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Abstract. In this paper we present the design and implementation of the Linpack benchmark for the IBM BladeCenter QS22,

which incorporates two IBM PowerXCell 8i1 processors. The PowerXCell 8i is a new implementation of the Cell Broadband

Engine™2 architecture and contains a set of special-purpose processing cores known as Synergistic Processing Elements (SPEs).

The SPEs can be used as computational accelerators to augment the main PowerPC processor. The added computational capabil-

ity of the SPEs results in a peak double precision floating point capability of 108.8 GFLOPS. We explain how we modified the

standard open source implementation of Linpack to accelerate key computational kernels using the SPEs of the PowerXCell 8i

processors. We describe in detail the implementation and performance of the computational kernels and also explain how we em-

ployed the SPEs for high-speed data movement and reformatting. The result of these modifications is a Linpack benchmark opti-

mized for the IBM PowerXCell 8i processor that achieves 170.7 GFLOPS on a BladeCenter QS22 with 32 GB of DDR2 SDRAM

memory. Our implementation of Linpack also supports clusters of QS22s, and was used to achieve a result of 11.1 TFLOPS on a

cluster of 84 QS22 blades. We compare our results on a single BladeCenter QS22 with the base Linpack implementation without

SPE acceleration to illustrate the benefits of our optimizations.
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1. Introduction

A recent trend in processor architecture is the de-

sign and implementation of multi-core processors. Of-

ten, this takes the form of a replication of the single-

core architecture to yield multiple cores on a die, all

with the same functionality as the single-core pre-

decessor. IBM, Intel and AMD, all have multi-core

products such as these in the market. A concomitant

trend in high performance computing is the use of spe-

cialized components to provide acceleration of com-

putational tasks. This can take the form of exploita-

tion of GPUs or the addition of a dedicated floating

point accelerator. These two trends are now starting to

merge with the advent of multi-core technology tar-

geted for specialized tasks, and not just the replication

of a general purpose processor. The IBM PowerXCell

8i processor is an example of this move toward het-

erogeneous multi-core processors. The PowerXCell 8i

1PowerXCell 8i is a trademark of the International Business Ma-

chines Corporation, in the United States, other countries, or both.
2Cell Broadband Engine is a trademark of Sony Computer Enter-

tainment, Inc., in the United States, other countries, or both and is

used under license therefrom.

is a new implementation of the Cell Broadband En-

gine architecture (CBEA). In this processor, a standard

64-bit PowerPC core is augmented by 8 specialized

computational units known as Synergistic Processing

Elements (SPEs) that can function as both computa-

tional accelerators and high-speed data manipulation

units. The combined peak double-precision computa-

tional capability of the PowerPC core and 8 SPEs is

108.8 GFLOPS (one GFLOPS is 109 floating point op-

erations per second). This technology has been pack-

aged in the IBM BladeCenter QS22. A QS22 blade

contains two IBM PowerXCell 8i processors and sup-

ports up to 32 GB of DDR2 memory. To demonstrate

the capability of this architecture, we developed a ver-

sion of the Linpack benchmark to take advantage of

the computational acceleration provided by the SPEs

of the PowerXCell 8i processor.

In this paper we describe the design and implemen-

tation of the Linpack benchmark we developed for the

IBM PowerXCell 8i processor. Our implementation

of Linpack is based on the standard open-source im-

plementation, High Performance Linpack (HPL) [23].

We modified this code to accelerate key computa-

tional kernels using the SPEs of the PowerXCell 8i

1058-9244/09/$17.00  2009 – IOS Press and the authors. All rights reserved



44 M. Kistler et al. / Programming the Linpack benchmark for the IBM PowerXCell 8i processor

processors. The rest of the application code runs on

the PowerPC core and uses the libspe2 services of

the IBM SDK for Multicore Acceleration to initiate

the computational kernels on the SPEs. We have ver-

ified correct operation of our Linpack implementation

and have measured its performance on an IBM QS22

blade system with 32 GB of DDR2 SDRAM memory.

Using a matrix size N = 48,895, we have achieved

170.7 GFLOPS, which is 78% of the peak double pre-

cision computational performance of the system.

Our implementation of Linpack also supports clus-

ters of QS22s using the Message Passing Interface

(MPI) for internode communication. Support for clus-

ter configurations is a feature largely inherited from

the base HPL implementation. A team in IBM Ger-

many exploited this capability to produce a Linpack re-

sult of 11.1 TFLOPS on a cluster of 84 QS22 blades

with 8 GB of memory per blade interconnected with

4X single-data-rate Infiniband. This system was ranked

at number 324 in the June 2008 Top500 list of the

500 most powerful computer systems [25]. In ad-

dition, the performance of Linpack on this system,

in combination with the very high energy efficiency

of the QS22, placed the system in the first posi-

tion on the Green 500 list of most energy-efficient

supercomputers with an energy-efficiency rating of

488 MFLOPS/W [24].

The remainder of this paper is organized as follows.

Section 2 describes the PowerXCell 8i processor and

the QS22 blade system we used to develop our Lin-

pack implementation. Section 3 gives an introduction

to the Linpack benchmark and describes the design

modifications we made to adapt the benchmark to the

PowerXCell 8i processor. Section 4 describes the de-

sign and implementation of our acceleration library.

We present performance results in Section 5, and re-

view related work in Section 6. Section 7 concludes the

paper.

