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Abstract. Wireless sensor networks (WSNs) are evolving to support sense-and-

react applications, where actuators are physically interspersed with the sensors

that trigger them. This solution maximizes localized interactions, improving re-

source utilization and reducing latency w.r.t. solutions with a centralized sink.

Nevertheless, application development becomes more complex: the control logic

must be embedded in the network, and coordination among multiple tasks is

needed to achieve the application goals.

This paper presents TeenyLIME, a WSN middleware designed to address the

above challenges. TeenyLIME provides programmers with the high-level abstrac-

tion of a tuple space, enabling data sharing among neighboring devices. These

and other WSN-specific constructs simplify the development of a wide range of

applications, including sense-and-react ones. TeenyLIME yields simpler, cleaner,

and more reusable implementations, at the cost of only a very limited decrease in

performance. We support these claims through a source-level, quantitative com-

parison between implementations based on TeenyLIME and on alternative ap-

proaches, and by analyzing measures of processing overhead and power con-

sumption obtained through cycle-accurate emulation.

1 Introduction

Wireless sensor networks (WSNs) are a popular technology for monitoring and con-

trol applications, where they simplify deployment, maintenance, and ultimately reduce

costs. Early WSN efforts were primarily concerned with sensing from the environment

and reporting to a central data sink [1]. In contrast, an increasing number of applica-

tions (e.g., [2–4]) now include nodes hosting actuators, able to react to external stimuli

gathered by nearby sensors and affect the environment under control.

The sense-and-react pattern has a relevant impact on application development. Ap-

propriate programming constructs are required to deal with the increased complexity

of specifying how multiple tasks coordinate to accomplish a global functionality. Ded-

icated abstractions must be provided to describe the stateful interactions commonly

present in control mechanisms. The ability to locally react based on external stimuli is

as important as—if not more important than—the ability to gather data. These aspects

are discussed in more detail in Section 2, where we describe a paradigmatic sense-and-

react application, illustrating also that many of its characteristics are typical of common

sense-only applications and lower-level system functionality.
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To meet the requirements above we developed TeenyLIME, a WSN middleware

whose foundation is the notion of distributed tuple space [5], a repository of elemen-

tary sequences of typed fields called tuples. This is revisited in TeenyLIME by consider-

ing WSN requirements (e.g., resource consumption and reliability) in the programming

model. TeenyLIME adopts a minimalist approach: a limited number of powerful op-

erations, with a simple and yet efficient implementation, allow for the development

of both application-level and system-level functionality. An overview of TeenyLIME’s

base concepts and application programming interface (API) is provided in Section 3,

while Section 4 illustrates concretely the power of its WSN-specific abstractions by

showing them in action in the design of the reference application in Section 2. Sec-

tion 5 provides a concise account of the TeenyLIME architecture.

Section 6 evaluates quantitatively TeenyLIME along two dimensions. First, we as-

sess the effectiveness of its programming model in different contexts. We examine the

implementation of the reference application, whose design we sketched in Section 4,

and report about uses of TeenyLIME in sense-only applications and at the system level.

We derive code metrics for the TeenyLIME implementations and their counterparts, im-

plemented using plain nesC or the higher-level support provided by Hood [6]. Results

indicate that the expressive power of TeenyLIME yields cleaner, simpler, and more com-

pact code. Second, we analyze the TeenyLIME implementation. We compare its over-

head, in terms of processing time and energy consumption, against existing program-

ming platforms, which typically sacrifice expressiveness for performance. The results

we gathered using cycle-accurate emulation demonstrate that the beneficial higher level

of abstraction provided by TeenyLIME comes with only a very limited overhead.

Finally, existing node-level abstractions for WSN programming are reviewed in

Section 7, before our concluding remarks in Section 8.

A preliminary description of TeenyLIME appeared in a short paper [7]. Here, in

addition to a more precise and exhaustive presentation, we illustrate key aspects entirely

missing in [7], namely: i) a complete TeenyLIME-based design of a sense-and-react

application; ii) a quantitative, source-level evaluation of the benefits to the programmer;

iii) a quantitative, cycle-accurate evaluation of the run-time performance.

2 Scenario and Motivation

Sense-and-react applications emerge in many settings, from home automation [3] to

road traffic control [4]. As a paradigmatic example, we consider building monitoring

and control. Modern buildings typically focus on the following two main functionality:

1. heating, ventilation, and air conditioning (HVAC [2]) systems provide fine-grained

control of indoor air quality;

2. emergency control systems provide guidance and first response, e.g., in case of fire.

These applications, as any embedded control system, feature four major compo-

nents, illustrated in Figure 1. User preferences represent the high-level system goals,

e.g., the desired temperature in the building and the need to limit fire spreading. Sens-

ing devices gather data from the environment and monitor relevant variables: humidity

and temperature sensors monitor air quality, while smoke and temperature detectors
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Fig. 1: High-level scheme of a building monitoring and control application.

recognize the presence of a fire. Actuator devices perform actions affecting the environ-

ment under control: air conditioners adjust the air quality, while water sprinklers and

emergency bells are used in case of fire. Control laws map the data sensed to the ac-

tions performed, to meet user preferences. In our case, a (simplified) control loop may

activate air conditioners when temperature deviates significantly from user preferences,

tuning the action based on humidity in the same location. Further, it may immediately

activate emergency bells when the temperature increases above a safety threshold, but

operate water sprinklers only if smoke detectors actually report the presence of fire.

Oscillating behaviors must be avoided in all situations.

Application development in these scenarios is complicated not only by the peculiar-

ities of devices, but also by the complexity of their interactions. The many requirements

can be grouped into high-level challenges common to several settings:

– Localized computations [8] must be privileged, to keep processing close to where

sensing or actuation occurs. In sense-and-react applications it is indeed unreason-

able to funnel all the sensed data to a single, powerful base-station, as this may

negatively affect latency and reliability, without any significant advantage [9].

– The system performs multiple tasks in parallel. In our example, two control laws

coexist: one for air conditioning, the other for handling emergencies. These need to

share data (e.g., temperature readings) generated by a subset of the sensing devices.

– Differently from sense-only scenarios, sense-and-react applications often require

stateful coordination, e.g., using current shared conditions (state) to act collabora-

tively. This, in combination with the use of WSNs for safety critical applications,

motivates an explicit account for reliability in the programming model.

