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1.  INTRODUCTION  

Advances in networking and distributed computing al-

lowed the establishment of production Grid infrastructures 

during the past few years. Today, large-scale production 

Grid infrastructures such as EGEE in Europe, OSG in the 

US, and NAREGI in Japan are offering their services to 

many scientific and industrial applications, from domains 

as diverse as Astronomy, Biomedicine, Computational Che-

mistry, Earth Sciences, Financial Simulations, and High 

Energy Physics.  

Grid infrastructures provide these applications a new 

means for collaborative research by facilitating the sharing 

of computational and data resources at an unprecedented 

scale. The efficient and secure sharing of data resources, 

which can reach several Tera- to Petabytes in some appli-

cation domains, is one of the main challenges for Grid 

infrastructures.  

The Enabling Grids for E-sciencE project (EGEE) is 

Europe’s flagship Research Infrastructures Grid project and 

the world’s largest Grid infrastructure of its kind. It in-

volves more than 70 partners from 27 countries, arranged 

in twelve regional federations, and providing more than 

20 000 CPUs, almost 200 sites and 10 petabytes of  avail-

able network storage. This infrastructure supports 7 scien-

tific domains and more than 20 individual applications.  

Started in April 2004, EGEE has rapidly grown from 

a European to a global endeavor, and along the way learned 

a great deal about the business of building production-quality 

infrastructure. The consortium behind this effort represents 

a significant proportion of Europe’s Grid experts, including 

not only academic institutions but also partners from the Re-

search Network community and European industry.  

Grid systems and applications aim to integrate, virtual-

ise, and manage resources and services within distributed, 

heterogeneous, dynamic Virtual Organisations across tradi-

tional administrative and organisational domains (real or-

ganisations) [31].  

A Virtual Organisation (VO) comprises a set of indi-

viduals and/or institutions having access to computers, 

software, data, and other resources for collaborative prob-

lem-solving or other purposes. Virtual Organisations are 

a concept that supplies a context for operation of the Grid 

that can be used to associate users, their requests, and a set 

of resources. The sharing of resources in a VO is necessar-

ily highly controlled, with resource providers and consum-
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ers defining clearly and carefully just what is shared, who 

is allowed to share, and the conditions under which sharing 

occurs [30].  

This resource sharing is facilitated and controlled by 

a set of services that allow resources to be discovered, 

accessed, allocated, monitored and accounted for, regard-

less of their physical location. Since these services provide 

a layer between physical resources and applications, they 

are often referred to as Grid Middleware 1 .  

The Grid system needs to integrate Grid services and 

resources even when provided by different vendors and/or 

operated by different organisations. The key to achieve this 

goal is standardisation. This is currently being pursued in 

the framework of the Global Grid Forum (GGF) and other 

standards bodies.  

EGEE deploys the gLite middleware [18], a middleware 

stack that combines components developed in various re-

lated projects, in particular Condor [7], Globus [12], LCG 

[19], and VDT [29], extended by EGEE developed ser-

vices. This middleware provides the user with high level 

services for scheduling and running computational jobs, 

accessing and moving data, and obtaining information on 

the Grid infrastructure as well as Grid applications, all 

embedded into a consistent security framework.  

In this paper we describe how the EGEE infrastructure 

can be programmed with the most recent version of gLite, 

gLite-3.0. After discussing the overall gLite architecture 

and the gLite security framework in Section 2 and Section 

3, respectively, we highlight particular gLite services used 

for Information and Monitoring (Section 4), Workload 

Management (Section 5), and Data Management in Section 

6. Section 7 reports on experiences our user communities 

gained with using the EGEE infrastructure, and we end the 

paper with some concluding remarks and an outlook on 

future work in Section 8.  

 

2.  THE  gLite  ARCHITECTURE  

The gLite Grid services follow a Service Oriented Ar-

chitecture [25] which will facilitate interoperability among 

Grid services and allow easier compliance with upcoming 

standards, such as OGSA, that are also based on these 

principles. The services are expected to work together in 

a concerted way in order to achieve the goals of the end-

user, however, they can also be deployed and used inde-

pendently, allowing their exploitation in different contexts. 

Figure 1 depicts the high level services, which can the-

matically be grouped into 5 service groups:  

Security services encompass the Authentication, Authori-

zation, and Auditing services which enable the identifica-

tion of entities (users, systems, and services), allow or deny 

access to services and resources, and provide information 

                                                 
1 See for instance [12] for a discussion of the different software layers 

 in a Grid infrastructure.  

for post-mortem analysis of security related events. It also 

provides functionality for data confidentiality and a dy-

namic connectivity service, i.e. a means for a site to control 

network access patterns of applications and Grid services 

utilizing its resources.  

Information and Monitoring Services provide a mecha-

nism to publish and consume information and to use it for 

monitoring purposes. The information and monitoring 

system can be used directly to publish, for example, infor-

mation concerning the resources on the Grid. More special-

ized services, such as the Job Monitoring Service and Net-

work Performance Monitoring services, can be built on top.  

Job Management Services. The main services related to 

job management/execution are the computing element, 

the workload management, accounting, job provenance, and 

package manager services. Although primarily related to 

the job management services, accounting is a special case 

as it will eventually take into account not only computing, 

but also storage and network resources.  

