5 KHZI CiLOCK

Fig. 3. Simplified diagram of the clock
interface.

BMS 3 —

Y pe—

5 —

& —

DEVICE

THE BUS-ALL 173
DRIVER
INT
- H——q
® S
=50 FLI?P
" F : Lor
Dq‘lvll
sKir

7 SELECTOR
 ——
10 1 —

50 kHz. This selection translates into 100 or 1,000 Hz.
The switch can also open the circuit between the clock
and the divider. This effectively disables the interrupt so
that other programs (i.e., FOCAL, etc.) may be run.

THE BUS-ALL APPROACH

The quad size input, output, and clock cards are
placed in a H933 mounting panel. The signals, as they
come from a PDP-8/L or the KAS8-A, are bussed across
the H933. The device code is wired on the input, output,
and clock cards. The input and output cards may be
placed in any slot. The clock card has resistors to

Behavior Research Methods & Instrumentation
1974, Vol. 6, No. 2, 173-176

terminate the IOP pulses, therefore it must be placed in
the last slot, furthest from the cables.

REFERENCES

Snapper, A. G., & Kadden, R. M. Time-sharing in a small
computer based on the use of a behavioral notation system. In
B. Weiss (Ed.), Digital computers in the behavior laboratory.
New York: Appleton-Century-Crofts, 1973. Pp, 41-97.

Snapper, A. G., Knapp, J. Z., Kushner, H. K., & Kadden, R. M.
A notation system and computer program for behavioral
experiments. Paper presented at the meeting of the Digital
Equipment Computer Users Society, New York, June 1967.

Snapper, A. G., & Walker, A. The SKED software system.
DECUS Program Library, DECUS 8-465, 1971,

Walker, A., & Snapper, A. G. Improvements to the SKED
processor central software system. In DECUS Proceedings,
Spring 1971. Pp. 7-12.

Programming special functions
in the SKED system

ARTHUR SNAPPER
Western Michigan University, Kalamazoo, Michigan 49001

and

BRUCE HAMILTON
American University, Washington, D.C. 20016

Machine language subroutines can be integrated with the SKED system. These subroutines can shorten
lengthy programs that could otherwise be handled by SKED, and can provide complex decision
functions, data recording schemes, and software for new peripheral devices. Rules and examples for each

function will be presented.

SKED is a higher level, general language used to
simplify programming the PDP-8 for experimental
control and data recording. An unfortunate restriction
shared by many user-oriented languages is their
inflexibility when faced with a specific requirement
unforeseen by the creators of the system. Some user
finds his application needs 8.5K of core in an 8K
machine, or that it is impossible to apply a program that
was originally designed for schedules of reinforcement to
verbal behavior experiments or to automated
psychoanalysis.

Although SKED has more generality than most
process control languages, for some applications the
system will be either inefficient or impossible to use. For
this reason, the Run Time System (RTS) has a built-in
method for referencing machine language subroutines, so
that the special-purpose programs can be readily
accessed at the appropriate time or by the specified
response in the state program,

The special-purpose program can be written (by an
experienced programmer) in machine language,
assembled by PAL III, and loaded along with the RTS in

173

174 SNAPPER AND HAMILTON

one of two ways (described in a later section). The
special routine, or F3, can be inserted in unused portions
of any field and protected from being overlaid by state
tables. If the F3 is written with some care, it can then be
used by any or all stations concurrently to obtain the
special function.

FORMAT

The format of the F3 routine has been designed to
permit the passage of arguments from the state table to
the special-purpose subroutine (F3). This allows for the
use of variable parameters, which is essential for the
generality of these routines. For example, an F3 has
been written to provide a sequence of variable intervals
or ratios. The actual values of the intervals or ratios can

be specified by arguments in the F3 command that calls

for the subroutine. However, if the subroutine had been
developed to serve only in the'original experiment that
required variable intervals, it would have been written
without arguments and the particular intervals would
have been listed within the subroutine. However,
including arguments in the calling statement permits the
use of this routine in any experiment requiring a
variable, but prespecified, set of values. .

