
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 12(1), 33-45 (2006)

1. INTRODUCTION

Advances in networking and distributed computing al-

lowed the establishment of production Grid infrastructures

during the past few years. Today, large-scale production

Grid infrastructures such as EGEE in Europe, OSG in the

US, and NAREGI in Japan are offering their services to

many scientific and industrial applications, from domains

as diverse as Astronomy, Biomedicine, Computational Che-

mistry, Earth Sciences, Financial Simulations, and High

Energy Physics.

Grid infrastructures provide these applications a new

means for collaborative research by facilitating the sharing

of computational and data resources at an unprecedented

scale. The efficient and secure sharing of data resources,

which can reach several Tera- to Petabytes in some appli-

cation domains, is one of the main challenges for Grid

infrastructures.

The Enabling Grids for E-sciencE project (EGEE) is

Europe’s flagship Research Infrastructures Grid project and

the world’s largest Grid infrastructure of its kind. It in-

volves more than 70 partners from 27 countries, arranged

in twelve regional federations, and providing more than

20 000 CPUs, almost 200 sites and 10 petabytes of avail-

able network storage. This infrastructure supports 7 scien-

tific domains and more than 20 individual applications.

Started in April 2004, EGEE has rapidly grown from

a European to a global endeavor, and along the way learned

a great deal about the business of building production-quality

infrastructure. The consortium behind this effort represents

a significant proportion of Europe’s Grid experts, including

not only academic institutions but also partners from the Re-

search Network community and European industry.

Grid systems and applications aim to integrate, virtual-

ise, and manage resources and services within distributed,

heterogeneous, dynamic Virtual Organisations across tradi-

tional administrative and organisational domains (real or-

ganisations) [31].

A Virtual Organisation (VO) comprises a set of indi-

viduals and/or institutions having access to computers,

software, data, and other resources for collaborative prob-

lem-solving or other purposes. Virtual Organisations are

a concept that supplies a context for operation of the Grid

that can be used to associate users, their requests, and a set

of resources. The sharing of resources in a VO is necessar-

ily highly controlled, with resource providers and consum-

Programming the Grid with gLite*

E. Laure1, S. M. Fisher2, A. Frohner1, C. Grandi3, P. Kunszt4, A. Krenek5, O. Mulmo6, F. Pacini7,
F. Prelz2, J. White8, M. Barroso1, P. Buncic1, F. Hemmer1, A. Di Meglio1, A. Edlund6

1 CERN, Geneva, Switzerland
2 RAL, Didcot, UK

3 INFN, Italy
4 CSCS, Manno, Switzerland

5 CESNET, Prague, Czech Republic
6 KTH, Stockholm, Sweden
7 DATAMAT, Rome, Italy

8 HIP, Helsink, Finland

Abstract: The past few years have seen the creation of the first production level Grid infrastructures that offer their users a dependable
service at an unprecedented scale. Depending on the flavor of middleware services these infrastructures deploy (for instance Condor,
gLite, Globus, UNICORE, to name only a few) different interfaces to program the Grid infrastructures are provided. Despite ongoing
efforts to standardize Grid service interfaces, there are still significant differences in how applications can interface to a Grid infrastruc-
ture. In this paper we describe the middleware (gLite) and services deployed on the EGEE Grid infrastructure and explain how applica-
tions can interface to them.

Key words: Grid Middleware, programming Grids, gLite, EGEE

* This work is co-funded by Enabling Grids for E-sciencE (EGEE), a project of the European Commission (contract number INFSO-RI-508833).

user
Tekst maszynowy
CMST 12(1) 33-45 (2006)

user
Tekst maszynowy
DOI:10.12921/cmst.2006.12.01.33-45

user
Tekst maszynowy

user
Tekst maszynowy

E. Laure et al. 34

ers defining clearly and carefully just what is shared, who

is allowed to share, and the conditions under which sharing

occurs [30].

This resource sharing is facilitated and controlled by

a set of services that allow resources to be discovered,

accessed, allocated, monitored and accounted for, regard-

less of their physical location. Since these services provide

a layer between physical resources and applications, they

are often referred to as Grid Middleware 1 .

The Grid system needs to integrate Grid services and

resources even when provided by different vendors and/or

operated by different organisations. The key to achieve this

goal is standardisation. This is currently being pursued in

the framework of the Global Grid Forum (GGF) and other

standards bodies.

EGEE deploys the gLite middleware [18], a middleware

stack that combines components developed in various re-

lated projects, in particular Condor [7], Globus [12], LCG

[19], and VDT [29], extended by EGEE developed ser-

vices. This middleware provides the user with high level

services for scheduling and running computational jobs,

accessing and moving data, and obtaining information on

the Grid infrastructure as well as Grid applications, all

embedded into a consistent security framework.

In this paper we describe how the EGEE infrastructure

can be programmed with the most recent version of gLite,

gLite-3.0. After discussing the overall gLite architecture

and the gLite security framework in Section 2 and Section

3, respectively, we highlight particular gLite services used

for Information and Monitoring (Section 4), Workload

Management (Section 5), and Data Management in Section

6. Section 7 reports on experiences our user communities

gained with using the EGEE infrastructure, and we end the

paper with some concluding remarks and an outlook on

future work in Section 8.

2. THE gLite ARCHITECTURE

The gLite Grid services follow a Service Oriented Ar-

chitecture [25] which will facilitate interoperability among

Grid services and allow easier compliance with upcoming

standards, such as OGSA, that are also based on these

principles. The services are expected to work together in

a concerted way in order to achieve the goals of the end-

user, however, they can also be deployed and used inde-

pendently, allowing their exploitation in different contexts.

Figure 1 depicts the high level services, which can the-

matically be grouped into 5 service groups:

Security services encompass the Authentication, Authori-

zation, and Auditing services which enable the identifica-

tion of entities (users, systems, and services), allow or deny

access to services and resources, and provide information

1 See for instance [12] for a discussion of the different software layers

 in a Grid infrastructure.

for post-mortem analysis of security related events. It also

provides functionality for data confidentiality and a dy-

namic connectivity service, i.e. a means for a site to control

network access patterns of applications and Grid services

utilizing its resources.

Information and Monitoring Services provide a mecha-

nism to publish and consume information and to use it for

monitoring purposes. The information and monitoring

system can be used directly to publish, for example, infor-

mation concerning the resources on the Grid. More special-

ized services, such as the Job Monitoring Service and Net-

work Performance Monitoring services, can be built on top.