– Reactive interactions, actions that automatically fire based on external conditions,

assume a prominent role. In our case, a temperature reading deviating from user

preferences triggers an action in either of the two application tasks. Proactive in-

teractions, common in many sense-only scenarios, are still needed to gather infor-

mation and better tune the actuation about to occur. For instance, the sprinklers in

the building ask for smoke readings before taking any action.

Note how sense-and-react scenarios essentially subsume sense-only ones. There-

fore, the aforementioned requirements represent the most general set of application-

level issues WSN developers must cope with. Also, subsets of these requirements must

be accounted for at lower levels, below the application. For instance, localization al-
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gorithms [10]—often one of the many tasks of object tracking applications [11]—must

rely on localized interactions, as most of the approaches in the field base the posi-

tion estimation on those reported by nearby hosts. Similarly, multi-hop routing mech-

anisms [12] require reactive interactions to adapt to mutable network conditions, and

may also exploit reliable operations to guarantee message delivery [13]. TeenyLIME’s

programming model, described next, supports application development without loosing

the ability to express system-level mechanisms.

3 TeenyLIME: Basic Concepts and API

TeenyLIME is based on the tuple space ab-
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Fig. 2: Tuple space sharing in

TeenyLIME.

straction originally proposed in Linda [5], here re-

elaborated in the context of WSNs. A tuple space

is a repository of data represented as tuples, se-

quences of typed fields such as 〈“foo”, 29〉. Three

core Linda operations allow processes to manip-

ulate the tuple space by creating (out), reading

(rd), and removing (in) tuples. Tuple selection

with rd and in is based on matching patterns such

as 〈“foo”, ?integer〉 against the tuple space con-

tent. Patterns may use either actual or formal val-

ues, the latter serving as a kind of “wild card”

matching any data of a particular type.

In Linda, the tuple space is assumed globally accessible to all processes—an unde-

sirable choice in WSNs. Instead, in TeenyLIME each node hosts a tuple space, shared

among nodes within direct (one-hop) communication range. Sharing means that a node

views its local tuple space as containing its own tuples, plus those in the tuple spaces

hosted by its neighbors, as shown in Figure 2. Operations span the whole shared tuple

space. For instance, a query issued by a node may return a matching tuple found in any

tuple space in the one-hop neighborhood—including the local one. Therefore, Teeny-

LIME programmers can specify interactions among nodes abstractly, by focusing on

the application logic (e.g., reading temperature in the neighborhood) and leaving sys-

tem configuration issues (e.g., tracking node identity and presence) to the middleware.

The choice to limit sharing to one-hop neighbors is motivated by the fact that inter-

actions with these nodes are the most frequent in WSNs. Whitehouse et al. analyzed 16

publicly available TinyOS applications to determine the node interactions, and

“All neighborhoods discovered were one-hop neighborhoods [...]” ( [6], p.9)

Interestingly, these neighborhoods were used either directly at the application level,

to gain access to nearby information, or as a building block for lower-level system

functionality, e.g., to implement multi-hop routing. These considerations motivate our

design choice as well. Furthermore, it should be noted that the applications considered

in [6] were conventional sense-only ones. Sense-and-react applications exacerbate the

need for localized interactions [8], and therefore benefit even more from our design

choice. As a result, the TeenyLIME programming model can be used in many contexts,

ranging from sense-and-react to sense-only, and from application-level to system-level.
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interface TupleSpace {

// Standard tuple space operations

command TLOpId_t out(bool reliable, TLTarget_t target, tuple *tuple);

command TLOpId_t rd(bool reliable, TLTarget_t target, tuple *pattern);

command TLOpId_t in(bool reliable, TLTarget_t target, tuple *pattern);

// Group operations

command TLOpId_t rdg(bool reliable, TLTarget_t target, tuple *pattern);

command TLOpId_t ing(bool reliable, TLTarget_t target, tuple *pattern);

// Managing reactions

command TLOpId_t addReaction(bool reliable, TLTarget_t target, tuple *pattern);

command TLOpId_t removeReaction(TLOpId_t operationID);

// Returning tuples

event result_t tupleReady(TLOpId_t operationId, tuple *tuples, uint8_t number);

// Request to reify a capability tuple

event result_t reifyCapabilityTuple(tuple *capTuple, tuple* pattern);

}

interface NodeTuple {

// Request to provide a tuple containing node-level system information

event tuple* reifyNodeTuple();

}

Fig. 3: TeenyLIME API.

Figure 3 shows the TeenyLIME API. While in principle the programming model

is independent from the node platform, we present here the API in nesC, as our mid-

dleware is currently built on top of TinyOS. The interface provides the operations to

manipulate TeenyLIME’s shared tuple space. The first three operations correspond di-

rectly to the Linda operations discussed earlier, while rdg and ing are variants (as

in [14]) that return all matching tuples, instead of a single match.

TeenyLIME operations are asynchronous, allowing the application to continue while

the middleware completes the operation execution5. This approach blends well with the

event-driven concurrency model of nesC. Therefore, all operations are split-phase [15]:

the operation is issued, and later the tupleReady event is signaled when the operation

completes. The tupleReady event contains an identifier that allows the application

to associate the event with its earlier request. Depending on the operation, one or more

tuples may also be contained in the event, along with a number parameter indicating

how many there are.

The operations provided in the API deserve further discussion. However, instead of

describing them in isolation, in the next section we discuss them “in action”, i.e., hand-

in-hand with the TeenyLIME-based design of the application outlined in Section 2.

4 Application Development with TeenyLIME

As discussed in Section 2, our reference application contains two sub-tasks, one manag-

ing the air conditioning system (HVAC) and the other for emergency situations such as

fire. Each sub-task involves different types of nodes, e.g., humidity sensors in the HVAC

sub-task, and smoke detectors to face fire emergencies. Temperature sensors are instead

used in both sub-tasks. For all types of nodes, the required application processing has

been implemented in a single component sitting entirely on top of the TupleSpace in-

terface, which masks completely TinyOS’ generic communication layer. An additional

component is employed to interact with the sensors/actuators attached to the node.

5 In most Linda systems rd and in are blocking, i.e., do not return until a tuple is matched.
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Fig. 4: Sequence of operations to handle a fire. Notified about increased temperature, a

node controlling water sprinklers queries the smoke detectors to verify the presence of

fire. If necessary, it sends a command activating nearby sprinklers.

