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Abstract 

Computational Grids [Grid, Grid1] have become an important asset in large-scale 
scientific and engineering research. By providing a set of services that allow a widely 
distributed collection of resources to be tied together into a relatively seamless computing 
framework, teams of researchers can collaborate to solve problems that they could not 
have attempted before. Unfortunately the task of building Grid applications remains 
extremely difficult because there are few tools available to support developers. To build 
reliable and re-usable Grid applications, programmers must be equipped with a 
programming framework that hides the details of most Grid services and allows the 
developer a consistent, non-complex model in which applications can be composed from 
well tested, reliable sub-units. This paper describes experiences with using a software 
component framework for building Grid applications. The framework, which is based on 
the DOE Common Component Architecture (CCA) [CCA, CCAT, CCA1,CCA2], allows 
individual components to export function/service interfaces that can be remotely invoked 
by other components. The framework also provides a simple messaging/event system for 
asynchronous notification between application components. The paper also describes 
how the emerging Web-Services [WSDL] model fits with a component-oriented 
application design philosophy. To illustrate the connection between web services and 
Grid application programming we describe a simple design pattern for application factory 
services which can be used to simplify the task of building reliable Grid programs. 
Finally we address several issues of Grid programming that better understood from the 
perspective of Peer-to-Peer (P2P) systems. In particular we describe how models for 
collaboration and resource sharing fit well with many grid application scenarios. 

1. Introduction - Computational Grids 

A computational Grid consists of a set of resources, such as computers, networks, on-line 
instruments, data servers or sensors that are tied together by a set of common services 



which allow the users of the resources to view the collection as a seamless 
computing/information environment. The standard Grid services include  

• security services which support user authentication, authorization and privacy 
• information services, which allow users to see what resources (machines, 

software, other services) are available for use, 
• job submission services, which allow a user to submit a job to any compute 

resource that the user is authorized to use, 
• co-scheduling services, which allow multiple resources to be scheduled 

concurrently, 
• user support services, which provide users access to "trouble ticket" systems that 

span the resources of an entire grid. 

Many more Grid services are described in [ipg]. Some Grid middleware systems [legion, 
Grid2] also support global namespaces for files and other objects. Others [globus] 
provide access to metadata catalogs and storage resource brokers [srb]. Large Grid efforts 
like Griphyn [griphyn] and the European Data Grid and the Particle Physics Data Grid 
[edg,ppdg] seek to build wide area data management systems that allow file caching 
across the network to provide higher throughput access to many users.  

Unfortunately, building applications that run reliably and efficiently on these "Grid 
Platforms" is often a difficult task. The reasons for this are numerous. Often these 
applications consist of a heterogeneous collection of sub-applications that are stitched 
together to form one large distributed application. The difficulty lies in making all the 
pieces work together in a consistent and predictable manner. In many cases, the reliability 
of these assemblages is the source of the problem. For example if one of the sub-
computations is itself a parallel program running on parallel computing platform and 
scheduled by a conventional batch system, how should it synchronize and communicate 
with the other parts of the application? Often the problems encountered involve complex 
interactions between various grid services, schedulers, security systems and network 
requirements. In many cases the source of difficulty lies in application designs that are 
overly complex and not well supported by any Grid programming tools. Our experience 
in building complex Grid applications has led to three conclusions. First, it is important to 
distinguish between Grid developers and users and to provide the appropriate tools to 
each group. Second, in the case of Grid developers, a software component model that 
incorporates a wide-area, publish-subscribe messaging system, can provide a powerful 
mechanism for building Grid applications. With these tools, complex distributed 
applications can have their workflow scripted and legacy application component can be 
wrapped and controlled. Third, our experiences also have revealed weaknesses in current 
Grid programming methodology, which we believe can be addressed by adapting Web 
services and P2P concepts to the Grid. 

1.1 Science Grid Portals 

We argue that there are three types of Grid application developers and users. The most 
numerous group are end users who program pre-packaged grid applications by using a 



simple graphical or Web interface to supply application specific parameters and simple 
execution configuration data. In an ideal world this group of people need know little 
about actual Grid protocols or services. The second group of Grid programmers are those 
that know how to build a Grid application by composing them from existing application 
"components" and Grid services. The third group consists of the researchers that build the 
individual components of a distributed application, such as simulation programs or data 
analysis modules that make up the basic sub-computations of a wide-area Grid 
application. Often, this group has little or no experience with building distributed 
applications. While some users have skills that span all three categories, Grid application 
development systems should allow programmers to work in one without becoming expert 
in the others. It is our experience that the first group of users is best served by "Grid 
Portals", which are web servers that allow the user to configure or run a class of 
applications. The server is then given the task of authenticating the user with the Grid and 
invoking the needed grid services required to launch the user's application. Grid portals in 
current use include the XCAT Science Portal [XCAT], Gateway [webflow,gateway, 
foxport], Mississippi Computational Web Portal [miss], Discover [Rutgers], NPACI Grid 
Port [hotpage], Nimrod-G [nimrod], NASA IPG Launchpad [ipglp], Cactus [cactus] and 
many others. The basic architecture of a Grid Application Portal is illustrated in Figure 1 
below. While no two portal designs are the same, they all share characteristics of this 
model. 