Job Management Services. The main services related to

job management/execution are the computing element,

the workload management, accounting, job provenance, and

package manager services. Although primarily related to

the job management services, accounting is a special case

as it will eventually take into account not only computing,

but also storage and network resources.

The Computing Element (CE) provides the virtualiza-

tion of a computing resource (typically a batch queue of

a cluster but also supercomputers or even single worksta-

tions). It provides information about the underlying re-

source and offers a common interface to submit and man-

age jobs on the resource.

The Workload Management System (WMS) is a Grid

level metascheduler that schedules jobs on the available

CEs according to user preferences and several policies. It

also keeps track of the jobs it manages in a consistent way

via the logging and bookkeeping service.

The Job Provenance (JP) service provides persistent in-

formation on jobs executed on the Grid infrastructure for

later inspections, data-mining operations, and possible re-

runs.

Finally, the Package Manager (PM) service allows the

dynamic deployment of application software.

While the CE and WMS are part of the production

gLite 3.0 release, the JP and PM are only available as pro-

totypes and will not be further discussed in this paper.

Data Services. The three main services that relate to data

and file access are: Storage Element, File & Replica Cata-

log Services and Data Management.

In all of the data management services described below

the granularity of the data is on the file level. However,

the services are generic enough to be extended to other

levels of granularity.

The Storage Element (SE) provides the virtualization of

a storage resource (which can reach from simple disk serv-

ers to complex hierarchical tape storage systems) much as

the CE does for computational resources. The catalog ser-

vices keep track of the data location as well as relevant

metadata (e.g. checksums and filesizes) and the data

movement services allow for efficient managed data trans-

fers between SEs. The access to files is controlled by Ac-

Programming the Grid with gLite 35

cess Control Lists (ACLs). Application specific metadata is

expected not to be stored in the basic gLite services but in

application specific metadata catalogs.

All the data management services act on single files or

collections of files. To the user of the EGEE data services

the abstraction that is being presented is that of a global file

system. A client user application may look like a Unix shell

which can seamlessly navigate this virtual file system,

listing files, changing directories, etc.

Note, that the gLite architecture does not in general im-

pose specific deployment scenarios (i.e. how many instances

of a certain service are available to a user, if a service is

replicated or distributed, etc.). Most importantly, service

instances may serve multiple VOs which will facilitate the

scalability and performance of the Grid system although

a VO may require its own instance as well.

In the remainder of this paper we focus in particular on

the security, monitoring, job management, and data man-

agement service, as these are the services a typical user

mostly interacts with. Details on the internals of the gLite

services are beyond the scope of this paper and can be

found in the gLite architecture document [26].

3. SECURITY

The EGEE security architecture [15] is based on well

established work in the Grid community.

On the authentication side a credential storage ensures

proper security of (user-held) credentials while proxy cer-

tificates enable single sign-on. TLS, GSI, and WS-Security

transport or message-level security protocols ensure integ-

rity, authenticity and (optionally) confidentiality. The EU

GridPMA establishes a common set of trust anchors for

the authentication infrastructure.

Attribute authorities enable VO managed access con-

trol, while policy assertion services enable the consolida-

tion and central administration of common policy. An au-

thorization framework enables local collection, arbitration,

customization and reasoning on policies from different

administrative domains, as well as integration with service

containers and legacy services.

The functionalities described in EGEE security archi-

tecture are in most cases embedded in the service container

or in the application itself, for performance reasons – they

are not rendered as separate Web Services.

It is important that the security architecture used by

EGEE allows for basic interoperability with other Grid

deployments or middleware projects.

Figure 2 depicts an overview on how the components in

the security architecture interact in the following typical

request flow:

 1. The user 2 obtains Grid credentials from a credential

store, and the necessary tokens that assert the user’s3

2 We use the word “user” in wide terms: for instance, it also encompasses

the software agents that act on the user’s behalf.
3 A “resource” in Web Services terminology is practically anything that is

managed by a service: it can be a compute element, a file transfer client,

an information index etc.

Fig. 1. gLite Services

E. Laure et al. 36

rights to access the resource. The credentials are

short-lived and often derived from longer-term cre-

dentials, such as X.509 identity certificates issued by

a Certification Authority (CA).

 EGEE uses myProxy [16] as credential store and the

Virtual Organization Membership Service VOMS

[22] as attribute authority. VOMS is also used to

manage the membership of VOs.

 2. The user and the service container authenticate identi-

ties to each other and establish a secure communica-

tion channel across the (open) network with integrity,

authenticity and confidentiality protection, and over

which a SOAP message payload is conveyed. By de-

fault, this is accomplished by use of HTTP over TLS.

The established connection event is logged.

 3. During the authentication in step 2 the authentication

layer validates the user’s identity with the trust an-

chors and credential revocation information, if such

exists. The result of the validation is logged4 . The

service container absorbs the payload and routes it to

the correct service endpoint. In the case of message-

level security, the authentication and integrity checks

happen here (i.e., after the message has been ab-

sorbed from the network).

4 While only depicted at the right-hand side in the picture, this check is

mirrored at the client side: the client validates the target computer to

which it is sending its message by performing the same set of checks.

 4. The authorization routines ensure that the user has per-

mission to access the resource, by combining attribute

assertions and the VO policy (sent with the request) with

the local site policy and other sources of access control.

 5. In the case that delegated credentials are used, the

user delegates rights to the delegating resource to act

on the user’s behalf. Note however that delegation

typically happens as a separate end-point invocation,

and is part of the application-level message flow be-

tween the user and the service.

 6. The service implementation gets invoked. The authori-

zation routines may be used for additional evaluation

and consultation.

 7. The service interacts with the resource, which in turn

may have delegated credentials at its disposal. Sand-

boxing and isolation techniques limit the user’s influ-

ence on the resource to within the expected bounda-

ries, avoiding malicious or unintended usage or in the

worst scenario a security breach. These include:

 a. Operating the resource in a different user space

than that of the service container.

 b. Consulting the Dynamic Connectivity Service in

order to temporarily enable direct inbound and/or

outbound network connectivity to the resource.

 c. Providing additional protection of the delegated

credentials by use of an Active Credential Store.

This is also useful in the case of long-term use of

a resource, where a renewal of the delegated cre-

dentials may be necessary.