The format of an F3 statement which permits the
passage of arguments is F3 (Oxxxx, Argl, Arg2, Arg3,
... ArgN), where Oxxxx is the octal address of the entry
point of the subroutine and the optional arguments are
used to set parameters of the routine when needed. For
example, an F3 has been developed to transfer control
from the state table (which may be located in any field)
to an F3 stored in any field of memory, although ¥3s
are presumed to be located in Field @. If it is necessary
to locate them on some other field, this routine can be
used to transfer control and still provide access to the
arguments located in the state table. To access the F3

located in a nonzero field, the user simply calls the field.

F3 with a statement of the following format: F3
(OField, New Field, Address, Argl, Arg2, ... ArgN),
where OField is the octal address in Field § of Field 3,
New Field is the octal field number where the desired F3
is located, Address is the octal address of the F3 in the
nonzero field, and Argl, etc., are the optional arguments
required by the subroutine. This format exemplifies the
generality of a good F3. It can be used to pass control to
another F3 in any field of the computer. Very little

extra machine language programming was necessary to

increase the general utility of the F3 routine.
FUNCTIONS OF THE F3

Five different types of F3s have been developed, and
they seem to encompass the major functions for which
special-purpose subroutines are needed. The five
functions are: (1) economizing on the amount of core
required by programs for some state diagrams;
(2) implementation of functions that can be notated in

state diagrams but which have not yet been incorporated
in the original software; (3)control of peripheral
equipment of the computer from the state table;
(4) programming of complex reinforcement
contingencies that require on-line mathematical
treatment of data for establishing the contingencies; and
(5) analysis of data as it is acquired by the use of more
complex sorting and other mathematical operations than
is provided for in the RTS.

Examples of each of these categories may clarify the
functions of F3s.

Efficiency

A common requirement of reinforcement schedules is
the use of a prespecified set of variable intervals or
variable ratios. The following state table is a program of
VI reinforcement with six different variable intervals.

S.S.1,
St,
Z1——~82/Interval time out
S2,
R1:0N1——-S3/START REINFORCEMENT
S3,

4":0FF1;22--S1/END REINFORCEMENT
$.8.2,

S1

30":21-—82/FIRST INTERVAL IS 30"
S2,

Z2——-S3/WAIT HERE UNTIL REINF. IS OBTAINED
S3,
' 15":Z1—S4/2ND INTERVAL
54,

Z22——-S5
Ss,

5":Z1--—S6/3RD INTERVAL
S6,

- 22——87

s7,

10":Z1-——S8/4TH INTERVAL
S8,

22——-89
89,

25":21—-S10/5TH INTERVAL
S10,

Z2—-811
S11, .

20":Z1—-S12/6TH INTERVAL
S12,

Z22——S1/RECYCLE INTERVALS
3

This program requires 357 decimal core locations per
station. An F3 has been incorporated in-the software to
reduce the amount of space required for the variable list
function. Each station using the F3 routine requires only
N + 6 locations for the variable interval, where N is the
number of intervals in the list. The subroutine to handle
this function (LISTY) takes less than 64 locations to
service all 10 stations, each using one or more variable
lists. The format of this routine is slightly cumbersome.
The actual format is

F3(03191,-ARGI,N,~ARG1,~ARG2,-ARG3, ... ~ARCN,-N),

where 3101 is the octal address of LISTY (O indicates to
the compiler that 31¢1 is an octal number), the
arguments are the successive values of the list and N is
the number of arguments in the list. The use of LISTY is
exemplified in the following program, which serves the
same function as the previous state table.

