
Programming with Agents:
New metaphors for thinking about computation

Michael David Travers

Bachelor of Science; Massachusetts Institute of Technology, 1986
Master of Science in Visual Studies; Massachusetts Institute of Technology, 1988

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning
in partial fulfi l lment of the requirements for the degree of
Doctor of Philosophy at the
Massachusetts Institute of Technology

June 1996

© Massachusetts Institute of Technology, 1996
All Rights Reserved

Author:
Program in Media Arts and Sciences

May 3, 1996

Certified by:
Marvin Minsky

Professor of Electrical Engineering & Computer Science
Toshiba Professor of Media Arts & Sciences

Thesis Supervisor

Certified by:
Mitchel Resnick

Assistant Professor of Media Arts & Sciences
 Fukutake Career Development Professor of Research in Education

Thesis Supervisor

Accepted by:
Stephen A. Benton

Chair, Departmental Committee on Graduate Studies
Program in Media Arts and Sciences

Programming with Agents:
New metaphors for thinking about computation

Michael David Travers

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning on May 3, 1996
in partial fulfi l lment of the requirements for the degree of
Doctor of Phi losophy at the
Massachusetts Insti tute of Technology

Abstract

Computer programming environments for learning should make i t easy to create worlds of
responsive and autonomous objects, such as video games or simulations of animal behavior.
But building such worlds remains difficult, partly because the models and metaphors underlying
tradi tional programming languages are not parti cularly sui ted to the task. This dissertation
investigates new metaphors, envi ronments, and languages that make possible new ways to
create programs -- and, more broadly, new ways to think about programs. In parti cular, i t
introduces the idea of programming w i th “ agents” as a means to help people create worlds
involving responsive, interacting objects. In this context, an agent i s a simple mechanism
intended to be understood through anthropomorphic metaphors and endowed w i th certain
l i fel ike properties such as autonomy, purposefulness, and emotional state. Complex behavior is
achieved by combining simple agents into more complex structures. While the agent metaphor
enables new ways of thinking about programming, i t also raises new problems such as inter-
agent confl i ct and new tasks such as making the acti vi ty of a complex society of agents
understandable to the user. To explore these ideas, a visual programming environment cal led
LiveWorld has been developed that supports the creation of agent-based models, along with a
series of agent languages that operate in this world.

Thesis Supervisors:

Marvin Minsky

Professor of Electrical Engineering &
Computer Science

Toshiba Professor of Media Arts & Sciences

Mitchel Resnick

Assistant Professor of Media Arts & Sciences

Fukutake Career Development Professor of
Research in Education

Doctoral dissertation committee

Thesis Advisor:
Marvin Minsky

Professor of Electrical Engineering & Computer Science
Toshiba Professor of Media Arts & Sciences

Thesis Advisor
Mitchel Resnick

Assistant Professor of Media Arts & Sciences
 Fukutake Career Development Professor of Research in Education

Thesis Reader:
Pattie Maes

Associate Professor of Media Technology
Sony Corporation Career Development Professor of Media Arts & Sciences

Thesis Reader:
Alan Kay

Apple Fellow
Apple Computer

Acknowledgments

The ideas in this thesis were shaped by a l i fetime of learning from other people and other
work. There is room here to only thank some of them:

Marvin M insky has been my advisor and agent provocateur for a long time. H is unique
way of seeing the world constantly kept me on my toes. M i tch Resnick was my other advisor
and provided invaluable assistance in actual ly getting this work focused and finished. Pattie
Maes and Whitman Richards also provided a great deal of good advice and encouragement.

Alan Kay got me started on this path of inquiry when he began the Vivarium project at MIT
and Apple in 1986. Since then he has provided consistent support and inspi ration for my
research over the years. Ann Marion’s vision was at the nucleus of this project, and she and
the rest of the people involved at Apple’s Learning Concepts Group get my heartfel t thanks for
thinking in nonstandard directions and encouraging others to do the same.

The Narrative Intel l igence reading group provided a suitably underground context in which
subversive ideas could flourish. While many wonderful people participated, I have particularly
benefi ted from the conversation and friendship of Amy Bruckman, Marc Davis, Warren Sack,
and Carol Strohecker.

The original Vivarium group at the Media Lab provided the ini tial growth medium for this
work. The l i feforms making up the ecology included Margaret Minsky, Steve Strassman, David
Levitt, Al l ison Druin, Bi l l Coderre, Si las the dog, Noobie the chimera, numerous fishes, and the
autonomous bl imp. More recently the people of the Epistemology and Learning Group have
made me feel at home and helped me through the home stretch.

Special thanks go to those whose work and advice have had a great deal of influence on my
own ideas, including Edith Ackermann, Henry Lieberman, Hal Abelson, Seymour Papert, Andy
diSessa, and Phil Agre.

Li veW or l d , l i ke any l arge p i ece o f so f tw are, w as bu i l t on the shou l ders o f o ther
programmers. In this case the giants include Ken Haase, Alan Ruttenberg, and the Macintosh
Common Lisp team in its various incarnations at Coral, Apple Computer, and Digitool.

Thanks also go to al l who helped me out by reading drafts and giving me feedback and
encouragement, including Paul Pangaro, Amy Bruckman, David Mankins, Linda Hershenson,
Marcio Marchini, and others.

D eepest thanks go to my fri ends w ho helped to keep me together and push me along
through thi s process: D avid M ankins and John Redford, w ho have been my fr i ends and
sometime housemates for more years than any of us would l ike to admit; Alan Ruttenberg, my
partner in hacking, resistance, and exi le; and Amy Bruckman, who raises common sense to an
art form.

Thanks to those organizations who provided financial support for my work, including
Apple Computer, Toshiba, and the Mitsubishi Electric Research Laboratory.

Last and most, thanks to Li nda, Tanya & Forthcomi ng. A fami l y—w hat a concept.

Table of Contents

1 Introduction 15

1.1 LiveW orld: an Animate Programming Environment 18

1.2 Examples of Animate Systems 20

1.2.1 Video Games and Animation 20

1.2.2 Animal Behavior Models 20

1.2.3 Graphic Layout and Interactive Constraints 20

1.2.4 Blocks World 21

1.2.5 Putting it All Together 21

1.3 Influences and Inspirations 22

1.3.1 Society of Mind 22

1.3.2 Cybernetics, Ethology, Situated Action 23

1.3.3 Constructivism and Constructionism 24

1.3.4 Interactive Construction Environments 25

1.4 Overview of the Thesis 26

1.4.1 Analysis of Metaphors for Programming 26

1.4.2 Agents and Animacy 26

1.4.3 The LiveWorld Programming Environment 27

1.4.4 Agent-Based Programming 27

2 Metaphors and Models for Computation 29

2.1 Theories of M etaphor 30

2.1.1 The Contemporary Theory of Metaphor 31

2.1.1.1 The Conduit Metaphor 31

2.1.2 Dead Metaphors 34

2.1.3 The Metaphorical Nature of Scientific Understanding 35

2.1.4 Formalization and Metaphor 37

2.2 M etaphors in Programming 39

2.2.1 The Idea of Computation 39

2.2.2 Metaphors Make Computation Tangible 40

2.2.3 Metaphoric Models for Computation 41

2.2.3.1 The Imperative Model 42

2.2.3.2 The Functional Model 43

2.2.3.3 The Procedural Model 47

2.2.3.4 The Object Model 48

2.2.3.5 The Constraint Model 50

2.2.4 Interface Metaphors 53

2.3 Conclusion 54

3 Animacy and Agents 57

3.1 Introduction 57

3.2 The Realm of Animacy 58

3.2.1 The Perception of Causality 58

3.2.2 The Development of Animism as a Category 60

3.2.3 Frameworks of Understanding 62

3.2.4 Animacy and the Representation of Action 63

3.2.5 Conclusion: the Nature of Animacy 65

3.3 Animacy and Computation 66

3.3.1 Animism at the Origins of Computation 68

3.3.2 Animacy in Programming 69

3.3.2.1 The Little-Person Metaphor 71

3.3.3 Body- and Ego-Syntonic Metaphors 72

3.3.4 Anthropomorphism in the Interface 73

3.3.5 Animate Metaphors in Artificial Intelligence 75

3.3.6 Conclusion: Computation Relies on Animate Metaphors 77

3.4 Agent-Based Programming Paradigms 77

3.4.1 Principles of Agent-Based Programming 78

3.4.1.1 Purpose, Goals, and Confl ict 79

3.4.1.2 Autonomy 80

3.4.1.3 Reactivity 81

3.4.2 Computational Realizations of Agents 81

3.4.2.1 Agent as Process 81

3.4.2.2 Agent as Rule 82

3.4.2.3 Agent as Enhanced Object 82

3.4.2.4 Agent as Slot and Value-Producer 83

3.4.2.5 Agent as Behavioral Controller 83

3.4.3 Agents and Narrative 84

3.5 Conclusion 86

4 LiveWorld 89

4.1 Overview of LiveWorld 89

4.2 Design 90

4.2.1 General Goals 90

4.2.2 A World of Lively Objects 90

4.2.3 Spatial Metaphor and Direct Manipulation 91

4.2.4 Prototype-based Object-oriented Programming 92

4.2.5 Improvisational Programming 93

4.2.6 Parsimony 95

4.2.7 Metacircularity 95

4.2.8 Graphic Realism and Liveness 95

4.2.9 Learning Path 96

4.2.10 Rich Starting Environment 97

4.3 Box Basics 98

4.3.1 Boxes Form a Hierarchical Namespace 98

4.3.2 Inheritance, Prototypes and Cloning 98

4.3.3 The Basic Box Display 99

4.3.4 Theatrical Metaphor 100

4.4 Interface Details 101

4.4.1 Selection 101

4.4.2 Menus 102

4.4.3 Mouse Operations 103

4.4.4 Cloning 105

4.4.5 Inheritance 105

4.4.6 Interestingness 106

4.4.7 Box Sizes and Positions 106

4.5 Language Extensions 107

4.5.1 Accessors for Boxes 107

4.5.2 Message-Passing with ask 107

4.5.3 Methods 108

4.5.4 Relative Box Reference 110

4.5.4.1 Self 110

4.5.4.2 Boxpaths 110

4.5.5 Demons 111

4.5.6 Global Object 112

4.6 Specialized Objects 112

4.6.1 Animas and Agents 112

4.6.2 Specialized Slots 113

4.6.3 Computed Slots 113

4.6.4 Sensors 115

4.6.5 Multimedia Objects 116

4.6.6 K-lines 117

4.7 Miscellaneous Issues 117

4.7.1 Shallow vs. Deep Cloning 117

4.7.2 Internal Frames 118

4.7.3 Deleting Boxes 119

4.7.4 Install and Deinstall Protocol 120

4.7.5 Error Handling 120

4.8 Some Unresolved Issues 121

4.8.1 Multiple Views of Actors 121

4.8.2 Uniform Interfaces Have a Downside 122

4.8.3 Cloning and Dependent Objects 122

4.9 Relations to Other W ork 123

4.9.1 Boxer and Logo 123

4.9.2 Self 124

4.9.3 Alternate Reality Kit 124

4.9.4 Rehearsal World 125

4.9.5 Ágora 125

4.6.6 IntelligentPad

4.10 Conclusion 126

5 Programming with Agents 127

5.1 Simple Agent Architectures 127

5.1.1 Simple Agents 127

5.1.1.1 Simulating Concurrency 128

5.1.1.2 Handling Conflict 129

5.1.1.3 Presenting Confl ict Situations to the User 132

5.1.1.4 Behavior Libraries 133

5.1.2 Goal Agents 134

5.1.3 A Comparison: Teleo-Reactive Programming 136

5.2 Dynamic Agents 139

5.2.1 Overview 141

5.2.2 Structures 143

5.2.2.1 Tasks 143

5.2.2.2 Agents 144

5.2.2.3 Templates 145

5.2.3 Control 148

5.2.3.1 Activation and Expansion 148

5.2.3.2 Cycles 148

5.2.3.3 Success and Failure 149

5.2.4 Special Tasks 150

5.2.4.1 Combining Tasks 150

5.2.4.2 Control Tasks 151

5.2.4.3 Primitive Tasks 151

5.2.4.4 Internal Special Tasks 152

5.2.5 Domain Tasks and Templates: Examples 152

5.2.5.1 Numerical Constraints 153

5.2.5.2 Geometry 154

5.2.5.3 Behavior 156

5.2.6 Conflict 156

5.2.6.1 Slot Conflict 156

5.2.6.2 Goal Conflict 157

5.2.7 Determination 157

5.3 Interface 159

5.3.1 Top-Level Tasks 159

5.3.2 Auto-tasks and Locks 159

5.3.3 The Agent Display 160

5.3.4 Control l ing When and How Agents Run 160

5.3.5 Agent D isplays and Storyboards 162

5.4 Additional Examples of Agent Systems 166

5.4.1 A Video Game 167

5.4.2 A Physical Simulation 168

5.4.3 A More Complex Graphic Constraint Problem 169

5.4.4 A Creature in Conflict 170

5.4.5 An Ant 171

5.4.6 A Recursive Function 173

5.4.7 A Scripted Animation 174

5.4.8 BUILDER in the Blocks World 175

5.5 D iscussion 176

5.5.1 DA as a Procedural Language 177

5.5.2 DA as a Behavioral Control System 178

5.5.3 DA as a Constraint System 179

5.5.3.1 Related Work 181

5.5.4 DA and Anthropomorphism 181

5.5.4.1 Creation of Agents 182

5.5.4.2 Agents, Tasks, and Templates 182

5.5.4.3 Are Agents Too Low-level? 183

5.5.4.4 Variants of Anthropomorphic Mapping 184

5.6 Summary 184

6 Conclusions 187

6.1 Summary and Contributions 187

6.2 Related Work 188

6.2.1. KidSim 188

6.2.2. Agentsheets 189

6.2.3. ToonTalk 189

6.3 Directions for further research 190

6.3.1 What Can Novices Do with Agents? 190

6.3.2 Can Agent Activi ty Be Made More Understandable to the User? 191

6.3.3 Can Agent Systems Be Made More Powerful? 192

6.3.4 Can Agents be Organized in Different Ways? 192

6.3.5 Can the Environment Be Agents All the Way Down? 194

6.3.6 Agents in Shared Worlds 195

6.4 Last Word 195

Bibliography 197

Chapter 1 Introduction
We propose to teach AI to children so that they, too,

can think more concretely about mental processes.

 — Seymour Papert (Papert 1980)

The computer i s a new medium for thought and expression, radi cal l y di fferent from
traditional media in i ts dynamism, interactivity, and flexibi l i ty. A universal device, the computer
can be used to create dynamic interactive models of any conceivable process, mathematical ,
biological, or wholly imaginary. If we learn the world by constructing it, now we have at hand a
medium that enables world-bui lding as an everyday learning activi ty. Theories about how the
world works—say, the laws of physics, or the behavioral patterns of animals—wil l no longer be
mere dry abstractions but instead form the basis for concrete, visible simulations that can be
observed, tinkered w i th, and inhabi ted. Computational envi ronments that permi t this sort of
activi ty ought to be extraordinari ly powerful mental tools, w ith the potential to transform how
we think and learn.

But expressing ideas in this new medium is difficult, and i ts potential as a learning tool sti l l
largely unreal ized. The fundamental ski l l needed to express dynamic ideas in the interactive
medium is programming—the abil i ty to tel l the computer what to do and how to do it. What you
can express (and, more subtly, what you can conceive of wanting to express) depends upon
the tools avai lable. The problem is that current programming tools are rather l imi ted in what
they offer in the way of expressive capabi l i ties. Whi le the computer can be made to do j ust
about anything, given enough time and expertise, what can be done readi ly depends upon the
languages and tools offered by the programming environment. This is especial ly true for young
or novice programmers, who have a l imited abil i ty to build up their own abstractions and tools,
and so must depend on those that the environment already suppl ies.

Computers were fi rst developed to solve mathematical problems and sti l l bear the marks of
their history. Certain modes of thought and ways of structuring activi ty are woven into the way
we think about computers, modes which are not necessari ly the only or best ways of coming
to grips w i th the potential of thi s new domain. The name “ computer” i tsel f reflects thi s—
computati on i s onl y a part of w hat computers do now , and they mi ght better be cal l ed
“ information manipulators” or “ dynamic media machines” . Indeed, at the consumer level, this is
w hat computers have become. People are now accustomed to devices that w hi le labeled
computers are really video games or virtual reality engines or simulations of cities.

But programming, which is the only level of use in which the ful l power of computation as
an intellectual tool can be realized, is sti l l centered around traditional models of computation. At
this level, a computer is seen as a device for performing mathematical calculations, or executing
a sequence of rote operations—not as a dynamic world in which l i fel ike activity can take place.
While the computer i tself has gone through radical transformations as i t penetrates into society
at large, the languages, tools, and concepts used to program them have stayed pretty much the
same.

As a result, a young programmer who might imagine building a dynamic world of interacting
objects (say, a video game or a simulation of an ant colony), w i l l be faced w i th numerous
obstacles that stand in the way of bringing the vision into reali ty. Some of these wil l be inherent
in the complexity of the task, and may not be possible to el iminate, but others wil l be due to the
lack of proper expressi ve tool s. For i nstance, few extant programming envi ronments for
novices support even so basic a faci l i ty as the abi l i ty to create multiple graphic objects that can
move simultaneously and independently while interacting with each other. More fundamentally,
the languages that the envi ronments provide are often not sui ted to such tasks, because they
rel y on models of computati on that are not parti cularl y sui ted to the control of dynamic
behavior.