2. The IBM PowerXCell 8i processor

The IBM PowerXCell 8i is a new implementation

of the Cell Broadband Engine Architecture (CBEA)

[16], which is a fully compatible extension to the

IBM 64-bit PowerPC Architecture. The CBEA pro-

scribes a processor design that contains one (or more)

PowerPC Processor Elements (PPEs) and a set of Syn-

ergistic Processor Elements (SPEs), which implement

a completely new instruction set architecture designed

specifically for high-performance numerical computa-

tions. The CBEA also specifies mechanisms and inter-

faces for explicit control of the memory hierarchy and

data movement within the processor.

The IBM PowerXCell 8i consists of one PPE and

eight SPEs. The PPE is intended to be used as the “con-

trol” core, where the operating system and general con-

trol functions for an application are executed. The PPE

is a dual-issue, in-order 64-bit PowerPC processor

core with two-way simultaneous multithreading, 32 kB

level 1 instruction and data caches, and a 512 kB

level 2 cache. Each SPE has a Synergistic Processor

Unit (SPU), 256 kB local store (LS), and correspond-

ing Memory Flow Controller (MFC). The SPU is a

streaming processor with a 128-bit single-instruction,

multiple-data (SIMD) instruction set architecture that

operates only on data within the SPE local store. The

MFC is used to control transfers between local store

and system memory or to another SPE’s local store.

The SPU issues direct memory access (DMA) com-

mands to the MFC to get data from main memory into

local store or put data from local store into main mem-

ory. DMA commands are performed concurrently with

SPU program execution, allowing very efficient over-

lap of computation with communication. The PPE and

SPEs are connected to each other and to an on-chip

memory controller and I/O controller through the El-

ement Interconnect Bus (EIB), which delivers a peak

bandwidth of 204.8 GB/s. The on-chip memory con-

troller can support up to 25.6 GB/s of bandwidth to

off-chip memory.

Each SPU has 128 128-bit SIMD registers. The large

number of architected registers facilitates highly effi-

cient instruction scheduling and enables important op-

timization techniques such as loop unrolling. All SPU

instructions are inherently SIMD operations that oper-

ate on all 128 bits of the operand registers. The SPU

is an in-order processor with two instruction pipelines,

referred to as pipeline 0 and pipeline 1. Each SPU can

issue and complete up to two instructions per cycle –

one per pipeline. The fixed- and floating-point units are

on pipeline 0, and the remaining functional units, in-

cluding the load/store unit, are on pipeline 1. In the

PowerXCell 8i processor, all fixed- and floating-point

operations are fully pipelined and can be issued at the

full SPU clock rate.

The first implementation of the CBEA is the

Cell/B.E. processor, which is the processor used in

Sony’s Playstation3 game console. The IBM Pow-

erXCell 8i differs from the Cell/B.E. in that it in-

cludes an enhanced double precision unit on the

SPEs, giving each SPE a peak computational capabil-
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ity of 12.8 GFLOPS in double precision. In addition,

the IBM PowerXCell 8i supports industry-standard

DDR2 SDRAM memory, enabling cost-effective sys-

tem designs with large memory capacities. Figure 1

shows a die photo of the IBM PowerXCell 8i processor

that identifies the new features of this processor.

The IBM QS22 blade system contains two IBM

PowerXCell 8i processors and can accommodate up to

32 GB of DDR2 SDRAM memory. Figure 2 is a di-

agram of the key components of the QS22. Note that

system memory is attached directly to the processors

through their on-chip memory controller. The input-

output interface (IOIF) connection between the proces-

sors allows either processor to coherently access mem-

ory physically attached to the other processor. This

makes the QS22 a non-uniform memory architecture

(NUMA) system, because the access time to memory

varies depending on whether the target of a memory

access is attached to the processor performing the ac-

cess or the other processor of the system. The QS22

also has two gigabit Ethernet interfaces and can option-

ally be equipped with up to two 4X Single Data Rate

Infiniband interfaces, each of which can provide up to

Fig. 1. Die photo of IBM PowerXCell 8i processor.

Fig. 2. A QS22 blade system.

1 GB/s of network bandwidth. The QS22 supports a

software stack based on the Red Hat Enterprise Linux

distribution. The IBM Software Kit for Multicore Ac-

celeration (IBM SDK) [15] installs on top of RHEL

Linux and provides additional tools, libraries, and doc-

umentation for utilizing the special capabilities of the

PowerXCell 8i processor.

3. Design of Linpack for PowerXCell 8i

The Linpack benchmark has become an industry

standard benchmark for measuring the performance of

computer systems. The benchmark solves a system of

linear equations by performing LU factorization with

partial pivoting on a dense matrix, and then solving the

resulting triangular system of equations. All calcula-

tions are performed in double-precision. The bulk of

the benchmark computation is spent in the factoriza-

tion of the input matrix A into a lower-triangular ma-

trix L and an upper-triangular matrix U . For a matrix of

dimension N , the LU factorization requires (2/3) · N3

floating point operations while the triangular solve re-

quires only N2 floating point operations. The size of

the problem is a key factor in the achievable perfor-

mance.

The LU decomposition is typically performed using

a blocked, right-looking algorithm, in which each it-

eration produces a portion of the final L and U ma-

trices and leaves a reduced region of the matrix (the

trailing sub-matrix) to be solved by the next itera-

tion. This approach allows much of the computation

to be performed using matrix–matrix (BLAS3) oper-

ations, which are much more efficient than vector–

vector (BLAS1) or matrix–vector (BLAS2) operations

on modern computer systems with deep memory hier-

archies [5,19]. The high-level flow of the benchmark is

as follows:

Allocate and initialize matrix

Iterate over block columns:

Panel factorization – factor current block col-

umn

Forward Pivot trailing sub-matrix

Compute block row of final U matrix (DTRSM)

Update trailing sub-matrix (DGEMM)

Compute solution of the given system

Check the result

First storage for the matrix is allocated and initial-

ized with random values. Then the benchmark enters
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the main loop of the LU factorization. The first step

of this loop is panel factorization, which performs LU

factorization with pivoting on the left-most column of

blocks in the trailing sub-matrix. This produces one

block column of the final L matrix, called the L-panel.