 

Figure 1. Grid Portal Architecture. 1. The User makes a secure connection 
from the web browser to the portal server. 2. The portal server then 
obtains a certificate from a proxy certificate server and uses that to 
authenticate the user with the Grid. 3. When the user completes defining 
the parameters of the computation the portal web server launches an 
application manager, which is a process that controls and monitors the 
actual execution of the grid computation. The web server delegates the 
users proxy credential to the application manager, so that the application 
manger may act on the users behalf. 4. In some systems, the application 
manager publishes an event/message stream to a persistent event channel-
archive. This event stream describes the state of the Grid application 
execution and can be monitored by the user through the browser.  



In some cases the application manager is just the remote grid application itself. However, 
in many other cases it is a "wrapper" around a legacy application. In the case of 
applications that involve concurrent computations on multiple resources, the application 
manager is an agent that is responsible for launching and coordinating these remote 
computations. Often the application manager is simply a script, which drives the 
workflow of a complex set of tasks that the Grid application must accomplish.  

The design of the application manager script/workflow for a particular Grid application 
and its web interface is the task of our second level of Grid programmers. It is this level 
of Grid programming that this paper primarily addresses. 

In the paragraphs that follow we shall describe how a software component architecture 
can be used in the task of building distributed Grid applications. We will then argue that 
this is just a special case of a more general web services framework for Grid systems. In 
the last section of this paper we will discuss the ways in which Peer to Peer concepts can 
provide additional, important support to building Grid applications for groups of 
collaborating users. 

2. Software Component Models 

Software component technology is not new. It is now a standard part of many software 
design practices. Microsoft COM and much of .NET [net] is based on component 
concepts. Enterprise Java Beans [ejb] is another very important technology for building 
the business end of large-scale, e-commerce applications. 

The basic concepts behind a software component architecture are not difficult to 
understand. A software component model is a system for assembling applications from 
smaller units called components. The system defines a set of rules that specify the precise 
execution environment provided to each component and the rules of behavior and special 
design features that components must have in order to be considered true "components". 
A component is then nothing more than an object (or collection of objects) that obey the 
rules of the component architecture. A component framework is the software 
environment that provides the mechanisms to instantiate components, compose them, and 
use them to build applications. The execution environment the component architecture 
provides a component instance is often called the component’s "container." 

2.1 CCA Concepts 

The DOE Common Component Architecture (CCA) [CCA, CCA1, CCA2, CCAT] is one 
such component architecture designed for use in large scale scientific and engineering 
applications. It is the work of two US universities (Indiana and Utah) and five US 
national laboratories (Sandia, Livermore, Argonne, Oak Ridge, Los Alamos). The basic 
ideas are drawn from early versions of the OMG Common Component Model (CCM) 
[ccm]. CCA components are characterized by their external interfaces, called ports, 
which each take one of two different forms. 



• Provides Ports are component access points that provide an interface of functions 
that the component will evaluate on behalf of its client. A provides port can be 
thought of as a "service" provided by the component. A component may have 
zero or more provides ports.  

• Uses Ports are component features that represent a reference to an external object 
from within the component. It can be thought of as a call-site within a component 
where it may use a service provided by some other component. A component may 
have zero or more uses ports. 

The key architectural idea behind CCA is that if component A has a "uses" port of 
interface type T that means it may require a service of type T provided by another 
component B. More specifically, at some point in the execution of component A, it will 
invoke a method in the interface T that is supplied by some provider. CCA provides a 
mechanism to connect uses ports of one component to provides ports of another as shown 
in Figure 2.  

 

Figure 2. Connecting a uses port named "x" of type T of component A to a 
provides port named "y" of type T on component B means that the uses 
port object identified by name "x" has become a remote reference in A for 
invoking methods on interface "y" of B. 

The connection between components can be made at runtime and the components need 
not reside on the same host. Ports themselves are dynamic entities: A component can 
create a new provides or uses port at any time or it can remove an existing port. 

In the XCAT implementation [xcat] of CCA, components are described by an XML 
document which contains information about where a component is installed, how an 
instance can be created, the port names, and links to another XML file that defines their 
type. In XCAT components can be instantiated and their ports connected together from a 
Java, C++ or Jython (Python in Java) [python] program. For example, in Jython, given 
the XML document describing a component and the name of a host on which it has been 
deployed, it can be instantiated as follows 

instanceA = cca.createComponent("XML_description_of_component") 
cca.setMachineName(instanceA, "modi4.ncsa.uiuc.edu") 
cca.setCreationMechanism(instanceA, "gram") 
cca.ccaCreateInstance(instanceA) 

  



In this example, it is assumed that the XML description file provides the instructions for 
how an instance of the component can be created on the host "modi4" using the Globus 
"gram" protocol. When the createInstance method completes the instanceA object is a 
proxy for the remotely executing instance of the component. Given two remote instances 
of components we can connect a uses port on one to an identically typed provides port on 
the other with the call 

cca.connectPort(instanceA, "usesportname", instanceB, "provportname") 

In XCAT the communication protocol used to implement the remote procedure call 
between a uses port method invocation and the connected provides port remote objects 
currently is based on XSOAP [xsoap], a Java and C++ implementation of the simple 
XML over HTTP protocol SOAP [soap] (see also [globwrap].  