I have coined the term “ animate system” to describe these sorts of dynamic worlds that
involve multiple active and interactive objects. Animate systems are simulated dynamic worlds
that contain multiple independent but interacting graphic actors. I chose the term because i ts
connotations include animals, animation, and the mind or soul (or anima). This thesis describes
a search for a programming paradigm suitable to the control of behavior in animate systems.

The languages used for programming are defined, enabled, and l imited by their underlying
models and metaphors. While computer science strives towards formal definitions of i ts subject
matter, the practi cal task of understanding computati onal enti ti es rel i es on the i nformal
technique of borrowing terminology and structure from more famil iar domains via metaphoric
mappings. Metaphorical ly-structured models are so pervasive that sometimes they are hard to
see. Consider the notion of a computational “ object” , an understanding of some structure
inside the computer that rel i es, i n subtle w ays, upon our exi sti ng know ledge of physi cal
objects. Two examples of more obvious metaphors are the program-as-a-recipe metaphor that
is often used to convey to beginning programmers the idea that the computer is fol low ing a
sequential l ist of instructions, and the spreadsheet metaphor that al lows business people to fi t a
form of functional programming into a fami l iar medium. These metaphors provide powerful
frameworks for the understanding and construction of complex systems.

U nfortunately, many i f not most real -w orld tasks do not easi l y fi t i nto the conceptual
frameworks suppl ied by these common metaphors. This i s true both for the tasks faced by
professional programmers (who more often than not are faced w i th the task of designing a
program that w i l l function as part of a larger mechanical system, and thus must spend most of
i ts t i me reacti ng to and control l i ng events i n a w orl d outsi de the formal domai n of the
programming language) and the programs that chi ldren would l ike to create i f only they could
(for instance, video games with interacting objects). Few languages make tasks l ike these easy,
because the most i mportant aspects of the task—such as mul ti pl e autonomous obj ects,
reacti vi ty, and goal -di rected behavior—have no di rect representati on i n the underl yi ng
metaphor. This is not to say that such systems cannot be bui l t using existing tools, only that
bui lding them requi res a good deal of mental contortion that may be beyond the abi l i ties of
novice programmers.

So w e seek new model s and metaphors fo r computat i on that can enab l e nov i ce
programmers to bui ld dynamic models of behavior. If our interest i s in supporting animate
systems, the thought that the programs to bui ld such systems can be based on metaphors of
l i fe and motion is particularly attractive. Anthropomorphic metaphors are used for teaching

16 Introduction

novices how to visual ize the operation of a computer, and they are common in the informal
discourse of programmers. But such usages are restricted to the margins of the field, and are
considered somew hat di sreputable. Is i t possible or desi rable to bri ng the metaphor of a
program as a l iving thing back into the foreground, and to make greater use of i t? What qualities
of programming will change if we try to look at it in animate terms?

There are many aspects of the ani mate domai n that can be usefu l l y mapped onto
computational activity. The human abil i ty to sequential ly fol low simple instructions was used as
the basis for the Turing’s theoretical machine. More recently, the object-oriented programming
paradigm makes use of the metaphor of “ message-passing” as the basis for structuring the
activity of programs that are divided up into a col lection of communicating objects. As we shall
see, a degree of animism, expl i ci t or impl i ci t, i s present i n almost al l w ays of organizing
computational activity.

Agent-based programming is my term for programming languages and envi ronments that
are expl ici tly grounded in animate metaphors. An agent, as w e shal l use the term, i s any
component of a program or system that is designed to be seen as animate. The term “ agent”
suggests a variety of attributes that have not general ly been bui l t into the underlying metaphors
of programming; attri butes such as purposefulness, autonomy, and the abi l i ty to react to
outside stimuli . In other words, agent-based programming bui lds upon and extends the implici t
animism of computation. Instead of the standard metaphor of the computer as an animate yet
mechanical instruction fol lower, we substitute the metaphor of the agent that can initiate action
autonomously in order to achieve a goal. Collections of agents work together to create complex
behavior. The general idea of an agent as a component of a larger system is inspired by Marvin
Minsky’s Society of M ind theory (Minsky 1987), al though the purposes to which agent-based
programming puts them is different.

Thinking of program components in animate terms suggests a variety of new techniques for
describing program activi ty to a user. If an agent has an expl ici t goal, the state of the agent can
now be made avai lable to the user in a meaningful way, through anthropomorphic interfaces.
Goals and satisfaction provide the conceptual tools for thinking about inter-agent confl ict, an
important issue in a system wi th distributed control . A world of autonomous agents pursuing
goal s and comi ng i nto confl i ct w i th one another suggests that program acti vi ty can be
represented in the form of narrative, which tradi tional ly deals w i th motivated actors, thei r
efforts to realize their goals, and their successes, fai lures, and confl icts.

Agent-based programmi ng i s an at tempt to desi gn tool s and f i nd new conceptual
foundati ons for programming that are more sui table to the task of constructi ng animate
systems. Programming has been said to provide us w i th an enti rel y new w ay of thinking,
sometimes cal led procedural epistemology—“ the structure of know ledge from an imperative
point of view” (Abelson and Sussman 1985). One goal of this thesis is to provide a friendly
cri tique of the existing forms of procedural epistemology, and an attempt to improve upon
them. Call i t an investigation into animate epistemology—an examination of the way we think
about the animate world, how computation makes use of this way of thinking, how i t fai ls to,
and how it might do better.

Introduction 17

1.1 LiveWorld: an Animate Programming Environment

 Any programming envi ronment designed to support the construction of animate systems
has to offer some basic world-modeling capabil i ties, and offer them in a readily accessible form.
It must support the si mul taneous ani mati on of mul t i pl e obj ects. I t must support obj ect
autonomy; in that objects can be seen as operating under their own control rather than under
the control of a central program. The objects must be able to sense their environment, which
will consist mostly of other animate objects.

Li veW orl d (see f i gure 1.1) i s a programmi ng envi ronment desi gned to support the
construction of animate systems. While LiveWorld i tsel f is not based on agents, i t is a tool that
facil i tated the development of the agent-based programming techniques, and as its name implies,
was designed to support a feel ing of “ l iveness” , a qual i ty difficult to define but a crucial part of
establishing the context for agent-based programming. A l ive environment is one in which there
are a lot of simul taneous activi ties going on, both at the di rect command of the user and as a
resul t of autonomous agent activi ty. Users can interact w i th autonomous objects, and change
thei r agents w hi l e they are runni ng. The feel of Li veW orl d sets the stage for agents, by
providing a world in which they can act.

One goal of LiveWorld is to provide a world where computational objects of al l kinds can
be readi ly manipulated. Animate systems are bui l t out of a diverse set of components, and i t is
important to have relati vely easy-to-use tools that support creation and combination of a
variety of object types. LiveWorld is bui l t around a prototype-inheri tance object system which
al l ow s obj ects to be easi l y c l oned (copi ed) and modi f i ed. O bj ects are represented as
hierarchi cal l y nested boxes, al l ow ing structures of varyi ng degrees of complexi ty to be
manipulated as single units. Complex objects can be assembled by cloning simpler objects and
dropping them into a container object: for instance, a sensor or behavior can be added to an
animal body in this way. The system is intended to be a construction ki t for animate systems,
allowing simulations to be built out of components from libraries.

18 Introduction

Figure 1.1: The LiveWorld environment.

Introduction 19

1.2 Examples of Animate Systems

The idea of animate systems has i ts origins in the Vivarium project, ini tiated by Alan Kay
with the mission of developing environments for simulating animal behavior. My work on this
project led to a number of systems for model ing animal behavior in software. One goal of the
present w ork i s to extend some of the i deas developed for simulati ng animal s i nto new
appl ication domains. Each of these domains involves actors animated by agents, but each
generates a somewhat different intuitive idea about what an agent is and how they should work
together. My own implici t purpose in designing LiveWorld’s agent systems was to see i f I could
find an agent-based programming framework that could subsume and uni fy these divergent
notions of agent.

1.2.1 Video Games and Animation

These tasks provide basic tests of the interacti ve graphic envi ronment. N one of them
require very complicated agent systems. Video games require that objects be able to sense each
other and trigger actions appropriately; this can be done by relatively simple forms of agents.
Objects must be able to be created and deleted, and the user must be able to interact w i th
objects whi le they are active. Simple video games don’ t require goal-driven agents, al though
more complex ones might include characters that pursue goals, which brings them into the
realm of animal behavior.

1.2.2 Animal Behavior Models

Ti nbergen’ s dri ve-centered model of ani mal behavi or (Ti nbergen 1951), i n w hi ch a
hierarchical network of drives consti tuted the control system of an animal , was one of the
ancestors of the Society of Mind theory and provided a basis for LiveWorld’s predecessor, the
Agar animal behavior simulation envi ronment (Travers 1988). Li veW orld’ s agent systems
provide a similar level of functionality in a more flexible, general and coherent framework.

In animal behavior models, agents correspond to basic drives, both general and speci fic.
Some examples of animal tasks are: “ survive” , “ find-food” , “ orient-away-from-predator“ or
“ run” . Drives are at best temporari ly satisfied and are always in some degree of confl ict. That
is, an animal might have multiple top-level drives such as eating, cleaning, and mating, al l of
which are to some degree unsatisfied at any one time, and they cannot in general be pursued
simul taneously. Even the top-level goals of survival and reproduction, dictated by evolution,
wil l be in tension with each other. The satisfaction condition or goal of a drive cannot be easi ly
modeled as a Boolean predicate, since i t may be satisfied to various degrees (i .e. there is a
continuum of levels of hunger-satisfaction between starving and satiated). Animal goals w i l l
usually not be satisfied by a single operation, but wil l require an iterated effort to achieve a final
state. For i nstance, the goal “ be at the w ateri ng hole” w i l l requi re a seri es of movement
operations to be achieved.

1.2.3 Graphic Layout and Interactive Constraints

20 Introduction

Another domain useful ly viewed in animate terms is that of graphic layout problems, or
more broadly the task of maintaining relationships among graphic objects under change.
Interactive constraint systems have been appl ied to such problems in the past. As discussed in
secti on 2.2.3.5, constrai nts may be useful l y vi ew ed as an amal gam of decl arati ve and
procedural information: a constraint both states a condi tion that should be held true, and
contains procedures for changing the world to make i t true. This provides yet another model
for agents. One goal of the LiveW orld agent system, therefore, i s to show that agent-based
programmi ng i s a useful techni que for bui l di ng i nteracti ve graphi c constrai nt systems.
LiveW orld i s parti cularly sui ted to exploration in this domain because of i ts integration of
graphic objects and agents.

Agents in constraint problems take a different form than those in animal behavior domains.
In a constrai nt probl em, goal s are expected to be sati sf i ed si mul taneousl y rather than
sequential ly. Goals are expressions of al lowable final states rather than ongoing needs. Even i f
constraints are implemented as agents, the role of action is less dominant—whereas the actions
of animals are necessari ly l imited by their physical constraints, the actions of a constraint agent
can be essential ly arbitrary.

The abi l i ty to solve graphic layout problems opens up the potential for LiveWorld to define
i ts own interface behavior using agents. For instance, the constraint that a box be big enough
to display i ts annotations could be real ized by means of appropriate agents and goals, rather
than special purpose internal code. This sort of “ interface metacirculari ty” could serve to make
a more integrated and flexible environment (see 4.2.7).

1.2.4 Blocks World

The blocks world is a classic arti ficial intel l igence microworld domain, and one used in
Society of M ind to i l lustrate agent operations. Whi le l i ttle AI is requi red to implement these
examples, they do require one capabi l i ty that has been absent from some of the earl ier efforts
at agent-based programming. In particular, tower-bui lding requires the sequential achievement
of goals, a requirement which is not found in constraint problems nor in most simple animal
behavior problems. The precursors to Li veW orld’ s agent systems, such as Agar (Travers
1988) and Playground (Fenton and Beck 1989), did not have any real support for sequencing,
which led to some frustration. The blocks world provides a test of the abi l i ty of the agent
system to handle sequential tasks that require control state.

1.2.5 Putting it All Together

The problem domains mentioned pose a diverse set of tasks, but the real chal lenge is to
develop an agent-based programming system that al lows simple solutions to the problems using
a single paradigm. To do so, w e have to extract the common elements from these diverse
problems and use them as the basis for the design of the system. The common element we seek
is, of course, the agent. Al l the problems above suggest solutions expressed as col lections of
simple, cooperating, task-based, goal-directed modules. The challenge is to design a single agent
system that can express these solutions.

Introduction 21

1.3 Influences and Inspirations

A number of powerful ideas have informed this research and the designs that grew out of
i t. This section sketches out this background of ideas and si tuates the present work in relation
to them.

1.3.1 Society of Mind

The concept of agent used here deri ves from M arvin M insky’s Society of M ind (SO M)
theory (M insky 1987). SOM pictures a mind as a col lection of interacting agents, which are
defined operational ly as “ any part or process of the mind that by i tsel f i s simple enough to
understand” . The mind is thus seen as a col lection of simple enti ties, each with their own goals
but somehow connected so that their actions are coordinated. The word “ agent” has obvious
animate connotations. Whi le agents are seen as mechanisms, they are mechanisms that are
seen i n l oosel y anthropomorphi c terms, hav i ng a purpose and (perhaps) a degree of
autonomy.

Agents serve many di fferent purposes: some have representational or perceptual functions
(such as apple o r red), others are procedural (build, find-place). Sti l l others are based on a
wide variety of AI methodologies including neural nets, frame-based representations, and GPS-
style goal fol lowers. Because agent is defined so loosely, and there are many di fferent kinds, i t
is probably unwise to say much about agents in general . For our purposes, procedural agents
are of the greatest interest. These, more so than others, are described in highly animate terms:
“ Your grasping agents want to keep hold” ; “add must cal l for other agents’ help” (SOM, p20-
21). The i dea of procedural agents cl earl y deri ves from the computati onal noti on of a
procedure, and l i ke procedure invocations can be seen as hierarchical bureaucracies that
perform complex tasks by parcel ing them out from top to bottom. But unl ike procedures, they
also can have desires and are otherwise anthropomorphized.

In M i nsky ’ s term i no l ogy , “ agen t ” has a dual term : “ agency ” . I f “ agen t ” i s any
understandable part of the mind, then “ agency” is “ any assembly of parts considered in terms
of what i t can accompl ish as a uni t, w i thout regard to what each of i ts parts does by i tsel f.”
With these defini tions, “ agent” and “ agency” are to be seen as dual terms for the same thing,
“ agent” meaning a mechanism simple enough to be understood in mechanical terms, whi le
“ agency” indicates the same mechanism but viewed in functional or intentional terms.

I recycled the old words “ agent” and “ agency” because Engl ish lacks any standardized way to
distinguish between viewing the activity of an “ agent” or piece of machinery as a single process as
seen from outside, and analyzing how that behavior functions inside the structure or “ agency” that
produces it (Minsky 1991).

The distinction between these two views or levels of analysis is crucial to Minsky’s attempt
to bui ld a new metaphor system for describing minds. However, the metaphoric mapping is
somewhat unclear. In other domains of research, “ agent” has come to mean the very opposi te
of what M insky intends: that i s, “ agent” (rather than “ agency”) now usual ly means a semi -
intel l igent program as seen from the outside. This terminological confusion is unfortunate. Here,
we wi l l use “ agent” to mean any process or component that is intended to be understood from

22 Introduction

an animistic perspective. What i t means to understand something in this way is discussed in
Chapter 3.

The animate systems that LiveWorld can bui ld are much simpler than human minds, and
incorporate only the most basic parts of SOM. For instance, none of the representational ideas
are implemented, other than a weak version of K-l ines (see section 4.6.6). Nonetheless SOM
has functioned as a key styl istic inspiration for agent-based programming. I view LiveWorld as a
step towards bui lding implementations of SOM, i f only in that the avai labi l i ty of agent-based
programming environments for chi ldren might encourage the development of appropriate styles
of thinking and programming.

1.3.2 Cybernetics, Ethology, Situated Action

The task of simulating animal behavior w as the goal of my fi rst efforts in agent-based
programming. Modeling animals led to a new set of perspectives about the nature of intell igence.
The intel l igence of animals necessari ly manifests i tsel f in the form of behavior and interaction
w i th thei r envi ronments, rather than the abi l i ty to solve symbol ic problems. At the time this
project began, the main stream of arti ficial intel l igence research had rather l i ttle to say about
these i ssues. Instead I w as i nspi red by w orks from cyberneti ci sts, especi al l y Val enti no
Braitenberg’s book Vehicles (Braitenberg 1984), which i l lustrated a series of ideas about control
by encapsulati ng them in simple creatures made up of sensors, motors, and neuron-l i ke
components. M y fi rst effort at an envi ronment for animate systems, BrainW orks (Travers
1988), was based on this book.

Another source of inspi ration was the work of ethologists, scientists who studied animal
behavior in the world. N iko Tinbergen, one of the founders of this field, developed a general
theory of behavioral control (Tinbergen 1951) that formed the basis of my second system,
Agar (Travers 1988), which was based upon an idea of agent derived from Tinbergen’s drive
centers and was more oriented towards producing simulations of actual behavior.