S8.1,
St,
Z21---~--S2/INTERVAL TIMES OUT
S2,
R1:0N1--S3/START REINFORCEMENT
S3,
4";0FF1;22--S1/END REINFORCEMENT
S.8.2,
51,
5":Z3;F3(03101,-6,6,-6,-3,-1,-2,-5,-4 ,-6);Z1--82/5" UNIT
Z3—--S1/THIS RESETS THE 5" CLOCK
S2,
Z2-—S1/START NEXT INTERVAL AFTER
REINFORCEMENT

The state table that incorporates LISTY requires 157
decimal locations, thus saving 200 locations per station
minus the 64 locations for LISTY. Of course, the savings
would increase as the number of intervals increased.

Implementing Notatable Functions

Some straightforward notational formats have not
been incorporated as a standard feature of SKED
software due to complexity and anticipations of
infrequent use. However, it is sometimes necessary to
recover these functions in specific applications. An
example of this type is the setting of a recording counter
to a specified value. In state notation, this would simply
be C5=10, for example. The SKED system would
demand that Counter 5 (C5) be incremented 10 times to
achieve this effect. Since it is often useful to set a
particular recording counter by the state table to a
specific number to indicate trial number when data is
being generated on each trial, an F3 (CTRSET) has been
written for this purpose. The format of this F3 is

F3(OCTRSET,ARG1,ARG2),

where ARGI1 is the recording counter to be set to the
value contained in ARG2. Another F3 has been
developed to provide a function omitted from the
software. The F1 function used to increment the value
of a tagged location does not work properly on a
stimulus output. This results from the arrangement of
the stimulus word on a bit position scheme instead of as
an octal number. If the F1 is used on a stimulus output,
a binary incrementation results instead of the desired bit
rotation. A set of F3s has been developed to handle this
situation.

Control of Peripheral Devices

An example of an F3 for controlling peripheral
devices is incorporated in the RTS for recording data on
paper tape (through either the low- or high-speed

PROGRAMMING SPECIAL FUNCTIONS 175
paper-tape punch) under control of events in the state
table. This F3 (DODUM) is simply called from the state
table without arguments. It will then record the current
data for the calling station. It also utilizes a data buffer
for the counters so that new data may be acquired while
the old data is being punched on the appropriate device.
It transfers the original data to the buffer area for the
calling station, and then zeros the recording counters
immediately, so that new incoming data can be
recorded. The data buffer is reserved by requesting twice
the number of recording counters used by the state table
during compilation.

‘Complex Contingencies

SKED has been written primarily to generate stimuli
contingent either on elapsed time or on the emission of a
prespecified number of responses after state entry.
Although the notation wusually is adequate for
reinforcement schedules, some Es recently have become
interested in the effects of consequating complex
dimensions of the behavior stream which require
mathematical analysis of performance to generate
reinforcement. For example, an F3 has been written to
reinforce fixed-interval behavior only when a S displays
a good temporal discrimination, as measured by the
quarter-life of the response pattern in the interval. The
quarter-life is the percentage of the interval length at
which point 25% of the total responses in that interval
have been generated. To calculate the quarter-life, the
entire response rate obtained in the interval must be
obtained in successive subintervals of the fixed interval.
The F3 establishes by arguments the first counter of the
distribution, the number of counters in the distribution,
the required value of the quarter-life for reinforcement,
and whether the behavior should exceed or be less than
the criterion. This F3 is called by a unit timer, usually
1% of the fixed interval. If the reinforcement criterion is
not achieved once the interval has timed out, the
distribution is shifted, erasing the first subinterval. A
second F3 then is entered by each response to check for
a switch that indicates whether the criterion has been
met.

On-Line Manipulation of Data

F3s in this category resemble those in the previous
category in that they perform complex data treatment
during acquisition, but they do this only for recording
purposes rather than for establishing contingencies.
Although complete recording of the occurrence of each
response in time is feasible with some sort of
mass-storage device, so that further data analysis could
then be conducted after the end of the experiment, most
of us do not have the appropriate data storage devices.
Therefore, it is often useful to summarize and sort data
as it is being acquired to reduce the quantity of it and to
permit rapid comprehension of trends in data as it is
generated. One F3 of this sort records distributions,
depending upon the length of a preceding IRT. This

176 SNAPPER AND HAMILTON

routine can be used to assess sequential dependencies
between successive IRTSs and to relate response durations
to the IRTs that precede them. Another F3 of this sort
records all possible combinations of two events in a
sequence of six occurrences of either event.