The Computing Element (CE) provides the virtualiza-

tion of a computing resource (typically a batch queue of 

a cluster but also supercomputers or even single worksta-

tions). It provides information about the underlying re-

source and offers a common interface to submit and man-

age jobs on the resource.  

The Workload Management System (WMS) is a Grid 

level metascheduler that schedules jobs on the available 

CEs according to user preferences and several policies. It 

also keeps track of the jobs it manages in a consistent way 

via the logging and bookkeeping service.  

The Job Provenance (JP) service provides persistent in-

formation on jobs executed on the Grid infrastructure for 

later inspections, data-mining operations, and possible re-

runs.  

Finally, the Package Manager (PM) service allows the 

dynamic deployment of application software.  

While the CE and WMS are part of the production 

gLite 3.0 release, the JP and PM are only available as pro-

totypes and will not be further discussed in this paper.  

Data Services. The three main services that relate to data 

and file access are: Storage Element, File & Replica Cata-

log Services and Data Management.  

In all of the data management services described below 

the granularity of the data is on the file level. However, 

the services are generic enough to be extended to other 

levels of granularity.  

The Storage Element (SE) provides the virtualization of 

a storage resource (which can reach from simple disk serv-

ers to complex hierarchical tape storage systems) much as 

the CE does for computational resources. The catalog ser-

vices keep track of the data location as well as relevant 

metadata (e.g. checksums and filesizes) and the data 

movement services allow for efficient managed data trans-

fers between SEs. The access to files is controlled by Ac-
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cess Control Lists (ACLs). Application specific metadata is 

expected not to be stored in the basic gLite services but in 

application specific metadata catalogs.  

All the data management services act on single files or 

collections of files. To the user of the EGEE data services 

the abstraction that is being presented is that of a global file 

system. A client user application may look like a Unix shell 

which can seamlessly navigate this virtual file system, 

listing files, changing directories, etc.  

Note, that the gLite architecture does not in general im-

pose specific deployment scenarios (i.e. how many instances 

of a certain service are available to a user, if a service is 

replicated or distributed, etc.). Most importantly, service 

instances may serve multiple VOs which will facilitate the 

scalability and performance of the Grid system although 

a VO may require its own instance as well.  

In the remainder of this paper we focus in particular on 

the security, monitoring, job management, and data man-

agement service, as these are the services a typical user 

mostly interacts with. Details on the internals of the gLite 

services are beyond the scope of this paper and can be 

found in the gLite architecture document [26].  

 

3.  SECURITY  

The EGEE security architecture [15] is based on well 

established work in the Grid community.  

On the authentication side a credential storage ensures 

proper security of (user-held) credentials while proxy cer-

tificates enable single sign-on. TLS, GSI, and WS-Security 

transport or message-level security protocols ensure integ-

rity, authenticity and (optionally) confidentiality. The EU 

GridPMA establishes a common set of trust anchors for 

the authentication infrastructure.  

Attribute authorities enable VO managed access con-

trol, while policy assertion services enable the consolida-

tion and central administration of common policy. An au-

thorization framework enables local collection, arbitration, 

customization and reasoning on policies from different 

administrative domains, as well as integration with service 

containers and legacy services.  

The functionalities described in EGEE security archi-

tecture are in most cases embedded in the service container 

or in the application itself, for performance reasons – they 

are not rendered as separate Web Services.  

It is important that the security architecture used by 

EGEE allows for basic interoperability with other Grid 

deployments or middleware projects.  

Figure 2 depicts an overview on how the components in 

the security architecture interact in the following typical 

request flow:  

   1. The user 2 obtains Grid credentials from a credential 

store, and the necessary tokens that assert the user’s3 

                                                 
2 We use the word “user” in wide terms: for instance, it also encompasses 

the software agents that act on the user’s behalf. 
3 A “resource” in Web Services terminology is practically anything that is 

managed by a service: it can be a compute element, a file transfer client, 

an information index etc.  

Fig. 1. gLite Services 
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rights to access the resource. The credentials are 

short-lived and often derived from longer-term cre-

dentials, such as X.509 identity certificates issued by 

a Certification Authority (CA).  

 EGEE uses myProxy [16] as credential store and the 

Virtual Organization Membership Service VOMS 

[22] as attribute authority. VOMS is also used to 

manage the membership of VOs.  

   2. The user and the service container authenticate identi-

ties to each other and establish a secure communica-

tion channel across the (open) network with integrity, 

authenticity and confidentiality protection, and over 

which a SOAP message payload is conveyed. By de-

fault, this is accomplished by use of HTTP over TLS. 

The established connection event is logged.  

   3.  During the authentication in step 2 the authentication 

layer validates the user’s identity with the trust an-

chors and credential revocation information, if such 

exists. The result of the validation is logged4 . The 

service container absorbs the payload and routes it to 

the correct service endpoint. In the case of message-

level security, the authentication and integrity checks 

happen here (i.e., after the message has been ab-

sorbed from the network).  

                                                                                 
4 While only depicted at the right-hand side in the picture, this check is 

mirrored at the client side: the client validates the target computer to 

which it is sending its message by performing the same set of checks.  
   