At this time, several groups wi thin the AI community were becoming dissatisfied w i th the
standard approaches to control l ing action and developing al ternatives very much along these
l ines. In particular, Rod Brooks’ work w i th robots (Brooks 1986) (Brooks 1991) and the work
of Phi l Agre and David Chapman (Agre and Chapman 1987) (Chapman 1991) were influences
on my ow n w ork. Thi s school of thought, w hi ch has been l abeled the “ si tuated acti on”
movement, is sti l l controversial within AI. This movement has generated a good deal of cri tical
reflection within AI, which can only be to the good. From a constructive standpoint, however,
the techniques of si tuated action have had demonstrated successes only in l imited domains. It
i s not cl ear how to extend these approaches, w hi ch rel y on hi ghl y speci al i zed control
mechanisms, to the kinds of general capabi l i ti es that AI has stri ven for. H ow ever, for the
purposes of this thesis, that is enabl ing the construction of autonomous and reactive creatures
in interactive environments, they have a clear uti l i ty.

Uniting these three strands of research is the idea that understanding intel l igence requires
taking into account the relationship betw een an intel l i gent creature and i ts envi ronment.
Intel l igence, then, is located not so much in the head, but in the relationship between the mind

Introduction 23

and the world. I’ve found this simple idea intriguing if not absolutely convincing. It has value as
an al ternative perspective on thinking about mental processes (some of the epistemological
impl ications are discussed further in section 2.1.4). However, this approach to thinking about
intell igence is quite appropriate for the task at hand, that is, designing animate environments and
programming systems for them. This task requi res that the envi ronment and the minds and
agents be co-designed and work together. The lesson for programming envi ronments is that
what you want your programming language to do depends on the environment in which i t wi l l
operate.

1.3.3 Constructivism and Constructionism

The constructionist approach to learning (Papert 1991) underl ies the design of LiveWorld
and the general framework of my research. Constructionism derives i ts name as a variant of the
kindred psychologi cal school of constructivism. The construct i v i st v i ew of l earni ng and
development (Piaget 1970) presents an image of these processes as both active and creative. It
is active in that i t is primari ly a process of spontaneous development, in which the learner must
discover knowledge rather than having i t del ivered from the outside by a teacher. It is creative
in that the process of learning involves bui lding structures of know ledge w i thin the mind,
structures which are original creations, at least relative to the learner. Constructioni sm shares
the spirit of constructivism, but extends it by emphasizing that learning can be aided by building
actual material objects in the world. The process of construction then takes place in both the
mind and the external shared world. Both approaches to learning encourage the learner to
assume an active and creative role rather than be a passive recipient of information, and both
are opposed to the more prevalent educational phi losophy which they label instructionism, in
w hich learning i s seen as a process in w hich students passively receive information from
teachers.1

Constructionism appl ied to the use of computers i n education resul ts i n the idea that
students should be able to use the computer as a construction medium. The impl ications are
that the computational medium should be flexible: l ike a piece of paper, i t ought to support a
number of di fferent modes of use, levels of ski l l , and target domains. It also impl ies that the
locus of control should be the student rather than the computer, as opposed to the more
instructionist versions of educational computer use, in which the model is for the computer to
present the student with a structured series of lessons and quizzes.

The constructionist phi losophy underl ies the development of Logo, Smal l talk, Boxer and
rel ated programmi ng env i ronments fo r l earn i ng. The Li veW or l d env i ronment too i s
constructionist in orientation—i t provides a computational medium that makes a variety of
computational objects avai lable to novice programmers, and encourages experimentation and
improvi sati on. O ne important aspect of the design i s to make al l aspects of Li veW orld’ s
operation and al l relevant computational objects accessible to the user through a di rect-

1 See section 2.1.1.1. The distinction between instructionism and constructionism directly parallels the
distinction between the conduit and toolmaker images of language use.

24 Introduction

manipulation interface. This also allows some elements of the construction process to take place
through spatial manipulation of parts. Beginning programmers in LiveWorld can bui ld systems
simply by copying, dragging, and combining parts via direct manipulation.

Constructionism has sometimes been overinterpreted to mean that the computational
envi ronment should i ni ti al l y be a completel y blank slate, empty so that i t eventual l y be
popul ated so l el y by the creat i ons of the user. Li veW orl d takes a l ooser approach to
constructionism, providing ki ts of parts and examples that can be copied and modified. Indeed
its prototype-based object system emphasizes this mode of use (see section 4.2.10). This form
of constructionism more real istical ly reflects how real-world learning takes place, and makes i t
possible for students to tinker w i th complex systems that they could not easi l y bui ld from
scratch.

A constructi v i st phi l osophy al so underl i es the study of metaphors for computati on
presented i n Chapters 2 and 3. Thi s method of thi nki ng about how peopl e thi nk about
computati on i s based upon the vi ew that the know l edge of both experts and novi ces i s
individual ly constructed, with metaphor being a fundamental construction technique. The fact
that our models of computation are constructed leads to the possibi l i ty that there could be
di fferent ways of understanding computing that would provide powerful al ternative points of
view. This premise underl ies the attempt to construct an approach to programming centered
around the idea of agents. By expl ici tly designing a language around a powerful metaphor, the
activi ty of programs can be viewed from a new and useful perspective.

Construct i v i sm and construct i oni sm are radi cal i deas. Construct i v i sm forces us to
acknowledge that learning is a creative process and that knowledge is constructed rather than
received. Constructionism suggests that this process takes place not only inside the heads of
individuals, but involves interaction with the material and social worlds. Both imply a great deal
of freedom and the possibi l i ty of alternative epistemologies. This thesis is an attempt to explore
some of these possibil i ties for the domain of programming.

1.3.4 Interactive Construction Environments

If constructionism is a phi losophy of learning, interactive computer environments provide
both the worlds and raw material where construction can take place. A few programming
envi ronments that were designed to support construction have al ready been mentioned. But
there are other examples of interactive software that, whi le not providing as powerful general-
purpose programming tools as Logo (Papert 1980) or Smal l talk (Goldberg and Robson 1983),
succeed in creating highly interactive vi rtual worlds which are constructionist in thei r own
fashion. These include interactive constraint systems such as Sketchpad (Sutherland 1963) and
ThingLab (Borning 1979), spreadsheet programs (in terms of w idespread adoption, the most
successful variety of constructivist computational media), and some visual construction ki ts
such as Hookup (see section 2.2.3.2).

What distinguishes these systems is their abi l i ty to create a virtual world of reactive objects

that operate autonomously according to rules that the user can construct and control . An
i mportant goal of Li veW orl d w as to enabl e thi s sort of constructi on. The “ l i veness” of

Introduction 25

LiveWorld extends not only to being able to bui ld simulations of l iving animals, but to having
the computational medium itself be lively and reactive.

There is now a large body of software, mostly aimed at chi ldren, that presents worlds in
which l imited forms of construction take place. Examples are mostly in the form of games such
as SimCi ty, Pinbal l Construction Ki t, and The Incredible Machine. These systems general ly
present a fi xed set of objects that operate according to fi xed rules, w i th the user given the
abi l i ty to arrange the objects into new configurations. As such, they are not as general or
flexible as the other environments mentioned, but provide inspiration due to their high degree
of l iveliness and their abil i ty to provide rich and habitable worlds.

1.4 Overview of the Thesis

The body of thi s thesis i s i n four chapters. The fi rst tw o are primari l y conceptual and
analytical, while the last two are more technical and describe implemented software.

1.4.1 Analysis of Metaphors for Programming

Chapter 2 i s an analysi s of how metaphor systems are used in the understanding and
construction of computation and programming languages. The object of the chapter is to find a
way of thinking about the informal conceptual underpinnings of a field whose knowledge is
more commonly descri bed i n mathemati cal formal i sms. It f i rst gi ves a bri ef overview of
contemporary metaphor theory, then appl ies the theory to the analysis of a number of di fferent
models or paradigms for programming. By means of this analysis we can reveal some of the
hidden assumptions that underl ie the concept of computation and the languages with which we
approach it.

1.4.2 Agents and Animacy

Chapter 3 continues the task of the previous chapter by exploring a parti cular type of
metaphor that employs some form of anthropomorphism or animism. Animacy is seen to be, in
i tsel f, a basi c category for deal i ng w i th the w orl d, w i th roots deep i n i nnate perceptual
processes. Three relevant characteri sti cs of the animate realm are selected for attenti on,
because of thei r central i ty to the concept and because of thei r relevance to computation:
purposefulness, reactivi ty, and autonomy in the sense of being able to ini tiate action. Animism
i s seen to be central to understandi ng act i on, and thus al so central to understandi ng
computational activity.

The chapter examines the use of animism in programming languages, as wel l as the more
expl ici tly anthropomorphic constructs found in interface agents and arti ficial intel l igence. We
find that most programming languages involve implicit animate metaphors, but an animacy of a
particularly l imited sort that derives from the original conception of the computer as a device for
following instructions.

26 Introduction

At this point, i t is possible to more precisely define agent-based programming as an attempt
to construct a new paradigm for programming that makes computational animism expl ici t and
attempts to extend i t beyond the i nstructi on-fol l ow i ng metaphor to i ncl ude the central
properties of animism revealed by our analysis, such as autonomy and goal -di rectedness.
Various methods for real izing an animism w i th these properties in computational forms are
explored. Some previous attempts to construct programming systems that operate in this style
are examined and critiqued.

1.4.3 The LiveWorld Programming Environment

Chapter 4 describes the LiveWorld system in more detai l . LiveWorld is a visual object-
oriented programming environment that supports the research into agent-based programming
techniques. LiveWorld provides the necessary substrates for this work, including a flexible
prototype-based object system, a simple two-dimensional world for computational actors to
perform in, and a graphical i nterface that makes the computati onal objects tangible and
accessible to manipulation. Whi le LiveWorld is primari ly a tool to support the main object of
research, i t is of some interest in i ts own right and a necessary step on the road to developing
an envi ronment for agent-based programming. Some of the more i nnovati ve features of
LiveWorld are sensors that al low objects to be aware of each other, and the integration of a
spreadsheet-like interface with animated graphic objects.

1.4.4 Agent-Based Programming

Chapter 5 presents a seri es of agent-based programming systems implemented using
LiveWorld. The fi rst two, Simple Agents and Goal Agents, are computational ly fairly trivial but
serve to i l l ustrate some of the key concepts underl ying agent-based programming. These
include the idea of agents as separate objects that can be independently manipulated and
integrated into a computational actor, the need to handle concurrency and confl ict, the idea of
using goals as a method to organize agent activi ty, and the use of anthropomorphic icons to
convey agent state and activi ty to the user. The final agent system, Dynamic Agents, i l lustrates
how these ideas can function as part of a more powerful and general programming system. A
series of examples show s how the agent systems can implement systems for the selected
problem domains.

Introduction 27

28 Introduction

Chapter 2 Metaphors and Models
for Computation

It may be that universal history is the history of a
handful of metaphors.

— Jorge Luis Borges, “ The Fearful Sphere of Pascal” (Borges
1962)

We have defined agent-based programming as a method of thinking about computational
activi ty that is expl ici tly organized around animate metaphors. This chapter and the next are
attempts to expand this defini tion by looking closely at both metaphor and animacy and the
roles they play in structuring the computational domain. We w i l l see that computation, l ike
almost al l specialized domains of knowledge, is founded on a variety of metaphors that relate its
structures to those of other domai ns. The domai n of ani mate behavi or i s a parti cul arl y
important source of concepts and vocabulary for computation, for reasons to be explored.
Examining the role of metaphor and animacy in detail wil l both lay the groundwork for designing
agent-based programmi ng systems and provi de some i nsi ght i nto the epi stemol ogy of
computation and programming in general.

Our understanding of a subject as abstruse as programming is necessari l y grounded in
other thi ngs w e know . A novi ce l earni ng to program must construct understandi ngs by
bootstrapping them from existing bodies of knowledge and ski l ls. Sui table bases on which to
bui ld include experiential l y grounded systems of know ledge about the physical and social
worlds, or more abstract bodies of knowledge such as mathematics or economics. U l timately
abstract knowledge must be grounded in either innate structures or basic experience. While this
process of grounding out know ledge takes many forms, the role of metaphor—the overt or
implicit description of one thing in terms of another—is one of the most important.

The discourse of programming and programmers is heavi ly metaphorical , yet the role of
metaphor in computer science is often ignored or even vi l i fied. The formal presentation of
computer languages tends to hide the necessari ly informal methods that we use to understand
them. Thus the purpose of this chapter is to lay an analytical framework for thinking about the
w ays i n w hi ch peopl e come to understand computers and programs, and to argue for
metaphor as a legi timate and necessary tool for this process. This wi l l provide background for
the following chapter, which takes a look at one particular metaphor or way of thinking that is of
particular importance to computation, that of animate or anthropomorphic metaphor.

In the present chapter, I w i l l fi rst outl ine some general theories of metaphor and particular
ideas from these theories that w i l l be useful , then move on to look at the role of metaphor in
scienti fic discourse and in computation in particular. A number of frameworks for programming
are analyzed in terms of the metaphoric structures they impose on thei r domain and on thei r
users.

Learning a new field involves learning a new language, or more precisely, new ways of
using language. Technical fields in particular deploy everyday terms and usages in new ways,
and the fact that w ords w i th everyday meanings suddenly take on new meanings that are
related but not identical to their old ones is a source of confusion for both the novice and the
professional . David Pimm (Pimm 1987) refers to the pecul iar mannerisms of mathematical
discourse as the “ mathematics register” , that is, a particular way of speaking which must be
learned and relies strongly on metaphorical constructs. Computation, being a relatively new and
diversified field, does not yet have a single “ computational register” . By looking at some of the
metaphors employed in some parts of computational discourse, I hope to understand how the
discourse of computation is structured. This approach is somewhat contrarian, in the sense
that i t del iberately emphasizes the non-mathematical , metaphorical , and informal aspects of a
field that has traditional ly structured i tsel f in terms of formal mathematics. By investigating the
informal conceptual foundations of computing, which I bel ieve in some senses are deeper than
the mathematical foundations, I hope to be able to gain insights that w i l l permit the design of
new languages and environments for programming.

2.1 Theories of Metaphor

...“ metaphor” refers to al l those processes in which the juxtaposition either of terms or of concrete
examples cal ls forth a network of similari ties which help to determine the way in which language
attaches to the world.(Kuhn 1993, p539).

The term “ metaphor” is used here not in a narrow l inguistic sense, but in the sense of rich
and complex metaphoric models (Lakoff and Johnson 1980). A metaphoric model is a way to
structure the knowledge of one domain (the target) by mapping onto i t concepts and relations
from an existing domain (the source) that is al ready fami l iar. Metaphor in this sense is not a
mere l inguistic device used only for the figurative embel l ishment of otherwise straightforward
language, but a fundamental way of learning and structuring conceptual systems, a part of
everyday discourse.

Metaphors are so pervasive that they are sometimes hard to see. For instance, the common
model and terminology of the behavior of electrical circuits is based on a metaphoric mapping to
fluid flow in pipes, with voltage mapping to water pressure, batteries to pumps, current to flow,
and so forth. In a l ess technical and less obviousl y metaphori cal example, the Ameri can
conception of anger is metaphorical ly derived from the image of a heated fluid in a container,
giving rise to expressions l ike “ blowing off steam” and “ containing his rage” (Lakoff and Kövecs
1987). The metaphoric structure underlying such common concepts indicates that metaphoric
models are not merely optional stylistic overlays to a fundamentally objective and literal mode of
representation. Rather, they are a fundamental mechanism for encoding knowledge. Much of
our common cultural knowledge is in terms of metaphoric models (Lakoff and Johnson 1980).

Since metaphoric processes are a fundamental part of how knowledge is structured, there
can be no hard l ine drawn between metaphoric thought and other kinds. From a certain point
of view, all thought is metaphoric:

No two things or mental states ever are identical , so every psychological process must employ
one means or another to induce the i l l usion of sameness. Every thought i s to some degree a
metaphor (Minsky 1987, p299).

30 Metaphor

 If al l thoughts are equal l y metaphori cal , then metaphor i s not a very useful analyti c
category. However, some thoughts seem to be more metaphorical than others. There is a large
space of possibi l i ties lying between the purely l i teral and the obviously metaphorical . Perhaps
the most interesting cases are those in which a phrase or thought appears ini tial ly to be l i teral ,
but upon examination turns out to be based in metaphor after al l . W e w i l l see that many
metaphors used in the discourse of mathematics, science, and technology are l ike this.

 It w i l l be useful to distinguish the concept of a structuring metaphor from the closely
rel ated i dea o f an anal ogy (W i nston 1982) (Gen tner 1989). Bo th ai m to estab l i sh
understandings by the creation of mappings between domains, but the two terms connote
different aspects of this cognitive process. Analogy usual ly refers to the construction of explicit

mappings between two well-established domains, whereas metaphor is more often implicit. The
l inguistic form of analogy, the simi le, keeps the two domains safely separated by using terms
su c h as like (“ l i fe i s like a bow l of cherri es”), w hi l e metaphor draw s a more i mmedi ate
connection (“ life is a journey”). More importantly, metaphor often plays a foundational role in
the establ i shment of new , previously unstructured domains. The two terms real l y connote
di fferent views of the same broad cogni tive process, w i th the view through metaphor being
more oriented towards the foundations of cognition. Analogies can be powerful learning tools,
but i f the thing learned is to become an important part of thinking, i t must become integrated
into the structures of the mind—that is, i t must become a structuring metaphor. One draws an
analogy, but one l ives in metaphor.