Pivoting rearranges rows of the matrix to avoid divi-

sion by small values during the factorization, which

could lead to numerical instability. Pivoting is per-

formed within the panel during panel factorization.

The sequence of pivot operations is saved and then ap-

plied to the trailing sub-matrix in the forward pivoting

step. The implementation of LU factorization in Lin-

pack continuously updates the right-hand-side vector

with the newly computed portion of the L-matrix. Con-

sequently, the previously computed regions of L are

not pivoted since they are no longer needed to compute

the final solution. The benchmark rules allow this be-

havior and since pivoting L would only decrease the

achieved performance, it is typically omitted. Follow-

ing the forward pivot, a triangular solve with multi-

ple right-hand-sides (DTRSM) is performed on the top

block row of the trailing sub-matrix, producing one

block row of the final U matrix, called the U -panel.

In the final step of the main loop, the product of the

L-panel and U -panel is subtracted from the remainder

of the trailing sub-matrix. Following the LU factoriza-

tion loop, the final solution is computed using a tri-

angular solve, and then the benchmark checks this so-

lution for correctness. Computation time is dominated

by the matrix update step which is a form of matrix–

matrix multiply (DGEMM), which is an O(N3) oper-

ation. The panel factorization, DTRSM, and triangular

solve operations are all O(N2) operations. When the

benchmark is parallelized to run on a cluster of nodes,

the panel factorization and forward pivot steps of the

benchmark involve inter-node communication.

For our implementation, we began with the publicly-

available implementation, High Performance Linpack

(HPL) [23], and then replaced the compute-intensive

kernels with accelerated versions that utilize the SPEs

of the PowerXCell 8i processor. We chose this ap-

proach primarily to demonstrate that applications ini-

tially developed for homogeneous architectures could

be successfully adapted to the heterogeneous Cell/B.E.

architecture. This approach also allowed us to leverage

optimizations and tuning parameters in HPL that are

useful in boosting performance. In particular, the tech-

nique of pipelining iterations of the main computation,

or look ahead [18], is a key optimization we wanted to

leverage.

In addition to accelerating certain compute kernels,

we employ the well-known optimization of reformat-

ting the input matrix into a hierarchically blocked orga-

nization [11]. However, we implement this in a novel

manner by using the SPEs to perform the reformatting,

which significantly reduces the cost of this operation.

We also modified the memory allocation routines to

obtain the matrix storage from huge pages, which re-

duces memory translation overheads. The data organi-

zation we chose for the matrix is a “blocked-row” for-

mat, where blocks of 64 columns are stored in row-

major format. Reformatting the matrix allowed us to

focus on developing highly specialized versions of our

DGEMM and DTRSM kernels and improves the per-

formance of the memory hierarchy in the pivoting op-

erations. An advantage of the blocked-row format over

a strictly row-ordered layout is that a column-ordered

matrix (which is the format of the input matrix to the

benchmark) can be transformed into blocked-row with

just one extra block column of storage. Our implemen-

tation performs this reformatting at the beginning of

the LU factorization, and then converts block-columns

back to column major just before the panel factoriza-

tion for this block column. In this way, the entire ma-

trix is converted back to column-major format by the

end of the factorization, which allows us to use the

existing triangular solve code from the benchmark to

compute the final solution.

In prior work [17], we developed an implementation

of the Linpack benchmark for the Roadrunner system

at Los Alamos National Laboratory, which is a hybrid

system that contains both x86-64 and PowerXCell 8i

processors. We expected that the basic design of Lin-

pack for Roadrunner could be used in our implemen-

tation for the QS22 by viewing the PPE as the host

processor and the SPEs as the accelerators. However,

a number of modifications were needed to this design

to achieve good performance on the QS22, mainly be-

cause the ratio of compute capability between the host

and accelerator is different between these two archi-

tectures. In particular, the performance of panel fac-

torization, using the PPE only, declined to the point

where it became the bottleneck in overall performance.

One solution to this problem would be to implement an

SPE-based panel factorization routine, but this would

require a significant new development effort. Instead,

we chose to accelerate only the DGEMM operations

performed as part of the recursive panel factorization

algorithm. This allowed us to significantly increase the

performance of panel factorization with a very modest

additional development effort.
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4. The HPL acceleration library

4.1. Overview

To accelerate the HPL benchmark we chose to de-

velop a proprietary, specialized function, offload li-

brary instead of using an off-the-shelf, PowerXCell 8i

optimized Basic Linear Algebra Subprograms (BLAS)

library. The library was designed with the following

objectives:

Efficient: Offload as much heavy computation onto

the SPEs as possible while keeping memory

bandwidth requirements low so that SPE accel-

erated computation, PPE host computation, and

node to node communications can occur simul-

taneously without contention for memory band-

width.
Simple: Instead of utilizing one of the many program-

ming frameworks available to Cell program-

mers, we chose to implement directly to the low-

level processor APIs and not incur the overhead,

in both processing cycles and local storage, in-

troduced by a generalized programming frame-

work.
Flexible and extendible: The design needed to be

flexible enough to easily add library functions,

accommodate the use of overlays when local

storage becomes constrained, or direct specific

functions to a subset of the computing resources.

