splitters are fed by a single source
through two source distributors, because the number of output
ports on an SR processor cannot exceed five. Similar to the first
design, the source and source distributors are executed on SR
processors. The dataflow patterns from the range interpolators
to the beam interpolators, from the beam interpolators to the
correlators, and further on to the summation stage are similar
to the previous design except that we have separate resources
for each iteration of interpolation and correlation stages.

VI. IMPLEMENTATION RESULTS AND DISCUSSION

The implementation results are achieved by realizing both
the above mentioned designs on Ambric Am2045 architecture
and executing them on a GT board containing one Am2045
chip being operated at 300 MHz clock. We have used the
performance harness library provided by Nethra Imaging Inc.
to obtain cycle accurate performance measurements. We have
also obtained results of a sequential version of the same
algorithm by executing it as a single threaded application on
Intel i7-M620 CPU operating at 2.67 GHz. Table I presents
the resources consumed in terms of number of used SRD
processors, SR processors, and RU banks, alongwith the
percentage of total amount of available resources.

The greater number of SRD processors used as compared
to the SR processors is due to the fact that most of the blocks
involve complex arithmetics which cannot be performed on SR
processors, and also due to the limited instruction memories of
the SR processors, which in this case makes them useful only

199

Fig. 7. Dataflow diagram of Design Approach-II.

for data distribution. A signifact number of RU banks are used
to store the additional instructions for SRD processors that
exceed the internal memory of 256 words. Some of the RU
bank memory is also used in implementing FIFO buffers on
the channels between different processors to reduce the effect
of communication stalls. When going from the first design to
the second one, the number of SRD processors should be three
times the number of SRD processors used in design-I, but, due
to the limited number of available SRD processors, we have
to reduce the pipelined processors within each interpolator to
two. The use of the performance harness library results in the
use of one additional SR and one additional SRD processor,
as well as six additional RU banks.

TABLE I
RESOURCES CONSUMED FOR AUTOFOCUS CRITERION CALCULATION.

SRDs SRs RU Banks
Am2045 Full Capacity 168 168 336
Design-I on Ambric 70(42%) 24(14%) 113(34%)
Design-II on Ambric 141(84%) 28(17%) 208(62%)

Table II shows performance and power results: the latency,
in cycle count, for producing first correlation output, the
throughput, in terms of number of pixels per second on

which the given autofocus criterion is computed, the speedup
figures for the design realized on Ambric compared to a
sequential implementation executed on Intel i7-M620 CPU,
and the estimated power consumed by the two parallel and one
sequential implementation based on the figures obtained from
Am2045 [17] and Intel i7-M620 processor [18] data sheets.

TABLE II
PERFORMANCE AND ESTIMATED POWER RESULTS OF AUTOFOCUS

CRITERION CALCULATION.

Implementations Latency Throughput Speedup Power
(cycles) (pixels/sec.) Throughput (Watts)

Sequential on Intel i7 - 21,600 1 17.5
Design-I on Ambric 16,497 236,386 11 6.52
Design-II on Ambric 12,793 486,224 23 9.8

The latency results of the design-II depict an improvement
in terms of 30% less cycles as compared to design-I. The
throughput of the second design is 2.1x times the throughput
of the first design and the throughput speedup with respect to
the sequential implementation is 11x and 23x respectively for
the two designs. With 94 processors which are clocked 9 times
slower, a speedup of 11 shows that the design programmed
in occam-pi is indeed efficient. Ideally the throughput of
design-II should have been three times that of design-I, but the
use of almost twice the number of processors results in some
communication stalls in between the data distribution and
interpolation stages, and the effects of the reduced number of
pipelined processors within individual interpolators is reflected
in the reduction of the throughput. The two designs realized
on Ambric consume much less power than the traditional one,
and they provide 29x and 40x, respectively, more throughput
per watt as compared to the sequential implementation.

We have experienced that the different stages of the cubic
interpolation kernel to be executed on the pipelined processors
have to be optimized to be able to fit into at most two RU banks
of memory for each SRD processor. Otherwise, if it exceeds
the size of two RU banks, the placement tool cannot make use
of the second SRD processor available in the same compute
unit of the Ambric architecture. The optimization is achieved
by generating the assembly code for the fixed-point arithmetics
used in the cubic interpolation kernel by the compiler backend.
Other optimizations implemented in the compiler include
scalarization of array variables and exploitation of instruction
level parallelism by using the mac_32_32 instruction in place
of successive multiplication and addition instructions.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an approach of using a CSP based lan-
guage for programming the emerging class of processor array
architectures. We have also described the mobility features
of the occam-pi language and the extensions in language
constructs that are used to express run-time reconfigurablity.
The ideas are demonstrated by a working compiler, which
compiles occam-pi programs to native code for an array
of processors, Ambric. An application study of focus criterion
calculation is performed and the results corresponding to two
different mappings of the said algorithm are presented.

200

In terms of performance, the two implementations on Am-
bric outperform the CPU implementation by factors of 11-23,
while operating at a clock frequency of 300 MHz as compared
to 2.67 GHz. This shows that the designs programmed in
occam-pi are indeed efficient. The use of a much lower
clock frequency together with the switching off of unused
cores in the Ambric architecture provides the side advantage
of a significant reduction in energy consumption of the two
parallel implementations, which is an important factor to
consider for embedded systems.