In the following, we explain the rest of our reference application’s design and im-

plementation. We illustrate how we exploit data sharing and related operations, and how

interactions among nodes can benefit of WSN-specific API features. Throughout, the

reference application is used as a motivation and source of examples for the discussion.

Sharing Application Data through Proactive and Reactive Interactions. In our de-

sign, sensed data and actuating commands take the form of tuples. These are shared

across nodes (and components on the same node) to enable coordination of activities as

well as data communication. Access to this data can occur proactively, e.g., using the rd

and in operations. However, TeenyLIME supports also a notion of reaction, a code frag-

ment whose execution is automatically triggered upon the appearance of a given tuple

anywhere in the shared tuple space. The tuples of interest are still determined through

pattern matching, and the tupleReady event is used to signal a reaction firing. This

provides an easy and yet very powerful way to monitor changes in the neighbors’ data

through the content of the shared tuple space.

Figure 4 uses the fire control sub-task to illustrate how proactive and reactive in-

teractions are used together to trigger notifications, to perform distributed operations

to gather data from neighboring nodes, and to request actuation commands. Notably,

similar patterns of interactions recur in both sub-tasks of our application.

Both emergency bells and water sprinklers have a reaction registered on their neigh-

bors, watching for temperature tuples over a given threshold, as shown in the code in

Figure 5. Temperature sensors periodically take a sample and pack it in a tuple, which is

then stored in the local tuple space, as shown in Figure 6. Insertion is accomplished us-

ing out by setting the target parameter to TL LOCAL, which entails outputting the

tuple to the local tuple space. This operation, by virtue of one-hop sharing, automati-

cally triggers all the aforementioned reactions6, which process the tuple contained in the

event tupleReady. As mentioned in Section 2, however, different types of actuator

nodes behave differently. The node hosting the emergency bell immediately activates

its device. Instead, the water sprinkler node proceeds to verify the presence of fire. The

latter behavior, specified as part of the reaction code, consists of proactively gathering

6 We assume that actuators are interested in all temperature values. We show later how notifica-

tions can be triggered only when temperature is above (or below) a given threshold.
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command result_t StdControl.start() {

tuple tempTemplate = newTuple(2, actualField_uint16(TEMPERATURE),

formalField(TYPE_UINT16_T));

call TS.addReaction(FALSE, TL_NEIGHBORHOOD, &tempTemplate);

return SUCCESS;

}

event result_t TS.tupleReady(TLOpId_t operationId,

tuple *tuples, uint8_t number) {

// Notification triggered ...

}

Fig. 5: TeenyLIME code for an actuator node interested in temperature values.

command result_t StdControl.start() {

return call SensingTimer.start (TIMER_REPEAT, SENSING_TIMER);

}

event result_t SensingTimer.fired() {

return call TemperatureSensor.getData();

}

event result_t TemperatureSensor.dataReady(uint16_t reading){

tuple temperatureValue = newTuple(2, actualField_uint16(TEMPERATURE),

actualField_uint16(reading));

call TupleSpace.out(FALSE,TL_LOCAL,&temperatureValue);

return SUCCESS;

}

Fig. 6: TeenyLIME code for a temperature node.

the readings from nearby smoke detectors, using a rdg restricted (by setting target

to TL NEIGHBORHOOD) to the union of their tuple spaces. If fire is reported, the water

sprinkler node requests activation of nearby sprinklers through a two-step process that

relies on reactions as well. The node requesting actuation inserts a tuple representing

the command on the nodes where the activation must occur, using out with target

set to the sprinkler node address. The presence of this tuple triggers a locally-installed

reaction delivering the activation tuple to the application, which reads the tuple fields

and operates the actuator device accordingly.

Reliable Operations. Since fire detection requires the maximum degree of reliability,

its implementation takes advantage of reliable operations for guaranteeing correct com-

munication of reaction and query results, of the rdg operation on smoke detectors, and

of the out operations towards actuators. Furthermore, in the HVAC sub-task the sys-

tem runs the risk of oscillating behavior if multiple nodes controlling air conditioners in

the same location (e.g., same floor) independently run the control algorithm. To prevent

this, we designed a mechanism to assign a master role to only one of the co-located con-

troller nodes. This is identified as the node holding a special token tuple, periodically

exchanged among co-located nodes to achieve a form of load-balancing. As a token

loss implies no controller acting as the master, strong guarantees on token transfer are

imperative. Therefore, the token exchange from the previous to the new master node is

accomplished using a reliable in operation performed by the latter.

As shown in Figure 3, the selection between unreliable and reliable is done using a

flag, available in most operations. The former offers a lightweight form of best-effort

communication suitable for state-less applications (e.g., data collection), while the latter

offer stronger guarantees to applications requiring stateful interactions.
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Sharing System Data. Coordination of activities across heterogeneous nodes some-

times relies on system information, such as the node location or capabilities. In Teeny-

LIME, this information is made available in the same way as application data, i.e., as

tuples shared among neighboring nodes. In our scenario, these tuples contain a field

describing the (logical) location (e.g., a room) where a node is deployed, and the sen-

sor/actuator devices attached. Which data to provide is defined by the application pro-

grammer, by specifying the body of the handler for the reifyNodeTuple event,

shown in Figure 3. This event is signaled periodically by the TeenyLIME run-time, and

the execution of the corresponding handler regenerates the tuple with new application-

defined values. In our implementation, the local tuple space on every node contains tu-

ples describing each of its neighbors. This is accomplished by appending the neighbor

tuple to all outgoing messages; therefore, when the message is overheard by neighbors,

they extract the neighbor tuple and insert it locally. This way, it is easy to query the

tuple space to obtain information on nodes with specific abilities.

Filtering Data. In many WSN applications, including ours, action must be taken only

when a sensed value crosses a given threshold. Nodes controlling water sprinklers and

emergency bells use reactions to receive notifications when temperature rises above a

safety threshold. Nodes controlling air conditioners similarly receive notifications when

temperature falls outside a user-defined threshold. These conditions require a predicate

over tuple field values—something that cannot be achieved with the standard Linda

matching semantics, which is based on exact values. In TeenyLIME, patterns are ex-

tended to support custom matching semantics on a per-field basis. For instance, the

requirement concerning safety thresholds can be expressed concisely by using range

matching, requiring the temperature field to be greater than a given parameter, as in:

tuple temperatureTempl = newTuple(2, actualField_uint16(TEMPERATURE),

greaterField(TEMPERATURE_SAFETY));

The above uses the default range matching, which the programmer can easily redefine.