Fig. 2. Overview of the components in the security architecture and a typical end-to-end interaction of a user (agent) accessing

a resource. (Non-complete)

Programming the Grid with gLite 37

4. INFORMATION
AND MONITORING SERVICES

The gLite system for information and monitoring is

 R-GMA [23, 14], which is a Relational implementation of

the Grid Monitoring Architecture [27] from the GGF [9].

R-GMA has been designed to be easy for end users to pub-

lish information (from a batch job or otherwise) and query

that information in a grid environment.

Figure 3 shows the principal components of R-GMA.

Data is written into the R-GMA virtual database by pro-

ducers and read from it by consumers.

R-GMA is not a distributed database management sys-

tem. Instead, it provides a useful and predictable informa-

tion system built on a much looser coupling of data provid-

ers across a grid.

Defining the schema. The first task for the user is to define

what needs to be published. This has to be one or more

tables following the relational model. A common technique

in design of a relational schema is to make use of “surro-

gate keys”: a small integer which can be used as a foreign

key to establish a relationship. A traditional case would be

to assign an departmentId to each department and then to

include this as a column of the employee table. This works

well for a single managed database with a mechanism to

assign departmentId values, but it does not work in the

grid. You should not assume anything about what anybody

else is publishing. It is best to think of publishing a series

of measurements of the same quantity but made at different

times; all R-GMA tuples (records) have an associated time-

stamp and the R-GMA query types take advantage of this.

Producers. Producers are the data providers for the virtual

database. Writing data into the virtual database is known as

publishing, and data is always published in complete rows,

known as tuples. There are three classes of producer: Primary,

Secondary and On-demand. Each is created by a user applica-

tion and returns tuples in response to queries from consumers.

The main difference is in where the tuples come from.

There are three ways considered here to for a job to

publish data into R-GMA. The least intrusive is to use a job

wrapper which can publish information on the state of the

job picked up by looking at stdout. This can be done with-

out any modifications to the job itself, provided that useful

information can be gleaned from stdout. The job wrapper

will insert data into the R-GMA system by means of a pri-

mary producer which will have four important R-GMA calls:

 1. Create primary producer with appropriate properties

 2. Declare table with predicate – this information goes

into the registry

 3. Insert tuples into virtual database

 4. Close primary producer.

A second alternative is to insert R-GMA calls directly

into the application code. This might be done using any of

the supported APIs: C, C++, Java and Python. The code,

from an R-GMA viewpoint, is identical to that used above

in the job wrapper.

A third approach is to use the native logging API (e.g.

log4cxx or log4j) to log useful things. You will then need

to run the program with an R-GMA appender which we

have provided for Java and C++. This takes the messages

Fig. 3. R-GMA Components

E. Laure et al. 38

which might otherwise have gone to the terminal or to

syslog and sends them to an R-GMA producer. This is an

attractive solution in that it requires that the user can just

use his existing logging mechanisms but has the disadvan-

tage that it is not possible to modify the schema.

One may wish to collect information together into

a secondary producer which is capable of answering latest

or history queries. If so one should probably set up two of

them for some redundancy. For the sake of this example

we will assume that one wishes to store history so you

create a secondary producer to answer history queries.

Consumers. In R-GMA, each consumer represents a single

SQL SELECT query on the virtual database. The query is

first matched against the list of available producers in the

registry and a set of producers capable of answering the

query is selected.

There are four query types: continuous, latest, history

and static. They are all expressed by a normal SQL query

though there are some restrictions on the continuous query

as this simply acts as a filter on published tuples and so

joins and aggregate functions are not permitted. If you

issue a continuous query you will receive every tuple satis-

fying the query as it is published. Such a query has no

natural end. The latest query only considers those tuples

which were most recently published. Tables have a primary

key defined to allow latest tuples to be defined.

You can then query the information – if you perform

a continuous query you will be connected to the primary

producers but if you carry out a history query you will be

connected to the secondary producer which was created to

answer history queries.

Command Line Tool. An easy to use command line tool

(written in Python) is also provided with a built-in help

system. This tool accepts short commands and provides

defaults for as much as possible. For example:

rgma> SELECT Name, Endpoint FROM Service

where rgma> is the prompt, will issue a query using

the current values of parameters such as the type of query,

the timeout etc. The current values can be changed or dis-

played:

rgma> SET QUERY CONTINUOUS

rgma> SET TIMEOUT 3 minutes

rgma> SHOW MAXAGE

Command history and command completion are also pro-

vided.

Service Discovery. The approach taken to service discov-

ery was an API hiding the underlying information system.

The information system is linked in via a plug-in mecha-

nism for which we currently support R-GMA, bdII and an

XML file. APIs are provided in C and Java and allow

a user (or another service) to select a suitable service.

To understand more of how to use R-GMA for monitor-

ing and of how to use the Service Discovery APIs please

consult the R-GMA documentation [14].

5. WORKLOAD MANAGEMENT SERVICES

The Workload Management System (WMS) comprises

a set of Grid middleware components responsible for the

distribution and management of tasks across Grid re-

sources, in such a way that applications are efficiently

executed.

The specific kind of tasks that request computation are

usually referred to as “jobs”. In the WMS, the scope of

tasks needs to be broadened to take into account other

kinds of resources, such as storage or network capacity.

This change of definition is mainly due to the move from

batch-like activity to applications with more demanding

requirements for data access or interactivity, both with the

user and with other tasks.

The core component of the Workload Management Sys-

tem is the Workload Manager (WM), whose purpose is to

accept and satisfy requests for job management coming

from its clients. The other fundamental component is the

Job Logging and Bookkeeping Service, which is described

below.

For a computational job there are two main types of re-

quest: submission and cancellation. The status request is

managed by the Logging and Bookkeeping Service.

In particular the meaning of the submission request is to

pass the responsibility of the job to the WM. The WM will

then pass the job to an appropriate CE for execution, taking

into account the requirements and the preferences ex-

pressed in the job description. The decision of which re-

sources should be used is the outcome of a matchmaking

process between submission requests and available re-

sources. The availability of resources for a particular task

depends not only on their state, but also on the utilization

policies that the resource administrators and/or the admin-

istrator of the VO the user belongs to have put in place.

5.1. The gLite Job Description Language

A job passed to the gLite WMS needs to be described in

a specific language, the gLite Job Description Language

(JDL).