   4.  The authorization routines ensure that the user has per-

mission to access the resource, by combining attribute 

assertions and the VO policy (sent with the request) with 

the local site policy and other sources of access control.  

   5.  In the case that delegated credentials are used, the 

user delegates rights to the delegating resource to act 

on the user’s behalf. Note however that delegation 

typically happens as a separate end-point invocation, 

and is part of the application-level message flow be-

tween the user and the service.  

   6.  The service implementation gets invoked. The authori-

zation routines may be used for additional evaluation 

and consultation.  

   7.  The service interacts with the resource, which in turn 

may have delegated credentials at its disposal. Sand-

boxing and isolation techniques limit the user’s influ-

ence on the resource to within the expected bounda-

ries, avoiding malicious or unintended usage or in the 

worst scenario a security breach. These include:  

      a. Operating the resource in a different user space 

than that of the service container.  

 b. Consulting the Dynamic Connectivity Service in 

order to temporarily enable direct inbound and/or 

outbound network connectivity to the resource.  

      c. Providing additional protection of the delegated 

credentials by use of an Active Credential Store. 

This is also useful in the case of long-term use of 

a resource, where a renewal of the delegated cre-

dentials may be necessary.  

 

Fig. 2. Overview of the components in the security architecture and a typical end-to-end interaction of a user (agent) accessing 

a resource. (Non-complete) 
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4.  INFORMATION   
AND  MONITORING   SERVICES 

The gLite system for information and monitoring is 

 R-GMA [23, 14], which is a Relational implementation of 

the Grid Monitoring Architecture [27] from the GGF [9]. 

R-GMA has been designed to be easy for end users to pub-

lish information (from a batch job or otherwise) and query 

that information in a grid environment.  

Figure 3 shows the principal components of R-GMA. 

Data is written into the R-GMA virtual database by pro-

ducers and read from it by consumers.  

R-GMA is not a distributed database management sys-

tem. Instead, it provides a useful and predictable informa-

tion system built on a much looser coupling of data provid-

ers across a grid.  

Defining the schema. The first task for the user is to define 

what needs to be published. This has to be one or more 

tables following the relational model. A common technique 

in design of a relational schema is to make use of “surro-

gate keys”: a small integer which can be used as a foreign 

key to establish a relationship. A traditional case would be 

to assign an departmentId to each department and then to 

include this as a column of the employee table. This works 

well for a single managed database with a mechanism to 

assign departmentId values, but it does not work in the 

grid. You should not assume anything about what anybody 

else is publishing. It is best to think of publishing a series 

of measurements of the same quantity but made at different 

times; all R-GMA tuples (records) have an associated time-

stamp and the R-GMA query types take advantage of this.  

Producers. Producers are the data providers for the virtual 

database. Writing data into the virtual database is known as 

publishing, and data is always published in complete rows, 

known as tuples. There are three classes of producer: Primary, 

Secondary and On-demand. Each is created by a user applica-

tion and returns tuples in response to queries from consumers. 

The main difference is in where the tuples come from.  

There are three ways considered here to for a job to 

publish data into R-GMA. The least intrusive is to use a job 

wrapper which can publish information on the state of the 

job picked up by looking at stdout. This can be done with-

out any modifications to the job itself, provided that useful 

information can be gleaned from stdout. The job wrapper 

will insert data into the R-GMA system by means of a pri-

mary producer which will have four important R-GMA calls:  

   1. Create primary producer with appropriate properties  

   2. Declare table with predicate – this information goes 

into the registry  

   3. Insert tuples into virtual database  

   4. Close primary producer. 

A second alternative is to insert R-GMA calls directly 

into the application code. This might be done using any of 

the supported APIs: C, C++, Java and Python. The code, 

from an R-GMA viewpoint, is identical to that used above 

in the job wrapper.  

A third approach is to use the native logging API (e.g. 

log4cxx or log4j) to log useful things. You will then need 

to run the program with an R-GMA appender which we 

have provided for Java and C++. This takes the messages 

 

Fig. 3. R-GMA Components 
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which might otherwise have gone to the terminal or to 

syslog and sends them to an R-GMA producer. This is an 

attractive solution in that it requires that the user can just 

use his existing logging mechanisms but has the disadvan-

tage that it  is not possible to modify the schema.  

One may wish to collect information together into 

a secondary producer which is capable of answering latest 

or history queries. If so one should probably set up two of 

them for some redundancy. For the sake of this example 

we will assume that one wishes to store history so you 

create a secondary producer to answer history queries.  

Consumers. In R-GMA, each consumer represents a single 

SQL SELECT query on the virtual database. The query is 

first matched against the list of available producers in the 

registry and a set of producers capable of answering the 

query is selected.  

There are four query types: continuous, latest, history 

and static. They are all expressed by a normal SQL query 

though there are some restrictions on the continuous query 

as this simply acts as a filter on published tuples and so 

joins and aggregate functions are not permitted. If you 

issue a continuous query you will receive every tuple satis-

fying the query as it is published. Such a query has no 

natural end. The latest query only considers those tuples 

which were most recently published. Tables have a primary 

key defined to allow latest tuples to be defined.  