Note how the issue is not simply one of expressive power, as it deeply affects com-

munication. Without this feature, the programmer must specify a generic pattern match-

ing any temperature. Tuples matching this pattern would then be transmitted whenever

requested (in our case, each time a new sample is available) and possibly frequently

discarded as out of range, wasting significant communication resources.

Dealing with Short-Lived Data. In some cases, sensor data remain useful only for a

limited time after collection. For instance, an emergency bell is not interested in tem-

perature values sensed an hour before. Instead, the same data may be of interest for a

component that is periodically run to build a day-long analysis of temperature trends.

In TeenyLIME, time is divided into epochs of constant length, and every data tuple is

stamped with an application-accessible field containing the current epoch value. Three

helper functions allow the application developers to deal with time:

setFreshness(pattern,freshness)

getFreshness(tuple)

setExpireIn(tuple,expiration)

The first customizes a pattern, similarly to range matching above, to impose the addi-

tional constraint to match tuples no more than freshness epochs old. If a pattern
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command result_t StdControl.start(){

tuple capTSmoke = newCapabilityTuple(2, actualField_uint16(SMOKE),

formalField(TYPE_BOOL));

call TupleSpace.out(FALSE,TL_LOCAL,&capTSmoke);

return SUCCESS;

}

event result_t TupleSpace.reifyCapabilityTuple(tuple *ct, tuple *p){

return call SmokeDetector.getData(); // Request a reading from the sensor

}

event result_t SmokeDetector.dataReady(uint16_t reading){ // Sensor reading

tuple smokeValue = newTuple(2, actualField_uint16(SMOKE),

actualField_bool(reading));

call TS.out(FALSE,TL_LOCAL,&smokeValue);

return SUCCESS;

}

Fig. 7: TeenyLIME code for a smoke detector node.

does not specify freshness, it matches any tuple regardless of its age. The second func-

tion returns the number of epochs elapsed since the tuple was created. Finally, the

third specifies how many epochs the tuple is allowed to stay in the tuple space. When

the timeout associated to the tuple expires, the tuple is automatically removed.

Generating Data Efficiently. In our application, humidity sensors and smoke detectors

need not be monitored continuously: their data is accessed only when actuation is about

to occur. Reading of the sensed value is accomplished by issuing a rd, however this re-

quires that fresh-enough data be present in the tuple space when the operation is issued.

If data is only seldom utilized, the energy required to keep tuples fresh is mostly wasted.

An alternative is to require that the programmer encodes requests to perform sensing in

a way similar to actuation commands, enabling the receiving node to perform sensing

on-demand and return the result. However, this solution requires extra programming

effort, is error-prone, adds processing overhead, and is therefore equally undesirable.

To deal with these (frequent) situations,

Water 
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Fig. 8: Processing of capability tuples.

TeenyLIME provides the ability to output

capability tuples indicating that a device has

the capability to produce data of a given

pattern. A code example for a smoke de-

tector is shown in Figure 7. When a query

is remotely issued with a pattern matching

a capability tuple, the reifyCapabili-

tyTuple event is signaled. This reports

the pattern included in the query and the matching capability tuple. The application

handles this event by taking a fresh reading and outputting the actual data to the tuple

space. The sequence of operations is depicted in Figure 8. Note how, from the perspec-

tive of the data consumer, nothing changes. Instead, on the data producer, capability

tuples enable energy savings as data readings can be taken only on-demand, without

the need to maintain constantly fresh data in the tuple space.

Interestingly, capability tuples can be generalized to allow any action to be taken

transparently by the data producer. Instead of triggering a sensor reading, matching a

pattern to a capability tuple may invoke other application functions (e.g., computing
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the average of all temperature tuples), whose results are inserted in the tuple space and

returned to the requester.

5 The TeenyLIME Middleware

The design of TeenyLIME aims to enable easy customization and extension of the mid-

dleware. Therefore, local processing, distributed processing, and communication con-

cerns are fully decoupled, and one aspect can be changed without impact on the rest

of the system. Here we focus on specific aspects of our architecture, namely, the im-

plementation of distributed reactions and capability tuples, and the support for reliable

operations. More details about the current prototype are reported in [16]. Also, Teeny-

LIME’s source code is available at http://lime.sf.net/teenyLime.html.

The implementation of remote reactions currently rely on a soft-state approach, to

deal with nodes joining or failing. Each node periodically sends a message containing

the definitions of all reactions that should be installed on its neighbors. Upon receipt

of this message, a timer associated with installed reactions is refreshed. If and when a

timer expires, the corresponding reaction is removed. This may happen either because

the registering node became unreachable, or the application deregistered the reaction

(therefore stopping its refreshing). Similar approaches are widely used in WSN, (e.g.,

in [17]), as they are sufficiently lightweight and effective.

Expressing the internal processing of capability tuples requires keeping track of the

nodes whose query matched a local capability tuple so that, once the actual tuple is

(locally) output by the application, it can be returned to the appropriate node. Due to

nesC split-phase operations [15], this processing requires a lot of bookkeeping code.

However, we noted that this processing is the same as if a reaction (for the same pattern

as the query) were installed by a neighbor before the application outputs the actual tuple.

Our implementation exploits this observation and installs a local reaction for the query

pattern before firing the reifyCapabilityTuple event. When the node outputs

the tuple, this matches the aforementioned reaction and is subsequently, automatically

delivered to the intended recipient. The only additional processing required is to remove

the reaction right after it fires. This solutions requires only 24 nesC lines.

Finally, TeenyLIME poses few requirements on the communication layers: essen-

tially, the ability to overhear messages for populating the tuple space with neighbor

tuples. As a result, many existing solutions (e.g., [18, 19]) can be employed to provide

reliable operations. Nevertheless, if reliability is only seldom required, the solutions

above may be overkill, e.g., because scheduling mechanisms (as in [19]) negatively

impact latency. To meet scenarios where reliable operations are rare, our current pro-

totype includes a simple reliability scheme based on explicit acknowledgments. Mes-

sages contain a unique identifier, reported in the corresponding acknowledgment when

transmission succeeds. Therefore, lost packets are easily recognized and retransmitted

upon timeout expiration. Control information is piggybacked on application messages

whenever possible, to reduce overhead. Our protocol is not tied to TeenyLIME, and ex-

ports the same interface as TinyOS’ generic communication layer. Therefore, it can be

re-used by plain TinyOS applications demanding reliable communication.
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6 Evaluation

We compare quantitatively TeenyLIME against common alternatives, analyzing its im-

pact on the application source code and on run-time performance.