To illustrate how XCAT is used in Grid applications, we describe the "Application 
Manager" (AM) component which launches and manages a single application code, or 
scripts the workflow of a set of applications. The AM is just a componentized version of 
the Jython script interpreter running inside a simple CCA component. The way this 
component is used is very simple. A Jython script is written to manage the workflow of 
the Grid application. The portal web server launches or authenticates itself with a running 
instance of an AM and then downloads the application script into it. If this application 
manager script needs to be connected to another component the appropriate port class is 
loaded into the AM. Once this is done, the AM can be started and stopped by invoking 
methods on its control port. The loaded script is then capable of staging files, running 
applications or communicating with other components as needed. AM’s allow legacy or 
non-source code applications to be used within a distributed CCA framework, by 
separating the necessary Grid communications and framework-specified behavior from 
the application [xcat] 

 



Figure 3. Scriptable Application Manager. (Control Port not shown). 

The component has two provides ports. 

• ScriptProvidesPort of type ScriptPort which has five methods 
 
void setParam(Object[] parms); 
void int runScript(String script); 
void killScript(int id); 
void addProvidesPort(String name, String interfaceName, String 
className); 
void addUsesPort(String name, String interfaceName); 
 
This port is used to load a Jython script into the component, dynamically add uses 
and provide ports, and then run the script.  

• ControlProvidesPort of type ControlPort which has two methods 
 
int start(); 
int kill(); 
 
which is used to start and stop the Jython interpreter. Kill causes the component 
process to terminate.  

The application manager is, in effect, a remote Python shell encapsulated as a CCA 
component. As shown above, the executing Python script is capable of instantiating other 
components via the CCA creation/connection API and then connecting itself to these new 
instances. The ability to dynamically add provides ports allows the AM component to 
expose any arbitrary interface to the user. For example, if the Grid application has a real-
time application steering interface this may be exposed as a provides port, which can be 
invoked through a desktop component connected to the remote AM.  

2.2 Events and Messaging 

It is often the case that component port connections are not the most convenient or robust 
model for communicating information between the parts of a Grid application. In many 
cases Grid applications require an asynchronous messaging system for reporting on 
application events such as message to say that a file has been written or an error condition 
has been noted, or a subtask of a large application has completed. CCA ports are 
synchronous and designed for direct transmission of data or control signals between 
components. To solve this problem we need some form of messaging/event system and 
there are many to choose from. For our purposes we have built a simple XML event 
system using XSOAP.  

An event is an XML object that has the following required fields: a namespace, a type 
name, a timestamp and a source name. Additional fields may be added as extensions to 
this base type. For example, the following event has one additional field, a string that 
contains a message. 



<event xsi:type='ns1:common.test' xmlns:ns1= 
      'http://www.extreme.indiana.edu/soap/events/v11/'> 
  <eventNamespace xsi:type='xsd:string'> 
        http://www.extreme.indiana.edu/soap/events/v11/ 
  </eventNamespace> 
  <eventType xsi:type='xsd:string'> common.test </eventType> 
  <source xsi:type='xsd:string'> test-event-source </source> 
  <timestamp xsi:type='xsd:timeInstant'> 2001-11-26T23:04:51.411Z 
</timestamp> 
  <message xsi:type='xsd:string'> Application buffer overflow 
</message> 
</event> 

An event namespace plus the event type uniquely identifies the "class" of the event. 
These class names follow a hierarchical scheme with the event namespace giving the 
base domain defining that eventand a 'dot' naming convention for the event type to 
represent subclasses. E.g: ResourceData may be the base event with sub-classes 
ResourceData.machine, ResourceData.machine.utilization. This enables effective 
querying/filtering based on the event type. Filtering on ResourceData returns all 
ResourceData and sub-class events while filtering on ResourceData.machine.utilization 
returns only the machine utilization events. The timestamp is the time at which the event 
was created by the publisher of the event, represented using the ISO-8601 standard. 

The event system follows a simple publish-subscribe model, which is very similar to 
CORBA events and notification and to systems like Java Message Service. It is based on 
several very simple APIs. An event subscriber can either be a push or pull subscriber. A 
push subscriber will implement and interface with a single method 

    void handleEvent(Event ev); 

which will be invoked by publishers when they wish to deliver a message. Though the 
message is an XML string, XSOAP will automatically convert it to a Java or C++ class 
object. 

A pull subscriber invokes a pull method on a pull publishers. This method takes the form 

    Event[] pullEvent(Filter f) 

This method will return any buffered and previously undelivered events to the calling 
subscriber.  

An event publisher can either be a push publisher, which means it delivers methods to 
subscribers by invoking the handleEvent(…) method or a pull publisher, which means it 
will keep an archive of events to deliver to pull subscribers.  

A Generic Event Channel 

In a simple implementation, we can have a simple listener listening to a particular 
publisher. But to be more effective, we need a mechanism to store the events being 



published and allow filtering and query of the events. This is done by using an event 
channel. Simply put, it acts as a listener accepting events from publishers and is also a 
publisher providing interfaces to pull events based on some filter or query events from 
the past. Realtime events can be filtered and forwarded to the listeners while querying for 
past events requires a persistent store. Components using events to communicate need not 
know each other’s location, and instead just need the location of an event channel. This 
also allows components to lose contact or be migrated during a long-running application, 
and still continue to function and reconnect later. This additional robustness is crucial for 
Grid-distributed applications which use resources and components that are potentially 
unreliable. 