Asynchronous and pipelined: Provide facilities for

issuing multiple library calls and getting asyn-

chronous notification when each of them com-

plete.
Robust: Provide acceleration of functions for arbi-

trary parameter sizes and alignments.
Similar: Provide a calling interface that is similar in

style and semantics to the standard BLAS library

so that code can be readily ported between the

two libraries.
Verifiable: Ensure that the implementation performs

correctly.

The acceleration library is designed to utilize the

8 SPEs of a single PowerXCell 8i processor. The pri-

mary rationale for this design is to allow management

of the NUMA impacts of the QS22 system design at a

higher layer in the application. In HPL, we execute two

MPI tasks on the QS22, one per PowerXCell 8i proces-

sor. Each task creates its own instance of the HPL ac-

celeration library, and uses NUMA memory binding to

ensure that the majority of memory accesses are to the

local region of system memory.

The HPL acceleration library architecture is shown

in Fig. 3. The application (in this case HPL) calls one

of the library functions. All functions include a “com-

pletion” parameter which is a pointer to a 64-bit vari-

able that is used by the library to indicate asynchronous

completion of the called function. NULL can be spec-

ified for functions that do not require completion noti-

Fig. 3. PowerXCell 8i HPL acceleration library architecture.
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fication. The acceleration library functions validate the
parameters to ensure compliance with the constraints
of the SPE acceleration software and then determine
what portions of the computations can be efficiently
performed on the SPEs. Computations involving prop-
erly aligned data regions that are large enough to be
efficiently handled by the SPE’s Memory Flow Con-
troller (MFC) are offloaded to the SPEs. Remaining
computations are performed by “cleanup code” on the
PPE. For the HPL benchmark, special care is taken in
memory allocation to ensure proper data alignments
so that the majority of the request is offloaded to the
SPEs.

To offload a function to the SPEs, the library func-
tion clears the completion variable, stores its parame-
ters to a single cache-line parameter buffer in system
memory, places a command request into the inbound
mailbox of each SPE being recruited to complete the
function, and returns control back to its caller. To
ensure proper storage ordering, a sync instruction is ex-
ecuted after storing the parameters to system memory
and before writing to the SPE’s problem state inbound
mailbox register. The mailbox command consists of a
command opcode, stored in the 7 least significant bits,
and a cache-line aligned offset to the system memory
parameter buffer. The inbound mailbox of the SPE in
the PowerXCell 8i is 4 entries deep, which provides
more than adequate function buffering for the HPL
benchmark.

All command requests are received by the func-
tion dispatcher running on the SPE, which decodes
the command opcode to select a function specialist to
process the command. Unless enlisted to perform ac-
celeration requests, the SPEs block in a low power state
waiting for an inbound mailbox message. Upon receipt
of a command request, the SPEs immediately initi-
ate a DMA of the parameters so the parameter trans-
fer occurs while the opcode dispatch to the function
specialist is performed. Partitioning of the kernel op-
eration across SPEs is performed deterministically by
the SPEs, which relieves the PPE from managing data
partitioning and allows a single set of parameters to
be passed to all SPEs involved in the kernel execu-
tion.

The function specialists are partitioned into two ba-
sic parts – data transfer and compute kernel. The data
transfer part is responsible for the data flow of the func-
tion specialist. It determines the portion of the work to
be performed on its SPE and utilizes multi-buffering
techniques to overlap computation and data transfers.
The compute kernel is responsible for performing the
computation on a local store subset of the request.

The acceleration library currently includes 12 dif-

ferent acceleration functions. However, not all of these

functions are used by Linpack for QS22. The unused

functions are present in the library because we main-

tain a common code base for the acceleration library

between the Roadrunner and QS22 versions of Lin-

pack. The full list of functions appears below. Func-

tions that are not used by Linpack for QS22 are indi-

cated by (*). Functions developed specifically for Lin-

pack for QS22 are indicated by (**):

• DGEMM for a blocked-row C matrix

• DGEMM for a blocked-row C matrix, producing

a column-ordered result (*)

• DGEMM for a column-ordered C matrix (**)

• DTRSM for column-ordered A and row-ordered

B matrices

• DTRSM for column-ordered A and row-ordered

B matrices, producing a blocked-row result

• DTRSM for column-ordered A and block-ordered

B matrices (**)

• Reformat matrix from column-ordered to

blocked-row

• Reformat a panel from blocked-row to column-

ordered

• Reformat a panel from row-ordered to blocked-

row

• Scatter rows from a row-ordered panel into a

blocked-row matrix

• Gather rows from a blocked-row matrix into a

row-ordered panel

• Swap rows within a blocked-row matrix (**)

• Copy rows with indirections from a row-ordered

panel to another row-ordered panel (**)

The SPU program containing all these functions

along with the dispatching mechanism and data buffers

has a total size of 249,580 bytes, with 50,888 bytes

used for instruction storage and 198,692 bytes used for

data. The acceleration library does not perform heap

allocations, so this leaves 12,564 bytes for the program

stack, which is more than sufficient given the very shal-

low call depth of the library functions.