6.1 Evaluating the Programming Model

Our objective is to assess the effectiveness of TeenyLIME in enabling a flexible de-

sign and clean implementations. To the best of our knowledge, there are no program-

ming abstractions expressly designed for application scenarios such as sense-and-react.

Therefore, we compare a TeenyLIME-based implementation of our reference applica-

tion against one implemented directly on top of TinyOS. On the other hand, the ap-

plicability of TeenyLIME goes beyond sense-and-react applications, and reaches into

system-level mechanisms, below the application layer. We substantiate this claim by

reporting about implementations in TeenyLIME and Hood [6], a programming abstrac-

tion designed around similar requirements.

Reference Application. In the TinyOS version of our reference application, each type

of node (e.g., temperature sensors or air conditioners) has a component configuration

similar to the one mentioned in Section 4, where however TeenyLIME is replaced by

the TinyOS GenericComm component7. However, the TinyOS-based implementation

is far more complex. The reader can informally verify this statement by visually com-

paring the excerpt of TinyOS code for a temperature sensor in Figure 9 against the

complete (and much simpler) TeenyLIME-based equivalent shown earlier in Figure 6.

The superior expressive power of TeenyLIME manifests itself in several aspects,

which are again evidenced by comparing the two implementations in Figure 6 and 9:

– Developers using plain TinyOS must keep track of all the potential data consumers

within the application code. This requires several dedicated functions, such as

matchesInterest() in Figure 9. Using TeenyLIME, the same functionality

is achieved using reactions: no application-level bookkeeping is required.
– Figure 9 contains two separate execution flows: one begins when a message is re-

ceived (ReceiveInterestMsg.receive), the other when a reading from the

sensing device is ready (TemperatureSensor.dataReady). The two are not

at all evident in the code, due to nesC split-phase operations [15]. Thus, mainte-

nance and debugging are greatly complicated [20]. This problem is significantly

alleviated using TeenyLIME, as only the latter execution flow is necessary.
– Distributed processing forces TinyOS programmers to delve into the details of mes-

sage transmission, parsing, and buffering, therefore mixing communication aspects

with the very application semantics. Instead, the TeenyLIME component in Figure 6

contains only application-specific processing related to the actual data of interest.
– As a consequence of all the above, TinyOS programmers must manage state vari-

ables to deal with nearby air conditioners (interests), the sensing device (pen-

dingReading), and the radio (pendingMsg). These can be source of race con-

ditions [15]. Conversely, in TeenyLIME these aspects are either handled by the

middleware, or no longer required.

7 Or with our reliability component if reliable interactions, not supported by TinyOS, are re-

quired by the application. We elaborate further on reliability in Section 6.2.
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bool pendingMsg, pendingReading;

TOS_Msg sendMsg, queueMsg[MAX_QUEUE_SIZE];

uint8_t nextQueueMsg, lastQueueMsg;

nodeInterest interests[MAX_AIR_CONDITIONERS];

void interest(uint16_t node,uint8_t t,uint16_t tShold,uint16_t tStamp){ // ... }

bool isRecipient(struct InterestMsg* msg,uint16_t nodeId) { // ... }

bool matchesInterest(uint16_t reading) { // ... }

bool enqueueMsg(TOS_Msg msg) { // ... }

bool messageWaiting() { // ... }

bool sendQueuedMsg() { // ... }

command result_t StdControl.start() {

// ... data initialization ...

return call SensingTimer.start(TIMER_REPEAT, SENSING_TIMER);

}

event result_t SensingTimer.fired() {

pendingReading = TRUE;

return call TemperatureSensor.getData();

}

event TOS_MsgPtr ReceiveInterestMsg.receive(TOS_MsgPtr m) {

struct InterestMsg* payload = (struct InterestMsg*) m->data;

if (!pendingReading && isRecipient(payload, TOS_LOCAL_ADDRESS))

interest(payload->sender, payload->type,

payload->threshold, payload->timestamp);

return m;

}

event result_t TemperatureSensor.dataReady(uint16_t reading){

TOS_Msg msg;

struct DataMsg* payload = (struct DataMsg*) msg->data;

payload->sender = TOS_LOCAL_ADDRESS;

payload->type = TEMPERATURE;

payload->value = reading;

if (!pendingMsg && matchesInterest(reading)) {

atomic {

pendingMsg = TRUE;

sendMsg = msg;

}

if (call SendDataMsg.send(TOS_BCAST_ADDR,

sizeof(struct AppMsg),&sendMsg)!= SUCCESS) {

pendingMsg = FALSE;

}

} else if (pendingMsg)

enqueueMsg(msg);

pendingReading = FALSE;

return SUCCESS;

}

event result_t SendDataMsg.sendDone(TOS_MsgPtr msg, result_t success) {

if (msg == sendMsg) pendingMsg = FALSE;

if (messageWaiting()) sendQueuedMsg();

return SUCCESS;

}

Fig. 9: A temperature node in our reference application, using plain TinyOS. The pro-

cessing above is equivalent to the TeenyLIME version in Figure 6.

A good way to assess the complexity of implementations is to analyze them as

state machines and count the number of explicit application states, as in [6]. These are

typically stored in state variables, modified by commands and event handlers to express

state transitions. The higher the number of application states, the harder it is to express

state transitions [20], and the more complex and error-prone applications become.

