Programming the Finite Element Method

FOURTH EDITION

I. M. Smith
University of Manchester, UK
D. V. Griffiths
Colorado School of Mines, USA

John Wiley \& Sons, Ltd

3
 TS
 +
 gr quntentas

a
a
b

Preface	xv
Acknowledgement	xvii

1 Preliminaries: Computer Strategies 1
1.1 Introduction 1
1.2 Hardware 2
1.3 Memory management 2
1.4 Vector processors 3
1.5 Parallel processors 4
1.6 BLAS libraries 4
1.7 MPI libraries 5
1.8 Applications software 5
1.8.1 Arithmetic 7
1.8.2 Conditions 7
1.8.3 Loops 8
1.9 Array features 9
1.9.1 Dynamic arrays 9
1.9.2 Broadcasting 10
1.9.3 Constructors 10
1.9.4 Vector subscripts 10
1.9.5 Array sections 11
1.9.6 Whole-array manipulations 11
1.9.7 Intrinsic procedures for arrays 12
1.9.8 Additional Fortran 95 features 13
1.9.9 Subprogram libraries 14
1.9.10 Structured programming 16
1.10 Conclusions 17
References 18
2 Spatial Discretisation by Finite Elements 21
2.1 Introduction 21
2.2 Rod element 21
2.2.1 Rod stiffness matrix 21
2.2.2 Rod mass element 24
2.3 The eigenvalue equation 25
2.4 Beam element 25
2.4.1 Beam element stiffness matrix 25
2.4.2 Beam element mass matrix 27
2.5 Beam with an axial force 28
2.6 Beam on an elastic foundation 29
2.7 General remarks on the discretisation process 29
2.8 Alternative derivation of element stiffness 30
2.9 Two-dimensional elements: plane strain and plane stress 32
2.10 Energy approach 35
2.11 Plane element mass matrix 36
2.12 Axisymmetric stress and strain 36
2.13 Three-dimensional stress and strain 38
2.14 Plate-bending element 40
2.15 Summary of element equations for solids 43
2.16 Flow of fluids: Navier-Stokes equations 43
2.17 Simplified flow equations 46
2.17.1 Steady state 47
2.17.2 Transient state 49
2.17.3 Advection 49
2.18 Further coupled equations: Biot consolidation 50
2.19 Conclusions 52
References 52
3 Programming Finite Element Computations 55
3.1 Introduction 55
3.2 Local coordinates for quadrilateral elements 55
3.2.1 Numerical integration for quadrilaterals 58
3.2.2 Analytical integration for quadrilaterals 58
3.3 Local coordinates for triangular elements 60
3.3.1 Numerical integration for triangles 61
3.4 Multi-element assemblies 62
3.5 "Element-by-element" or "Mesh-free" techniques 64
3.5.1 Conjugate gradient method 64
3.5.2 Preconditioning 65
3.5.3 Unsymmetric systems 66
3.5.4 Symmetric non-positive definite equations 67
3.5.5 Symmetric eigenvalue systems 67
3.6 Incorporation of boundary conditions 68
3.7 Programming using building blocks 70
3.7.1 Black box routines 71
3.7.2 Special purpose routines 72
3.7.3 Plane elastic analysis using quadrilateral elements 73
3.7.4 Plane elastic analysis using triangular elements 76
3.7.5 Axisymmetric strain of elastic solids 77
3.7.6 Plane steady laminar fluid flow 78
3.7.7 Mass matrix formation 78
3.7.8 Higher-order 2 D elements 79
3.7.9 Three-dimensional elements 81
3.7.10 Assembly of elements 86
3.8 Solution of equilibrium equations 91
3.9 Evaluation of eigenvalues and eigenvectors 91
3.9.1 Jacobi algorithm 92
3.9.2 Lanczos algorithm 92
3.10 Solution of first order time dependent problems 93
3.11 Solution of coupled Navier-Stokes problems 96
3.12 Solution of coupled transient problems 98
3.12.1 Absolute load version 99
3.12.2 Incremental load version 100
3.13 Solution of second order time dependent problems 100
3.13.1 Modal superposition 101
3.13.2 Newmark or Crank-Nicolson method 104
3.13.3 Wilson's method 105
3.13.4 Explicit methods and other storage-saving strategies 106
References 106
4 Static Equilibrium of Structures 109
4.1 Introduction 109
Program 4.1 One-dimensional analysis of axially loaded elastic rods using 2-node rod elements 110
Program 4.2 Analysis of elastic pin-jointed frames using 2-node rod elements in two or three dimensions 116
Program 4.3 Analysis of elastic beams using 2-node beam elements (elastic foundation optional) 122
Program 4.4 Analysis of elastic rigid-jointed frames using 2 -node beam/rod elements in two or three dimensions 128
Program 4.5 Analysis of elastic-plastic beams or rigid-jointed frames using 2-node beam or beam/rod elements in one, two or three dimensions 136
Program 4.6 Stability (buckling) analysis of elastic beams using 2-node beam elements (elastic foundation optional) 145