4.2. The DGEMM specialist

Since the HPL benchmark performance is domi-

nated by the performance of the DGEMM operation

(C = C − AB) applied during the update of the trail-

ing sub-matrix during LU factorization, many of the

system design decisions were dictated by the DGEMM

design. A block size of 64 × 64 (32 kB/block) was cho-
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Fig. 4. Traditional blocked DGEMM visitation order.

sen as the largest power of two that allows the SPE

local storage to accommodate double buffered blocks

of the three matrices. These 6 buffer blocks consume

192 kB of the available 256 kB of local storage. Most

DGEMM implementations use a traditional block vis-

itation order as shown in Fig. 4. In time steps 3 and 6,

the number of 64 × 64 element blocks transferred is 4.

These correspond to the “corner turns” of the ma-

trix multiply. Assuming a highly efficient block multi-

ply kernel, the aggregated data throughput demand of

8 SPEs is 17.9 GB/s with peaks up to 23.8 GB/s dur-

ing corner turns. Taking into account the other activ-

ities placing demands on the memory subsystem and

the loss of efficiency that results from read/write tran-

sitions, rank switches, and memory bank contention,

we realized that an alternate solution was required.

Our first idea was to utilize “bounce” corner turns

and compute result C matrix blocks in a serpentine or-

der, see Fig. 5. Now the sustained number of blocks

transferred during any one time step is 3, which re-

duces the memory demands of the DGEMM down to

a sustained bandwidth of 17.9 GB/s. Furthermore, in-

stead of fully double buffering the A and B matrix

blocks, we can use a rotating set of three for A and B.

This reduces our local storage requirements for data

buffers, which thereby increases the space available for

instruction storage and stack space, allowing more ac-

celerated functions to be provided within a single li-

brary program file.

To further reduce our dependency on high memory

throughput, we extended the bounce corner turn idea

by using a larger LU factorization block size, 128 ×

128, and sub-blocking them into 2 by 2, 64 × 64 ele-

ment sub-blocks. The visitation order of the sub-blocks

again is serpentine for the C matrix. The B matrix

(U panel) is also traversed in a serpentine manner,

whereas, the A matrix (L panel) is visited in a zigzag

pattern, as shown in Fig. 6. This technique reduced the

block data transfer needs from 3 blocks per time step

to 2 blocks per time step, resulting in a reduced steady-

state bandwidth demand of 11.9 GB/s.

4.3. The DTRSM specialists

The acceleration library DTRSM functions perform

a triangular solve for X of a matrix equation of the

form LX = B. L is a column ordered 128 × 128 unit

lower triangular matrix computed during panel factor-

ization. B is a row ordered matrix of size 128 by N
resulting from the forward pivot operation (a U panel).

This configuration of operands corresponds to the stan-

dard BLAS DTRSM function with the left, lower, no-

transpose, and unit options and an alpha of 1.0. The

acceleration library DTRSM function is specialized

for this operand configuration to simplify the imple-

mentation and enable configuration-specific optimiza-

tions.
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Fig. 5. Bounce corner turn blocked DGEMM visitation order.

Fig. 6. Sub-blocked DGEMM visitation order with reduced memory demands.
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Fig. 7. Data partitioning scheme used in DTRSM kernel.

The computation of X is partitioned across the

8 SPEs in blocks of 128 × 16 elements and interleaved

so that each SPE computes every eighth block. This

approach was chosen to improve memory bank ac-

cess uniformity for both block and row ordered B ma-

trix outputs. This data partitioning scheme is illustrated

in Fig. 7. We further improved the uniformity of our

memory bank accesses by ensuring that the leading

dimension of row ordered panels is never an integral

multiple of 256 so that consecutive block rows begin in

different memory banks. The 128 × 16 element blocks

are triangularly solved 4 rows at a time using an inte-

grated lazy update technique to reduce local store ac-

cesses of the upper panel matrix B. Aggressive loop

transformations and software pipelining were used to

ensure that the kernel is never load/store bound at any

point in its execution [4].

4.4. Implementation details

4.4.1. Avoiding instruction runout

Contention on the SPU local store is an impor-

tant consideration in the implementation of high-

performance computational kernels for the SPU. The

local store is a single-ported structure, meaning that

it can service at most one data request each cycle.

The local store services requests according to a prior-

ity scheme based on the source of the request, which

could be (in priority order) an MMIO access, DMA,

DMA list element fetch, ECC scrub, SPU load/store,

hint fetch, or an inline instruction fetch [15]. The pri-

mary concern is instruction runout, a condition where

inline instruction prefetch, the lowest priority request

source, could be starved in periods of significantly high

load/store sequences, which are common in computa-

tional kernels.

There are two methods of relieving pressure on the

LS so that instruction runout does not occur in long se-

quences of load and stores – inserting an lnop (no-
op on pipeline 1, which handles load/store operations)
or inserting a special form of branch hint instruction
called an hbrp. Inserting a lnop instruction will open
an LS access slot from the perspective of the SPE in-
struction issue logic, but this slot may be consumed by
a higher priority access, such as a DMA. Inserting a
hbrp instruction will open an LS access slot for inline
instruction prefetch, but could also create a multi-cycle
stall if a higher priority access occurs at the same time.
Our experience indicates that an hbrp could generate
a stall of as much as 3 cycles, but can offer a guar-
antee of avoiding instruction runout, which stalls the
SPU pipelines for approximately 18 cycles. The choice
of lnop vs. hbrp is thus a tradeoff between the low
fixed cost lnops with some occasional 18 cycle stalls
for instruction fill vs. the variable cost hbrp instruc-
tions that can completely avoid instruction runout.