We also have the concept of a generic channel i.e. the channel need not be aware of the 
specific subtype of the event that it receives. It just extracts the common information 
present in all events and uses it for filtering or indexing while storing the event in a 
persistent store. The original event in raw XML form is sent when a request is received 
from a listener. Our event channel is implemented on top of a relational database that 
stores event streams for pull subscribers. 

A particular event can be identified using the event's namespace and type and the 
timestamp at which the event was received by the event channel. By storing the 
timestamp that the event was received with the event helps avoid problems due to clock 
skew between the listeners and publishers. Depending on the event type, this may be the 
machine name, application name or any such string that provides information about the 
source.  

3. Application Examples 

Three examples illustrate how these ideas are used in practice. The first is a common 
case: a small number of stand-alone applications that run on remote sites need to be 
linked together to form a larger, "multi-disciplinary" application. The second case 
illustrates another class of applications where a single problem can be divided into a large 
number of smaller pieces and the solution to one of the sub-computations is selected as 
the overall or best solution. This is similar to some "parameter space" studies. The third 
example is the most complex, where the end user dynamically creates a large network of 
different components to analyze and solve a problem in different ways.  

3.1 Wrapping and Coupling Applications: Chemical Engineering 

The work done with the Chemical Engineering team from NCSA is an example of the 
kind of science problems the portal is intended to solve. The simulation models copper 
electrodeposition in a submicron-sized trench which forms the interconnection on 
microprocessor chips. The simulation consists of two linked codes. One consists of a 
continuum model of the convection-diffusion processes in the deposition bath adjacent to 
the trench. The second consists of a Monte Carlo model of events that occur in the near-
surface region where solution additives influence the evolution of deposit shape and 
roughness during filling of the trench. The codes communicate by sharing data files about 



common boundary conditions. Figure 5 shows the coupled codes and the associated 
application managers.  

 

Figure 5. Two coupled Chemical Engineering simulation programs. 
Application Manger 1 signals Application Manger 2 when the Monte 
Carlo simulation completes a time step and the associated output state files 
have been migrated. Upon receipt of the message Application Manager 2 
runs the continuum simulation. When this terminates control is returned to 
the first AM. 

The codes are run separately on the Grid. The transfer of files is done using Grid based 
file-management and transfer utilities. The interface to the Grid is provided by 
Application Managers. These wrappers provide access to Grid services such as GSI [gsi], 
grid-events, etc. to the codes making them "grid-aware". Each execution is set up and 
controlled from the controlling Jython script, which runs inside the portal. The primary 
mechanism for getting feedback is the event system. Grid file-management tools can be 
used to transfer output files that are generated. Events from the applications are handed 
off to event handlers that have been registered or are logged. Special events can also 
trigger event handlers that can change or control the course of the execution. 

This application illustrates several interesting scenarios in collaboration. The experiment 
is set up by the chemical engineers using the tools provided in the portal. Simple web 
forms are created for parameter input which will control the experiment. Subsequent 
users do not need to know about these parameters or the mechanics of the grid 
computation. They will interact with only the portal web interface and event notification 
mechanisms 

3.2 Embarrassingly Parallel Search: Computing Orbit Intersections 

The CRASS application uses Grid technology to build a distributed parallel solution to 
the problem of deciding if a proposed artificial satellite orbit collides with space debris or 
known operational satellites. Over 7,000 observable orbiting objects larger than 10 cm in 



size have been catalogued. Of those, only 6% are operational spacecraft. The rest include 
decommissioned satellites, spent upper stages, and mission related objects. Typical earth 
orbits also include debris from 129 on-orbit fragmentations (almost all of them 
explosions) which have generated 70,000 to 120,000 objects larger than 1 cm. Most of 
the debris is located in Low (less than 2000 km) and Geostationary Earth Orbits, sharing 
space with a large number of operational spacecraft. Because the difference in speed 
among orbiting objects can be immense, even a small debris object can totally destroy a 
target. Collisions may also produce other small fragments that would increase the 
population of debris. About one out of ten shuttle missions have had to perform collision 
avoidance maneuvers. CRASS uses the USS SpaceCom data base of TLEs (Two Line 
Elements) for space debris, which gives orbital parameters for the objects. CRASS uses 
those parameters and a model of the forces acting on the object to find its state at a later 
time. Doing this for both debris and satellites allows prediction of when two objects will 
pass close enough to warrant a collision avoidance maneuver. 

CRASS first decides if two objects can collide after it has applied some simple filters, 
and then propagates both the operational satellite and the debris orbits for some period of 
time in the future (no more than one or two weeks because the predictions become very 
poor after that). This collision detection is easily divided into smaller independent 
problems by dividing the debris objects into several groups and assigning them to 
different computers. The operational satellites are replicated in all the nodes, and the 
propagation of their orbits is performed by all nodes. The overhead produced by such 
replication is small because the number of operational satellites is very small compared to 
the number of debris objects. Also note that there is no additional overhead involving 
communication between nodes, because the only collisions that we want to detect are 
between operational satellites and debris objects. The design of CRASS implements a 
client/server architecture involving a single master component and numerous distributed 
worker components (see Figure 6).  