2.1.1 The Contemporary Theory of Metaphor

My primary tool for thinking about metaphor wi l l be the theory put forth by George Lakoff
and M ark Johnson (1980)(Lakoff and Johnson 1980) and developed further by them, Eve
Sw eetser (1990)(Sw eetser 1990), M ark Turner (1991)(Turner 1991) and others, and more
recentl y l abel ed “ the contemporary theory of metaphor” (Lakoff 1993). In thi s theory,
metaphor is to be understood as any mapping between normally separate conceptual domains.
The purpose of this mapping is to structure an abstract, unfamil iar, or unstructured domain (the
target) in terms of one that is more concrete, famil iar, or structured (the source).

Metaphor is viewed more as a basic tool of cognition rather than a special turn of language,
and most concepts are generated by metaphors. The exceptions are those concepts that are
thought to be perceptual or cognitive primitives, such as up or cat. Aside from these references
to concrete physical objects and experiences, metaphori cal understanding i s the rule. In
Lakoff’s words, “ metaphor is the main mechanism through which we comprehend abstract
concepts and perform abstract reasoning” (Lakoff 1993). The more narrowly l inguistic meaning
of metaphor is cal led a “ metaphorical expression” to distinguish i t from the broader view of
metaphor as a conceptual mapping.

2.1.1.1 The Conduit Metaphor

The contemporary theory has i ts roots in M ichael Reddy’s work on what he cal led the
Condui t Metaphor (Reddy 1993), a detai led exposi tion of the system of ideas underlying the
concept of communication. Reddy found that there was a consistent metaphorical substrate

Metaphor 31

underlying talk about communications and ideas. This metaphor was based on the idea that
ideas were l ike physical objects, and that the purpose of language was to package up ideas for
transfer between minds. This insight was i l lustrated by example sentences l ike:

1) He couldn’t put his thoughts across well.

2) Try to pack more thoughts into fewer words.

3) I gave him that idea.

4) We tossed the ideas back and forth.

The implications of this metaphor are that words function l ike packing crates for meanings,
and that wri ting or speaking is a process of packing, shipping, and unpacking. Language as a
w hol e i s seen as a condui t for transferr i ng meani ngs from mi nd to mi nd. The unstated
implication is that meaning is unproblematically conveyed by language. It further implies that the
listener is essential ly a passive recipient of meanings generated by speakers.

These usages and thei r underlying metaphor are so commonplace that thei r contingent
nature might be hard to see. To better i l lustrate this, Reddy proposed an al ternative metaphor
system w hich he cal l ed the Toolmakers Paradigm. Thi s metaphor system posi ts l i steners
isolated in cel ls, who transmit and receive crude instructions in the form of blueprints rather
than words between neighboring cel l s. To make any use of these transmissions, they must

instructions

meanings3 meanings4

meanings5

meanings6

meanings1

meanings2

meaning

words

meaning

words

conduit: words contain
and convey meanings

toolmaker: words are
instructions for constructing
meanings

Figure 2.1: Comparing the conduit metaphor and the toolmakers paradigm (after Fig. 1 in
(Reddy 1993)).

32 Metaphor

actively fol low the instructions and construct the described object. Natural ly transmission is
imperfect in this system, and each recreation of meaning is subject to the interpretation of the
hearer.

The Toolmakers Paradigm is intended to be a metaphorical representation of a constructivist
theory of language, in which l isteners are active constructors of meanings rather than passive
recipients. The existence of an alternate metaphor is a powerful tool for thinking about alternate
theories of language. In the condui t metaphor, the sharing of meaning is assumed to be the
default case, and any divergence of interpretation is a problem to be explained by faults in the
transmission system. By contrast, the Toolmakers Paradigm emphasizes that shared meanings
are achievements, requiring careful coordination and interaction through l imi ted channels of
communication.

Al though the condui t/toolmakers example is a powerful dual metaphor for thinking about
constructivist theories of mind, Reddy’s main concern is to i l lustrate the pervasiveness of the
condui t metaphor and the way that i t can place a strong bias on theories of language. The
condui t metaphor plays a dual role in the history of the contemporary theory of metaphor. It
stands as an example of a common metaphor worked out in detai l , and as an i l lustration of how
linguistic theory itself can be built on and influenced by unquestioned metaphors.

Lakoff and Johnson, inspired by Reddy’s effort, embarked on a more comprehensive effort
to analyze the metaphor systems underlying everyday thought. They summarize their findings
by expressing the metaphors as short declarations of the mapping: LO VE IS A JO U RN EY o r
EMOTIONS ARE SUBSTANCES. According to Lakoff:

Most people are not too surprised to discover that emotional concepts l ike love and anger are
understood metaphorical ly. What is more interesting, and I think more exciting, is the real ization
that many of the most basic concepts in our conceptual system are also normally comprehended
via metaphor—concepts like time, quantity, state, change, action, cause, purpose, means, modality,
and even the concept of a category. These are concepts that enter normally into the grammars of
languages, and i f they are indeed metaphorical in nature, then metaphor becomes central to
grammar (Lakoff 1993, p.212).

Since computer programming concerns i tsel f w i th many of these same basic concepts, we
should not be surprised to find that metaphors underl ie the discourse of computation, and that
these metaphors are variants of those found in ordinary di scourse. To take one example,
Lakoff’s studies have revealed that the metaphorical representation of events in English involves
a basi cal l y spati al metaphor, w i th states being represented as l ocati ons, state-change as
movement, causes as forces, purposes as destinations, and so forth. This metaphor surfaces in
computation through such phrases as “ the process is blocked” or “ the machine went into a
run state” . These usages are so much a part of everyday use that, l ike the condui t metaphor,
they hardly seem like metaphors at all.

The viewpoint of the contemporary theory of metaphor leaves us with two points that w i l l
i nform the rest of th i s anal ysi s: f i rst , that some of our most fundamental concepts are
structured metaphorical ly, and second, that i t is possible (as the Toolmakers Paradigm shows)
to gain a new viewpoint on these concepts by proposing alternate metaphors.

Metaphor 33

2.1.2 Dead Metaphors

We’ve seen that some metaphorical structures are so ingrained into our habi ts of thought
and l anguage that they are very di ffi cul t to see as metaphors. They rai se the questi on of
whether such usages are real ly metaphorical in any meaningful sense. A dead metaphor i s one
that has become a conventional usage or phrase and so has (according to some theories of
metaphor) lost the l ive mapping between i ts domains. “ Fal l ing in love” is one example—the
phrase is so routinized that i t does not recal l any feel ings of physical fal l ing, al though the
metaphoric mapping is easy enough to recreate. “ Kick the bucket” is a better example, since i ts
l ive roots are even more distant

2
.

There is w ide diversi ty of opinion on the question of dead metaphors. According to Black
(Black 1962), dead metaphors are not real ly metaphors at al l , but should instead be considered
as separate vocabulary i tems. Lakoff is dubious about the uti l i ty of the concept—he bel ieves
that most conventional ized phrases sti l l retain traces of their origins in l iving metaphors (Lakoff
and Johnson 1980, p55). Gibbs (Gibbs 1993) points out that i f a metaphor was truly dead i t
w ould l ose i ts composi ti onal qual i ti es, but i n fact they sti l l remain. You can understand
expressions l ike “ fal l ing head-over-heels in love” even i f you had never heard that particular
vari ant of “ fal l i ng i n l ove” . Si nce the mappi ng betw een domai ns can be reacti vated to
comprehend this sort of novel phrase, the metaphor l ives on after al l .

M etaphors used i n techni cal di scourse often appear to be dead. Since the techni cal
meanings of phrases l ike “ a blocked process” or “ pushing a value onto the stack” , are perfectly
clear to experts, thei r metaphorical origins are often dismissed and ignored. Nonetheless the
view point of Lakoff and Gibbs i s sti l l useful and perhaps necessary to understanding the
conceptual bases of technical understanding. In this view, even when technical terms have
taken on what seems l ike an unproblematic formal meaning, they continue to maintain a l ink
back to their metaphor of origin, because the mechanisms for understanding are metaphorical at
their roots. Metaphors can differ in the degree to which they are taken for granted and kept out
of consciousness, but are rarely so dead as to completely detach themselves from their origins.

Another extremely conventional ized metaphor used in computation is the treatment of
memory as space and data as objects that are located and move within that space. The degree
of conventionalization of these usages is so high that some people get quite annoyed if attention
is draw n to thei r metaphori cal underpinnings. The MEM O RY IS SPACE metaphor might be

considered dead since it is extremely conventionalized, but it is sti l l al ive in Lakoff’s sense — the
mapping between domains is sti l l present and can be generative of new constructs, such as the
slangy term “ bi t bucket” (the mythi cal space w here l ost bi ts go) or the endless stream of
respectable techni cal terms that refl ect the metaphor (“ garbage col l ecti on” , “ parti t i on” ,
“ al location” , “ compacting” , and so forth).

Perhaps transparency i s a better metaphor than death to describe the condi ti on of the
metaphors underlying technical terminology. They do such a good job of structuring their target

2 Apparently the phrase derives from the actions of dying farm animals.

34 Metaphor

domain that they seem to disappear, and the lens of metaphor becomes an invisible pane of
glass. The question remains as to what makes particular metaphors achieve transparency. I
speculate that metaphors become transparent w hen they impose a strong structure on a
domain that was previously unstructured. These metaphors essential ly force one to think about
the target domain in their own terms, to the point where any al ternative way of structuring the
domain becomes forgotten and almost unthinkable. At this point, the winning metaphor is ready
to be taken l iterally. Such metaphors have been labeled theory-consti tutive metaphors by some
phi l osophers of sci ence. That i s, rather than simpl y mapping betw een the concepts and
vocabulary of tw o existing domains, as conventional metaphors do, a theory-consti tuti ve
metaphor can be said to create the structure of a new domain, based on the structure of an
existing one.

W here one theory-consti tuti ve metaphor i s dominant (for i nstance, the metaphor of
electrici ty as the flow of fluid, or of computer memory as a space), the terms that are brought to
the target domain tend to become conventional ized and transparent, such as the term current

in electrical theory. But not al l theories and metaphors are as wel l establ ished as these. Even
memory is sometimes viewed through alternate metaphors, i .e. as a functional mapping between
addresses and val ues. Computati onal di scourse seems to have a parti cul ar need to mi x
metaphors, as we shal l see.

2.1.3 The Metaphorical Nature of Scientific Understanding

The place of metaphor i n the di scourse of science has alw ays been problemati c. The
distinction between l i teral and metaphorical meanings was fi rst promulgated by Aristotle, who
grudgingly acknowledged the uti l i ty of metaphor in poetry but demanded that i t be el iminated
from the discourse of natural science. Lloyd argues that this dichotomy was in fact necessary
for the creation of a new rhetorical terri tory in which metaphor would be banned and l i teral ism
could flourish:

...the distinction between the literal and the metaphorical...was not just an innocent, neutral piece of
logical analysis, but a weapon forged to defend a terri tory, repel boarders, put down rivals (Lloyd
1989, p23).

So, the domain of science was in a sense brought into being by the very act of banishing
metaphor and other poetic forms of language. Scienti fic thought was to be of a form that dealt
only with literal truth.

Despite Aristotle, metaphors are commonly employed in scienti fic discourse, particularly in
informal and educational settings. Whi le scienti fic rhetoric may aspire to the l i teral , i t cannot
avoid the need to bootstrap new theories from old concepts using metaphor. Some theories of
metaphor i n science relegate the use of metaphors for trai ning to a separate category of
“ exegetical metaphor” , but as Kuhn points out (Kuhn 1993), every scientist must be trained
and thus such metaphors are not at al l marginal , but instead are a crucial part of the way in
which a scienti fic field reproduces i tsel f. The question then becomes whether the exegetical
metaphors are l ike scaffolding, used to erect a formal structure in the mind but discardable
when the task of construction is completed, or whether the structure maintains a l ive, dynamic
relationship to the metaphors that allowed it to be built.

Metaphor 35

Given that metaphor is a part of everyday scienti fic practice, why do most scientists act as
l i teral ists, paying l i ttle or no attention to metaphor and occasional ly expressing hosti l i ty to the
very i dea of i nvestigating them (Gross and Levi tt 1994)? The roots of scienti fi c rhetori c’ s
adherence to l i teral i sm may be sought in the social practi ces of scientists. The practi ce of
science demands the use of a rhetoric that promotes l i teral rather than metaphoric construals of
language. Latour (Latour 1987) paints a picture of science as a contest to establ ish facts, a
contest that depends as much on rhetorical moves as i t does on laboratories. Scientists jockey
to make their statements strong, so they wil l be taken as facts, whi le simultaneously working to
weaken the statements of rivals by painting them as constructions, hence questionable. The
rhetori cal tools for making a statement factual Latour cal l s positive modali ties (i .e., a bal d
statement of fact) whi le the tools for doing the opposi te are negative modali ties (i .e., “ D r. X
claims that [statement of fact]). “ It is around modal i ties that we wi l l find the fiercest disputes”
[Latour, op. cit. , p25]. Here, since we are interested specifical ly in rhetoric rather than ongoing
controversies among phi losophers of science, we need not trouble ourselves over whether
Latour’s model of science is complete. It does lead us to speculate that the competitive pressure
among scientists to establ ish facts w i l l also contribute to thei r tendency to hide or strip the
metaphors from the language. A statement that contains obvious metaphors is weaker than one
that contains ei ther no metaphors or only those so conventional ized as to be dead. Metaphor
use is not exactly a modal i ty in Latour’s sense, but i t can be seen that simi lar dynamics might
apply and tend to ei ther strip metaphor out of scienti fic discourse, or disguise i t as something
else.

However, not al l science is suffi cientl y developed that i t can maintain the pretense of
l i teralness. M etaphors are commonly used to introduce vocabulary and basic models into
scienti fi c fields: “ thei r function is a sort of catachresis—that i s, they are used to i ntroduce
theoretical terminology where none previously existed.” (Boyd 1993). The term catachresis
was introduced by Max Black in his influential early work on the interaction theory metaphor
(Black 1962). The interaction view posited a dynamic interaction between elements of the two
linked domains. But Black did not bel ieve that metaphors used in science were sti l l interactive,
since the meanings of the scienti fic terms were fixed, and that metaphoric vocabulary creation
w as mere catachresis, rather than a proper metaphor. Boyd disagrees, holding instead that
scienti fic use of metaphor does double duty—it creates vocabulary to describe a new domain,
and at the same time makes this new domain interact w i th the other domain involved in the
metaphor.

Boyd terms metaphors that are essenti al i n science theory-consti tutive metaphors. He
distinguishes these from metaphors used solely for pedagogic purposes, al though these might
have been more important earl ier in the science’s history. A good theory-consti tutive metaphor
is a tool that lets a scientist do his job of “ accommodating language to the causal structure of
the world” or “ carving the world at i ts joints.”3 H is primary example of a theory-consti tutive

metaphor is the use of computation as a foundational metaphor for cognitive psychology.

3A metaphor introduced by Plato in Phaedrus.

36 Metaphor

The use of metaphor in theory formation and change depends upon this open-endedness,
especial ly in young fields. However, the metaphor persists even as the scienti fic theory matures
and the parti cular points of analogy become expl i ci t. Sometimes complete expl i cation i s
impossible, but this is not an indication that metaphor is too imprecise to serve as the basis of
scienti fic theorizing. Rather, i t means that metaphors are tools among other tools that scientists
use to achieve their goals. Metaphoric interpretation remains open-ended as long as scienti fic
theories remain incomplete.

2.1.4 Formalization and Metaphor

Computer science contains a strong ideological bias against the recognition of metaphor. Its
emphasis on formal ism might almost be seen as a technology for making metaphors seem as
dead as possible. Formalists natural ly oppose metaphor as a particularly insidious form of non-
rigorous thinking. In computer science, Edsger D i jkstra has made his opinions of metaphor
widely known:

By means of metaphors and analogies, we try to l ink the new to the old, the novel to the famil iar.
Under sufficiently slow and gradual change, i t works reasonably wel l ; in the case of a sharp
discontinuity, however, the method breaks down....Coping with radical novelty requires... [that]
one must consider one’s own past, the experiences col lected, and the habi ts formed in i t as an
unfortunate accident of history, and one has to approach the radical novel ty w i th a blank mind,
consciously refusing to try to l ink history w i th what is al ready fami l iar, because the fami l iar is
hopelessly inadequate [emphasis added].

...both the number of symbols involved and the amount of manipulation performed [in complex
computations] are many orders of magnitude larger than we can envisage. They total ly baffle our
imagination, and we must, therefore, not try to imagine them (Dijkstra 1989).

Thi s v i ew , w h i l e i t seems w i l d l y w rong to me, i s at l east grounded i n a def i n i te
epistemological theory. To Di jkstra, certain domains l ike computation (quantum mechanics is
another example) are so radical ly new that they must be approached with a total ly blank mind.
Thi s theory i s basi cal l y the opposi te of the one w e are devel opi ng here, namel y that
computation, l ike anything else, is understood in terms of structures defined by mappings from
other domains of knowledge. In place of metaphor and imagination, Di jkstra advocates the use
of formal mathematics and logic.

H ow ever, formal i sm does not real l y offer an escape from metaphor, for tw o separate
reasons. First, even formal mathematics is riddled with metaphorical terms and concepts, such
as the notion of a function having a slope

4
 (a physical metaphor) or being wel l -behaved (an

animate metaphor). Secondly, very few mathematicians would claim that the use of formal
methods exempts them from the need to use their imagination!