Figure 10 reports this and other metrics for the temperature sensor and other com-

ponents of our sense-and-react application, showing that the advantages of TeenyLIME

hold for all the (diverse) tasks of our application. For instance, the plain-TinyOS com-



13

Explicit states Lines of code

Component TeenyLIME Plain TinyOS TeenyLIME Plain TinyOS
% of application

data in TeenyLIME

AirConditioner 3 8 93 282 72%

MutualExclusion (ML × 2) (ML × 3) + 1 153 205 48%

TemperatureSensor 0 NC + 2 44 107 100%

Fig. 10: Comparing the TeenyLIME-based implementation against plain TinyOS. ML

represents the maximum number of different locations the component implementing

mutual exclusion handles, NC represents the maximum number of air conditioners

around a temperature sensor.

ponent implementing the air conditioner control law has 8 explicit application states,

whereas the TeenyLIME-based one has only 3. The reduction is due to the aforemen-

tioned ability of TeenyLIME to hide communication details, here complemented by

the ability to express data filtering as patterns. The former avoids the use of several

state variables, while the latter delegates most of the data processing to the middleware.

Nicely, the reduction of explicit states in the application code causes the number of lines

of code to decrease as well, as shown in the second column of Figure 10. Indeed, fewer

state transitions, and therefore far less bookkeeping code, are needed.

It is worth noting that the above simplifications are not accomplished by remov-

ing application information. Doing so would indeed affect the application semantics.

Rather, they are obtained by moving information and related processing from the ap-

plication components into TeenyLIME. This is not possible using plain TinyOS, as its

abstractions provide only message passing and do not explicitly represent state. This is

instead achieved in TeenyLIME using the tuple space, as its content is persistent. For

instance, a reading tuple output by a temperature sensor node represents its current state

and remains in its tuple space until a new reading becomes available.

To quantify this aspect, the rightmost column in Figure 10 indicates the amount of

information that can be moved from the application component into TeenyLIME. We

compute it by looking at the per-component storage of global variables concerned with

application data. It is expressed as the percentage ratio between the TeenyLIME-based

and the TinyOS-based applications. The results confirm the reasoning above, showing

that a considerable portion of the application state can be managed inside the middle-

ware. Remarkably, all the application data and related processing for a temperature

sensor can be moved into the tuple space, as shown by comparing Figure 6 and 9.

The advantages above come at the price of a slight increase in the size of the binary

code deployed on the motes. The code of a temperature node occupies 69 Kbytes using

plain TinyOS and 80 Kbytes using TeenyLIME (including the middleware itself). These

figures increase to 72 Kbytes and 90 Kbytes, respectively, for the air conditioner. We

note, however, that the latter is a complex component, and yet is well within the limits

imposed by commercially available sensor platforms (e.g., 128 Kbytes for MICA2).

Sense-only Applications and System-level Functionality. TeenyLIME provides rel-

evant benefits also to the development of sense-only WSN applications and system-

level functionality. We support this statement by illustrating insights obtained by re-

implementing some of the applications used in [6] to evaluate Hood, a programming

abstraction geared towards sense-only applications and system mechanisms that, like
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TeenyLIME, focuses on one-hop interactions. Notably, by limiting ourselves to sense-

only (instead of sense-and-react) applications, and comparing against Hood on the same

applications used for its evaluation, we put ourselves in the most challenging situation.

Specifically, we consider the object tracking application and the multi-hop rout-

ing protocol called Mutation Routing, both described in [6]. In these applications, the

evaluation using the same quantitative metrics considered earlier for plain-TinyOS ap-

plications shows that TeenyLIME achieves slight improvements also w.r.t. Hood. For

instance, only three explicit application states are needed to implement Mutation Rout-

ing, whereas five states are required using Hood. Space constraints prevent us from a

deep discussion of these aspects, better detailed in [16]. Instead, we draw qualitative

considerations showing that TeenyLIME yields cleaner and more reusable designs:

– TeenyLIME achieves a more flexible software architecture w.r.t. Hood. In object

tracking, for instance, three components cooperate on a node to implement the de-

sired processing: a localization algorithm, a tracking mechanism, and a geographi-

cal routing protocol. In Hood, the three need to be wired together using dedicated

nesC interfaces. Therefore, adding a further component (e.g., to log the position of

the moving object on external memory) requires modifications in several places. In-

stead, in TeenyLIME the three components are fully decoupled, and exchange data

anonymously through the local tuple space. Thus, adding a logging component can

be easily achieved without affecting the rest of the application.

– TeenyLIME fosters code re-use to a great extent. For instance, in Mutation Routing

two nodes are appointed the role of source or destination for packets flowing along a

multi-hop path. The source (destination) role must be passed between neighboring

devices as some physical phenomena moves. In a TeenyLIME-based implemen-

tation, this processing can be accomplished by reusing as is the component im-

plementing the token-based mutual exclusion mechanism described in Section 4.

Simply, we create a token for each role at system start-up, exchanged based on the

presence of the moving target close to a given node. In Hood this functionality is

interspersed with message processing, preventing its reuse.

– TeenyLIME’s one-hop shared tuple space and associated operations are sufficiently

powerful to express multi-hop mechanisms. In both Mutation Routing and the ge-

ographical routing of object tracking, messages are easily described as tuples. At

each hop, these are output to the tuple space of the next-hop node, where a previously-

installed reaction delivers the tuple to the routing component. There, the subsequent

forwarding to the next-hop node is determined based on the status of neighboring

devices, as reflected by the information locally available in the tuple space. As a re-

sult, all the routing decisions are encapsulated in the tupleReady event handler.

This provides an easy and clean way of implementing this class of functionality, and

one that cannot be achieved in Hood due to the absence of abstractions to describe

the node state.

The considerations above confirm that TeenyLIME’s benefits in terms of better de-

sign and simpler code hold not only for the development of application logic in sense-

and-react scenario, but also for sense-only applications and system-level functionality.
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6.2 Evaluating the Middleware Implementation

To verify that the advantages we identified do not negatively affect system performance,

we extend our evaluation beyond the programming model and into TeenyLIME’s imple-

mentation. Specifically, a middleware layer may impact the execution time, due to the

additional processing w.r.t. a plain TinyOS implementation. As a consequence, the sys-

tem lifetime may decrease as well. The latter is key in WSNs, as nodes are usually

battery-powered and must operate unattended for long periods of time.

To investigate the above concerns, we conduct experiments using Avrora [21], an

instruction-level emulator for WSNs equipped with a precise energy model. The latter

is based on experimental data relative to MICA2 [22] nodes, a widespread hardware

platform for WSNs. This approach allows us to gather realistic, fine-grained statistics

regarding the processing overhead and energy consumption of arbitrary nesC code. We

consider two benchmarks:

1. The HVAC sub-task we illustrated in Section 2, whose TeenyLIME implementation

is described in Section 4. We place a variable number of temperature/humidity

sensors in the same neighborhood as an air conditioner node. In each epoch, each

temperature sensor randomly generates a reading, whose value can deviate from the

user preference with a 20% probability. This triggers actuation at the air conditioner

controller, which first queries nearby humidity sensors for their most recent reading,

and then decides on the specific actions to be taken.