The JDL used for gLite, and originally developed for

the EU DataGrid project, is based on the Condor ClassAd

language [24]. Its central construct is a record-like struc-

ture, the classad, composed of a finite number of distinct

attribute names mapped to expressions. An expression

contains literals and attribute references composed with

operators in a C/C++ like syntax.

These ads conform to a protocol that states that every

description should include expressions named Require-

ments and Rank, which denote the requirements and pref-

Programming the Grid with gLite 39

erences of the advertising entity. Two entity descriptions

match if each ad has an attribute, Requirements, that evalu-

ates to true in the context of the other ad.

The main advantages of this framework can be sum-

marized by the following three points:

 � it uses a semi-structured data model, so no specific

schema is required for the resources description, al-

lowing it to work naturally in a heterogeneous envi-

ronment,

 � the language folds the query language into the data

model. Requirements (i.e. queries) may be expressed

as attributes of the job description,

 � ClassAds are first-class objects in the model, hence

descriptions can be arbitrarily nested, leading to a natu-

ral language for expressing resources and jobs aggre-

gates (e.g. DAGs) or co-allocation requests.

The gLite JDL defines specific attributes to specify:

 1. batch or interactive, simple, MPI-based, checkpoin-

table and partitionable jobs;

 2. aggregates of jobs with dependencies (Directed

Acyclic Graphs);

 3. constraints to be satisfied by the selected computing

and storage resources;

 4. data access requirements: appropriate conventions

have been established to express constraints about the

data that a job wants to process together with their

physical/logical location within the grid;

 5. preferences for choosing among suitable resources

(ranking expressions).

As mentioned, the JDL is semi-structured and extensi-

ble. A set of predefined attributes have a special meaning

for the underlying components of the Workload Manage-

ment System. Some of them are mandatory, while others

are optional. The set of predefined attributes [13] can be

decomposed in the following groups:

 � Job attributes: representing job specific information

and specifying actions that have to be performed by

the WMS to schedule the job;

 � Data attributes: representing the job input data and

Storage Element related information. They are used

for selecting the resources from which the application

has the best access to data;

 � Requirements and Rank: allowing the user to specify

respectively which are the needs and preferences, in

term of resources, of their applications.

The Requirements and Rank expressions are built using

the Resources attributes, which represent the characteris-

tics and status of the resources and are recognizable in the

job description as they are prefixed with the string “other”.

The Resources attributes are not part of the predefined set

of attributes for the JDL as their naming and meaning de-

pends on the adopted Information Service schema [10] for

publishing such information. This independence of the JDL

from the resources information schema allows targeting for

the submission resources that are described by different

Information Services without any changes in the job de-

scription language itself. Here is an example of the JDL

used to describe a simple job:

 [

 Type = "Job";

 JobType = "Normal";

 VirtualOrganisation = "biomed";

 Executable = "/bin/bash";

 StdOutput = "std.out";

 StdError = "std.err";

 Arguments = "./sim010.sh";

 Environment = "GATE_BIN=/usr/local/bin";

 OutputSandbox = {"std.out","std.err","Brain_radioth000.root"};

 InputData = {"lfn:BrainTotal", "lfn:EyeTotal"};

 DataAccessProtocol = {"file", "gridftp"};

 OutputSE = "grid011.pd.infn.it";

 InputSandbox = {

 "/home/fpacini/JOBS/bin/sim010.sh",

 "/home/fpacini/JOBS/jobsRAL/required/prerunGate.mac",

 "/home/fpacini/JOBS/jobsRAL/required/GateMaterials.db"

 };

 rank = -other.GlueCEStateEstimatedResponseTime;

 requirements = Member("GATE-1.0-3",other.GlueHostApplicationSoftwareRunTimeEnvironment)

 && (other.GlueCEStateFreeCPUs >= 2);

]

E. Laure et al. 40

The job description above represents a Monte Carlo simu-

lation of radiological imaging. It asks to run the sim010.sh

simulation script on a resource on which the GATE (Ge-

ant4 Application for Tomographic Emission) is installed

and which has at least 2 CPUs available for the computa-

tion. Image data to be accessed for the simulation are iden-

tified in the grid with the logical names BrainTotal and

EyeTotal. For further details on the meaning of the JDL

attributes the reader can refer to [13].

5.2. The WMS User Interfaces

After having created the descriptions of their applica-

tions, users expect to be able to ignore the complexity of

the grid resources and to be enabled to submit them to the

Workload Management System and monitor their evolution

over the Grid.

The functionalities the WMS provides include the fol-

lowing:

 � Job (including DAGs) submission for execution on

a remote Computing Element, also including:

 – automatic resource discovery and selection,

 – staging of the application input sandbox,

 – restart of the job from a previously saved check-

point state,

 – interactive communication with the running job,

 � Listing of resources suitable to run a specific job

according to job requirements,

 � Cancellation of one or more submitted jobs,

 � Retrieval of the output files of one or more completed

jobs,

 � Retrieval of the checkpoint state of a completed job,

 � Retrieval of jobs bookkeeping and logging informa-

tion.

All this functionality is made available through a com-

mand line interface and an API providing C++ and Java

bindings. GUI components have been developed on top of

the Java API.

5.2.1. Command Line Interface

Here’s a short reference of the basic commands of the

gLite command line interface. More details can be found at

[8]. Information about the usage of each command can be

found by issuing 5:

<command> –help

glite-wms-job-submit submits a job to a WMS (more

precisely, WMProxy) Service. It requires a JDL file as in-

put and returns a WMS job identifier.

 5 Before using any command you should make sure that the GLITE WMS

LOCATION and GLITE LOCATION environment variables point to

a valid WMS-UI installation path (i.e. the path containing the etc and bin

directories).

glite-wms-job-status queries the Logging & Book-

keeping service (the information collection and retrieval

partner of the WMS) about the status of a given job.

glite-wms-job-logging-info lists the events collected in

the Logging & Bookkeeping service that were collected

over the lifetime of a given job, and that allow to determine

its current status.

glite-wms-delegate-proxy allows the user to delegate

her proxy credential to the WMProxy service. This dele-

gated credential can then be used for job submissions.

glite-wms-job-list-match lists the identifiers of jobs

submitted to a WMProxy Service by the user issuing the

command.

glite-wms-job-cancel cancels one or more jobs previ-

ously submitted to WMProxy Service.

glite-wms-job-output retrieves output files of a job,

when finished. After this operation the job context is

purged and no more operations are possible on it

glite-wms-job-perusal manages the perusal (access to

files in the working area of a running job) functionality for

a given job.