You can then query the information – if you perform 

a continuous query you will be connected to the primary 

producers but if you carry out a history query you will be 

connected to the secondary producer which was created to 

answer history queries.  

Command Line Tool. An easy to use command line tool 

(written in Python) is also provided with a built-in help 

system. This tool accepts short commands and provides 

defaults for as much as possible. For example:  

rgma> SELECT Name, Endpoint FROM Service 

where rgma> is the prompt, will issue a query using 

the current values of parameters such as the type of query, 

the timeout etc. The current values can be changed or dis-

played:  

rgma> SET QUERY CONTINUOUS  

rgma> SET TIMEOUT 3 minutes  

rgma> SHOW MAXAGE  

Command history and command completion are also pro-

vided.  

Service Discovery. The approach taken to service discov-

ery was an API hiding the underlying information system. 

The information system is linked in via a plug-in mecha-

nism for which we currently support R-GMA, bdII and an 

XML file. APIs are provided in C and Java and allow 

a user (or another service) to select a suitable service.  

To understand more of how to use R-GMA for monitor-

ing and of how to use the Service Discovery APIs please 

consult the R-GMA documentation [14].  

 

5.  WORKLOAD  MANAGEMENT  SERVICES 

The Workload Management System (WMS) comprises 

a set of Grid middleware components responsible for the 

distribution and management of tasks across Grid re-

sources, in such a way that applications are efficiently 

executed.  

The specific kind of tasks that request computation are 

usually referred to as “jobs”. In the WMS, the scope of 

tasks needs to be broadened to take into account other 

kinds of resources, such as storage or network capacity. 

This change of definition is mainly due to the move from 

batch-like activity to applications with more demanding 

requirements for data access or interactivity, both with the 

user and with other tasks.  

The core component of the Workload Management Sys-

tem is the Workload Manager (WM), whose purpose is to 

accept and satisfy requests for job management coming 

from its clients. The other fundamental component is the 

Job Logging and Bookkeeping Service, which is described 

below.  

For a computational job there are two main types of re-

quest: submission and cancellation. The status request is 

managed by the Logging and Bookkeeping Service.  

In particular the meaning of the submission request is to 

pass the responsibility of the job to the WM. The WM will 

then pass the job to an appropriate CE for execution, taking 

into account the requirements and the preferences ex-

pressed in the job description. The decision of which re-

sources should be used is the outcome of a matchmaking 

process between submission requests and available re-

sources. The availability of resources for a particular task 

depends not only on their state, but also on the utilization 

policies that the resource administrators and/or the admin-

istrator of the VO the user belongs to have put in place.  

 

5.1. The gLite Job Description Language  

A job passed to the gLite WMS needs to be described in 

a specific language, the gLite Job Description Language 

(JDL).  

The JDL used for gLite, and originally developed for 

the EU DataGrid project, is based on the Condor ClassAd 

language [24]. Its central construct is a record-like struc-

ture, the classad, composed of a finite number of distinct 

attribute names mapped to expressions. An expression 

contains literals and attribute references composed with 

operators in a C/C++ like syntax.  

These ads conform to a protocol that states that every 

description should include expressions named Require-

ments and Rank, which denote the requirements and pref-
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erences of the advertising entity. Two entity descriptions 

match if each ad has an attribute, Requirements, that evalu-

ates to true in the context of the other ad.  

The main advantages of this framework can be sum-

marized by the following three points:  

    �  it uses a semi-structured data model, so no specific 

schema is required for the resources description, al-

lowing it to work naturally in a heterogeneous envi-

ronment, 

    �  the language folds the query language into the data 

model. Requirements (i.e. queries) may be expressed 

as attributes of the job description, 

   �  ClassAds are first-class objects in the model, hence 

descriptions can be arbitrarily nested, leading to a natu-

ral language for expressing resources and jobs aggre-

gates (e.g. DAGs) or co-allocation requests.  

The gLite JDL defines specific attributes to specify:  

    1. batch or interactive, simple, MPI-based, checkpoin-

table and partitionable jobs;  

    2. aggregates of jobs with dependencies (Directed 

Acyclic Graphs);  

    3. constraints to be satisfied by the selected computing 

and storage resources;  

    4. data access requirements: appropriate conventions 

have been established to express constraints about the 

data that a job wants to process together with their 

physical/logical location within the grid;  

    5. preferences for choosing among suitable resources 

(ranking expressions).  

As mentioned, the JDL is semi-structured and extensi-

ble. A set of predefined attributes have a special meaning 

for the underlying components of the Workload Manage-

ment System. Some of them are mandatory, while others 

are optional. The set of predefined attributes [13] can be 

decomposed in the following groups:  

     �  Job attributes: representing job specific information 

and specifying actions that have to be performed by 

the WMS to schedule the job;  

     �  Data attributes: representing the job input data and 

Storage Element related information. They are used 

for selecting the resources from which the application 

has the best access to data;  

     �  Requirements and Rank: allowing the user to specify 

respectively which are the needs and preferences, in 

term of resources, of their applications.  

The Requirements and Rank expressions are built using 

the Resources attributes, which represent the characteris-

tics and status of the resources and are recognizable in the 

job description as they are prefixed with the string “other”. 