Both the gcc and xlc compilers use heuristics to in-
sert hbrps into long sequences of load/store instruc-
tions to allow instruction prefetch accesses to the lo-
cal store. However, we coded our computational ker-
nels in assembly, for maximum performance, and thus
we needed to develop our own approach to avoiding
instruction runout. We have chosen to use hbrps in
our kernels and found this strategy to be very effective.
Here is the strategy we adopted:

(1) Align the function to a known line buffer bound-
ary (128 bytes). This can be done with
“.align 7”. You can also align to half-line bound-
aries, but placement of hbrp’s should be based
upon the line boundaries.

(2) For each branch target, align the target instruc-
tion sequence to either a line or half line bound-
ary. If execution can fall through to the target
too, then it might be best to align to a full line
boundary so that the known line boundaries are
consistent, regardless of the execution flow.
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(3) For each line buffer of sequential instruction se-

quence, if the trailing end (5 dual issue cycles)

of the previous buffer and the start (3 dual issue

cycles) of the current buffer has no open slots for

instruction prefetch, insert a hbrp in this area.

(4) If the sequence of instructions at a branch tar-

get starts with three dual-issue instruction pairs

that each contain a load/store instruction, insert

a hbrp at the start of this sequence.

4.4.2. 4 GB boundary crossings

The MFC DMA list commands are used to extract

two-dimensional blocks of data from matrix buffers.

Since all list elements of a DMA list command share a

common high 32 bits of their effective address, a single

command can only transfer data from within a single,

aligned, 4 GB region. In order to support large prob-

lems and leverage the memory capacity of the 32 GB

QS22 blade configurations, our software was forced to

accommodate 4 GB boundary crossings.

To reduce the overhead of supporting 4 GB bound-

ary crossings, we leveraged our ability to control the

alignment of the system memory buffer allocations by

ensuring that all L and U panel buffers never cross a

4 GB boundary and that the block formatted matrix

only crosses 4 GB boundaries on a 64 × 64 element

block boundary. This constraint fully eliminates ever

having to break a DMA list within a list element and

further reduces the number and location of a cross-

ing. For example, when transferring a block formatted

128 × 16 DTRSM block, at most one crossing can oc-

cur and when it does, it will cross at the 64th list ele-

ment. Instead of introducing additional branches in the

code, we chose to always issue two DMA list com-

mands, either of size 128 and 0 elements or 64 and

64 elements, depending on if a crossing occurred.

4.4.3. Checking for tag group completion

All accelerator library functions utilize a little

known technique of reducing the cost associated with

waiting on tag group completion when all DMAs

within the tag group are complete (i.e., when not

memory bound). To wait for tag group completion,

most programmers use either the mfc_read_tag_

status_all macro or the spu_mfcstat intrinsic.

Both of these result in a write to the MFC Tag Up-

date channel followed by a read of the MFC Tag Status

channel. When issued consecutively, these two instruc-

tions have a minimum combined latency of 50 cycles

because the write to the Tag Update channel restarts

the state machine that updates the tag status, causing a

stall on the read of the Tag Status channel. However,

if the read of the Tag Status channel occurs at least

35 cycles after the write to the Tag Update channel, the

stall is avoided, and the combined latency is reduced

to just two cycles. In SPE programs that use double

buffering, the write to the Tag Update channel can be

issued immediately after the last DMA of the group,

allowing the tag status state machine to complete its

processing before the read of the Tag Status channel.

The data transfer functions in the acceleration library

employ this technique, thereby saving roughly 48 cy-

cles per DMA completion wait.

4.4.4. Completion notification

When the SPE completes a request, it writes a single

byte to the system memory completion variable using

a fenced PUT command with the same tag identifier as

the final buffer of computed results. Each of the 8 SPEs

is assigned a unique byte within the completion dou-

ble word so that an aggregated completion of all SPEs

can be checked with a single 8-byte aligned memory

access, which is performed atomically in the PowerPC

architecture. The fence ensures that storage ordering

is preserved and avoids the SPE waiting for the final

buffer transfer to complete before writing back its com-

pletion notification. This allows the SPE to immedi-

ately fetch the next request from the inbound mailbox.

5. Results

5.1. Environment

We performed experiments using an IBM QS22

blade system with 32 GB of 800 MHz DDR2 SDRAM.

The system is running Red Hat Enterprise Linux ver-

sion 5.2 and version 3.0 of the IBM Software Kit for

Multicore Acceleration (IBM SDK) [15]. The system

was configured with 1280 huge (16 MB) pages, and

all of the experiments were performed using memory

allocated from huge pages.

As described above, we have implemented our own

acceleration library to offload computations and data

movement functions to the SPEs. However, panel fac-

torization and the backsolve step are still performed

on the PPE and thus require an optimized BLAS li-

brary for the PPE. We chose to use the Automatically

Tuned Linear Algebra Software (ATLAS) [26] for this

purpose. ATLAS is an open-source implementation of

the BLAS that employs automated optimization tech-

niques to generate a high performance BLAS library

for the target platform.
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The HPL implementation of Linpack uses the Mes-

sage Passing Interface (MPI) [20,21] to enable execu-

tion on homogeneous clusters. We employ this capa-

bility to distribute execution to the two PowerXCell 8i

processors of the QS22. This also allows our imple-

mentation to run on clusters of QS22 blade systems.

The MPI implementation we use is Open MPI ver-

sion 1.2.6, an open source MPI implementation from

the Open MPI Project [9].