Program 4.7 Analysis of plates using 4-node rectangular plate elements. Homo- geneous material with identical elements. Mesh numbered in x - or y-direction 148
4.2 Concluding remarks 153
4.3 Exercises 155
References 164
5 Static Equilibrium of Linear Elastic Solids 165
5.1 Introduction 165
Program 5.1 Plane or axisymmetric strain analysis of an elastic solid using 3-, 6 -, 10 -, or 15 -node right-angled triangles or 4 -, 8 -, or 9 -node rectangular quadrilaterals. Mesh numbered in $x(r)$ - or $y(z)$-direction 166
Program 5.2 Non-axisymmetric analysis of an axisymmetric elastic solid using 8 -node rectangular quadrilaterals. Mesh numbered in r - or z-direction 184
Program 5.3 Three-dimensional analysis of an elastic solid using 8-, 14-, or 20 -node brick hexahedra. Mesh numbered in $x-z$ planes then in the y-direction 190
Program 5.4 General two- (plane strain) or three-dimensional analysis of elastic solids 195
Program 5.5 Three-dimensional strain of an elastic solid using 8-, 14-, or 20- node brick hexahedra. Mesh numbered in $x-z$ planes then in the y-direction. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver 204
Program 5.6 Three-dimensional strain of an elastic solid using 8-, 14-, or 20- node brick hexahedra. Mesh numbered in $x-z$ planes then in the y-direction. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver. Vectorised version 209
5.2 Exercises 214
References 222
6 Material Non-linearity 223
6.1 Introduction 223
6.2 Stress-strain behaviour 225
6.3 Stress invariants 226
6.4 Failure criteria 228
6.4.1 Von Mises 228
6.4.2 Mohr-Coulomb and Tresca 229
6.5 Generation of body loads 230
6.6 Viscoplasticity 231
6.7 Initial stress 233
6.8 Comers on the failure and potential surfaces 234
Program 6.1 Plane strain bearing capacity analysis of an elastic-plastic (von Mises) material using 8 -node rectangular quadrilaterals. Viscoplastic strain method 235
Program 6.2 Plane strain bearing capacity analysis of an elastic-plastic (von Mises) material using 8-node rectangular quadrilaterals. Viscoplastic strain method. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver 243
Program 6.3 Plane strain slope stability analysis of an elastic-plastic (Mohr- Coulomb) material using 8 -node rectangular quadrilaterals. Viscoplastic strain method 248
Program 6.4 Plane strain earth pressure analysis of an elastic-plastic (Mohr- Coulomb) material using 8 -node rectangular quadrilaterals. Initial stress method 253
6.9 Elasto-plastic rate integration 260
6.9.1 Forward Euler method 262
6.9.2 Backward Euler method 263
HTSS ix
10 Tangent stiffness approaches 264
6.10.1 Inconsistent tangent matrix 265
6.10.2 Consistent tangent matrix 265
6.10.3 Convergence criterion 266
extrogram 6.5 Plane strain bearing capacity analysis of an elastic-plastic (von Mises) material using 8 -node rectangular quadrilaterals. Initial stress method. Tangent stiffness. Consistent return algorithm 266
Program 6.6 Plane strain bearing capacity analysis of an elastic-plastic (von Mises) material using 8 -node rectangular quadrilaterals. Initial stress method. Tangent stiffness. Consistent return algorithm. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver 271
6.11 The geotechnical processes of embanking and excavation 276
6.11.1 Embanking 276
Program 6.7 Plane strain construction of an elastic-plastic (Mohr-Coulomb)Tfe embankment in layers on a foundation using 8 -node quadrilaterals. Vis-coplastic strain method276
6.11.2 Excavation 283
treprogram 6.8 Plane strain construction of an elastic-plastic (Mohr-Coulomb) excavation in layers using 8 -node quadrilaterals. Viscoplastic strain method 286
6.12 Undrained analysis 293
8) Program 6.9 Axisymmetric "undrained" strain of an elastic-plastic (Mohr-
We: Coulomb) solid using 8 -node rectangular quadrilaterals. Viscoplastic strain method 295
Se Program 6.10 Three-dimensional strain analysis of an elastic-plastic (Mohr- Coulomb) slope using 20 -node hexahedra. Viscoplastic strain method 300
Program 6.11 Three-dimensional strain analysis of an elastic-plastic (Mohr- Coulomb) slope using 20 -node hexahedra. Viscoplastic strain method. No global stiffness matrix assembly. Diagonally preconditioned conjugate gra- dient solver 305