The Resources attributes are not part of the predefined set 

of attributes for the JDL as their naming and meaning de-

pends on the adopted Information Service schema [10] for 

publishing such information. This independence of the JDL 

from the resources information schema allows targeting for 

the submission resources that are described by different 

Information Services without any changes in the job de-

scription language itself. Here is an example of the JDL 

used to describe a simple job:  

         [  

  Type = "Job";  

  JobType = "Normal";  

  VirtualOrganisation = "biomed";  

  Executable = "/bin/bash";  

  StdOutput = "std.out";  

  StdError = "std.err";  

  Arguments = "./sim010.sh";  

  Environment = "GATE_BIN=/usr/local/bin";  

  OutputSandbox = {"std.out","std.err","Brain_radioth000.root"};  

  InputData =  {"lfn:BrainTotal", "lfn:EyeTotal"};  

  DataAccessProtocol = {"file", "gridftp"};  

  OutputSE = "grid011.pd.infn.it";  

  InputSandbox = {  

     "/home/fpacini/JOBS/bin/sim010.sh",  

        "/home/fpacini/JOBS/jobsRAL/required/prerunGate.mac", 

     "/home/fpacini/JOBS/jobsRAL/required/GateMaterials.db"  

  };  

  rank = -other.GlueCEStateEstimatedResponseTime;  

   requirements =  Member("GATE-1.0-3",other.GlueHostApplicationSoftwareRunTimeEnvironment)  

        && (other.GlueCEStateFreeCPUs >= 2);  

     ]  
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The job description above represents a Monte Carlo simu-

lation of radiological imaging. It asks to run the sim010.sh 

simulation script on a resource on which the GATE (Ge-

ant4 Application for Tomographic Emission) is installed 

and which has at least 2 CPUs available for the computa-

tion. Image data to be accessed for the simulation are iden-

tified in the grid with the logical names BrainTotal and 

EyeTotal. For further details on the meaning of the JDL 

attributes the reader can refer to [13].  

 

5.2. The WMS User Interfaces  

After having created the descriptions of their applica-

tions, users expect to be able to ignore the complexity of 

the grid resources and to be enabled to submit them to the 

Workload Management System and monitor their evolution 

over the Grid.  

The functionalities the WMS provides include the fol-

lowing:  

   � Job (including DAGs) submission for execution on 

a remote Computing Element, also including:  

    –  automatic resource discovery and selection,  

    –  staging of the application input sandbox,  

    –  restart of the job from a previously saved check-

point state,  

    –  interactive communication with the running job,  

   �  Listing of resources suitable to run a specific job 

according to job requirements,  

   �  Cancellation of one or more submitted jobs,  

   �  Retrieval of the output files of one or more completed 

jobs,  

   �  Retrieval of the checkpoint state of a completed job,  

   �  Retrieval of jobs bookkeeping and logging informa-

tion.  

All this functionality is made available through a com-

mand line interface and an API providing C++ and Java 

bindings. GUI components have been developed on top of 

the Java API.  

 

5.2.1. Command Line Interface  

Here’s a short reference of the basic commands of the 

gLite command line interface. More details can be found at 

[8]. Information about the usage of each command can be 

found by issuing  5:  

<command> –help  

glite-wms-job-submit submits a job to a WMS (more 

precisely, WMProxy) Service. It requires a JDL file as in-

put and returns a WMS job identifier.  

                                                 
 5 Before using any command you should make sure that the GLITE WMS 

LOCATION and GLITE LOCATION environment variables point to 

a valid WMS-UI installation path (i.e. the path containing the etc and bin 

directories). 

glite-wms-job-status queries the Logging & Book-

keeping service (the information collection and retrieval 

partner of the WMS) about the status of a given job.  

glite-wms-job-logging-info lists the events collected in 

the Logging & Bookkeeping service that were collected 

over the lifetime of a given job, and that allow to determine 

its current status.  

glite-wms-delegate-proxy allows the user to delegate 

her proxy credential to the WMProxy service. This dele-

gated credential can then be used for job submissions.  

glite-wms-job-list-match lists the identifiers of jobs 

submitted to a WMProxy Service by the user issuing the 

command.  

glite-wms-job-cancel cancels one or more jobs previ-

ously submitted to WMProxy Service.  

glite-wms-job-output retrieves output files of a job, 

when finished. After this operation the job context is 

purged and no more operations are possible on it  

glite-wms-job-perusal manages the perusal (access to 

files in the working area of a running job) functionality for 

a given job.  

5.2.2. Application ProgrammingIinterface  

The WMS client API supplies the client applications 

with a set of interfaces over the job submission and control 

services made available by the gLite WMS through a web 

service based interface. The API provides the correspond-

ing method for each operation published in the WSDL 

description of the WMProxy Service (http://egee-jra1-

wm.mi.infn.it/egee-jra1-wm/wmproxy).  

The request types supported by the WMProxy Service are:  

�  Job: a simple application  

�  DAG: a directed acyclic graph of dependent jobs  

�  Collection: a set of independent jobs  

Jobs in turn can be batch, interactive, MPI-based, check-

pointable, partitionable and parametric. The specification of 

the JDL for describing the request types is available at [13]. 