5.2. Performance of the acceleration library

Our acceleration library is designed to allow very

lightweight initiation of the computational kernel func-

tions. To quantify the costs of kernel initiation, we

timed the execution of a DGEMM invocation that per-

forms no actual computations on the SPUs. Thus, all

the time for this invocation can be attributed to the

overhead of initiation/completion notification mecha-

nisms, which includes:

PPE – Application calls accelerator library.

PPE – Check the parameters.

PPE – Build a parameter buffer.

PPE – Sync the memory subsystem.

PPE – Store a command to 8 SPEs via the inbound

mailbox.

SPE – Receive the command via the mailbox.

SPE – Fetch the parameters corresponding com-

mand request.

SPE – Dispatch the requested function specialist.

SPE – Write the notification to the system memory

that the request is complete.

PPE – Detect that all the SPEs have completed the

request.

Using the time-base register, a high precision timing

mechanism in the PowerPC architecture, we measured

this overhead to be approximately 11K cycles or 3.4 µs.

This is significantly faster than the standard SPE pro-

gram dispatch mechanism which requires creation of

an SPE program context and loading of the SPU pro-

gram into the SPE.

Next we measured the performance of the blocked

implementations of DGEMM and DTRSM. We mea-

sure the time from initiation of the kernel on the PPE

to the point where the PPE receives the completion no-

tification. Thus, the performance includes the initiation

costs described above and all DMA operations to trans-

fer data/results between the SPEs and main storage, as

well as the time for the actual computations. Figure 8

shows the performance of the DGEMM acceleration

Fig. 8. Performance of DGEMM kernel.

kernel. The graph shows performance of the DGEMM

kernel performing the C = C − AB, where C is an

M × M matrix in block row format, A is column or-

dered with size M × 128, and B is row ordered of size

128 × M . The x-axis of this graph is the size of the

matrix being updated (M ) and the y-axis indicates the

performance of the DGEMM kernel in GFLOPS. Note

that the acceleration library will only use the PPE and

8 SPEs of one PowerXCell 8i processor, so the max-

imum performance achievable is 108.8 GFLOPS. The

graph shows that performance increases very rapidly

with matrix size, achieving 80% of the peak compu-

tation rate for N = 512, and exceeding 90% of the

peak at N = 896. Since a QS22 with 32 GB of mem-

ory can easily run problems with N as large as 50,000,

we should achieve a very high computation rate for the

majority of the LU factorization.

Figure 9 shows a similar graph of measured per-

formance of the DTRSM acceleration kernel. It is not

uncommon for DTRSM to achieve lower performance

than DGEMM, due to the slightly less regular pat-

tern of computations and memory accesses. For small

matrices, performance suffers because there is insuffi-

cient computation to amortize the startup cost of bring-

ing in the lower triangle. Our DTRSM acceleration

kernel achieves 60% of the peak computation rate at

N = 640 and plateaus at roughly 77% of peak for

N > 1536.

Our final set of kernel experiments examines the

performance of the column-ordered DGEMM kernel

used to boost the performance of panel factorization.

This kernel is used by the recursive layer of panel

factorization, and thus is always called to update a

thin slice of the matrix, meaning that the row dimen-

sion is large but the number of columns is always

64 or less. Figure 10 presents the performance for

the column-ordered DGEMM kernel for various ma-

trix sizes. The x-axis is the row-dimension of the ma-
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Fig. 9. Performance of DTRSM kernel.

Fig. 10. Performance of column-ordered DGEMM kernel.

trix, and the top four curves in the graph indicate the

performance of the column-ordered DGEMM with a

column dimension of 64, 32, 16 and 8 columns. The

final curve in the graph is the performance of the

Atlas PPE-only DGEMM for the specified row di-

mension and a column dimension of 64. The y-axis

is GFLOPS as in the previous graphs. Clearly this

kernel achieves lower performance than the blocked

kernels. This is because of several factors, including

the matrix format, the matrix dimensions, and because

the column-ordered DGEMM kernel is written in C
rather than hand-optimized assembler. Nevertheless,

the kernel still achieves substantially higher perfor-

mance than a PPE-based DGEMM and thus provides a

significant boost to the performance of panel factoriza-

tion.

5.3. Overall benchmark performance

Figure 11 presents the performance of our Lin-

pack implementation for the PowerXCell 8i using

both processors of an IBM BladeCenter QS22. For

comparison, this graph also includes results for the

base Linpack implementation using the Atlas BLAS

(PPE-only). The right-most data point on the graph

Fig. 11. Linpack performance of accelerated implementation and

PPE-only implementation.

represents an achieved performance of 170.7 GFLOPS
using a matrix size N = 48,895, which is 78% of
the peak double precision computational performance
of the system. These results show that for large prob-
lem sizes, the SPEs of the IBM PowerXCell 8i can
improve Linpack performance by more than a factor
of 30.

We used the detailed timing option of HPL to ob-
tain a breakdown of the overall benchmark time into
the major components of benchmark execution. The
main components in this breakdown are update, which
is the DTRSM and DGEMM update of the trailing
sub-matrix, pfact, which is the panel factorization step,
la swap, which covers the row swapping performed for
the forward pivot operation, tr solve, which is the trian-
gular solve performed during the backsolve step to ob-
tain the final solution, and accel ovhd, which is a cate-
gory we added to track the costs of matrix reformatting
for the accelerators. Figure 12 shows the breakdown
of execution time into these components, normalized
to the runtime of the entire benchmark, for a range of
matrix sizes. Note that in most cases the sum of the
components slightly exceeds the total runtime – this is
because the component time reported is the maximum
time over all the MPI tasks used in the run (which is 2
in our case). There are some clear trends visible in this
graph. The first trend is that the update time is the dom-
inant component, consuming over 60% of the run time
even at very small matrix sizes, and growing as a frac-
tion of run time as the matrix size increases. All other
components decrease as a fraction of run time as matrix
size increases. These trends are expected, since the up-
date step must perform O(N3) operations, whereas the
complexity of the other components is at most O(N2).
Nevertheless, the combined pfact and accel ovhd com-
ponents account for over 13% of run time even at the
largest matrix size. This suggests that these two areas
are the best opportunities for finding additional perfor-
mance improvements.
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Fig. 12. Breakdown of normalized runtime into main components.