5.2.2. Application ProgrammingIinterface

The WMS client API supplies the client applications

with a set of interfaces over the job submission and control

services made available by the gLite WMS through a web

service based interface. The API provides the correspond-

ing method for each operation published in the WSDL

description of the WMProxy Service (http://egee-jra1-

wm.mi.infn.it/egee-jra1-wm/wmproxy).

The request types supported by the WMProxy Service are:

� Job: a simple application

� DAG: a directed acyclic graph of dependent jobs

� Collection: a set of independent jobs

Jobs in turn can be batch, interactive, MPI-based, check-

pointable, partitionable and parametric. The specification of

the JDL for describing the request types is available at [13].

Besides requests submission, the WMProxy also exposes

additional functionality for request management and control

such as cancellation, job files perusal and output retrieval.

Requests status follow-up can be instead achieved through

the functionality exposed by the Logging & Bookkeeping

(LB) service [17].

The documentation describing the WMProxy Client API

providing C++, Java and Python bindings can be found at

[32]. Pointers to usage examples are also provided in these

web pages.

5.3. Logging and Bookkeeping

The Logging and Bookkeeping service (L&B) [17, 3] is

used by WMS internally to gather various information on

running jobs and provide the user with an overall view on

Programming the Grid with gLite 41

the job state. The service collects events in a non-blocking

asynchronous way with a robust delivery mechanism.

The job state is computed on the fly at the bookkeeping

database, using a state machine that tolerates even out of

order event delivery. Besides gathering the “system” in-

formation on running jobs, the service can also collect user

information in the form of arbitrary “name = value” tags

(annotations) assigned to a job, both from a running appli-

cation or independently. The job status information gath-

ered by the LB is made available through the gLite user-

interface commands. In addition to this simple querying

mechanism, the user can pose simple or more complex

queries with the public L&B API (available in C and C++

or as a web-service interface). Examples of such queries

are:

 � state of a concrete job,

 � details on all user’s running jobs,

 � jobs that are running on a concrete computing ele-

ment,

 � user’s jobs that returned exit code between e.g. 2 and 7,

 � user’s jobs resubmitted in last two hours,

 � user’s jobs, annotated as green or red color, that

started execution in the first week of January,

 � user’s failed jobs that were marked as red first, and

then re-colored to green,

 � ed-colored jobs, heading to a computing element at

which the user’s job have recently failed.

The list of more or less random examples presented

here demonstrates the strength of the L&B API. The user

can also register for receiving notifications when a job

enters a state matching conditions specified in a similar

way. Job state information is also fed into the R-GMA

infrastructure to provide yet another way of accessing the

job bookkeeping information. More detailed examples of

use of the LB service are discussed in detail in [17], includ-

ing appropriate code fragments.

6. DATA MANAGEMENT SERVICES

For the gLite data management service stack we make

the assumption that the lowest granularity of the data is on

the file level. We deal with files rather than data objects or

tables in a relational database if it comes to application

data. The reason for this arguably very restrictive assump-

tion is twofold. Primarily the initial two application groups,

the High Energy Physics and Biomedical communities, that

work with the EGEE gLite implementation store their data

in file format. The second reason is that the semantics of

files are very well understood by everyone, both on the

service provider and application side. This is not the case

for generic data objects for example, where every applica-

tion group has their own definition.

In the Grid the user identifies files by logical file names

(LFNs). The LFN namespace is hierarchical, just like

a conventional filesystem. The semantics of the LFN

namespace is also almost exactly like that of a Unix filesys-

tem. The LFN is not the only name/identifier that is associ-

ated with a file in the Grid, although the average user may

never use any other filename and is given the benefit of a

single global namespace. To maintain this view, the Grid

data management middleware has to keep track of logical

to physical file instance mappings in a scalable manner (see

Section on Catalogs below).

We have the following names identifying data in the

Grid:

LFN. Logical File Name: A logical, human readable, iden-

tifier for a file. LFNs are unique but mutable, i.e. they

can be changed by the user (the files can be re-

named). The namespace of the LFNs is a global hier-

archical namespace, which is how file-based data is

organized on any computerized system today. The

same tools and semantics may be provided to the user

on the logical namespace of the Grid as on any local

filesystem. Each Virtual Organisation can have its

own namespace.

GUID. Global Unique Identifier: A logical identifier, which

guarantees its uniqueness by construction (based on

the UUID mechanism [20]). Each LFN also has a

GUID (1:1 relationship). GUIDs are immutable, i.e.

they cannot be changed by the user. Once a file ac-

quires a GUID it must not be changed otherwise con-

sistency cannot be assured. GUIDs are being used by

Grid applications as immutable pointers between

files. If these should change, the application may

suddenly point to a wrong file. In the filesystem anal-

ogy, GUIDs would be the unique inode number of the

file. The 1:1 relation means that we do not allow hard

links in this virtual filesystem – experience tells that

implementing a globally distributed filesystem with

hard links is very difficult and introduces unnecessary

complexities, especially for the delete operation.

Logical Symlinks. The logical namespace also provides

the concept of symbolic links. Symbolic links always

point to an LFN. There may be many Symlinks to an

LFN (N:1 relation). If an LFN is removed or re-

named, the Symlinks are left dangling, in analogy

with the usual filesystem semantics.

SURL. The Site URL specifies a physical instance (rep-

lica) of a file. In other projects the SURL is also re-

ferred to as the Physical File Name (PFN). A file may

have many replicas, so the mapping between GUIDs

and SURLs is a one-to-many mapping. Each file rep-

lica has its own unique SURL. In gLite, SURLs

are always fully qualified SRM names, accepted

by the Storage Element’s SRM interface (see the stor-

age Section below). An example SURL is srm://-

E. Laure et al. 42

srm://-

castorgrid.cern.ch:8443/srm/managerv1?SFN=/castor/

cern.ch/file1

 The SRM endpoint is implicitly given by the part of

the SURL that comes before ?SFN. Usually, users are

not directly exposed to SURLs, but only to the logical

namespace defined by LFNs. (The Storage URL

StURL is another term used by the SRM specifica-

tion, for the actual file name inside the storage sys-

tem. To the Storage, the Site URL is a logical name

and the StURL is the real location of the file on disk.)