Besides requests submission, the WMProxy also exposes 

additional functionality for request management and control 

such as cancellation, job files perusal and output retrieval. 

Requests status follow-up can be instead achieved through 

the functionality exposed by the Logging & Bookkeeping 

(LB) service [17].  

The documentation describing the WMProxy Client API 

providing C++, Java and Python bindings can be found at 

[32]. Pointers to usage examples are also provided in these 

web pages.  

 

5.3. Logging and Bookkeeping  

The Logging and Bookkeeping service (L&B) [17, 3] is 

used by WMS internally to gather various information on 

running jobs and provide the user with an overall view on 
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the job state. The service collects events in a non-blocking 

asynchronous way with a robust delivery mechanism.  

The job state is computed on the fly at the bookkeeping 

database, using a state machine that tolerates even out of 

order event delivery. Besides gathering the “system” in-

formation on running jobs, the service can also collect user 

information in the form of arbitrary “name = value” tags 

(annotations) assigned to a job, both from a running appli-

cation or independently. The job status information gath-

ered by the LB is made available through the gLite user-

interface commands. In addition to this simple querying 

mechanism, the user can pose simple or more complex 

queries with the public L&B API (available in C and C++ 

or as a web-service interface). Examples of such queries 

are:  

    �  state of a concrete job,  

    �  details on all user’s running jobs,  

    �  jobs that are running on a concrete computing ele-

ment,  

    �  user’s jobs that returned exit code between e.g. 2 and 7,  

    �  user’s jobs resubmitted in last two hours,  

    �  user’s jobs, annotated as green or red color, that 

started execution in the first week of January,  

    �  user’s failed jobs that were marked as red first, and 

then re-colored to green,  

    �  ed-colored jobs, heading to a computing element at 

which the user’s job have recently failed.  

The list of more or less random examples presented 

here demonstrates the strength of the L&B API. The user 

can also register for receiving notifications when a job 

enters a state matching conditions specified in a similar 

way. Job state information is also fed into the R-GMA 

infrastructure to provide yet another way of accessing the 

job bookkeeping information. More detailed examples of 

use of the LB service are discussed in detail in [17], includ-

ing appropriate code fragments.   

 

6.  DATA  MANAGEMENT  SERVICES 

For the gLite data management service stack we make 

the assumption that the lowest granularity of the data is on 

the file level. We deal with files rather than data objects or 

tables in a relational database if it comes to application 

data. The reason for this arguably very restrictive assump-

tion is twofold. Primarily the initial two application groups, 

the High Energy Physics and Biomedical communities, that 

work with the EGEE gLite implementation store their data 

in file format. The second reason is that the semantics of 

files are very well understood by everyone, both on the 

service provider and application side. This is not the case 

for generic data objects for example, where every applica-

tion group has their own definition.  

In the Grid the user identifies files by logical file names 

(LFNs). The LFN namespace is hierarchical, just like 

a conventional filesystem. The semantics of the LFN 

namespace is also almost exactly like that of a Unix filesys-

tem. The LFN is not the only name/identifier that is associ-

ated with a file in the Grid, although the average user may 

never use any other filename and is given the benefit of a 

single global namespace. To maintain this view, the Grid 

data management middleware has to keep track of logical 

to physical file instance mappings in a scalable manner (see 

Section on Catalogs below).  

We have the following names identifying data in the 

Grid:  

LFN. Logical File Name: A logical, human readable, iden-

tifier for a file. LFNs are unique but mutable, i.e. they 

can be changed by the user (the files can be re-

named). The namespace of the LFNs is a global hier-

archical namespace, which is how file-based data is 

organized on any computerized system today. The 

same tools and semantics may be provided to the user 

on the logical namespace of the Grid as on any local 

filesystem. Each Virtual Organisation can have its 

own namespace.  

GUID. Global Unique Identifier: A logical identifier, which 

guarantees its uniqueness by construction (based on 

the UUID mechanism [20]). Each LFN also has a 

GUID (1:1 relationship). GUIDs are immutable, i.e. 

they cannot be changed by the user. Once a file ac-

quires a GUID it must not be changed otherwise con-

sistency cannot be assured. GUIDs are being used by 

Grid applications as immutable pointers between 

files. If these should change, the application may 

suddenly point to a wrong file. In the filesystem anal-

ogy, GUIDs would be the unique inode number of the 

file. The 1:1 relation means that we do not allow hard 

links in this virtual filesystem – experience tells that 

implementing a globally distributed filesystem with 

hard links is very difficult and introduces unnecessary 

complexities, especially for the delete operation.  

Logical Symlinks. The logical namespace also provides 

the concept of symbolic links. Symbolic links always 

point to an LFN. There may be many Symlinks to an 

LFN (N:1 relation). If an LFN is removed or re-

named, the Symlinks are left dangling, in analogy 

with the usual filesystem semantics.  