2. A simple application using the token-based, mutual exclusion component illustrated

in Section 4. A variable number of nodes, in the same neighborhood, express the

intention to obtain the token. In each epoch, the token is released by the node hold-

ing it, and a different, randomly chosen node is selected as the new token holder,

while the others are notified about the change in token ownership.

Both applications above involve several TeenyLIME-specific constructs. In the first

one, a temperature sensor reading may trigger a remote reaction previously installed

by the air conditioner, whose pattern contains a dedicated range field to express the

user preference as a temperature interval. Moreover, humidity values are represented as

capability tuples. Therefore, the (unreliable) query coming from the air conditioner trig-

gers the execution of the reifyCapabilityTuple event on the humidity sensors.

These react by locally outputting the actual tuple8, which is delivered by TeenyLIME to

the air conditioner as the result of the initial query. Similarly, in the mutual exclusion

application, releasing a token entails outputting a token tuple in the local tuple space,

and possibly triggering some previously installed, remote reaction. Nodes receiving this

notification then perform a reliable in operation to obtain the token. Among them, only

one will succeed.

The processing above is the same in other scenarios where the data involved have

different semantics. For instance, the processing to exchange the token (i.e., a reaction

firing followed by a reliable query) is the same executed by a water sprinkler in the fire

sub-task, shown in Figure 4: only the tuple content changes. In this sense, the meaning

of our results extends beyond the benchmark applications we consider here.

8 Gathering of physical readings from the sensor device is assumed to be instantaneous.
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Parameter Name Value

MAC Layer standard TinyOS MAC for CC1000 chip

Initial Energy Budget ≈ 2 AA batteries

Message Size 47 bytes (TinyOS), 104 bytes (TeenyLIME)

Epoch Duration 10 secs

Fig. 12: Emulation parameters.

Operation TeenyLIME Plain TinyOS Overhead

Notifying the

Air Conditioner

2.18ms 1.99ms 9.54%

Sending a

Humidity Query

1.97ms 1.85ms 6.48%

Replying to a

Humidity Query

2.25ms 2.03ms 10.08%

(a) HVAC.

Operation TeenyLIME Plain TinyOS Overhead

Releasing the

Token

2.03ms 1.97ms 3.04%

Sending a Token

Notification

2.28ms 2.07ms 8.21%

Requesting the

Token

2.09ms 1.92ms 8.85%

(b) Mutual exclusion.

Fig. 13: Execution times in the components of our benchmark applications.

For comparison, we consider a plain TinyOS implementation of the same applica-

tions. Figure 11 illustrates the component configurations in the two cases. To compare

them on common ground, we provide TinyOS with reliable communication by using

our reliable protocol, mentioned in Section 5.

The emulation settings, in Figure 12, are taken from real MICA2 motes. The larger

message size in TeenyLIME is due to the additional control information contained in

the tuples. As independent variables, we vary the number of nodes in a neighborhood

and the probability ε of loosing a message, to investigate TeenyLIME’s overhead w.r.t.

system scale and network conditions.

Results. In our benchmark applications, TeenyLIME does not
Application

TeenyLime

TupleSpace

ReliableComm
(when needed)

SendMsg/ReceiveMsg

GenericComm

SendMsg/ReceiveMsg

TinyOS

(a) TeenyLIME-based.

Application

ReliableComm
(when needed)

SendMsg/ReceiveMsg

GenericComm

SendMsg/ReceiveMsg

TinyOS

(b) TinyOS-based.

Fig. 11: Component

configurations.

generate any increase in the number of messages exchanged

w.r.t. a TinyOS-based implementation. Therefore, TeenyLIME’s

overhead in execution time is essentially due to extra local pro-

cessing. In this respect, Figure 13 analyzes the CPU time taken

to perform a set of relevant operations in our benchmark appli-

cations. The worst case accounts for a 10.08% overhead, which

is reasonable given the absolute values involved. We believe

these results are due to the generality of TeenyLIME’s abstrac-

tions. These can capture commonly-used sequences of opera-

tions in a natural way, which allows our TeenyLIME implemen-

tation to perform close to application-specific mechanisms.

Figure 14 further elaborates on the timing aspects in our

TeenyLIME implementations, showing the breakdown of CPU

time in the different layers. Figure 14(a) illustrates the afore-

mentioned metric for an air conditioner node in the HVAC ap-

plication, against the number9 of temperature/humidity nodes

in its neighborhood. TinyOS is responsible for most of the pro-

cessing, as it handles all hardware interrupts and radio-related

functions, triggered quite frequently. The trend of the process-

9 Half of the nodes in the x-axis are temperature nodes, while the other half are humidity nodes.
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Fig. 14: CPU time breakdown in TeenyLIME-based implementations.
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Fig. 15: System lifetime.

ing dedicated to the application and to TeenyLIME is due to the number of notifications

and query replies received at the air conditioner, that grows with the number of nearby

nodes. TeenyLIME engages the CPU for at most 15% of the time, when 10 nodes are

in reach of the air conditioner. The above metric is not directly affected by the message

error rate in the HVAC application, as reliability guarantees are not required.

Conversely, when reliability is required it becomes the dominant factor, and system

scale bears little effect on our metrics. Figure 14(b) analyzes the CPU time breakdown

in the mutual exclusion application against a varying message error rate, with eight

nodes in the neighborhood. The chart indeed shows how the reliability protocol increas-

ingly engages the CPU as communication becomes less reliable. In fact, our reliable

protocol runs periodic activities (e.g., checking whether messages not yet acknowl-

edged need a retransmission) that take a time proportional to the number of buffered

messages. In absolute values, TeenyLIME execution times remain the same regardless

of mutable network conditions. Therefore, its relative contribution decreases as the reli-

able protocol is more stressed. This is a result of our design: TeenyLIME and the reliable

communication component are fully decoupled, and the processing implemented in the

former is independent from the latter.