  

 

Figure 6. Two types of components, master and worker are used to 
partition the problem and distribute the work 



When the computation is started, the master component sends the relevant TLE entries to 
the workers and issues a separate requests to each of them asking to check for collisions 
in a small simulation time period. After that, the master component issues new requests 
for succeeding time periods as soon as a previous request is completed. This loop repeats 
until the whole period of time under consideration is covered. The size of the time period 
is a configurable parameter and should be small if the master component is to have 
frequent updates of the state of the workers. 

The master component displays the collisions as soon as they are reported and can 
visualize the orbits in an animated 3D model of the earth. Additionally, the master 
component allows the user to cancel, pause and restart the current computation. It is also 
responsible for the management of the worker components, like remotely shutting down 
the remote components using a special procedure call when the user exits the application. 
The user is responsible for setting the parameters of the computation, like the location of 
the TLE database, the period of simulation time, the visualization options, and other 
configuration options related to the computation. Figure7 shows the CRASS portal 
interface. 

 



Figure 7: CRASS Science Portal Interface 

The implementation in terms of CCA components is straightforward. Each worker 
component, written in C++, has a CCA provides port (Crass_Port) with the method: 

std::string CrassImpl::findCloseEncounters(std::string* targets_tle, 
                                           std::string* debris_tle, 
                                           double* distance, 
                                           double* from, 
                                           double* to, 
                                           double* step) 

This method finds close encounters between the targets and the debris, with TLE's 
entered as strings. The method also takes as arguments the distance below which to report 
the close encounters, the time bounds, and the step size. It returns information about close 
encounters as strings. 

The master component, also in C++, has for each worker a CCA uses port of the same 
type as above. The master and the workers are launched using Jython scripts. The number 
of workers are specified as a parameter to the Jython script, which uniformly distributes 
the workers on the set of target machines. The script also connects each uses port of the 
master with the provides port of a single remote worker as follows : 

for i in range(0, numWorkers): 
     cca.connectPorts(master, "masterMainPort" + 
(i+1).toString(),workers[i], "inputCrassPort") 

When the computation is started, the master component sends the relevant TLE entries to 
the workers, using the RMI call "findCloseEncounters" on its uses port, along with a 
simulation time period on which to operate. After that, the master component issues new 
requests for succeeding time periods as soon as a previous request is completed. 
However, it doesn't need to send the TLE entries again as the workers now have a local 
copy of the TLEs they need, thus saving bandwidth. This continues until the whole period 
of time under consideration is covered. 

Some machines on which the workers are scheduled may be more powerful than others, 
and the workers running on those machines may finish faster than other ones. So a 
limited support for heterogeneous workload distribution is provided. At the beginning of 
the computation the worker nodes are asked to complete a short performance test by 
calling the method int CrassImpl::performance()on their provides port. Results from 
this calibration are used to divide unequally the set of debris objects, so that a larger set is 
assigned to the more powerful nodes. The other method that the provides port exposes is 
void kill()which is responsible for cleanup and exit of the worker when all the work is 
done. This is invoked by the master component on each of the workers, before it shuts 
down. 

CRASS uses the publish/subscribe event model to notify the interface of possible 
collision events, allowing visual tracking. It allows an end user to access and effectively 



use Grid resources, by providing the necessary Grid interactions via the Jython script 
underlying the Portal.  

3.3 Complex Interactions: Linear System Solvers 

A more complex example that show how multiple components can be linked to build a 
distributed algorithm test environment is given by the Linear System Analyzer (LSA) 
[lsa1, lsa2]. The LSA is a rapid prototyping tool for analyzing a sparse linear system of 
equations and testing various solution strategies on them. It is designed for the large, 
unstructured, sparse linear systems of equations which often occur in computational 
science and engineering. LSA components operate on SLS (sparse linear system) objects, 
and are in four categories: I/O ones which extract a SLS from a running application or a 
URL, filters which modify a SLS by scaling or reordering, solvers which solve the SLS 
and generate a solution vector, and informational modules which provide analysis of an 
SLS (e.g., spectral information, structure and storage information, or visualization.) 
Choosing a solution strategy for large sparse linear systems in realistic applications relies 
heavily on experimentation and exploration, and much time and effort is spent in 
recompiling code, trying to understand adjustable parameters in solvers, and trying to 
form a coherent picture of results from a variety of output . The LSA instead lets a user 
dynamically create a tree of components designed to provide information about the 
solution process and effect of each step on the sparse linear system. Using CCA 
components allows this to be done without recompiling code, and by launching the 
components on as many Grid resources as needed . Figure 8 illustrates a simple test 
configuration of components created by the LSA. 



 

Figure 8. A small LSA session; arrows show the flow of a sparse linear 
system from input to various solvers. 

def LSAbuildgraph(): 
   G = graph_lib.Graph() 
   L.create_and_add_component(G,0,'InputSLS') 
   L.create_and_add_component(G,1,'BasicInfo') 
   L.create_and_add_component(G,2,'Reorder') 
   L.create_and_add_component(G,3,'Scale') 
   L.create_and_add_component(G,4,'Splib') 
   L.create_and_add_component(G,5,'SuperLU') 
   L.create_and_add_component(G,6,'Splib') 
   L.add_edge(0,1,G) 
   L.add_edge(1,2,G) 
   L.add_edge(2,3,G) 
   L.add_edge(3,4,G) 
   L.add_edge(2,5,G) 
   L.add_edge(2,6,G) 
   return G 

def DescendTree(L, G, root): 
   for edge in G.out_arcs(root): 
      L.LSAconnect(G.node_data(root), 
G.node_data(G.tail(edge))) 
      DescendTree(L, G, G.tail(edge)) 
   G = LSAbuildgraph() 