SURL. The Site URL specifies a physical instance (rep-

lica) of a file. In other projects the SURL is also re-

ferred to as the Physical File Name (PFN). A file may 

have many replicas, so the mapping between GUIDs 

and SURLs is a one-to-many mapping. Each file rep-

lica has its own unique SURL. In gLite, SURLs 

are always fully qualified SRM names, accepted 

by the Storage Element’s SRM interface (see the stor-

age Section below). An example SURL is srm://-
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srm://-

castorgrid.cern.ch:8443/srm/managerv1?SFN=/castor/ 

cern.ch/file1  

         The SRM endpoint is implicitly given by the part of 

the SURL that comes before ?SFN. Usually, users are 

not directly exposed to SURLs, but only to the logical 

namespace defined by LFNs. (The Storage URL 

StURL is another term used by the SRM specifica-

tion, for the actual file name inside the storage sys-

tem. To the Storage, the Site URL is a logical name 

and the StURL is the real location of the file on disk.)  

TURL. Transport URL. It is a URL that can be used to 

actually transfer a file using any standard transport 

protocol. The TURL is a fully qualified URL starting 

with the protocol to be used for transfer or direct file 

access through some native I/O mechanism.  

The data services can be put into three basic categories: 

storage, catalogs and movement, which we describe below. 

Storage. gLite relies on storage systems exposing an SRM 

[11] interface. Current systems supported include Castor 

(http://cern.ch/castor), dCache (http://www.dcache.org/) 

and the gLite Disk Pool Manager (DPM).  

The DPM has been developed as a lightweight solution 

for disk storage management offering much of the func-

tionality of dCache but avoiding its complexity. DPM is 

security enabled, providing ACL based authentication to 

file access. In addition to the SRM interface, DPM offers 

an rfio interface for posix like data access and gridFTP [6] 

for data transfer. This is also the mechanism the gLite file 

transfer service described below, is using.  

In order to shield the user from the differences the cur-

rent storage systems expose in their posix-like access li-

braries, gLite provides a Grid File Access Library (GFAL), 

a C API posix-like interface that provides methods such as 

gfal open, gfal read, etc. GFAL interaces with the different 

SRM implementations (including their native posix access 

mechanisms) and gridFTP.  

Catalogs. gLite provides a catalog, named LFC, to store 

the location(s) of their files and replicas. LFC will map 

LFNs or GUIDs to SURLs. It is a high performance file 

catalogue that builds on the experiences gathered from the 

EGEE user communities. The LFC supports Oracle and 

Mysql as database backends, and is integrated with the 

GFAL interface. It shares the codebase with the name ser-

vice part of the DPM, discussed above.  

Similarly to the DPM, the LFC exposes methods to the 

user through the GFAL interface that, in turn, interacts with 

the SRM implementations and gridFTP. The LFC client 

has a POSIX-like command line interface with commands 

such as lfc-chmod,lfc-ls,lfc-rm.  

Data Movement. The gLite File Transfer Service FTS is 

a low level data movement service, responsible for moving 

sets of files from one site to another while allowing partici-

pating sites to control the network resource usage. This 

control includes the enforcement of site and usages policies 

such as fair-share mechanisms on dedicated network links. 

It is designed for point to point movement of physical files. 

The FTS has dedicated interfaces for managing the network 

resource and to display statistics of ongoing transfers. 

The FTS is also able to communicate with external Grid 

File Catalogs, i.e. the file to be transferred can also be 

specified using an LFN.  

 The FTS has three interfaces that can be used for pro-

gramming. The File Transfer Interface is used to submit 

File Transfer jobs, get status on current jobs, list requests in 

a given job state, cancel transfers, set priority of transfers; 

and to add, remove and list VO managers. The Channel 
Management Interface can be used to add, list and delete 

channels for the FTS instance, and set channel parameters. 

It has also methods to add, remove and list channel manag-

ers and to apply policies for jobs that need manual inter-

vention, such as being in HOLD state. Finally, the Status 
Interface can be used to list or summarize the channel and 

VO activity, and to list all running background Transfer 

Agent processes.  

There is a set of command line tools available that in-

teract with these interfaces, performing these tasks by con-

tacting the FTS. All the FTS interfaces come with WSDL 

descriptions and the user can actually use the WSDL to 

generate clients for any language needed. The gLite distri-

bution includes a set of client APIs for Java, C/C++ and 

Perl. As a secure connection is used to talk to the FTS web 

service, a valid GSI proxy is necessary. The VOMS exten-

sions are needed if the client wants to contact for example 

the Channel Management interface. This should only be 

used by VO and site managers, who should have an extra 

“admin” group membership signed by VOMS.  

The FTS Transfer Interface’s transferSubmit method 

takes as input a TransferJob object, which consists of  

     �  an array of TransferJobElements each describing an 

individual file transfer within the job (source and des-

tination pairs),  

     �  a list parameters (key, value pairs) for transfer layer 

specific paramaters that are applied to each file trans-

fer (e.g. gridFTP parameters),  

     �  the credential that is used by the transfer system to 

retrieve the appropriate proxy for the transfer.  

The rest of the FTS Transfer Interface, the Channel 

Management Interface and Status Interface methods are 

simple and straightforward setters and getters very much in 

java style, that can easily be used like any other RPC call 

through SOAP. The detailed syntax for the API and all 

command line tools is described in the user guide [4].  

 

7.  APPLICATION  USAGE 

The gLite midleware has been exposed to users both on 

the EGEE production infrastructure and in the EGEE pre-
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production service, a smaller scale service for testing up-

coming middleware releases.  