6.13 Exercises 314
References 316
7 Steady State Flow 319
7.1 Introduction 319
Trogram 7.1 One-dimensional analysis of steady seepage using 2-node line te elements 320
Program 7.2 Plane or axisymmetric analysis of steady seepage using 4-node rectangular quadrilaterals. Mesh numbered in $x(r)$ - or $y(z)$ - direction 324
Program 7.3 Analysis of plane free-surface flow using 4-node quadrilaterals. "Analytical" form of element conductivity matrix 332
Program 7.4 General two- (plane) or three-dimensional analysis of steady seepage. 340
Program 7.5 General two- (plane) or three-dimensional analysis of steady seep- age. No global conductivity matrix assembly. Diagonally preconditioned conjugate gradient solver 344
7.2 Exercises 350
References 356
8 Transient Problems: First Order (Uncoupled) 357
8.1 Introduction 357
Program 8.1 One-dimensional consolidation analysis using 2-node line elements. Implicit time integration using the "theta" method 358
Program 8.2 Plane or axisymmetric consolidation analysis using 4-node rect- angular quadrilaterals. Mesh numbered in $x(r)$ - or $y(z)$-direction. Implicit time integration using the "theta" method 363
8.2 Mesh-free Strategies in Transient Analysis 371
Program 8.3 Plane or axisymmetric consolidation analysis using 4-node rectan- gular quadrilaterals. Mesh numbered in $x(r)$ - or $y(z)$-direction. Implicit time integration using the "theta" method. No global stiffness matrix assembly. Diagonal preconditioner conjugate gradient solver 371
Program 8.4 Plane or axisymmetric analysis of the consolidation equation using 4-node rectangular quadrilaterals. Mesh numbered in $x(r)$ - or $y(z)$-direction. Explicit time integration using the "theta $=0$ " method 375
Program 8.5 Plane or axisymmetric analysis of the consolidation equation using 4-node rectangular quadrilaterals. Mesh numbered in $x(r)$ - or $y(z)$-direction. "theta" method using an element-by-element product algorithm 378
8.3 Comparison of Programs 8.2, 8.3, 8.4, and 8.5 380
Program 8.6 General two- (plane) or three-dimensional analysis of the consol- idation equation. Implicit time integration using the "theta" method 382
Program 8.7 Plane analysis of the diffusion-convection equation using 4-node rectangular quadrilaterals. Implicit time integration using the "theta" method. Self-adjoint transformation 386
Program 8.8 Plane analysis of the diffusion-convection equation using 4-node rectangular quadrilaterals. Implicit time integration using the "theta" method. Untransformed solution 391
8.4 Exercises 398
References 402
9 Coupled Problems 403
9.1 Introduction 403
Program 9.1 Analysis of the plane steady state Navier-Stokes equation using 8 -node rectangular quadrilaterals for velocities coupled to 4-node rectan- gular quadrilaterals for pressures. Mesh numbered in x - or y-direction. Freedoms numbered in the order $u-p-v$ 404
Program 9.2 Analysis of the plane steady state Navier-Stokes equation using 8 -node rectangular quadrilaterals for velocities coupled to 4-node rectan- gular quadrilaterals for pressures. Mesh numbered in x - or y-direction. Freedoms numbered in the order $u-p-v$. Element-by-element solution using BiCGStab(l) with no preconditioning. No global matrix assembly 411
TIENTS
Program 9.3 Plane strain consolidation analysis of a Biot poro-elastic solid using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in the order $u-v-u_{w}$. Incremental version 416
Program 9.4 Plane strain consolidation analysis of a Biot poro-elastic-plastic (Mohr-Coulomb) material using 8-node rectangular quadrilaterals for dis- placements coupled to 4 -node rectangular quadrilaterals for pressures. Free- doms numbered in the order $u-v-u_{w}$. Incremental version. Viscoplastic strain method 424
Program 9.5 Plane strain consolidation analysis of a Biot poro-elastic solid using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in the order $u-v-u_{w}$. Absolute load version. No global stiffness matrix assembly. Diag- onally preconditioned conjugate gradient solver 430
9.2 Exercises 439
檠 x References 440
Eigenvalue Problems 441
10.1 Introduction 441