DescendTree(L, G, 0) 

The create_and_add_component() method calls and hides the XCAT invocations 
shown in Section 2.1. The LSAconnect() method similarly creates the CCA port 
connections. The output resulting from each component is accessible as a Web page on 
the remote machine, with their URL’s published and added to the end user’s browser 
page by the publish/subscribe event system described earlier. This is an example of the 
utility of using different communications mechanisms for different needs: the SLS sent 
between LSA components must be delivered synchronously or the computation will fail. 
However, getting the URL of a result file back to the LSA portal can be asynchronous, 
and if the message fails to arrive in a timely fashion it should not cause the overall 
application to fail. 

A numerical linear algebraist can use these results to craft a solution strategy for sparse 
linear systems. For example, the difference between SPLib on the left and SPLib on the 
right is the second one had the linear system scaled first, by being fed through the 
Scale_1 component. However, comparing the Web page results of the two SPLib 
instances shows that it actually took more iterations (48 versus 46) and more time (5.19 
versus 4.98 seconds) to solve the scaled system – telling the end user that scaling is 
ineffective for this problem.Equally important, the user can then add more components to 
the tree, or disconnect and terminate branches of the tree, from the notebook interface. 
Each time the tree is changed, a simple image of the new tree like that in Figure 7 is 
created by the Jython script and added to the LSA portal as a web page, giving a visual 
representation of the current state of configuration and a record of the user’s sequence of 
steps. 

4. Web Services and Grids 

In 2001 several large software companies began to consider what could be done to make 
the concept of business-to-business distributed applications work. The early attempts in 
1999-2000 by several B2B initiatives were based on linking together html based web 
sites that provide services to businesses. This approach failed because HTML 
descriptions of web sites did not carry enough semantic information for one site to invoke 
the services of another. By developing a precise XML description of the services 
provided by a site, along with a specification of the protocols needed to invoke the 
service, one would have a standard framework for B2B operations. This framework 
would allow businesses to provide services that other client businesses could invoke 
remotely and reliably directly from their own software. Furthermore, it would be possible 
to build automated service brokers that would give users a choice of implementations of 
similar services to solve a particular problem. In 2000 and 2001 this consortium of 
companies, working with W3C released a set of standards which defined web services. 
These standards include 

• The Web Services Description Language WSDL [wsdl] that defines the XML 
Schema used to describe a web service. Each Web Service is an entity, which is 
defined by ports that are service "endpoints" capable of receiving (and replying 



to) a set of messages defined by that port’s type. Each port is, in fact a binding of 
a port type and an access protocol that tells how the messages should be encoded 
and sent to the port. A service may have several different access points and 
protocols for each port type.  

• The Universal Description, Discovery and Integration (UDDI [uddi]) and the Web 
Services Inspection Language (WSIL) [wsil] provide the mechanism needed to 
discover WSDL documents. UDDI is a specification for a registry that can be 
used by a service provider as a place to publish WSDL documents. Clients can 
then search the registry looking for services and then fetching the WSDL 
documents needed to access them. However, not all services will be listed on 
UDDI registries. WSIL provides a simple way to find WSDL documents on a web 
site. These discovery mechanisms correspond to the Grid Information Service 
[mds2] in Globus terms. 

In addition several other standards have been proposed that provide additional features. 
For example, IBM has proposed the WSFL [wsfl] which is a mechanism for scripting the 
workflow for integrating multiple services together to accomplish a complex task. A 
workflow engine acts as the agent that follows the WSFL specification document and 
contacts each of the services required by the specification following the order (an 
directed graph) specified. This workflow engine and WSFL document plays the same 
role for web services as the Jython script engine and script used to connect and manage 
XCAT components. 

In many ways, the Web Services framework that is emerging is no more powerful than 
any other distributed object system. For example, CORBA [omg] has many of the 
features WS support and many more. So why are Web Services interesting? The answer 
is that the WS standards are simple, they are based on standard web technologies, and 
they are focused on making interoperability possible and easy. WSDL documents allow 
multiple protocols to be associated with a given service and WSFL provides a very high 
level mechanism for describing the way services can be combined together to accomplish 
a task. 

There are several obvious ways that the web services model can be used in Grid systems. 
The first is to redefine many of the standard grid services as web services. For example, 
some interesting and useful Grid-Web services would be 

• Grid Authorization Service: This service would provide a place where policy 
questions such as "Is John authorized to access resource X?" can be evaluated.  

• Grid Application Resource Broker. This service would select the best compute 
resource from all those available on the grid for a particular application to run on.  

• Grid co-Scheduling Service. Many resource schedulers are now incorporating 
advance reservation features. In Grid applications where more than one resource 
is required this service would negotiate a time when both are available and notify 
the client. 

• Grid File Object Metadata Directory. Being able to fetch metadata associated with 
a Grid file object handle is very important for many applications. For example 



File Object meta data can direct me to any special file reader I may need to access 
the object. Searching Grid metadata for files with specified metadata attributes is 
also very important. 