From the programmability point of view, it is observed that
the explicit concurrency of occam-pi with the ability to
describe computations that reside in different memory spaces,
together with the dynamic process invocation mechanism,
makes it suitable for mapping applications to massively par-
allel reconfigurable architectures. The occam-pi language
is based on well-defined semantics, and its simplicity, static
compilation properties, minimal run-time overhead and power
to express parallelism help in the task of parallelization.
The existence of the REAL data type in occam-pi and
the introduced conversion of the floating-point arithmetics to
fixed-point by the compiler backend also reduces the overall
burden on the programmer, compared to manually imple-
menting the fixed-point arithmetics. Furthermore, the support
for expressing dynamic parallelism in the form of replicated
PAR construct enables the compiler to perform resource-aware
compilation in accordance with the application requirements.
The reconfigurability support allows effective reuse of re-
sources, and the placement attributes allow processes to be
co-located, which gives a potential to avoid unnecessarily
expensive communication. In addition to the language features,
our proposed methodology of testing the functionality of
the application in occam-pi language before compiling the
generated native code using the Ambric design environment
reduces the turnaround time for implementing various design
alternatives quite significantly. We believe that raising the
abstraction level for the programmer, while not compromising
the performance benefits, will be the key to success for the
adoption of the emerging reconfigurable architectures in the
mainstream computing industry.

Future work will focus on developing applications in
occam-pi language to exploit the run-time reconfiguration
capability of the target hardware and on extending the compiler
framework to target other reconfigurable architectures such as
PACT XPP, picoarray, and Element CXI.

ACKNOWLEDGMENT

The authors would like to thank Nethra Imaging Inc. for
giving access to their software development suite and hardware
board. This research is part of the CERES research program
funded by the Knowledge Foundation and the ELLIIT strategic
research initiative funded by the Swedish government. The
support from the European Union Artemis project SMECY is
also acknowledged.

REFERENCES

[1] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall.
(1985).

[2] Occam R© 2.1 Reference Manual, SGS-Thomson Microelectronics Lim-
ited. (1995)

[3] Milner, R., Parrow, J., and Walker, D.: A Calculus of Mobile Processes,
Part I. Information and Computation, 100, (1989).

[4] Welch, P.H., and Barnes, F.R.M.: Communicating mobile processes: In-
troducing occam-pi. Lecture Notes in Computer Science, Springer Verlag.
175-210 (2005).

[5] Zain-ul-Abdin, and Svensson, B.: Using a CSP based programming model
for reconfigurable processor arrays. Proceedings of International Confer-
ence on Reconfigurable Computing and FPGAs, ReConFig’08. (2008)

[6] Zain-ul-Abdin, and Svensson, B.: Specifying run-time reconfiguration in
processor arrays using high-level Language. Presented at the 4th HiPEAC
Workshop on Reconfigurable Computing. (2010) [Available online at;
http://hh.diva-portal.org/]

[7] Ahlander, A., Hellsten, H., Lind, K., Lindgren, J., and Svensson, B.:
Architectural challenges in memory-intensive, real-time image forming.
Proceedings of International Conference on Parallel Processing, ICPP’07.
(2007)

[8] Jones, A. M., and Butts, M.: TeraOPS hardware: A new massively-
parallel MIMD computing fabric IC. In Proceedings of IEEE Hot Chips
Symposium. (2006)

[9] Butts, M., Jones, A. M., and Wasson, P.: A structural object programming
model, architecture, chip and tools for reconfigurable computing. Proceed-
ings of 15th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines. (2007).

[10] Welch, P.H., and Barnes, F.R.M.: Prioritised dynamic communicating
processes: Part I. Communicating Process Architectures, IOS Press. 321-
352 (2002).

[11] Welch, P.H., and Barnes, F.R.M.: Prioritised dynamic communicating
processes: Part II. Communicating Process Architectures, IOS Press. 353-
370 (2002).

[12] Tock: Translator from Occam to C by Kent.
“https://www.cs.kent.ac.uk/research/groups/sys/wiki/Tock”, [Online;
accessed 8th July, 2008]

[13] Ulander, L.M.H., Hellsten, H., and Stenstrom, G.: Synthetic-aperture
radar processing using fast factorized back-projection. IEEE Transactions
on Aerospace and Electronic Systems, Vol. 39(3). 760-776 (2003).

[14] Hellsten H., Dammert P., and Ahlander A.: Autofocus in Fast Factorized
Backprojection for processing of SAR images when geometry parameters
are unknown. Proceedings of 2010 IEEE International Radar Conference.
(2010).

[15] KRoC: Kent Retargetable occam Compiler.
“http://www.cs.kent.ac.uk/projects/ofa/kroc/”, [Online; accessed 10th

July, 2010]
[16] Neville, E.H.: Iterative interpolation. Journal of Indian Math Society,

Vol. 20. 87-120 (1934).
[17] Am2045 Data Book, Ambric Inc. (2007)
[18] Intel R© CoreTM i7-600, i5-500, i5-400, and i3-300 Mobile Processor

Series Datasheet, Intel Corporation. (2010)

201