It is interesting to look at how TeenyLIME affects the overall system lifetime. Fig-

ure 15(a) shows the time until the air conditioner node in the (unreliable) HVAC appli-

cation runs out of power. This metric is only marginally affected by TeenyLIME, whose

additional overhead is always under 4%. The chart also illustrates an almost constant
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behavior w.r.t the number of temperature/humidity nodes. This is expected: reactions

and queries are issued in broadcast by the air conditioner, therefore the energy expendi-

tures for communication are independent of the number of neighbors. Conversely, the

number of temperature/humidity sensors affects the local processing, as more neigh-

bors correspond to more replies received. Nevertheless, the extra overhead imposed by

TeenyLIME has a very limited impact on the overall lifetime. Along the same lines, Fig-

ure 15(b) shows the lifetime in the (reliable) mutual exclusion application, measured as

when the last node depletes its battery. The trends here are strongly tied to the message

error rate: an increasing number of retransmissions are indeed required as communi-

cation becomes less reliable. TeenyLIME’s overhead, however, is comparable to the

HVAC application, and becomes less relevant as the probability of losing a message

increases and, consequently, the reliable protocol is involved more.

Finally, we analyzed our reliable protocol,
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Fig. 16: Performance of TeenyLIME

reliable protocol.

to verify that our results are not biased by an

inefficient implementation. Instead, Figure 16

shows that our solution can provide 100% mes-

sage delivery with a very small number of re-

transmissions. This performance is in line with

alternative reliability mechanisms in the litera-

ture [23], and therefore confirms that our reli-

able protocol is a valid choice in our evaluation.

In conclusion, the trade-offs between the ben-

efits of the programming model and its run-time

overhead are reasonable, making TeenyLIME a

valid middleware choice.

7 Related Work

TeenyLIME is inspired by LIME [24], which originally introduced the notion of shared

tuple spaces in mobile ad hoc networks. However, not only is TeenyLIME’s imple-

mentation based on entirely different technologies and mechanisms from LIME, but

its model and API introduce novel concepts geared expressly towards WSNs, such as

range matching, capability tuples, freshness, and explicit control over reliability. Teeny-

LIME follows in time another adaptation of LIME to WSNs, called TinyLIME [25].

The two, however, profoundly differ in target scenario, model, and implementation.

TinyLIME focuses on mobile data collection and employs the standard LIME middle-

ware to provide data sharing over 802.11 among mobile sinks (the data consumers)

that, in turn, gather data from nearby WSN sensor nodes (the data producers). There-

fore, intelligence is on sinks: the TinyLIME code deployed on sensors is “dumb” and

largely application-agnostic, reporting data to external sinks (its only interlocutor) on

request. Instead, TeenyLIME is expressly designed for scenarios where the application

intelligence is in the network, built around node-to-node interactions inside the WSN.

The work most closely related to TeenyLIME is Hood [6], a neighborhood abstrac-

tion where nodes can share state with selected one-hop neighbors. Selection is based on

attributes periodically broadcast by neighbor nodes. Neighborhoods are specified using
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extensions to the basic nesC constructs, precompiled into plain nesC. Therefore, unlike

TeenyLIME, in Hood data sharing is decided at compile-time. Moreover, Hood pro-

vides neither the ability to affect the state of another node nor the abstractions to react

to changes in the shared state. This hampers its use in sense-and-react applications, and

in general provides a less expressive programming framework.

In Abstract Regions [26] 〈key , value〉 pairs are shared among nodes in a region (i.e.,

a set of topologically-related nodes), and manipulated through read/write operations.

Again, there is no way to receive notifications when some given data appears in the

system, unlike TeenyLIME. Moreover, although nodes in a region may leverage multi-

hop communication, this and other aspects must be coded explicitly by the programmer

on a per-region basis, therefore hampering generality and applicability.

Context Shadow [27] exploits multiple tuple spaces, each hosting only locally-

sensed information representing a given context. Applications retrieve the data of in-

terest by explicitly connecting to one of them. Similarly, the tuple spaces used in Ag-

illa [28] for coordinating among mobile agents are shared only local to a node. Instead,

TeenyLIME enables data sharing in a neighborhood by creating the illusion of a single

address space. Moreover, these systems lack WSN-specific constructs.

8 Conclusions

Developing WSN applications is a difficult task, and sense-and-react applications are

the most challenging. This paper presented and evaluated TeenyLIME, a middleware

designed for sense-and-react WSN applications, but whose programming constructs

are effective in a wide range of applications. TeenyLIME brings simpler, cleaner, more

reusable designs, as we evaluated quantitatively in non-trivial applications. Moreover,

our evaluation with the cycle-accurate emulation demonstrated that these benefits are

supported by an efficient implementation that introduces low overhead w.r.t. plain-

TinyOS implementations.

The TeenyLIME middleware is freely available for download at http://lime.

sf.net/teenyLime.html.
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20. Kasten, O., Römer, K.: Beyond event handlers: programming wireless sensors with attributed

state machines. In: Proc. of the 4
th Symp. on Information processing in sensor networks.

(2005)

21. Titzer, B., Lee, D., Palsberg, J.: Avrora: scalable sensor network simulation with precise

timing. In: Proc. of the 4
th Int. Symp. on Information processing in sensor networks. (2005)

22. Crossbow Technology Inc. www.xbow.com

23. Naik, P., Sivalingam, K.M.: A survey of MAC protocols for sensor networks. Wireless

sensor networks (2004) 93–107

24. Murphy, A.L., Picco, G.P., Roman, G.C.: LIME: A coordination model and middleware

supporting mobility of hosts and agents. ACM Trans. on Software Engineering and Method-

ology (TOSEM) 15(3) (July 2006) 279–328

25. Curino, C., Giani, M., Giorgetta, M., Giusti, A., Murphy, A.L., Picco, G.P.: Mobile data

collection in sensor networks: The TinyLime middleware. Elsevier Pervasive and Mobile

Computing Journal 4(1) (2005) 446–469

26. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions. In: Proc. of

the 1
st Symp. on Networked Systems Design and Implementation. (2004)

27. Jonsson, M.: Supporting Context Awareness with the Context Shadow Infrastructure. In:

Wkshp. on Affordable Wireless Services and Infrastructure. (June 2003)

28. Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment of adaptive

wireless sensor network applications. In: Proc. of the 25
th IEEE Int. Conf. on Distributed

Computing Systems (ICDCS). (2005)