The production infrastructure is now being used by 

many applications on a regular basis. On average, over 

10 000 concurrent jobs are being served every day. It is 

worth noting that the EGEE applications involve quite 

different workflows and hence most applications cus-

tomize the infrastructure to their particular needs. This is 

for instance done by using additional services to those 

provided by gLite, for instance workflow systems or 

Grid portals.  

To show these differences in application usage, we 

highlight the experiences from the two EGEE pilot applica-

tions, Biomed and High Energy Physics (HEP) below. Full 

details on these as well as the other EGEE applications can 

be found in [1].  

One focus of the HEP activity was on massive data 

transfer tests using the gLite FTS. In January 2006 a rate up 

to 1 GB/s sustained over several days was achieved in 

conditions similar to those that the CERN LHC experi-

ments will have at the beginning of data taking in 2007. 

The test involved 12 main computing centers and 20 other 

computing facilities all over the world.  

The HEP communities are using the EGEE production 

infrastructure also for their daily activities, such as Monte 

Carlo generation of simulated physics events. About 4 mil-

lion jobs were executed on the production infrastructure in 

the past year. Job submission is not limited to specialized 

users producing data for the whole community. It is now 

possible for end users, not only Grid experts, to use the 

Grid infrastructure for their daily data analyses.  

The Biomed use of the infrastructure is different from 

the HEP one. Both the amount of data and number of com-

puting cycles required are less than for HEP, but the com-

plexity of the calculations and the diversity of the needs are 

higher. This is particularly challenging from the point of 

view of middleware design. A large fraction of the Biomed 

Grid activity has been performed on the PPS as they re-

quire the most recent features of the workload and data 

management systems.  

The main needs of the biomed community are:  

     �  Fast responses are needed for interactive usage;  

     �  The submission overhead is not negligible, given that 

their job duration is much smaller;  

     �  Data security: privacy issues arise when dealing with 

medical data management. A system for accessing 

encrypted data stored on DICOM [2] servers through 

an SRM [11] interface was demonstrated in October 

2005 during the 4th EGEE conference in Pisa.  

It is this diversity of requirements that make the provi-

sion of middleware for a multi-purpose Grid infrastructure 

like EGEE a challenging task. The clear need for customi-

zation has lead to the service oriented architecture approach 

followed by gLite that allows the gLite services to be used 

independently in many different settings.  

 

8.  CONCLUSIONS  AND  FUTURE  WORK 

In this paper we gave a brief overview on how the EGEE 

Grid infrastructure can be programmed using the services 

provided by the gLite middleware distribution. We focused 

on the information & monitoring, workload management, 

and data management services which are the most fre-

quently used ones. A discussion of the security framework 

was also given.  

As mentioned before, EGEE is only one of the large 

scale Grid infrastructures that were created in the past 

years. Each of the different infrastructures is deploying 

different services built on different software stacks. Hence, 

interoperability between Grid infrastructures is becoming 

an important issue, in particular for applications such as the 

HEP ones that need to exploit multiple infrastructures. 

Although the Global Grid Forum, GGF, is active in defin-

ing Grid related standards, in particular OGSA [31], it is 

not practical for a production level infrastructure to follow 

quickly evolving standards. These systems need to take 

a more conservative approach and wait for established 

standards to arrive.  

As a consequence, gLite was not following proposed 

standards such as OGSI [28] that was quickly superseded 

by WSRF [5] but is carefully moving towards web services 

adhering to WS-Interoperability [21] wherever possible. In 

addition, interoperability efforts are ongoing with major 

other Grid projects such as OSG, NAREGI and others 

which is resulting in a seamless integration of the systems. 

It is now for instance possible to run EGEE jobs on OSG 

and vice versa. The experiences gained are fed back to 

GGF and other relevant standardization bodies.  

The gLite middleware is constantly being improved and 

enriched with further services. The most important im-

provements planned comprise:  

R-GMA will introduce support of multiple virtual data-

bases (VDBs), each defined by its own registry and schema 

to act as separate namespaces. Each VDB will have its own 

authorization rules and a query will be able to span VDBs. 

Other work will be on the resilience and performance of the 

services. For service discovery we plan to introduce a boot-

strapping mechanism.  

The WMS components will move towardsWeb Services 

based interfaces, in particular for the CE, compatible with 

standards for job and workflow descriptions such as JSDL, 

and also see performance optimizations. The appearance of 

established standards will also help in consolidating the 

user interfaces and reducing the number of translation 

layers implemented in user space.  

The LB service will become an independent component 

with a Web Service interfaces, providing a general “job” 
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tracking and event collecting tool. Tight integration with 

Job Provenance will be also established.  

The overall security model of the data management 

components is constantly being improved and will allow 

for consistent access control not only at the storage (SE) 

level but also on the catalogs. A Generic metadata service, 

AMGA, will also be provided. This service allows users to 

attach metadata to files stored in the file catalogue and to 

handle simple relational data stored in a relational database 

system. Using AMGA, users will be able to select logical 

files by searching through the metadata describing the files’ 

content.  

More information on gLite as well as the latest version 

of the software can be obtained from gLite web page 

http://www.glite.org.  
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