6. Related work

In prior work [17], we developed an implementa-

tion of the Linpack benchmark for the Roadrunner sys-

tem, which is a petascale system built by IBM for Los

Alamos National Laboratory. Roadrunner is a hybrid

system that contains both x86-64 and PowerXCell 8i

processors. Our Linpack implementation for the Pow-

erXCell 8i reuses some of the design and implemen-

tation we developed for Roadrunner, but also required

significant design changes and new acceleration ker-

nels.

Because of its role as the benchmark used in the

Top500 rankings, the Linpack benchmark has been ex-

tensively studied. A detailed explanation of the bench-

mark computations and general performance model are

given in [8]. A number of researchers have studied

the performance implications of alternate data layouts

[11,22]. Other techniques such as multi-threading and

one-sided communication have also been explored as a

means to improve Linpack performance [13]. The ma-

trix multiplication kernel at the heart of Linpack has

also been carefully studied, and new techniques con-

tinue to be discovered to increase its efficiency [10].

The general topic of using specialized cores to ac-

celerate application performance has been explored in

many different forms. Recent work in this area has fo-

cused on utilizing graphics processing units (GPUs)

for accelerating general purpose applications [3]. Oth-

ers have developed special-purpose processors in-

tended for use as accelerators for technical computing

applications, e.g. Clearspeed [6].

Finally, in the area of programming for CBEA-

compliant accelerators like the PowerXCell 8i proces-

sor, several SGEMM kernels have been previously de-

veloped for the Cell/B.E. processor [2,5,12]. To en-

sure compliance with the Linpack benchmark rules,

all computations in our kernels are done in double

precision. The primary differences affecting a dou-

ble precision kernel implementation, as compared to

single precision, are: (1) micro-blocking of the compu-

tation must be increased to cover 9 cycles of DP op-

eration latency as compared to 6 cycles for SP oper-

ations, (2) the DP negative multiply subtract instruc-

tion is a destructive 3 operand instruction instead of

a 4 operand instruction that preserves its inputs, and

(3) the d-form load can only span 16 kB (−8 kB to

+8 kB) of immediate offset [4]. A 64 × 64 DP block

is 32 kB and therefore multiple pointers are needed in

order to address the entire block using immediate off-

sets.

Alvaro et al. [2] does an in depth analysis in choos-

ing the ideal {m, n, k} triplet for an SGEMM kernel.

For our kernel we chose a triplet of {4, 8, 4} which

results in 64 even pipeline double-floating-negative-

multiply-and-subtract (dfnms) instructions and 40 odd

pipeline instructions (8 loads for A, 16 loads of B
and 16 shuffles of A) per tile. This left more than

enough odd pipeline slots to do basic flow control,

branch prediction, pointer unpacking, and register-to-

register copies (using odd pipeline instructions like

rotqbyi with a rotate of 0). The inner-most loop is fully

unrolled such that each loop iteration updates a tile of

the C matrix. The loop is further software pipelined

so that several of the next loop inputs are prefetched

and the most of the resultant stores are deferred un-

til early in the next iteration. Buffer pointers and ba-

sic loop control are done through two levels of table

lookup. The first table is 128 byte offsets to one of the

quad-word entries in the second table. The second ta-

ble contains 3 entries specifying the addend to be ap-
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plied to the A buffer pointers, B buffer pointers and

C buffer pointer. It also contains a pointer to the loop

branch target so that every loop iteration (including the

final iteration) is accurately predicted.

Unlike Alvaro’s implementation, our block multi-

plier does not restrict the alignment of its buffers to a

buffer-sized boundary. Instead we allow buffers to be

aligned on any quad-word boundary at the cost of 1

even pipeline add per 1024 cycle loop.

7. Conclusion

We have described the approach we employed to

modify an existing computationally intensive program

to take advantage of the high-speed computational ac-

celerators available on an IBM QS22 blade system. In

particular, we have described the design and imple-

mentation of the Linpack benchmark for an IBM QS22

blade system which contains two IBM PowerXCell 8i

processors. This implementation of Linpack achieves

170.7 GFLOPS on a BladeCenter QS22 with 32 GB

of DDR2 SDRAM memory, which is 78% of the peak

double precision computational performance of the

system. This implementation was also used in a cluster

of 84 BladeCeneter QS22s to achieve 11.1 TFLOPS,

earning it a spot in the June 2008 Top500 list and

the number one position in the corresponding Green

500 list of most energy efficient supercomputers. This

work demonstrates that a high level of performance

can be achieved by exploiting computational acceler-

ators such as the SPEs of the IBM PowerCell 8i. We

believe that many of the techniques we used to cre-

ate our hybrid version of Linpack can be applied to

other computationally intensive applications and result

in significant performance improvements. As multi-

core systems evolve and cores take on other special-

ized functions, we expect some of these techniques to

be incorporated into new libraries and programming

frameworks developed to exploit specialized function-

ality in multi-core systems.
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