One SKED wuser (Frank' Butler, personal
communication, 1973) has developed a set of
mathematical operations that can be applied to record
counter values. This set of subroutines even permits the
calculation of means and standard deviations on-line
through the use of these operators. Unfortunately, this
package was developed for a rather specific and unusual
configuration of hardware, but the packages could be
easily rewritten for use on most machines with only a
minimum of effort.

LOADING F3s

Since the loader in the RTS tries to enter state tables

Behavior Research Methods & Instrumentation
1974, Vol. 6, No. 2, 176-180

into core unoccupied by the RTS monitor, it is
necessary to protect any F3 subroutine from being
overwritten by state tables. There are two methods for
loading F3s. The first of these is to request space for the
F3 by means of the dialogue when establishing the
system. This serves well for F3s located in Field 0. For
longer F3s, or for F3s that are to be used only
infrequently, it is often more convenient to load the
assembled F3 on top of the RTS. The required
protection can be obtained by storing the F3 at the end
of one of thefields of memory and by then adjusting one
parameter in the RTS to protect this area.
Documentation of some subroutines within SKED, as
well as of some parameters of the current state table that
will be of use to programmers, has been prepared. Some
differences exist between the 4K and the multiple field
systems that must be taken into account when writing
new F3s. A library and documentation of F3s has been
prepared and is available from the SKED users’ group.

FOCAL, FORTRAN, and BASIC
programs for reformatting and analyzing
data collected by the SKED program*

ARTHUR SNAPPER, DENNIS LEE, LEONARD BURCZYK, and JOSE C. SIMOES-FONTES
Western Michigan University, Kalamazoo, Michigan 49001

Several programs have been written in the FOCAL, FORTRAN, and BASIC languages for
reformatting and analyzing SKED data. These programs include selection and explicit labeling of sets of
recording counters representing distributions and/or total counts of events, several general manipulations
of distributional data, and standard statistical treatment of distributions.

In the behavioral sciences, the amount and
complexity of data analysis varies widely, even within
the same laboratory. Some experimental questions are
amenable to simple comparisons of response rates. Other
questions deal with the microanalysis of the behavior
stream and require extensive manipulations of data.
Most research falls between these extremes.

SKED was designed primarily for the purpose of data
acquisition and experimental control. However, some
simpler forms of data reduction are easily notated and
programmed with the SKED software. The addition of
software subroutines, of course, can provide
sophisticated data treatment on-line. Limitations on the
available amount of core storage and limitations on the
time within which the system must respond to new
inputs are the two major parameters of an on-line
system. Limited core storage restricts the quantity of
stored data and thus limits the amount of data that can
be acquired. Temporal limitations, on the other hand,

*This work was supported in part by Research Scientist
Development Award K2-MH-70483 from the National Institute
of Mental Health to the senior author.

reduce the amount of mathematical operations that can
be performed on data on-line if the system is to respond
to inputs quickly enough. Otherwise, summary statistics
might be obtained during the data collection period so
that large quantities of data need not be retained in the
computer. A balance between these two restraints is
achieved by performing simple sorting and summing
operations while acquiring data. More extensive data
treatment is then left to further analysis off-line, either
on the same computer or on a second system.

One other commonly used technique to obtain raw
data without forcing it into a prespecified data reduction
format is to store new data on an external medium such
as magnetic tape or disk, so that minimal core is required
for storage, and data analyses is not accomplished during
the acquisition period. Even with this system, it is
usually desirable to accumulate some minimal amount of
data in core before recording it on an external device,
since such devices are most efficient when they have
fixed-length formats that demand a certain number of
characters on each data transfer. Of course, with this
scheme, it is necessary to process the data off-line by the

176