TURL. Transport URL. It is a URL that can be used to

actually transfer a file using any standard transport

protocol. The TURL is a fully qualified URL starting

with the protocol to be used for transfer or direct file

access through some native I/O mechanism.

The data services can be put into three basic categories:

storage, catalogs and movement, which we describe below.

Storage. gLite relies on storage systems exposing an SRM

[11] interface. Current systems supported include Castor

(http://cern.ch/castor), dCache (http://www.dcache.org/)

and the gLite Disk Pool Manager (DPM).

The DPM has been developed as a lightweight solution

for disk storage management offering much of the func-

tionality of dCache but avoiding its complexity. DPM is

security enabled, providing ACL based authentication to

file access. In addition to the SRM interface, DPM offers

an rfio interface for posix like data access and gridFTP [6]

for data transfer. This is also the mechanism the gLite file

transfer service described below, is using.

In order to shield the user from the differences the cur-

rent storage systems expose in their posix-like access li-

braries, gLite provides a Grid File Access Library (GFAL),

a C API posix-like interface that provides methods such as

gfal open, gfal read, etc. GFAL interaces with the different

SRM implementations (including their native posix access

mechanisms) and gridFTP.

Catalogs. gLite provides a catalog, named LFC, to store

the location(s) of their files and replicas. LFC will map

LFNs or GUIDs to SURLs. It is a high performance file

catalogue that builds on the experiences gathered from the

EGEE user communities. The LFC supports Oracle and

Mysql as database backends, and is integrated with the

GFAL interface. It shares the codebase with the name ser-

vice part of the DPM, discussed above.

Similarly to the DPM, the LFC exposes methods to the

user through the GFAL interface that, in turn, interacts with

the SRM implementations and gridFTP. The LFC client

has a POSIX-like command line interface with commands

such as lfc-chmod,lfc-ls,lfc-rm.

Data Movement. The gLite File Transfer Service FTS is

a low level data movement service, responsible for moving

sets of files from one site to another while allowing partici-

pating sites to control the network resource usage. This

control includes the enforcement of site and usages policies

such as fair-share mechanisms on dedicated network links.

It is designed for point to point movement of physical files.

The FTS has dedicated interfaces for managing the network

resource and to display statistics of ongoing transfers.

The FTS is also able to communicate with external Grid

File Catalogs, i.e. the file to be transferred can also be

specified using an LFN.

 The FTS has three interfaces that can be used for pro-

gramming. The File Transfer Interface is used to submit

File Transfer jobs, get status on current jobs, list requests in

a given job state, cancel transfers, set priority of transfers;

and to add, remove and list VO managers. The Channel
Management Interface can be used to add, list and delete

channels for the FTS instance, and set channel parameters.

It has also methods to add, remove and list channel manag-

ers and to apply policies for jobs that need manual inter-

vention, such as being in HOLD state. Finally, the Status
Interface can be used to list or summarize the channel and

VO activity, and to list all running background Transfer

Agent processes.

There is a set of command line tools available that in-

teract with these interfaces, performing these tasks by con-

tacting the FTS. All the FTS interfaces come with WSDL

descriptions and the user can actually use the WSDL to

generate clients for any language needed. The gLite distri-

bution includes a set of client APIs for Java, C/C++ and

Perl. As a secure connection is used to talk to the FTS web

service, a valid GSI proxy is necessary. The VOMS exten-

sions are needed if the client wants to contact for example

the Channel Management interface. This should only be

used by VO and site managers, who should have an extra

“admin” group membership signed by VOMS.

The FTS Transfer Interface’s transferSubmit method

takes as input a TransferJob object, which consists of

 � an array of TransferJobElements each describing an

individual file transfer within the job (source and des-

tination pairs),

 � a list parameters (key, value pairs) for transfer layer

specific paramaters that are applied to each file trans-

fer (e.g. gridFTP parameters),

 � the credential that is used by the transfer system to

retrieve the appropriate proxy for the transfer.

The rest of the FTS Transfer Interface, the Channel

Management Interface and Status Interface methods are

simple and straightforward setters and getters very much in

java style, that can easily be used like any other RPC call

through SOAP. The detailed syntax for the API and all

command line tools is described in the user guide [4].

7. APPLICATION USAGE

The gLite midleware has been exposed to users both on

the EGEE production infrastructure and in the EGEE pre-

Programming the Grid with gLite 43

production service, a smaller scale service for testing up-

coming middleware releases.

The production infrastructure is now being used by

many applications on a regular basis. On average, over

10 000 concurrent jobs are being served every day. It is

worth noting that the EGEE applications involve quite

different workflows and hence most applications cus-

tomize the infrastructure to their particular needs. This is

for instance done by using additional services to those

provided by gLite, for instance workflow systems or

Grid portals.

To show these differences in application usage, we

highlight the experiences from the two EGEE pilot applica-

tions, Biomed and High Energy Physics (HEP) below. Full

details on these as well as the other EGEE applications can

be found in [1].

One focus of the HEP activity was on massive data

transfer tests using the gLite FTS. In January 2006 a rate up

to 1 GB/s sustained over several days was achieved in

conditions similar to those that the CERN LHC experi-

ments will have at the beginning of data taking in 2007.

The test involved 12 main computing centers and 20 other

computing facilities all over the world.

The HEP communities are using the EGEE production

infrastructure also for their daily activities, such as Monte

Carlo generation of simulated physics events. About 4 mil-

lion jobs were executed on the production infrastructure in

the past year. Job submission is not limited to specialized

users producing data for the whole community. It is now

possible for end users, not only Grid experts, to use the

Grid infrastructure for their daily data analyses.

The Biomed use of the infrastructure is different from

the HEP one. Both the amount of data and number of com-

puting cycles required are less than for HEP, but the com-

plexity of the calculations and the diversity of the needs are

higher. This is particularly challenging from the point of

view of middleware design. A large fraction of the Biomed

Grid activity has been performed on the PPS as they re-

quire the most recent features of the workload and data

management systems.

The main needs of the biomed community are:

 � Fast responses are needed for interactive usage;

 � The submission overhead is not negligible, given that

their job duration is much smaller;

 � Data security: privacy issues arise when dealing with

medical data management. A system for accessing

encrypted data stored on DICOM [2] servers through

an SRM [11] interface was demonstrated in October

2005 during the 4th EGEE conference in Pisa.