A more real istic viewpoint on the relationship between metaphor and formal ism may be
found in Agre’s claim that the defining characteristic of technical language is that it l inks together
two separate domains of reference: the real-world domain being formal ized and the “ Platonic

4 These examples are taken from David Pimm’s analysis of mathematical language (Pimm 1987).

Metaphor 37

realm of mathematics” (Agre 1992) (Agre 1996). This cross-domain mapping is essential ly a
metaphorical process in which aspects of the real world target domain are understood in terms
of the formalized and well-understood source domain of mathematics.

Such a mapping wi l l always emphasize certain parts of the world at the expense of others.
Aspects that are readi ly translated into mathematical terms wi l l be preserved by the metaphor,
whi le other aspects wi l l become marginalized. The concept of margins derives from Derrida’s
philosophical deconstructions, in particular the idea that metaphors or world-views can contain
“ hierarchical oppositions” which classify phenomenon into central and marginal categories. The
phenomenon of marginal ization w i l l cause research programs to organize themselves around
parti cular central problems (those that the mathematics can describe) whi le pushing other
equal l y i mportant probl ems out i nto subf i el ds, i nto “ areas for future w ork” , or out of
consideration entirely. Agre’s solution to this form of intel lectual tunnel-vision is to deploy new
metaphors and more importantl y to develop a “ reflexive cri ti cal awareness” of the role of
metaphor in technical work.

Deconstruction is a set of techniques for achieving this sort of awareness by systematical ly
questioning the dominant opposi tions and metaphors that structure a field of knowledge. One
of these techniques, inversion, is to construct an al ternate system that inverts the center and
margins created by the dominant metaphor, thereby exposing the assumptions of the original
metaphor and bringing the previously marginal ized aspects of the phenomenon to attention.
Reddy’s Conduit metaphor is a good example of such an inversion.

Agre’s project is to deconstruct what he sees as the dominant mental istic metaphors within
AI and Cartesian-influenced views in general . Mental ism is a broad structuring metaphor that
posi ts an i n ternal representat i onal space i n bo th humans and computers, i n w h i ch
representational objects dw el l and mental processes take place. M ental i sm, Agre argues,
emphasizes the i nternal mental processes that take place i nside thi s space at the cost of
marginal izing the interactions between inside and outside. To counteract this, he offers the
al ternati ve metaphor system of interactionism , w hi ch emphasi zes preci sel y the opposi te
phenomena. From the interactionist perspective, the dynamic relationship of an agent and i ts
envi ronment i s of central i nterest, whi le the machinery inside the agent that generates i ts
behavior is secondary.

My own project can be viewed, loosely, in deconstructive terms. In the next chapter, I
explore use of animism in describing the world in general and computation in particular. The
language of computation appears to involve both formal mathematical language and a more
informal use of various metaphors, particularly metaphors that map computation on to the
domain of animacy. While neither mode is completely dominant, the use of animism is generally
confined to pedagogic or informal contexts, and is in some sense marginal ized by the strong
bias in favor of mathematical formalism that pervades academic discourse. By making animism
the central concept of my analysis of programming languages, and designing new agent-based
languages that incorporate the use of animate metaphors, I hope in some sense to deconstruct
the languages of computation.

The purpose of such deconstruction is to be cri ti cal , not destructi ve. Computation has
unquestionably provided powerful new conceptual tools for laying hold of the world. But

38 Metaphor

computation has i ts l imi ts, as i ts practi tioners are constantly forced to acknowledge. Some of
these l imi tations mani fest themselves in rel iabi l i ty problems, bri ttleness, and the di fficul ties
encountered by both novices and experts in expressing simple ideas in the form of programs.
Probing the conceptual underpinnings of the metaphors used to construct computation is one
way to try and understand, and possibly circumvent, these l imitations.

2.2 Metaphors in Programming

Computers are useless; they can only give you answers.
—Pablo Picasso

M etaphor plays a key role i n the di scourse of science as a tool for constructi ng new
concepts and terminology. The uti l i ty of theory-consti tutive metaphors depends upon how
accurately the concepts they generate actual ly do “ carve the world at i ts natural joints” , in
Boyd’s terms. More radical ly constructivist wri ters have argued over the assumption that such
natural joints exist to be found (Kuhn 1993), but most are real ists who bel ieve at least that the
natural w orld exi sts and has structure i ndependentl y of our metaphors. H ow ever, i n the
discourse of computer science metaphor plays an even more central role. Here metaphors are
used not so much to carve up a pre-existing natural world, but to found arti ficial worlds whose
characteristics can then be explored. The metaphors create both the world and the joints along
which it can be carved.

Computer scientists thus l ive in metaphor the way fish l ive in water, and l ike fish rarely take
note of their medium. Their metaphors tend to become transparent, and so terms that start their
careers w i th cl ear metaphori cal roots, such as “ structures” , “ objects” , or “ stacks” , very
quickly gather formalized technical meanings that appear to be detached from their origins in the
source domain. This phenomenon exists in other fields but is particularly acute in computer
systems because the objects involved are so hidden from view that the only terms we have for
referring to them are metaphorical. This makes the metaphor dead on arrival—since there is no
truly l i teral way to refer to computational objects, the metaphorical terms soon take on a l i teral
quality.

But under our view of metaphor, techni cal terminology does not real l y ever become
completely detached from its metaphorical roots. In this section we’l l take a look at some of the
metaphors underlying computation and the diverse set of metaphorical models that underl ie
programming languages. A theme of the discussion w i l l be the idea that anthropomorphic
metaphors are often present in computation, in varying degrees of expl ici tness. This derives
from the fact that programs are often concerned wi th action and actors, and that our tools for
understanding this domain are grounded in our understanding of human action. This idea is
taken up in more detail in the next chapter.

2.2.1 The Idea of Computation

Computation itself is a structuring metaphor for certain kinds of activi ty in both people and
machines. Human behavior may be seen as a matter of “ computing the answer to the problem
of getting along in the world” , although there are certainly other ways to look at human activity.

Metaphor 39

Simi larly, a computer (which from a more l i teral view might be seen as nothing more than a
compl ex el ectri cal ci rcui t) may be seen vari ousl y as sol vi ng probl ems, moni tori ng and
control l ing external devices, servicing i ts users, simulating a col lection of virtual machines, and
so forth. The use of the term “ computati on” to descri be the acti vi ty of certai n complex
electronic devices is i tsel f metaphorical , a historical arti fact of the computer’s origins. As an
organizing metaphor, i t privi leges certain aspects of the domain over others. In particular, l ike
the mental istic view of the mind, i t privi leges the formal operations that take place inside the a
computer while marginalizing the interactions of the computer with the outside world.

Historically, computation grew up around the formal notion of a mechanical realization of a
mathemati cal functi on. A computer w as seen as a devi ce for accepti ng an i nput str i ng,
generating an output, and then hal ting. This model was perfectly adequate for the tasks that
early computers were asked to perform (such as cryptography) but was stretched further by
later appl ications that could not be so readi ly cast as “ problem solving” . In parti cular, the
problem-solving model lacked any notion of an ongoing relationship wi th the external world.
Cyberneticists such as Gregory Bateson were thus impel led to attack the computational model
for ignoring feedback relationships (Bateson 1972), and more recently a rebell ious faction of the
arti ficial intel l igence field has grown dissatisfied with the problem-solving model of control l ing
autonomous agents and has proposed al ternative models that emphasize interaction w i th the
world (Agre 1995).

Of course, despi te the l imitations of the formal model of computation, computing devices
have since been employed in a vast array of applications that involve this kind of ongoing, time-
embedded control . A great many more computers are employed as embedded control devices
in mechanisms such as cars, airplanes, or microwave ovens than as purely symbol ic problem-
solvers. So the l imitations of the metaphor have not, in this sense, proved to be a l imitation on
practice. However, they have certainly had their affect on computational theory, which on the
whole has had l i ttle relevance to the design of embedded control systems.

2.2.2 Metaphors Make Computation Tangible

Expl i ci t metaphors are often used to teach beginners how to program. O ne common
example, by now a cl iché, is to describe the interpretation of a program as similar to fol lowing
the steps of a recipe. These instructional metaphors al low a student to understand the abstruse
operations of the computer in terms borrowed from more fami l iar domains. This is almost a
necessity for learning about the operations of a system that cannot be directly perceived. Since
the purpose of these metaphoric models is to describe something that is hidden in terms of
something visible, the source domains are often taken from the concrete5 physical world, such

as boxes containing pieces of paper as a metaphor for variables containing values.

5 I disl ike the term “ concrete” and i ts pai red opposi te “ abstract” in this context, but since they are
general ly accepted I w i l l continue to use them. The reason for my disl ike is that they are inaccurate. The
process of executing a M O VE instruction inside the computer is just as concrete as the act of moving a
block from one box to another: i t is not an abstraction, but an actual physical change. The difference is not
one of concreteness but of fami l iari ty and accessibi l i ty to the senses. I prefer the term tangible (from the
Latin tangere, to touch) as a replacement for concrete, because i t better denotes the relevant feature of

40 Metaphor

(M ayer 1989) show ed that gi ving novices metaphori cal models of computer language
interpreters resul ted in improved learning compared to a more l i teral technical presentation.
Mayer used a variety of metaphorical models in his experiments. One such model included
mappings such as ticket w indows for input and output ports, scoreboards for memory, and a
to-do l ist w ith an arrow marker for the interpreter’s program and program counter. This model
was presented both as a diagram and a textual description. Students who were presented with
the model did better on tests, particularly on problems requiring “ transfer” —that is, problems
that involved concepts not presented di rectly in the original instructional materials. Further
studies showed that presenting the model before the main body of material resulted in students
who scored higher on tests than those who had the model presented to them afterwards. This
supports the idea that famil iarity with the model aids in the assimilation of the technical content
by giving it a meaningful context.

Sometimes tangible metaphors can resul t in inval id inferences that bring over i rrelevant
characteristics of the source domain. In one case, students who were told a variable was l ike a
box inferred that, l ike a physical box, i t could hold more than one object (Boulay 1989). In a
simi l ar vein, students show n the sequence of assignment statements LET A= 2 ; LET B= A

interpreted them to mean (again using the container metaphor) that a single concrete object, 2 ,
is fi rst placed into A, then taken out o f A and put i n to B, leaving A empty. In thi s case the
students were overapplying the object and containment metaphors, concluding that 2 had the
property of only being capable of being in one place at one time and thus having to leave A
before i t could be in B. These sorts of overattribution errors indicate that learning to apply a
metaphor is not always a simple matter. In addition to the metaphoric mapping i tself, one must
also know the limits of its application.

O f course an al ternative to using concrete metaphors for computation is to change the
computer system i tsel f so that i ts operations actual l y are concrete (that i s, tangible). This
possibi l i ty i s discussed in Chapter 4. Systems w i th tangible interfaces sti l l might generate
problems of inval id inference from the physical domain, but provide an opportuni ty for users
to debug their metaphoric mapping through interaction with the objects of the target domain.

2.2.3 Metaphoric Models for Computation

In this section we examine some of the common models of programming and the metaphor
systems that underl ie them. These include:

• the imperative model , in which the computer is cast in the role of a sequential instruction
follower;

• t h e functional model , w hi ch emphasi zes the computat i on of val ues rather than the
sequential following of instructions;

being accessible to the senses. There is no such substi tute for “ abstract” , however. Abstruse o r obscure,
both of which essentially mean “ hidden from view” , are better, but they have an unfortunate connotation of
inherent difficulty or complexity.

Metaphor 41

• t h e procedural model , w hich i ntegrates the imperati ve and functi onal metaphors and
provides a powerful method of decomposing programs into parts;

• the object-oriented model, which reorganizes a program around the data that i t manipulates,
and is deliberately founded on a metaphor of physical and social objects;

• the constraint model, which al lows a programmer to combine procedures with declarative
information about what they do.

The anal ysi s presented here i s i n terms of the broad metaphors used to explai n and
understand programs, and wi l l gloss over many of the more formal properties of programming
languages. For instance, (Steele and Sussman 1976) presents the fascinating resul t that many
imperative constructs, such as goto, can be easi ly simulated using only functional constructs
given a language that supports recursive high-order procedures. Despite this theoretical result,
and many other simi lar ones that demonstrate that di fferent languages have equivalent formal
powers, the basic concepts used to make sense of imperative and functional programs remain
quite distinct.

The discussion here sets the stage for the next chapter, w hich explores one parti cular
aspect of metaphorical grounding in more detail (in particular, see section 3.3.2). This is the role
of anthropomorphic or animate metaphors in the description of computational activi ty. This
metaphor system is pervasive in computation for historical and practical reasons. In particular,
we w i l l look at agent-based models of programming, which are expl ici tl y organized around
anthropomorphic metaphors.

2.2.3.1 The Imperative Model

One of the fundamental metaphor systems used to describe computer processes i s the
imperative model. This model underl ies most discourse about the hardware levels of computer
systems, and i s the source o f such terms as instruction a n d command . The imperati ve
metaphor underl ies most naive models of computing such as the transaction level model (Mayer
1979) and the descri pt i ons of computati on found i n begi nner’ s texts. I t al so forms the
conceptual basis underlying popular early computer languages such as BASIC and FORTRAN.
But i t may also be found in i ts earl iest forms in Turing’s and von Neumann’s description of the
fi rst theoretical computing machines, and so is real ly at the very root of the modern idea of
computation itself.

The i mperat i ve model captures the not i on of the computer as a devi ce capabl e of
sequential ly executing simple instructions according to a stored program. The basic elements of
this metaphoric model are:

• a fixed set of primitive actions that the computer is capable of executing in a single step, that
perform operations on memory or on I/O devices;

• a single active instruction fol lower that reads a program a step at a time and takes an action
based on the current step;

• a program that controls the instruction fol lower, consisting of a sequence of steps that
either specify primitive actions or control-flow changes;

• a passive memory that the fol lower can read from and write to;

42 Metaphor

• a set of input and output devices.

In the next chapter we wi l l look at the anthropomorphic roots of the imperative metaphor.
Here we should just notice the emphasis on a single implicit agent, step-by-step activity, and the
mechanical nature of each step. In the imperative metaphor, the interpreter is visual ized as a
sort of person, albeit a rather stupid or robotic person, reading instructions and fol lowing them
in a manner that could readi ly be dupl icated by machinery. Each primi tive action is simple
enough to be executed without any need of further interpretation; no intel l igence or knowledge
is required of the instruction fol lower.

W hat sort of language is sui table for speci fying the program for such a computer? This
model is called the imperative model because the elements of such languages are commands. If
such a statement were to be translated into English it would be in the imperative mode. They are
instructions to the implicit agent inside the computer. An imperative sentence (i.e., “ Give me the
pipe! ”) has an impl ied subject, namely the target of the command, which does not appear
expl ici tly as a word but is impl ied by the structure of the sentence. Simi larly, in an imperative
language the subject of the instruction does not appear expl ici tly but is impl ied—the computer
itself, or the instruction follower within it, is the implied subject who will execute the command.

2.2.3.2 The Functional Model

If the imperative model emphasizes control of sequential operations, then the functional
model emphasi zes val ues, expressi ons, and computati on i n the mathemati cal sense. In
functional languages (i .e. Haskel l (Hudak, Jones et al . 1991)), the fundamental uni t is not an
imperative command, but an expression that speci fies a value. Whi le most languages support
functional expressions to some extent, pure functional languages enforce the functional style
by having no support for state and no imperative constructs l ike assignment and sequencing.
Most functional languages support high-order functions, or functions that can accept other
functions as arguments and return them as values.

The functional model uses the concept of a mathematical function as its founding metaphor.
Like the imperative model , the functional model was present at the very start of the history of
computing. Whereas the imperative model emphasizes action, the functional model emphasizes
the resul ts of action, expressed as a functional relation between input and output i tems. The
Turing machine computes a function using imperative operations. In some sense, the joining of
these two di fferent ways of thinking in the Turing machine was the founding act of computer
science, and the two models continue to be interwoven in various ways as the field grows.

Functional languages are favored as a theoretical tool by computer scientists, because
functional programs are much easier to analyze than those that incorporate state and state
change. They also permit the use of a variety of powerful expressive techniques, such as lazy
evaluation, which are problematic in the presence of state change. Conversely, functional
languages do poorly at integrating imperative constructions and state, which in turn introduces
issues of time, control, and serial ization. There have been quite a few efforts to graft imperative
capabi l i ties onto purely functional languages, but as one paper on the subject put i t, “ fi tting
action into the functional paradigm feels l ike fi tting a square block into a round hole” (Jones and
Wadler 1993).

Metaphor 43

O ne of the most successfu l end-user programmi ng techni ques ever i nvented, the
spreadsheet, uses w hat i s essenti al l y a functi onal model of programming. Each cel l i n a
spreadsheet contains a functional expression that speci fies the value for the cel l , based on
values i n other cel l s. There are no imperati ve i nstructi ons, at l east i n the basi c, ori ginal
spreadsheet model . In a sense each spreadsheet cel l pulls i n the outside values i t needs to
compute i ts own value, as opposed to imperative systems where a central agent pushes values
into cells.6 In some sense each cel l may be thought of as an agent that monitors i ts depended-

upon cel ls and updates i tsel f when i t needs to. As Nardi (1993)(Nardi 1993) points out, the
control constructs of imperati ve languages are one of the most di ffi cul t things for users to
grasp. Spreadsheets el iminate this barrier to end-user programming by dispensing with the need
for control constructs, replacing them with functional constructs.