Many more of the standard Grid Services can, and will, be given WS interfaces. This will 
greatly simplify the task of making Grid Services available to applications that need them 
and to the portal tools users will use to access them. 

As can be seen from the definition of a web service, it is not substantially different from a 
XCAT Grid component. In fact, the standard "default" access protocol for web services is 
the same (SOAP) as we use for our default XCAT communication protocol. Furthermore, 
the port interface types supported by XCAT are easily described by a subset of the XML 
Schemas used by WSDL. Hence an XCAT component instance is web service.  

But not every aspect of XCAT components can be described by the current web services 
standards. For example, CCA components also have "uses" ports that represent the call 
points in a component to an external "provided" port on some other component. It is by 
connecting uses ports to provides ports that give CCA its programming-by-composition 
nature. It is our feeling that this would be a useful addition to the web services standard.  

4.1 Grid Application Factory Service 

One of the common difficulties with the current Grid programming model involves the 
deployment of applications that are to be shared by a group of users. While this is often 
dismissed as a simple management problem, it is often a great source of frustration when 
groups of Grid users attempt to collaborate. Grid frameworks like Globus provide a 
uniform mechanism for submitting jobs to batch queues on remote systems, but Globus 
does not currently provide a mechanism to deploy an application on that resource. Hence 
the deployment task (tracking down all needed libraries and installing and testing the 
application in that environment before it is made available to others) is left to a user 
(probably the application author) or a system administrator who is probably unfamiliar 
with the application. Unfortunately, a user-installed application is frequently difficult to 
invoke by another user. This is because environment variable settings in user 
environments differ greatly from one user to another. Also user applications tend to read 
and write local files and, unless the application designer has taken this into account, there 
will often be errors caused when user A invokes an application that attempts to write a 
temporary file in user B’s directory. Furthermore, if multiple users concurrently want to 
invoke the application provided by user B, then user B better have managed the name 
space for temporary files correctly or there will be collisions when different instances of 
the application attempt to write to the same temporary files.  

To illustrate how we can use the Web Services + CCA model together, we can define a 
Grid Factory Service (GFS) as a Grid Service that exists solely to instantiate instances of 
a specific application for an authorized set of users. A GFS provides an interface that 
allows a client to specify application parameters and resource requirements for the 
application to run and the GFS creates a running instance of that application and returns 



some for of handle to it to the client. For example, the client may submit a request of the 
form "take input parameters from the file identified by this URN and put the output on 
file system x and identified by this URN." and "run this with 4 gigabytes of memory and 
132 processors." It is the responsibility of the GFS to negotiate with resource brokers and 
lower level services like Globus Gram to make this happen.  

 

Figure 9. Grid Factory Service is contacted by the client who supplied 
application specific parameters and special resource requirements. The 
Factory service first (1) contacts an authorization service to verify that the 
user is authorized to execute this application. Next (2) it contacts a 
resource broker service to find a suitable execution host. It then (3) 
launches an application manager instance and returns a handle to that 
instance. This handle may be the name of the instance, which the client 
can use to discover it when it actually starts running. When the client does 
run it may publish an event stream and a WSDL service advertisement the 
client can use to contact it.  

The GFS provides a level of abstraction to the client that is much higher than grid 
services like Gram because it takes low level job submission details like environment 
variable and temporary file management out of the hands of the client. 

 4.2 Providing Grid Security to Grid Web Services 

In the example of the Grid Application Factory Service described in the previous section, 
we have some distinct requirements for security. The requirements can be classified as 
follows. At the lowest level we need transport layer security included both client and 
server authentication. Next we need authorization and, when these issues are resolved for 
a specific connection, we must consider delegation of authority. 

Transport Layer Security (TLS via SSL) takes care of basic authentication of server and 
client. It is essential for the client to know that it is talking to the right server. A similar 
identification process may be needed for the server to trust the client. SSL/TLS is the 



most pervasive underlying protocol. We use the Grid Security Infrastructure (GSI) [gsi] 
to provide Public Key Infrastructure. The use of Java CoG kit [cog] that uses IAIK's SSL 
as the underlying protocol provides the authentication. The underlying implementation 
can be easily replaced by a similar system like Sun's Java security infrastructure. 

XSOAP/Java uses Java CoG kit to process the Globus user proxy certificates and then to 
manage secure connections with the server. The default mode of XSOAP using Globus 
grid proxies is as a personal web service, i.e. when a web service is started using a CoG 
Java provider it accepts only connections that uses the same user proxy for the client 
authentication. 

We are also working on providing multi-user authentication. In this mode the server will 
trust a number of clients based on stored public key information. 

The higher level of security would be the authorization of the client. Authorization means 
only certain types of clients may be given different rights to the services. This will be 
determined by the policy information on the server side and from the Grid Authorization 
Service and the credentials that the client presents on the connection. 

The policy information will need to have flexibility to store information about 
individuals, groups of people and the type of accesses allowed. Since X.509 certificates 
are passed as credentials during the authentication process the Distinguished Names in 
the certificates can be used to identify the client. 

There is also a need for a service to access another service to satisfy the user's requests. 
The user may decide to delegate his credentials to the server that can be in turn used by 
the service to access other services on behalf of the user. To provide this functionality we 
are using GSI delegation capability. 