It is this diversity of requirements that make the provi-

sion of middleware for a multi-purpose Grid infrastructure

like EGEE a challenging task. The clear need for customi-

zation has lead to the service oriented architecture approach

followed by gLite that allows the gLite services to be used

independently in many different settings.

8. CONCLUSIONS AND FUTURE WORK

In this paper we gave a brief overview on how the EGEE

Grid infrastructure can be programmed using the services

provided by the gLite middleware distribution. We focused

on the information & monitoring, workload management,

and data management services which are the most fre-

quently used ones. A discussion of the security framework

was also given.

As mentioned before, EGEE is only one of the large

scale Grid infrastructures that were created in the past

years. Each of the different infrastructures is deploying

different services built on different software stacks. Hence,

interoperability between Grid infrastructures is becoming

an important issue, in particular for applications such as the

HEP ones that need to exploit multiple infrastructures.

Although the Global Grid Forum, GGF, is active in defin-

ing Grid related standards, in particular OGSA [31], it is

not practical for a production level infrastructure to follow

quickly evolving standards. These systems need to take

a more conservative approach and wait for established

standards to arrive.

As a consequence, gLite was not following proposed

standards such as OGSI [28] that was quickly superseded

by WSRF [5] but is carefully moving towards web services

adhering to WS-Interoperability [21] wherever possible. In

addition, interoperability efforts are ongoing with major

other Grid projects such as OSG, NAREGI and others

which is resulting in a seamless integration of the systems.

It is now for instance possible to run EGEE jobs on OSG

and vice versa. The experiences gained are fed back to

GGF and other relevant standardization bodies.

The gLite middleware is constantly being improved and

enriched with further services. The most important im-

provements planned comprise:

R-GMA will introduce support of multiple virtual data-

bases (VDBs), each defined by its own registry and schema

to act as separate namespaces. Each VDB will have its own

authorization rules and a query will be able to span VDBs.

Other work will be on the resilience and performance of the

services. For service discovery we plan to introduce a boot-

strapping mechanism.

The WMS components will move towardsWeb Services

based interfaces, in particular for the CE, compatible with

standards for job and workflow descriptions such as JSDL,

and also see performance optimizations. The appearance of

established standards will also help in consolidating the

user interfaces and reducing the number of translation

layers implemented in user space.

The LB service will become an independent component

with a Web Service interfaces, providing a general “job”

E. Laure et al. 44

tracking and event collecting tool. Tight integration with

Job Provenance will be also established.

The overall security model of the data management

components is constantly being improved and will allow

for consistent access control not only at the storage (SE)

level but also on the catalogs. A Generic metadata service,

AMGA, will also be provided. This service allows users to

attach metadata to files stored in the file catalogue and to

handle simple relational data stored in a relational database

system. Using AMGA, users will be able to select logical

files by searching through the metadata describing the files’

content.

More information on gLite as well as the latest version

of the software can be obtained from gLite web page

http://www.glite.org.

Acknowledgments

gLite is a collaborative effort of the EGEE-JRA1 (http:

//cern.ch/egee-jra1) and EGEE-JRA3 (http: //cern.ch/egee-

jra3/) teams. The authors would like to thank all the mem-

bers of the teams for their commitment to gLite and their

contributions to the overall gLite effort. The authors particu-

larly thank Miron Livny from the Condor team and Kate

Keahey from the Globus team for many stimulating discus-

sions and their contributions to the overall design of gLite.

References
 [1] V. Breton et al., EGEE Deliverable 4.4: Second Revision of

EGEE Application Migration Progress Report, https://
edms.cern.ch/document/707799/.

 [2] DICOM Digital Imaging and Communication in Medicine,
http://dicom.nema.org/.

 [3] F. Dvořák et al., Services for Tracking and Archival of Grid
Job Information. In: Proceedings Cracow Grid Work-
shop’05, 2006, http://www.cyfronet.krakow.pl/cgw05.

 [4] EGEE JRA1. EGEE File Transfer Service User Guide.
https://edms.cern.ch/document/591792/.

 [5] K. Cajkowski et. al., The WS-Resource Framework, 2004,
http://www-106.ibm.com/developerworks/library/ws-resource/

 ws-wsrf.pdf.
 [6] W. Allcock et al., GridFTP Protocol Specification. Global

Grid Forum Recommendation GFD.20, March 2003.
 [7] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke,

Condor-G: A Computation Management Agent for Multi-
Institutional Grids. Cluster Computing, 5(3), 237-246, 2002.

 [8] glite command line interface reference. https://edms.cern.ch/
document/674643/1.

 [9] Global Grid Forum, http://www.gridforum.org/.
 [10] Homepage of the GLUE Schema Activity, http://infnforge.

cnaf.infn.it/glueinfomodel.
 [11] The GGF Grid Storage Resource Manager Working Group.
 [12] I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the

Grid. The International Journal of High Performance
Computing Applications, 15(3), 200-222, Fall 2001.

 [13] JDL Attributes Specification, https://edms.cern.ch/ document/
590869/1. EGEE-JRA1-TEC- 590869-JDL-Attributes-v0-4.

 [14] JRA1-UK, http://hepunx.rl.ac.uk/egee/jra1-uk/.
 [15] EGEE JRA3. EGEE Deliverable 3.3: Global Security Ar-

chitecture (1st revision), https://edms.cern.ch/document/
602183/.

 [16] D. Kouril and J. Basney, A Credential Renewal Service for
Long-Running Jobs. In: Grid 2005, 6th IEEE/ACM Interna-
tional Workshop on Grid Computing, Seattle, US, Novem-
ber 20005.

 [17] A. Křenek et al., L&B Users Guide. https://edms.cern.
ch/file/571273/1/LB-guide.pdf.

 [18] E. Laure, F. Hemmer et al., Middleware for the Next Gen-
eration Grid Infrastructure. In: Computing in High Energy
and Nuclear Physics (CHEP), Interlaken, Switzerland, Sep-
tember 2004.

 [19] The LCG Project, http://cern.ch/lcg.
 [20] P. J. Leach and R. Salz, UUIDs and GUIDs, February 1998.
 [21] TheWeb Services Interoperability Organization. WS-I

Documents, http://www.ws-i.org/Documents. aspx.
 [22] R. Alfieri et al., VOMS, an Authorization System for Virtual

Organizations. In: Grid Computing, First European Across
Grids Conference, 2004.