Functional programming lends itself to metaphors of connection and flow. Functions can be
pictured as physical devices, akin to logic gates, w i th a number of input and output ports,
continuously computing the appropriate values for their outputs given their inputs. Functional
composi tion then is simply connecting up the input ports of one device to the output ports of
other devices. The network acts to continual ly maintain a relationship between inputs and
outputs.

Flow metaphors are straightforward to represent graphical ly, and there have been qui te a
number of visual programming environments that make use of them, including Hookup (Sloane,
Levi tt et al . 1986), VennLISP (Lakin 1986), Fabrik (Ingal ls, Wal lace et al . 1988) and Tinkertoy
(Edel 1986). Graphic dataflow languages l i ke these are especial l y w el l -sui ted to bui lding
programs that operate real-time devices or process streams of data. In this context, a program
essential ly operates as a fi l ter-l ike device, accepting a stream of data, processing i t a single
element at a time, and producing a corresponding output stream. Hookup, for instance, was
designed to w ork i n real t ime w i th streams of M ID I data to and from electroni c musi cal
instruments, while LabView was designed to handle laboratory instrumentation tasks.

Figure 2.2 (after Hookup). A network for computing centigrade temperature from Fahrenheit. Data
flows left to right.

6 For a longer discussion of pushing/pull ing metaphors in multiagent systems see (Travers 1988).

44 Metaphor

Figure 2.2 shows an example of a graphic representation, modeled after the appearance of
Hookup, of a functional program to convert temperature from Fahrenhei t to centigrade uni ts
using the formula:

C = (F - 32) * 5/ 9

The flow of data is left to right. Functions are represented by graphical symbols akin to
those used to represent gates in digi tal logic. Input and output values are indicated in boxes
(input boxes are on the left and supply values, output boxes receive values). In Hookup, the
values of outputs are effectively being computed continuously, and so the value in centigrade
w i l l update instantaneously w henever any of the inputs change. N ote that thi s presents a
somewhat di fferent environment than a standard functional language, in which the appl ication
of a functi on to arguments must be done expl i ci tl y. In a H ookup-l i ke l anguage, functi on
appl ication is performed automatical ly whenever an argument changes. Graphic data flow
languages thus take a step towards view ing functions as continuously maintained relations
rather than procedures.

Whereas regular functional languages do not deal wel l with input and output, the dataflow
variant is able to model these in the form of continuous streams of changing values. In this
model , i nput devi ces appear as sources for the fl ow of values through the netw orks, but
sources that change thei r values over time. Output devices correspondingly are sinks which
accept a stream of changing values. The mouse icon, highl ighted at the center of figure 2.3, is
an example of an input device, with three separate output flows for X, Y, and BU TTO N .

Hookup also extended the flow metaphor to deal w i th state. Its dataflow metaphor was
based loosely on digi tal logic, w i th functions represented as gates. In addi tion to stateless
devi ces such as gates, H ookup i ncl uded devi ces w i th state that functi oned i n a manner
analogous to registers in digi tal logic. A register had a special clocking input that would cause
the current i nput val ue to become current and present on the output w i re. Thi s w ay of
handl ing state at least made sense within the dominant metaphor of the system. However, the
presence of state also introduces a requirement for sequential control , which was not readily
supported by the metaphor. Hookup included clocks and clockable sequence objects that
provided some abi l i ty to provide sequences of values, but using these to control sequences of
events was awkward.

Metaphor 45

Figure 2.3 A Hookup network to control a bouncing animated figure. It incorporates input from the
mouse, output with sound and animation, and internal state registers.

The Playground environment (Fenton and Beck 1989) was another interactive system and
language that was organized around a functional model but ran into trouble when trying to deal
w i th tasks that were more natural ly expressed using imperative constructs. Playground, l ike
LiveWorld, was designed to be a platform for model ing worlds in which graphic objects were
expected to perform actions. The basic uni t of computation was an “ agent” that functioned
more-or-less as a functional spreadsheet cel l . Slots inside objects were agents, and each agent
w as in charge of computing i ts ow n value in a functional style (speci fi ed by means of an
expression language w i th Engl ish-l i ke syntax). This included slots speci fying basic graphic
i nformati on such as x and y posi t i on and si ze. In essence the processi ng of the system
involved a paral lel recomputation of al l cel ls, w i th the new value speci fied as a functional
expression.

As might be expected, i t was difficult to express actions using this model. For instance, you
could not easi ly say “ go forward 10 steps” —instead, you had to speci fy separate functional
expressions for computing the next values of the x and y coordinates. It was possible to have a
rule for, say, the x cell that set its value to x + 10 continual ly, and this which would produce a
constant motion in the x direction, and this could even be made conditional, but essential ly this
model forced the program to be organized around low-level concepts l ike position rather than
behavior. Eventual ly this spreadsheet-based programming model had to be augmented w i th
additional imperative constructs.

By dispensing with state and control issues, the functional metaphor presents a very simple
model of computation that can be made readi l y accessible to novices through a variety of

46 Metaphor

interface metaphors. The lack of state and control drastical ly simpli fies the language and makes
the system as a whole more transparent. But Playground shows that there are fundamental
problems w i th the use of the functional model as the sole or primary basis for programming
animate systems. The downside of el iminating control is that programs that need to take action
or exert sequential control are di fficul t7 or impossible to construct. For animate programming,

where action is foremost, functional programming seems unnatural in the extreme.

2.2.3.3 The Procedural Model

The procedural model of programming, which underl ies modern languages l ike Lisp and
Pascal, combines elements of the imperative and functional metaphors within the more powerful
overarching framework of procedural abstraction. The procedural model thus is not founded
directly on a single metaphor, al though i t lends i tself to new and powerful forms of description
based on anthropomorphic and social metaphors.

U nder the procedural model , a program i s constructed out of smal l er programs or
procedures. A procedure can both carry out instructions (l i ke an imperati ve program) and
return values (l ike a function). The procedural model introduces the notion that one procedure
can call another to perform some task or compute some value. The metaphoric and animate
suggestiveness of the term call indicates the beginnings of an anthropomorphic, multiagent view
of computation. A procedure, encapsulates as i t does both the imperati ve and functional
aspects of the computer, is in essence a miniature image of the computer as a whole.

Of course, “ procedures” in the loose sense of the word can be created in any language.
What procedural languages do is to rei fy the notion of procedure, so they become objects for
the user, that can be manipulated and combined into more complex arrangements. Some
beginner’s languages (i .e. Logo) have a distinct notion of procedure, whi le others (BASIC, at
least in i ts original form) do not. The availabil i ty of named procedures can have an effect on the
developing epistemology of the student:

In programming cul tures l i ke those of LISP, Pascal , and LO GO , i n w hi ch procedures and
hierarchical structures have been given concrete identity, programmers find powerful metaphors in
tree searches and in recursive processes. There is a tendency to anthropomorphize, to look at
control mechanisms among procedures and w i thin the flow of procedures in terms of actors or
demons, or other creatures resident in the computer capable of giving advice, passing data,
receiving data, activating procedures, changing procedures, etc. (Solomon 1986, p. 98).

Papert al so emphasi zes the importance of procedures as a thi nki ng tool . They are a
computational realization of what he calls the principle of epistemological modularity, that is, the
idea that knowledge and procedures must be broken up into chunks that can be cal led up from
the outside without the caller having to know about the inside:

Everyone works with procedures in everyday l i fe ... but in everyday l i fe, procedures are l ived and
used, they are not necessari ly reflected on. In the LOGO environment, a procedure becomes a

7There are some tricky techniques that al low functional languages to express imperative constructs
(Henderson 1980) (Jones and Wadler 1993), for instance turning actions into representations of actions that
can then be manipulated through functions. These techniques are theoretically interesting but do not really
affect the arguments here.

Metaphor 47

thing that is named, manipulated, and recognized as the chi ldren come to acqui re the idea of
procedure (Papert 1980, p154).

In procedural languages, control is sti l l essential ly imperative, in that there is a single locus
of control serial ly executing commands, but instead of a program being an undi fferentiated
mass of instructions, i t i s organized into a mul tipl i ci ty of procedures. The locus of control
passes l ike a baton from procedure to procedure, with the result that one can see the operation
of a program in either single-actor or multiple-actor terms.

The procedural model lends itself to an animistic metaphor of “ l i ttle people” who l ive in the
computer and can execute procedures and communicate among themselves (see secti on
3.3.2.1). The properties of the procedural model that lend i tsel f to anthropomorphization
include the modularization of programs into smal l , task-based parts and the existence of a
simple yet powerful model for inter-procedure communication through cal l ing and return
conventions. The procedural model , then, is the fi rst step towards an agent-based model of
computation.

Procedures, l ike the computer i tself, can be approached through any or al l of the metaphor
systems mentioned thus far: imperative, functional, and anthropomorphic. Since a procedure is
as fl exi bl e and conceptual l y ri ch as the computer i tsel f, i t essenti al l y permi ts recursi ve
appl ication of the metaphorical tools of understanding. But the procedural world introduces
new powers and compl ications. Because there are mul tiple procedures, they need to have
w ays to communicate and new metaphors to support communicati on. In l anguages that
support procedures as f i rst-cl ass obj ects, the metaphor i s compl i cated by the fact that
procedures can create and act on other procedures, as wel l as communicate with them. Issues
of boundaries and modulari ty also arise in a world w i th mul tiple actors. Some of these issues
are treated by object-oriented models of programming.

Al though procedures are anthropomorphized, they are in some sense more passive than
the metaphor suggests. They wil l only act when cal led from the outside. This, too, derives from
the formal Turing model of the computer as a whole, which treats i t as a device for computing
the answer to a single input problem and then halting, with no interaction with the world other
than the original parameters of the problem and the final result. Real computers are much more
l ikely to be running a continual , steady-state, non-terminating process, constantly interacting
w i th external dev i ces. The formal model does not adequatel y capture th i s aspect o f
computat i on, and the procedural model too tends to margi nal i ze i t . Real procedural
programming systems often, but not alw ays, make up for thi s by extending the model to
include w ays to i nterface w i th the outside w orld, for i nstance by being able to speci fy a
procedure that wil l execute whenever a particular kind of external event occurs. This is a useful
feature, but sti l l leaves control , interaction, and autonomy as marginal concepts relative to the
basic procedural model. One purpose of agent-based models of programming is to bring these
issues to the center.

2.2.3.4 The Object Model

O bj ect-or i ented programmi ng (O O P) i s an i n terest i ng exampl e of a programmi ng
methodology expl ici tly organized around a powerful metaphor. In OOP, computational objects

48 Metaphor

are depicted metaphorical ly in terms of physical and social objects. Like physical objects, they
can have properties and state, and l ike social objects, they can communicate and respond to
communications.

Historically, OOP arose out of languages designed for simulation, particularly Simula (Dahl,
Myhrhaug et al . 1970) and for novice programming in graphic environments such as SmallTalk
(Goldberg and Kay 1976). In object-oriented simulations, the computational objects are not
only treated as real -w orld objects, but they al so represent real -w orld objects. A standard
example is the spaceship, which is modeled by a computational object that has properties l ike
position, orientation, and mass; and can perform acti ons l i ke rotate a n d accelerate. The
object-oriented metaphor expl ici tly acknowledges the representational relationship between
computational structures and real -world objects, and encourages the development of such
representational relationships. But because computational objects have properties that are quite
di fferent from spaceships and other real -world objects, the elements of the mapping must be
careful ly selected so that, on one hand, the computational elements are both powerful and
parsi moni ous, and on the other, a suff i c i entl y r i ch subset of real -w orl d propert i es and
behaviors are encompassed. In most OOP languages, objects are organized into classes or
types that make up an inheritance hierarchy.

 OOP may be viewed as a paradigm for modularizing or reorganizing programs. Rather than
existing in an undi fferentiated sea of code, parts of programs in O O P are associated w i th
particular objects. In some sense they are contained in the objects, part of them. Whereas the
procedural model offered communication from procedure to procedure, through the metaphor
of call ing, in OOP, communication between procedures (methods) is mediated by the objects.

A variety of metaphors thus are used to represent the communication and containment
aspects of O O P. The earl i est O O P languages used the metaphor of sending messages t o
objects to represent program invocation. Objects contain methods (or behaviors o r scripts in
some vari ants) for handl i ng parti cular ki nds of messages; these methods are procedures
themsel ves and carry out thei r tasks by sending further messages to other objects. O O P
languages use constructs l ike send , ask, o r <== to denote a message send operation. Objects
also contain slots that hold state. In general the slots of an object are only accessible to the
methods of that object—or in other words, the only way to access the internal state of the
object i s by means of sending the object messages. O bjects can have a ti ghtl y control l ed
interface that hides i ts internal state from the outside world. The interface of an object thus acts
somewhat like the membrane of a cell.

These simple elements have gi ven range to a w ide vari ety of extensions to the basi c
metaphor, and a correspondingly vast l i terature on object-oriented methodologies and more
recently, object-oriented “ design patterns” (Gamma, Helm et al . 1994). The diversi ty of such
schemes indicates that whi le the basic mapping between computational and real-world objects
may be intuitive and straightforward, the ramifications of that mapping are not. In any real OOP
system, there are always hard design choices to make reflecting the fact that there wi l l always
be more than one way to carve the world up into objects.

The history of object-oriented programming shows how technology that evolved around a
particular metaphor can be subject to forces that tend to stretch or violate that metaphor. The

Metaphor 49

original simple idea behind OOP—objects receive messages and decide for themselves how to
respond to them—is complicated by many issues that come up when trying to real ize the idea.
One complication is the related issues of object types, hierarchies, inheritance, and delegation.
Multiple inheri tance, whi le a useful technique, involves quite complicated issues and does not
have a single natural formulation. The prototype-based, slot-level inheri tance of Framer and
LiveWorld (see chapter 4) are attempts to deal with some of these problems in a more intui tive
way.

It i s known that message-passing and procedure cal l ing are formal ly equivalent (Steele
1976). Some OOP languages (l ike CLOS (Steele 1990) and Dylan (Apple Computer 1992)) try to
exploit this by getting rid of the message-passing metaphor and using regular procedure cal l ing
to invoke object methods. This has the advantage that method selection can be special ized on
more than one object. This technique, while powerful, is somewhat at variance with the object-
oriented metaphor as previously understood. Because a method can be special ized on any
argument, the method can no longer be seen as associated w i th or contained inside a single
object or cl ass. H ere w e have a case of tw o metaphors for communicati on clashing and
combining wi th each other. Proponents of the generic procedure approach point out that i t is
more powerful , more elegant, and (in the case of CLOS) more integrated w i th the underlying
procedural language. Opponents decry the violation of the object metaphor and the increased
complexity of dispatching on multiple arguments.

The Actor model of computation (Hewitt 1976) was another important early influence in the
development of OOP, and deserves mention here. The name is obviously anthropomorphic,
and a variety of anthropomorphic metaphors influenced i ts development, including the l i ttle-
person metaphor (Smith and Hewitt 1975) and the scientific community metaphor (Kornfeld and
Hewitt 1981). The Actor model was expl ici tly designed to support concurrency and distributed
systems.

The object-oriented programming model is a natural outgrowth of the procedural model ,
and shares a good many of i ts features. From a broad historical perspective, i t can be seen as a
further step in the rei fication and anthropomorphization of parts of programs, necessi tated by
the need to manage more complex programs and distributed systems. Rather than programs
and data existing in an undifferentiated mass, the various components are organized, managed,
and encapsulated. The emphasis as a resul t is on communication between the now separated
parts of the system.

2.2.3.5 The Constraint Model

The constraint model i s something of a departure from the other programming models
considered so far. Despi te thei r di ffering metaphoric bases, to program in al l the previous
models i s to provide the computer w i th a ful l y deterministi c procedure for carrying out a
computation. Even functional languages general ly have an imperative interpretation so that the
programmer w i l l be aware of the sequence of events which w i l l occur when the program is
executed. Constraint languages, in contrast, implement a form of declarative programming in
which only the relations between objects are speci fied by the programmer whi le leaving the
procedural detai ls of how to enforce these relations up to the constraint-solving system. As a

50 Metaphor

resul t, constraint languages require signi ficantly more intel l igence in their interpreter, whose
operation is thus harder to understand.

However, from the metaphorical standpoint constraint systems may be seen as a natural
extension of the flow metaphor found in functional languages. In a functional language, flow is
unidi rectional , but in a constraint system, data can flow in ei ther di rection along a l ink. To
i l l ustrate thi s, l et’ s return to the temperature conversion example of section 2.2.3.2. In a
constraint language, the statement:

C = (F - 32) * 5/ 9

is not only an instruction about how to compute C given F, but a general declaration of a
relationship between the two quanti ties, so that ei ther may be computed from the other. The
constraint system has the responsibi l i ty for figuring out how to perform this calculation, and
thus must have some algebraic knowledge or the equivalent.

This knowledge takes the form of a variety of constraint-solving techniques. The simplest
technique, local propagation of known values, is readi ly expressed through the flow metaphor.
In the functional version of the flow metaphor, values flow from inputs along w ires, through
devices, and eventual ly produce output values. In local propagation, values flow in a simi lar
way, but the wires are bi-directional and input and outputs are not distinguished. There are sti l l
computational devices, but instead of having distinguished input and output ports any port can
serve as an input or an output (or i n other w ords, i nstead of implementing functions they
implement relations). Such a device w i l l produce an output on any port whenever i t receives
sufficient inputs on i ts other ports.

Figure 2.4: A constraint network.