In current XCAT Provides Port provides no security features for the component. Now 
that XSOAP, the underlying framework for XCAT has authentication and authorization 
capabilities component writers will have the ability to add security features to their 
components. The first step will be to have a Grid Personal Application Event Service that 
will accept events from only the user who started the service. In current XSOAP 
implementation different security features are easily pluggable that will make it scalable 
for inevitable future changes and will provide good flexibility for XCAT component 
framework. 

5. Peer to Peer Grid Concepts 

Peer-to-Peer (P2P) systems can be divided into two categories: 

• File sharing utilities such as Napster, Gnutella and Freenet [p2p], which can be 
characterized as providing a global namespace and file caching and a directory 
service for sharing files in a wide-area distributed environment. In the most 
interesting cases, the resources and all services are completely distributed. Each 



user client program, which can access local files, is also a data server for files 
local to that host. 

• CPU cycle sharing of unused user resources usually managed by a central system, 
which distributes work in small pieces to contributing clients. Examples of this 
include Seti-at-home, Entropia [entropia] and Parabon [parabon]. 

Both of these cases are interesting distributed system architectures. From the perspective 
of Grid computing there are several compelling features to these systems. First, the 
deployment model of P2P systems is purely user-space based. They require no system 
administrator. Security, when it exists in these systems is based on users deciding now 
much of their resource they wish to make public to the collective or to the central 
resource manager. Also P2P systems are designed to be very dynamic, with peers coming 
and going from the collective constantly as users machines go on and off the network. 
P2P systems are also do a good job of bypassing firewalls. This stands in contrast to 
large-scale scientific Grid systems, which manage large expensive resources and must be 
constantly maintained and managed by the system administration staff.  

SUN Microsystems has released a package JXTA [jxta] into the public domain that 
provides a simple toolkit for building P2P systems. There are several important 
contributions that JXTA makes to P2P. The most important is concept of PeerGroups. In 
JXTA-like systems a PeerGroup is a distributed collection of people that want to 
collaborate in some way. Consequently there must be a P2P service that allows groups of 
individuals to define an entity that represents the group. JXTA includes a series of 
protocols for PeerGroups including Discovery, Membership, Sharing, etc. These provide 
the ability for members of a PeerGroup to identify each other, to agree on membership 
and to exchange information. For example, a simple way to do discovery and 
membership resolution is to use a simple directory that associates group names with lists 
of users and their public keys. Presenting a signed certificate and a group name to this 
service will validate the user as an authentic member of the group. Once membership in a 
peer group can be established in a secure way, the individual members can deploy 
services that can be shared by others. For example, a user with a special application he or 
she wishes to share with others in a group can deploy a Grid Application Factory service 
that authorizes only those users that are members of the group.  

6. Conclusions 

In this paper we have addressed the problem of Grid programming from the perspective 
of building distributed applications by composing them from application components and 
services. We look at three approaches to the problem of designing distributed 
applications: software component systems, web services and peer-to-peer frameworks. 
We argue that software component systems and web services share many important 
characteristics and can work together well as a foundation for building Grid applications. 
Peer-to-peer systems show the important concepts of collaboration and light-weight, 
easily deployed services to Grid computing. 



The component model we discuss is the DOE CCA. In this model each application 
component can present two types of interfaces. The first type, called a provides port, is an 
interface of functions that can be invoked by remote clients. The second type, called a 
uses port, is a call-site in a component where it uses the services of a providing 
component. If two components have matching interface types on uses and provides port 
pair, they may be connected. In the Grid implementation of CCA, called XCAT the 
communication between a uses port and a provides port is a remote procedure call. The 
protocol for this RPC is based on SOAP as the default communication layer. While the 
point-to-point style of port communication works for many applications, there are many 
other Grid applications that need an asynchronous messaging system. XCAT uses a 
simple SOAP based event messaging system. Events, which are small XML documents, 
can be sent from publishers to persistent event channels and then broadcast to 
subscribers.  

Unfortunately, many distributed Grid computations must be composed of components 
that are legacy codes that were never designed to run in any other mode than "stand 
alone". To address this problem, we have designed a special "Application Manager" 
(AM) component that can be used to be a proxy for a legacy application. The AM can 
stage files, launch the legacy application and signal, via events or port connections, when 
the managed application changes state. Application managers are programmed by simple 
Jython (Python in Java) scripts, which are encapsulated as standard CCA/XCAT 
components.  

The Web Service model is also a component-like framework. Individual components are 
services that present a provides-style port and a protocol binding described by WSDL. 
Standards like UDDI and WSIL provide a discovery mechanism for services that is very 
similar to the Grid information system model, but it is applied at the level of application 
services instead of Grid hardware resources. Workflow in WS applications is defined by 
WSFL which is executed by a flow engine in a manner that is similar to the way CCA 
scripts are evaluated by the application manager component. We note that this service 
model can be used to good advantage in building application factory services that launch 
instances of applications on behalf of distributed Grid applications or remote users. We 
have also shown that WS applications can also be enhanced by adding Grid security 
protocols by layering SOAP on top of SSL using standard Globus and other X.509 
certificates. 

We concluded with a brief discussion of the role peer-to-peer systems can play in 
defining Grid collaboration tools. It is our experience that often Grid users would like to 
be able to set up small, private, temporary distributed collaborations. P2P technology and 
concepts can be used to extend the reach of conventional Grid systems to allow this to 
happen.  
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