 [23] R-GMA, http://www.r-gma.org/.
 [24] R. Raman, M. Livny and M. Solomon, Matchmaking:

Distributed Resource Management for High Throughput
Computing. In: Proceedings of the Seventh IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC7), Chicago, IL, July 1998.

 [25] D. Sprott and L. Wilkes, Understanding Service-Oriented
Architecture, http://msdn.microsoft.com/ library/default.
asp?url=/library/en-us/dnmaj/html/aj1soa.asp.

 [26] EGEE Middleware Design Team. EGEE Deliverable 1.4:
EGEE Middleware Architecture,
https://edms.cern.ch/document/594698/.

 [27] B. Tierney, R. Aydt et al., A grid monitoring architecture.
Technical Report GWD-Perf-16-1, GGF, 2001.

 [28] S. Tuecke et al., Open Grid Services Infrastructure (OGSI)
– Version 1.0. https://forge.gridforum. org/projects/ogsi-wg.

 [29] The Virtual Data Toolkit, http://www.cs.wisc.edu/vdt/.
 [30] GGF OGSA WG. Open Grid Services Architecture – Glossary

of Terms, https://forge.gridforum. org/projects/ ogsa-wg.
 [31] GGF OGSA WG. The Open Grid Services Architecture,

Version 1.0. https://forge.gridforum.org/ projects/ogsa-wg.
 [32] WMproxy API documentation, http://egee-jra1-wm.mi.infn.it/

egee-jra1-wm/ glite-wmproxy-api-index.shtml.

DR. ERWIN LAURE is the Technical Director of the EU funded project “Enabling Grids for E-Science in

Europe (EGEE)” working at the European Organization for Nuclear Research (CERN). After joining

CERN in 2002 he worked on data management issues within the EU DataGrid (EDG) project, became

the Technical Coordinator of EDG, and coordinated the middleware re-engineering activities in the first

phase of EGEE. He holds a PhD in Business Administration and Computer Science from the University of

Vienna, Austria. His research interests include grid computing with a focus on data management in grid

environments as well as programming environments, languages, compilers and runtime systems for parallel

and distributed computing.

Programming the Grid with gLite 45

ÁKOS FROHNER is currently working on grid data management and security solutions at CERN in the

Enabling Grids for E-sciencE project. He received his MSc. in 1996 as a software architect and mathemati-

cian. During his studies he visited several research centers (EPCC, Univ. of Linz) and he was also a regular

lecturer at his university and various commercial companies in computer security, distributed systems and

object-oriented design. He is a co-author and editor of books on these fields. He led his own consultant

company that contributed to many industry leading technology projects in Hungary and also participated in

the main grid deployment project there. Later he was working as a research fellow at CERN on grid security.

PETER KUNSZT has a PhD in theoretical physics (Lattice QCD) from the University of Bern, Switzerland in

1997. After his studies he changed fields to Scientific Computing and has initially worked on building the

Science Archive of the Sloan Digital Sky Survey (SDSS) at the Johns Hopkins University in Baltimore.

The SDSS Archive is still one of the most important tools for astronomy and astrophysics. He has joined

CERN in 2001 and started to work in the EU DataGrid (EDG) project’s data management work package

WP2. He took over the lead of WP2 by the end of 2001. In the Enabling Grids for E-Science (EGEE) pro-

ject he was again leading the team responsible for the re-engineering and development of the Grid data

management middleware gLite. Since the beginning of 2006 he is leading the Swiss National Grid Initiative

at the Swiss National Supercomputing Centre CSCS in Manno where he took up responsibilities in several

Swiss national Grid projects.

OLLE MULMO. After obtaining his masters degrees in Engineering Physics (1997) and Computer Science

(1998) Olle Mulmo spent two years at Argonne National Laboratory, working in the Globus Project (soft-

ware and application development). He worked together with external application projects and adapted their

code for Globus' widely distributed test bed. He contributed to the proof-of-concept implementation of

hierarchial collective MPI operations, laying the foundation for the much appraised MPICH-G2 implemen-

tation. He worked another two years at iD2/Smart Trust (Stockholm) as a software architect for PKI prod-

uct development. He is currently employed as applications expert on security and grid technologies at the

Royal Institute of Technology (Stockholm) and is advisor to local and national grid projects. Olle Mulmo is

Security Architect EGEE, and Security Area Director, GGF.

FRÉDÉRIC HEMMER studied Electrical and Mechanical Engineering (and Computing) in Brussels. He joined CERN in 1984 where he

served as Systems Engineer in Databases, Real-Time Systems and more generally Distributed Computing. In the 1990’s he became the

software architect of the CERN SHIFT project aiming at moving High-Energy Physics applications from Mainframes to Distributed

RISC/Unix systems, later migrated to PC/Linux systems. He has been the initial author of the RFIO remote file access protocol. From

1994 he took the responsibility of operating the Physics Data Processing Services at CERN (100’s of machines, Terabytes’s of data,

Gigabit/second interconnections). As of 1998 he took responsibility of CERN Windows service (> 5000 computers) and later Mail and

Web Services. In 2004 he joined the EGEE (Enabling Grid for E-sciencE) project where he served as Middleware Reengineering Man-

ager (coordinating Grid Middleware development across 8 countries). In 2005 he was appointed as CERN Deputy IT Department

Head.

DR ĹKE EDLUND has over nine years experience of IS/IT industry, of which more than seven have been in
managing and leading roles. In addition Ĺke Edlund has more than six years experience of research in
scientific computing, specializing in parallel computers. Prior to his engagement as Security Head of Ena-
bling Grids for E-sciencE (EGEE), Ĺke Edlund worked as Chief Architect at Sony Ericsson Mobile Com-
munications; Solution Manager at Alzato (developing a novel real-time database, now part of MySQL), an
Ericsson Business Innovation venture; as Product Manager for Cult3D (software for interactive 3D on the
Internet) at Cycore; and as a consultant with Parallel Consulting Group, Stockholm (computer security).
Ĺke Edlund has a research background in applied mathematics, super computing and quantum chemistry
and holds degrees from the Technion – Israel Institute of Technology (PhD) and Uppsala University
(Tekn.Lic, MSc). Research stations were at Technion – Israel; Uppsala University – Sweden; and at Uni-
versity of California at Berkeley, and Rice University – USA. Main contribution was a generic parallel
multidimensional solver for quantum physics applications.

 COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 12(1), 33-45 (2006)