Figure 2.4 shows a constraint-based variant of the dataflow network from Figure 2.2. In
contrast w i th the earl ier figure, here data can flow in ei ther direction along a wire, so that the
value in the centigrade box might have been specified by the user or computed by the network.
The arrows show one possible flow pattern, which would resul t from the user speci fying the
value of centigrade. The distinction between input and output boxes no longer holds, but a
new distinction must be made between constants and variables—otherwise the network might
choose to change the value of the constant 32 rather than the value in the Fahrenhei t box!
Constants are indicated by putting a padlock beside them, to indicate to the solver that i t is not
to alter those values.

Metaphor 51

This ci rcui t-l ike metaphor for constraints was introduced by Sketchpad (Sutherland 1963)
which was the fi rst system to represent constraints graphical ly. The technique was used as an
exposi tory device in (Steele 1980) and implemented as an extension to ThingLab (Borning
1986).

Constraint programming may be viewed as one particularly simple and powerful way of
combining declarative and procedural knowledge.

8
 A constraint combines a relati onship to

enforce, expressed in declarative terms (i .e., an adder constraint that enforces the relationship a
= b + c) with a set of procedural methods for enforcing i t. In the case of the adder, there would
be three methods corresponding to the three variables that can serve as outputs; each of
which computes a value from the remaining two variables

O ther l anguages, most notabl y l ogi c programming l anguages l i ke Prolog, have been
fashioned along the idea that programs should take the form of declarative statements about
relationships. One slogan put forth by advocates of logic programming is “ algori thm = logic +
control ” (Kow laski 1979), w here “ logic” refers to an essential l y declarati ve language and
“ control” refers to some addi tional mechanisms for control l ing the deductive processes of the
language interpreter. The problem with Prolog is that i t shortchanges both logic and control by
attempting to use the same language to speci fy both. Thus the language does not have the ful l
expressive power of logic, because doing so would make the imperative interpretation of a logic
program intractable. And whi le Prolog adds some control constructs such as the cut to i ts
declarative language, in general the ability to control the deductions of the interpreter are limited.

Constraint languages have the potential to overcome this l imitation, since they separate out
the declarative and imperative parts of a program. Declarations of intent and procedures can
each be made in the idiom appropriate to the task, then l inked together in a single constraint.
ThingLab (Borning 1979) was organized in this fashion. However, rather than develop this idea
as a programming paradigm, ThingLab, i ts descendants (i .e. (Freeman-Benson, Maloney et al .
1990)), and constraint-based systems in general evolved in a different direction.

 A typi cal contemporary constraint system (i .e. Juno-2 (H eydon and N elson 1994)) i s
designed as a declarative language together w i th a black-boxed constraint solver which can
solve constraint systems in that language. The user of such a system can speci fy constraints
using a given declarative language, but cannot specify procedures for satisfying them. In other
words, the imperative side of the equation is given short shri ft. The reason this path was taken
is probably a desi re for constraint solvers that are both fast and theoreti cal l y tractable. A
system that permi ts constraints to be bui l t w i th arbi trary user defined procedures would be
quite difficult to control.

Constraint Imperative Programming (CIP) (Lopez, Freeman-Benson et al. 1993) is an attempt
to integrate declarative constraints with an imperative programming language. The idea behind
CIP is to combine an object-oriented procedural language w i th automatic constraint solving
capabi l i ty that can enforce relations between slots of objects. Whi le this is a promising l ine of

8 As far as I know this idea was first formulated by Alan Borning (Borning 1979).

52 Metaphor

research, CIP languages are sti l l l imi ted in thei r expressive power. The constraint solver i s
monol i thic—you can’t create new imperative methods to solve declarative constraints—and in
some sense subordinate, relegated to the role of automatical ly maintaining relations among
variables in an otherw ise procedural language. The same is true of other efforts to combine
constraints with more general models programming (Hetenryck 1989) (Siskind and McAl lester
1993).

These efforts, whi le certainly valuable, do not seem to me to explore the ful l range of
possibi l i ties of constraints as an organizing metaphor for programming. Al l of them take an
essential ly fixed constraint solver and make i t an adjunct to an otherwise ordinary procedural
language. A programming system that was ful ly organized around a constraint metaphor would
have to have a much more pow erful concept of constrai nts, one that coul d encompass
computation in general , as does the object-oriented model . Constraints would have to be as
pow erful as procedures (w hi ch they could be, i f they had a ful l y expressi ve procedural
component) but also capable of being invoked without an explicit call . The agent-based systems
described in chapter 5 are attempts to realize this alternative version of the constraint model.

2.2.4 Interface Metaphors

The only area of computer science that makes a regular practice of engaging in expl ici t
discourse about i ts own metaphors is the field of human interface design. No doubt this is due
to the nature of the interface task: to make hidden, inner, abstruse worlds of computational
objects and acti ons accessible to users w ho may not have any di rect know ledge of thei r
properties.

From our point of view, just about everything about computation is metaphorical anyway,
and the distinction between a highly metaphorical interface (such as the Macintosh desktop)
and a command-l ine interface (such as that of UNIX) is a matter of degree only. It is not hard to
see that the UNIX concepts of fi les and di rectories are just as grounded in metaphors as the
documents and folders of the Macintosh—the former have simply been around longer and thus
have achieved a greater degree of transparency.

Interface metaphors are general l y easier to design than metaphors for programming
languages, for a couple of reasons. Fi rst, interface metaphors are usual ly designed for more
speci fi c tasks than l anguages. They general l y have onl y a smal l number of object types,
relations, and actions to represent, and so each element can be given a representation careful ly
tai lored to i ts purpose. A programming language, by contrast, has an extensible set of objects,
operat i ons, and rel at i ons, and an i nterface that presents i ts el ements to the user must
necessari ly operate on a more general level . For example, a non-programmable interactive
graphics program might have special icons for each of the objects i t al lows the user to draw (i.e.
rectangles and l ines) and operations i t can perform (i .e. erase, move, resize). On the other
hand, a general-purpose graphic programming environment wi l l have an ever-expanding set of
objects and operations and thus i ts interface, unless extended by the user, can only represent
objects and operations in general, and thus will be l imited in the metaphors it can employ.

Metaphor 53

One way to deal w i th this problem is to find an intermediate level between appl ication-
specific but non-programmable tools, and general-purpose environments that are programmable
but difficult to present metaphorical ly. This approach is used by Agentsheets (Repenning 1993),
an environment building tool which is designed using a layered approach. The substrate level is
a general-purpose programming environment featuring a grid-based spatial metaphor which can
contain active objects, programmed in a general-purpose language (an extension of Lisp cal led
AgenTalk). Adapting Agentsheets for a new domain task involves having a metaphor designer
bui ld a set of bui lding blocks that work together using a common metaphor, such as flow. The
end-user then can construct simulations using the block-set and the metaphor, but is insulated
from the power and complexity of the underlying programming language.

Another reason that i n ter face metaphors are easi er to desi gn than metaphors for
programming is that di rect-manipulation interfaces in general don’ t need to represent action.
Under the direct-manipulation paradigm, all actions are initiated by the user. While the results of
action or the action i tself might have a graphic representation (for instance, opening a folder on
a desktop can be represented by a zooming rectangle) the action i tsel f is soon over and does
not require a static representation. Nor is there a need to represent actors, since the user is the
only ini tiator of action in the system. The interface world is beginning to real ize l imi ts to the
d i rect-mani pu l at i on parad i gm and embrace representat i ons o f act i on i n the form of
anthropomorphic interface agents (see section 3.3.4).

Programming, however, is al l about action and thus programming envi ronments have a
need to represent actions and actors. It’s interesting that functional programming models, in
which action is de-emphasized, have been the most amenable to presentation through graphic
metaphors. To represen t ac t i on , p rogrammi ng metaphors may al so need to tu rn to
anthropomorphism.

2.3 Conclusion

My main complaint is that metaphor is a poor
metaphor for what needs to be done.

— Alan Kay (Kay 1990)

Our basic ideas about computation are founded on metaphoric models. The daily activity of
programmers involves inventing and deal ing w i th new forms of computational structure, and
thus they are engaged in a continual process of inventing and deploying metaphors that make
these structures understandable. Such metaphors are not created arbi trari l y, however. This
point is often lost in battles between constructivists and objectivists. Our ideas about the world
are constructed, but they are not constructed just as we please. Scienti fic metaphors must map
everyday concepts onto the actual properties of the natural world and thus the choices of
source domains and mappings are highly constrained. There may be more freedom in choosing
metaphors to organize computation, but not al l metaphorical structuring w i l l prove equal ly
powerful.

A good computational metaphor should use only a few real-world concepts for i ts source
domain, and map them onto computational concepts that are powerful . It is hard to capture
exactly what determines the power of a metaphorical system. Perhaps an example of a bad

54 Metaphor

metaphor would help: I once used a language that had started as a tool for bui lding computer-
assisted instruction “ lessons” . It had since grown into a general purpose language, but was sti l l
structured in terms of lesson uni ts and control fl ow w as organized around the underlying
metaphor of question-and-answer dri l ls. Al l sorts of operations had to be shoehorned into this
framework. The question-and-answer metaphor did not translate into powerful and general
tools for computation, and as a result the language was quite awkward to use.

The moral is that not al l real -world domains are sui table for use as the basis of a general
computational model. The ones we have examined in this chapter are dominant because they
are pow erful and general , and because they have evol ved over time as the nature of the
computational realm has become better understood. But we should hope that the evolutionary
process has not f i n i shed and that there i s room for the i nvent i on o f new model s for
programming that wil l overcome the l imitations and biases of the existing ones.

In a sense, programming is a form of wri ting. The most basic model of computation, the
imperative model, is closely l inked to the idea of narrative and drama. Programming is a process
of w ri ti ng scri pts for computati onal actors. Yet the imperati ve model of programming i s
theoreti cal l y suspect, spaw ning a search for l anguages that are more tractabl e, such as
functional programming. Functional programming has not made wide inroads in environments
for novices or even for practicing programmers. The reasons for this are many, but surely one
is that functional programming discourages thinking of computation in terms of actions and
actors. Instead of fighting against the tendency to think in terms of actions and actors, we
should work w i th our natural epistemological tools, and embrace the use of metaphors based
on the actors w e know , that i s to say, humans and other animate enti t i es. The nature of
animism and its use in computation is the subject of the next chapter.

Metaphor 55

Chapter 3 Animacy and Agents
Sometimes I think it is a great mistake to have matter that

can think and feel. It complains so. By the same token,
though, I suppose that boulders and mountains and

moons could be accused of being a little too phlegmatic.

— Winston Niles Rumfoord

3.1 Introduction

There appears to be a fundamental dichotomy in human thought that separates the l iving
from the inanimate, the purposive from the mechanical , the social from the natural , and the
mental from the physical. The tendency to divide the world along such l ines is strong, possibly
innate, crucial to social functioning, and a key part of folk psychology (Dennett 1987). This
grand divide is no doubt an example of what Minsky calls a “ dumbbell theory” , or false dualism
(M insky 1987, p117). I should make i t clear that the dual ism explored in this chapter is an
epistemic dual i sm that exists in our theories of the world, not in the world i tsel f, and thus
should be distinguished from ontologically dual theories such as Cartesianism or vital ism.

Science has, at l east on the surface, outgrow n both sorts of dual i sm. But because the
distinction between animate and inanimate is such a universal and basic part of human thinking,
i t haunts even the most sophisticated efforts to grapple w i th the nature of the mind. We al l
begi n as dumbbel l s, and w e do no t easi l y r i d ou rsel ves o f ou r dumbbel l theor i es.
Computational theories of the mind and computation i tself are in some ways attempts to bridge
this gap—to make l i fel ike behavior and intel l igence from inanimate parts, and to explain the
behavior of l iving things in terms drawn from the physical world. But the partial successes of
AI, cybernetics, and cognitive science in devising theories that partial ly unite these realms has
not yet remade our everyday minds accordingly. Nor are the scienti fi c theories themselves
immune to the effects of this persistent divide.

It is a common practice to describe the activi ty of machines or other non-l iving objects in
ani mate terms. I w i l l refer to these sorts of mappi ngs as animate metaphors. Th e t erm
anthropomorphism is more common, but is not qui te as accurate, since other animals besides
humans can serve as the source domain. Another suitable term is ethopœia, the classical Greek
word for attributions of human qual i ties to non-human objects (Nass, Steuer et al . 1993). This
chapter explores the use of animism and animisti c metaphors i n the constructi on of the
computational realm. In particular, i t examines the ways in which animacy is used to make the
operations of complex systems such as computers comprehensible.

Animate metaphors are powerful because they are capable of exploi ting our knowledge
about humans and human action. When deal ing w i th systems that are too compl icated to be
understood in physical and mechanical terms, the leverage that animate metaphors can give is
crucial . It al lows us to think in terms of purpose and function, and thus to understand without
having to know the “ implementation details” of the system. At the same time, the use of animate

metaphors to describe machines can be dangerous, because of the ri sk of overattri bution
errors. For instance, we can talk of a simple robot vehicle using negative feedback control as
“ wanting” to propel i tsel f towards some stimulus (as in (Brai tenberg 1984)) but the nature of
this wanting is not the same as that of a person—the vehicle does not know that i t wants, does
not necessari ly feel anything l ike disappointment i f i t does not get i ts goal , and so forth. The
metaphor is compelling, but can also be misleading.

The fi rst section of this chapter explores how the concepts of animate and inanimate arise,
how they develop, and how they are used. It traces a few key properties of the animate realm
through various attempts to analyze the tw o domains. Three key concepts emerge as the
defining properties of the animate realm: autonomy, purposefulness, and reactivity.

The second section looks at how animate metaphors have been used in computation and
what roles they play in the description of various programming languages. We w i l l find that
w hi l e ani mi sm pl ays a central ro l e i n the foundat i on and cont i nui ng devel opment of
computation, it tends to be a rather peculiar and limited form of animism, one that omits some of
the most important qualities of the domain.

The last section explores a new kind of programming paradigm based on agents, that i s, on
collections of explicitly anthropomorphic units. Agent-based programming seeks to combine the
pow er of computati on w i th the aspects of animism that previous forms of computati onal
animism have left out. It w i l l also explore the use of narrative as a natural way to express the
action and interaction of animate beings.

3.2 The Realm of Animacy

Animacy is a basic category, yet one that is di fficul t to define precisely. The category of
animate things is not the same as l iving things (since plants and sessile animals for the most part
should not be included, while robots and other arti ficial beings perhaps should be). Animacy is
more than simply a category, but consti tutes what M insky cal ls a “ realm of thought” w i th i ts
own distinctive style of mental representation and reasoning. The dichotomy between animate
and inanimate seems to mani fest i tsel f in di fferent ways at di fferent cogni tive levels. In this
section I attempt to sketch out some different approaches to understanding how we think about
the animate realm. The roots of animacy are found in basic perceptual processes, but i ts
rami fi cati ons go beyond perception and affect the w ay w e think about acti on and social
behavior.

3.2.1 The Perception of Causality

 The division between animate and inanimate appears to be both a universal and innate part
of how w e see the w orl d. An obscure but fasci nati ng thread of research i n perceptual
psychology indicates that the abi l i ty to distinguish between animate and inanimate objects may
be in some sense perceptual primi ti ves, hard-w i red into our brains at the lowest level (see
(Gelman and Spelke 1981) for a survey). At this level, animacy is manifest in the perception of
motion, speci fi cal l y motion that appears to ari se autonomously, w i thout vi sible external

58 Animacy

causation. The abi l i ty to distinguish between caused and autonomous motion appears to be
innate and can be detected experimentally.

Research on the perception of causal i ty began with the work of Michotte (Michotte 1950).
H is experiments involved showing subjects a set of moving abstract shapes on a screen, and
asking them to make judgments about what they had seen. In a typical experiment, a moving
shape A would approach a second stationary shape B. When A contacted B, depending upon
the experimental situation B might start to move either immediately, or after a span of time, and
A mi ght stop or conti nue to move. The subj ects w ere then asked to i nterpret w hat had
happened.

Al l subjects tended to interpret these scenes in terms of causal relationships between the
two shapes: that is, the experimental si tuation would strongly suggest ei ther a di rect causal
relati onship betw een the tw o movements, or an autonomous (non-caused) ori gin for the
movement of the second object. For example, in the case where A stopped and B immediately
began moving, the scene was interpreted as a col l ision or “ launching” . In the case where A
continued to move along with B, the scene was interpreted as a case of A dragging B along with
it. In another case, similar to the first but with the difference of including a delay before B began
to move, the subjects would attribute autonomy or self-causation to B’s movement. The striking
thing about these experiments was the immediacy and power of their abil i ty to induce particular
kinds of causal perceptions in the subjects, given the highly abstract character of the objects
and motions involved.

Michotte’s experiments have been repl icated with six-month old infants (Lesl ie 1979)(Lesl ie
and Keeble 1987). It was found that these young subjects could distinguish between causal
and non-causal scenarios. These experiments involved show ing the subjects a sequence of
presentations similar to those of Michotte, which would consist of al l causal presentations with
one interposed non-causal presentation, or the inverse. In either case the infants would show a
startle response when the interposed presentation was shown.

Stewart (1982)(Stewart 1982) performed similar moving image experiments on adults. In this
case, both the motions and the judgments observers were asked to make were somewhat more
complex than in the earl ier experiments. Stewart’s shapes would fol low one another or avoid
one another, or start, stop, or change di rections arbi trari l y. Observers were asked to judge
w hether the shapes i n moti on w ere “ objects or creatures” . Al l of these moti ons i nduced
judgments of animacy or al iveness in observers, whereas shapes that fol lowed less complex
paths were judged as inanimate or mechanical.