Program 10.1 Eigenvalue analysis of elastic beams using 2-node beam ele- 442
ments. Lumped mass
ments. Lumped mass
Program 10.2 Eigenvalue analysis of an elastic solid in plane strain using 4- or8 -node rectangular quadrilaterals. Lumped mass. Mesh numbered in x - ory-direction446
Program 10.3 Eigenvalue analysis of an elastic solid in plane strain using 4-node rectangular quadrilaterals. Lanczos Method. Consistent mass. Mesh num- bered in x - or y-direction 452
Program 10.4 Eigenvalue analysis of an elastic solid in plane strain using 4-node rectangular quadrilaterals. Lanczos Method. Lumped mass. Element-by- element formulation. Mesh numbered in x - or y-direction 457
10.2 Exercises 462
References 464
11 Forced Vibrations 465
11.1 Introduction 465
Program 11.1 Forced vibration analysis of elastic beams using 2-node beam F. elements. Consistent mass. Newmark time stepping 466
Program 11.2 Forced vibration analysis of an elastic solid in plane strain using 4- or 8 -node rectangular quadrilaterals. Lumped mass. Mesh numbered in x - or y-direction. Modal superposition 472
Program 11.3 Forced vibration analysis of an elastic solid in plane strain using rectangular 8 -node quadrilaterals. Lumped or consistent mass. Mesh num- bered in x - or y-direction. Implicit time integration using the "theta" method 478
Program 11.4 Forced vibration analysis of an elastic solid in plane strain using rectangular 8 -node quadrilaterals. Lumped or consistent mass. Mesh num- bered in x - or y-direction. Implicit time integration using Wilson's method 483
Program 11.5 Forced vibration analysis of an elastic solid in plane strain using rectangular uniform size 4 -node quadrilaterals. Mesh numbered in the x - or y-direction. Lumped or consistent mass. Mixed explicit/implicit time integration 487
Program 11.6 Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh num- bered in x - or y-direction. Implicit time integration using the "theta" method. No global matrix assembly. Diagonally preconditioned conjugate gradient solver 492
Program 11.7 Forced vibration analysis of an elastic-plastic (von Mises) solid in plane strain using rectangular 8 -node quadrilateral elements. Lumped mass. Mesh numbered in x - or y-direction. Explicit time integration 496
11.2 Exercises 506
References 507
12 Parallel Processing of Finite Element Analyses 509
12.1 Introduction 509
12.2 Differences between parallel and serial programs 511
12.2.1 Parallel libraries 511
12.2.2 Global variables 511
12.2.3 MPI library routines 512
12.2.4 The -pp appendage 512
12.2.5 Reading and writing 512
12.2.6 Problem-specific boundary condition routines 513
12.2 .7 rest instead of nf 516
12.2.8 Gathering and scattering 517
12.2.9 Reindexing 517
12.2.10 Domain composition 517
12.2.11 Load balancing 519
Program 12.1 Three dimensional analysis of an elastic solid. Compare Program 5.5 519
Program 12.2 Three dimensional analysis of an elasto-plastic (Mohr-Coulomb) solid. Compare Program 6.11 526
Program 12.3 Three dimensional Laplacian flow. Compare Program 7.5 533
Program 12.4 Three dimensional transient flow-implicit analysis in time. Com- pare Program 8.3 537
Program 12.5 Three dimensional transient flow-explicit analysis in time. Com- pare Program 8.4 541
Program 12.6 Three dimensional steady state Navier-Stokes analysis. Compare Program 9.2 543
Program 12.7 Three-dimensional analysis of Biot poro-elastic solid. Compare Program 9.2 551
Program 12.8 Eigenvalue analysis of three-dimensional elastic solid. Compare Program 10.4 556
Program 12.9 Forced vibration analysis of a three-dimensional elastic solid. Implicit integration in time. Compare Program 11.4 561
CONTENTS xiii
Program 12.10 Forced vibration analysis of three-dimensional elasto-plastic solid. Explicit integration in time. Compare Program 11.5 565
12.3 Performance data for a "Beowulf" PC cluster 569
12.4 Conclusions 570
References 576
A Equivalent Nodal Loads 577
B Shape Functions and Element Node Numbering 583
C Plastic Stress-strain Matrices and Plastic Potential Derivatives 591
D main Library Subroutines 595
E geom Library Subroutines 605
F Parallel Library Subroutines 609
Author Index 613
Subject Index 615