To general i ze from the resul ts of these experiments, i t appears that humans strongl y
distinguish between external ly caused and autonomous motions, and that the abi l i ty to do so is
to some extent innate, or at least appears early in development. These perceptual abi l i ties seem
to form the perceptual basis for the later development of concepts about l iving vs. non-l iving
things and purposefulness. To a fi rst degree of approximation, any object moving in ways that
appear to violate basic Newtonian laws of motion—that is, an object that changes i ts motion
without apparent external cause, other than friction—tends to induce a judgment that the object
is al ive, purposeful , and autonomous. On the other hand, objects in unchanging motion, or

Animacy 59

objects that change their motion only in response to visible external causes, are judged to be
inanimate.

The impl ications of these experiments are that the perceptual system is attuned to changes
in motion and relations in changes in motion, and that there is a need to interpret or explain
such changes by assigning their cause to either internal or external factors (Premack 1990). The
apparent innateness and universal i ty of these effects argues that causal i ty is in some sense a
perceptual primitive. Related concepts of al iveness, purpose, intent, self-awareness bui ld upon
and refine these primitives.

That there should be such an i nnate mechanism makes a good deal of sense from an
evolutionary standpoint, since i t is important for animals to be able to judge which objects in
their environment are al ive and which are not. From the physiological point of view, i t is wel l-
known that the visual system includes many sorts of motion detection mechanisms. The abi l i ty
to sense changes in motion and relations between different motions is a step up in complexity,
but not a very large one. There is even some evidence from studies on brain-damaged and
autistic subjects that indicates the presence of a physiological local ized mechanism to detect
agency and causali ty (Baron-Cohen 1995).

D o even six-month old infants construct causal models of thei r w orld and distinguish
between external and internal causes? It seems more l ikely that there are at least two levels of
processing at work here: one, the level of basic perceptual processing, and another process of
i nterpretati on and expl anati on that i nvol ves more conceptual thought. The perceptual
mechanisms may be able to provide the basi c abi l i ty to di sti ngui sh betw een caused and
uncaused motions, whi le the conceptual mechanisms, which develop later, have the task of
fi tting these perceptions into categories and constructing explanations for them.

3.2.2 The Development of Animism as a Category

Piaget’s studies of chi ldren’s thinking revealed a phenomenon he cal led childhood animism

(Piaget 1929). This is the tendency of chi ldren to attribute properties normal ly associated with
l iving things to the non-l iving. The qual i ties that are projected onto the inanimate world by
chi l dhood animism i ncl ude both al i veness and consciousness. These are obviousl y tw o
separate concepts, but they apparently fol low simi lar stages through development, suggesting
that they are based on a common underlying concept. Other quali ties that are brought into play
by childhood animism include freedom and the abil i ty to have intentions or wil l . While some of
Piaget’s resul ts have been chal lenged as being oversimpl i fied (see (Carey 1985)), his central
results are sti l l of interest.

Piaget found that chi ldren wil l attribute the quali ty of being al ive to different object types at
di fferent stages of development. In general , each stage exhibi ts a refinement, or narrowing, of
the class of things that are considered alive. The stages are outl ined in Table 3.1.

60 Animacy

As a resul t of this developmental process, chi ldren can exhibi t notions of al iveness that
depart qui te dramatical ly from the adul t version of the concept. For instance, a chi ld of 8 (in
stage 1), when asked if a bicycle was alive, replied “ No, when it doesn’t go it is not al ive. When
i t goes i t i s al i ve” . O bjects might be endow ed w i th consciousness of some things but not
others:

If you pricked this stone, would it feel it?—No .—Why not?—Because it is hard .—If you put i t in the
fire, would it feel it?—Yes.—Why?— Because it would get burned (p176).

Chi l dren i n the earl i er stages (0, 1, and 2) tend to produce mixed and unsystemati c
judgments. Piaget characterizes stage 2 as primari l y a transi tion period in which the chi ld
develops the distinction between things that move on their own (such as a person) and things
that only move under outside impetus (such as a bicycle). When this distinction is made the
chi l d reaches the thi rd stage, w hi ch Pi aget consi dered to be the most “ systemati c and
interesting” of the four. Here is an example of a chi ld struggling to express the Stage 3 idea that
autonomous motion is the salient quality that determines the abil ity to feel:

Tel l me what you think, what makes you think that perhaps the w ind doesn’ t feel when i t i s
blowing?— Because it is not a person.— And why do you think perhaps it does feel?—Because i t is
it that blows (p183).

Piaget gives special attention to this last answer as a striking i l lustration of the nature of
third-stage childhood animism. “ It is it that blows” beautifully i l lustrates the child’s mind arriving
at the idea that it is initiators of action that are thought to be feeling and thus animate.

Piaget’s view is that only at the third stage (usually reached at ages 7 or 8) do children make
the distinction between motion in general and autonomous motion. This would appear to be in
conflict with the results of Michotte, Leslie, et al, who bel ieved that this distinction was present
much earl ier. This confl ict might be resolved by real izing that the Piagetian studies operate
purely in the conceptual realm, whereas the other researchers are studying the perceptual
abi l i ty to detect di sti ncti ons. Chi l dren may have an i nnate abi l i ty to di sti ngui sh types of
observed motion, but lack the abi l i ty to construct coherent explanations for such motion. The
latter abil i ty must be learned, and in some sense the Piagetian developmental sequence is a case
of the conceptual mind lagging behind and eventually catching up to the distinctions generated

Stage Name D escription

Stage 0 No concept random judgments

Stage 1 Activity anything active is alive

Stage 2 Movement only things that move are alive

Stage 3 Autonomous movement only things that move by themselves are al ive

Stage 4 Adult concept (animals) only animals (and plants) are alive.

Table 3.1: (after (Carey 1985)) The stages of development of the concept of “ alive” .

Animacy 61

innately by the perceptual system.

Piaget’s theory of animism has been cri tiqued on a number of grounds. For instance, the
questions asked by the experimenter can induce parti cular forms of thought and styles of
judgment (Piaget himself was aware of this). Also, children at al l ages seem to use a large variety
of techniques for judging whether or not something is al ive, and never use exclusively the fact
of autonomous movement (Carey 1985). Carey’s cri tique seems val id—the development of
chi ldren’s representation of the concept of l iving things is no doubt a more complex story than
the simple stage theory has i t. However, as Carey admits, her study is not aimed at the heart of
the Piagetian theory of animism, which is concerned more w i th the developing notions of
causal i ty rather than the defi ni ti on of the w ord “ al i ve” i n any narrow sense. D espi te her
disagreements w i th Piaget, she agrees that “ the separation of intentional causal i ty from other
types is central to what is changing.” This is real ly the only aspect of the theory that concerns
us here.

3.2.3 Frameworks of Understanding

A more sophisticated way to handle the distinction between animate and inanimate is to
treat them, not as categori es i nto w hi ch obj ects must be sl otted, but as tw o al ternati ve
approaches w i th which to analyze everyday phenomena. Even chi ldren are able to flexibly
apply these approaches to some extent (recal l the chi ld who thought the bike was al ive when i t
moved and not otherwise). Phi losophers and psychologists, who perhaps have a greater need
to think in fixed categories than chi ldren, often try to fix these approaches into categories, but
even they eventual l y have abandoned vi tal i sm and dual i sm, recognizing the need to treat
animacy and al iveness as epistemological stances rather than fixed facts of the world. Dennett
has arti culated this about as wel l as anybody w i th his distinction between intentional and
physi cal stances (D ennett 1987), but see al so (Boden 1978) on the checkered hi story of
purposi ve expl anati on i n psychol ogy, and (Schaefer 1980) on how Freud bl ended both
mechanistic and animate stances in his metapsychology.

The sociologist Erving Goffman explored the question of how such stances (frameworks, in
his terms) are used in everyday l i fe and how they function in organizing cognition and society.
H is approach (Goffman 1974) identi fies two primary frameworks: social and natural , which
correspond roughly to Dennett’s intentional and physical stances:

When the individual in our Western society recognizes a particular event, he [employs] one or
more frameworks or schemata of interpretation of a kind that can be called primary. I say primary
because appl ication of such a framework or perspective is seen by those who apply i t as not
depending on or harking back to some prior or “ original ” i nterpretati on; i ndeed a primary
framework is one that is seen as rendering what would otherwise be a meaningless aspect of the
scene into something that is meaningful...

In dai ly l i fe in our society a tolerably clear distinction is sensed, i f not made, between two broad
classes of primary frameworks: natural and social. Natural frameworks identify occurrences seen as
undirected, unoriented, unanimated, unguided, “ purely physical” ...It is seen that no wil l ful agency
causal ly and intentional ly interferes, that no actor continuously guides the outcome. Success or
fai lure in regard to these events is not imaginable; no negative or positive sanctions are involved.
Full determinism and determinateness prevail.

62 Animacy

Social framew orks, on the other hand, provide background understanding for events that
incorporate the will, aim, and controlling effort of an intelligence, a live agency, the chief one being
the human being. Such an agency is anything but implacable; it can be coaxed, flattered, affronted,
and threatened. What i t does can be described as “ guided doings.” These doings subject the doer
to “ standards,” to social appraisal of his action based on i ts honesty, efficiency, economy, safety,
elegance... A serial management of consequential i ty is sustained, that is, continuous corrective
control , becoming most apparent when action is unexpectedly blocked or deflected and special
compensatory effort is required. Motive and intent are involved, and their imputation helps select
which of the various social frameworks of understanding is to be applied (p.21-22)/

These “ guided doings” are subject to constant evaluation both from the doer and from
other participants on the scene as to their efficacy and qual i ty, distinguishing them from purely
natural happenings, which are not so judged. Social frameworks, but not natural frameworks,
involve actors, that is, humans (or occasional ly other enti ties such as animals or gods) that can
initiate actions and are responsible for their success.

Framework-based interpretation is fluid; a scene that appears to be a guided doing may be
transformed (through accidents or “ muffings” , or by the real ization that an act that seemed
intentional was actually an accident) into a scene in which physics takes over from intention (for
example, an ice-skater who slips and falls).

The concepts of muffings and fortuitousness have a considerable cosmological significance. Given
our belief that the world can be totally perceived in terms of either natural events or guided doings
and that every event can be comfortably lodged in one or the other category, i t becomes apparent
that a means must be at hand to deal with slippage and looseness (p34-35).

The relevance of Goffman to this discussion is his speci fical ly cul tural perspective on the
dichotomy between animate and inanimate. The abi l i ty to distinguish between caused and
autonomous motions may be innate, but the types of si tuations in which this distinction is
appl ied can be enormously varied and condi tioned by cul ture. For instance, di fferences in
rel igious views can often lead to di ffering use of frameworks: where some might see a natural
disaster others might see the wil l of a god.

The animate realm now takes on aspects of moral i ty and the necessi ty of judgment: our
social l i ves requi re us to make these distinctions and to be subject to them. Trials in which
insanity defenses arise are an excel lent example of a situation in which the distinction between
natural and social arises. A defendant who can be judged subject to the presumptively external
causation of insanity can escape having his actions judged according to the standards of social
frameworks. Social frameworks impose standards. Actions viewed within social frameworks can
be successful or otherwise, because they are initiated and guided by social actors.

3.2.4 Animacy and the Representation of Action

Animacy appears to be a basic category of the human mind, appearing in a variety of forms
at different levels of cognition. But to think of animacy as simply a category, in isolation from its
rol e i n understandi ng, i s to mi ss i ts si gni f i cance, w hi ch stems from i ts key rol e i n the
understanding of action and causali ty.

To t ry and understand the p l ace o f an i macy i n cogn i t i on , w e need a theory o f
representation that takes into account the importance of action. We wi l l use Minsky’s frame-

Animacy 63

based theory of understanding (M insky 1987, p245), in particular the theory of trans-frames
which has i ts roots in Schank’s conceptual dependency scheme for representing semantic
information (Schank 1975). Using these tools, I w i l l attempt to sketch out such a cogni ti ve
theory of animacy.

In Minsky’s theory, a frame is essential ly a conceptual template or schema, representing a
single concept such as “ chair” or “ throw” , with labeled slots or terminals that serve to connect
i t to other frames that represent related parts. So for instance a “ chai r” frame would have
terminals to represent legs and back, whi le a “ throw” frame would have terminals representing
the object thrown, the thrower, and so forth. Understanding a scene, sentence, or si tuation
involves selecting a frame for it and finding appropriate entities to fi l l its terminals.

One particularly important kind of frame, used to represent action and change, is cal led a
trans-frame. A trans-frame is a generalized representation of action, which can be specialized for
particular ci rcumstances by fi l l ing in terminals for various roles such as ACTION, ORIGIN,
D ESTIN ATIO N , ACTO R, M O TIVE, and M ETH O D . Trans- f rames roughl y correspond to
sentences, in terms of the scale of the concept they encode, al though the frame with i ts many
terminals is capable of including more information than a typical sentence. Schank further
categorizes trans events i nto PTRAN S, M TRAN S, and ATRAN S types, correspondi ng to
whether the action involves physical movement, the transmission of information, or the transfer
of abstract relationships l ike ownership.

Trans-frames give us a way to think about the representation of action, and thus a way to
think about animacy, leading to a simple theory of what it means for something to be animate: A
thing wil l be seen as animate i f i ts representation can plausibly fi t into the ACTOR terminal of a
trans-frame. Or in other words, something wi l l seem animate i f i t can be seen as the ini tiator of

an action. From the standpoint of language, this is equivalent to saying that i t can be the subject
of a sentence describing the action (assuming the sentence is in the active voice). This definition
of animacy suggests the classical Aristotel ian definition of an actor or agent as one who initiates
action. Of course, this definition is sl ightly tautological, and it doesn’t tel l us what things wil l be
able to take on this role or why. But i t does give us a convenient way to think about how the
animate category functions in relation to other mechanisms for understanding action.

Consider again the example from Piaget, where a child explains why he thinks that the wind
can feel—” because i t i s i t that blows” . It appears that the chi ld has a frame for BLOWING,
which has an actor slot that needs to be fi l led. Unable to find anything else to put in that slot,
the w ind i tsel f must be there: “ i t is i t that blows” . And, when the w ind takes on this role, i t is
somehow endow ed w i th the properti es of the l i vi ng, despi te the fact that the chi l d had
concluded earl ier that the w ind could no t feel , because “ i t i s not a person” . Another chi ld
denies animacy to the wind, “ because i t is the cloud that makes i t blow” (that is, the wind here
is an object rather than an actor), and yet another bestows feel ing upon the clouds for the
same reason. ACTO Rhood seems to pl ay a pow erful rol e i n determining w hether or not
something is thought to be animate.

Why are actions and actors so important to cognition? Although the world may be in real i ty
a unified flux of physical causation, we can’t think about it that way on a practical level. Instead,
we need to divide the changing world up into representable parts such as objects and actions.

64 Animacy

An action is a segment of activity with a beginning, generally in the form of an actor’s intention,
and an end, in which the world is in a new state as a resul t of the action. The idea of action,
and the related ideas of autonomous, intentional actors (and the notion that they can have “ free
wil l”) is an artifact of this need to represent the world in manageable chunks.

M ore complex reasoning requi res understanding sequences of events, w hi ch i n turn
involves chaining trans-frames together. In such a chain, individual objects w i l l change thei r
roles: what was an OBJECT of action in one frame may become the ACTOR in the next. The
abil i ty to manipulate chains of changes is important to reasoning and suggests that the abil i ty to
switch between animate and inanimate may actual ly be a necessi ty born of the need to create
such chains (see (Ackermann 1991) for a similar argument). The act of explanation chains trans-
frames in the opposite direction: when we ask a question l ike “ what made him do that?” we are
seeking to bui ld a frame that puts what was an ACTOR into an OBJECT-l ike role. When an
ACTOR’s initiation of action is explained by i ts internal properties, i t appears purposeful; when
explained by external factors, i t appears reactive. If i t can’ t be explained at al l , which is often
the case, the action might have to attributed to something like free will.

3.2.5 Conclusion: the Nature of Animacy

We have attempted to define the animate realm through multiple approaches. Based on the
above analyses, I would l ike to posi t three properties which together seem to characterize the
animate domain:

• Autonomy: the abi l i ty to ini tiate action. Animate creatures are capable of taking action “ on
their own” , without an apparent external physical cause.

• Purposefulness: the actions undertaken by animate creatures are often di rected towards
the achievement of a goal. This implies further that such actions can be evaluated as to their
effectiveness.

• Reactivity: animate creatures are responsive to their environment and adapt their actions as
necessary to the changes of the environment.

These properties relate to each other in complex ways, and in some respects are in tension
w i th each other. The concept of purposefulness i s bound up w i th autonomy—an object’ s
actions wil l be seen as more autonomous i f they are di rected toward a goal rather than being
driven solely by outside forces. Reactivi ty is a crucial part of purposefulness—a creature acting
to achieve a goal cannot do so bl indly, but must be able to respond to changing conditions in
the world.

However, reactivi ty can be in tension w i th autonomy, since i f the creature is reacting to
outside conditions, then it is in some sense being driven by outside forces, rather than initiating
action. For instance, a frog catching a fl y w i th i ts tongue can be considered to have both
reacted to the fly and to have ini tiated the action. The frog is the central actor in this version of
the story. But i t would be just as val id, i f odd, to tel l a story w i th the fly as the main actor,
acting causal ly on the frog to cause i ts own demise. The frog in this version is sti l l reactive, but
i ts autonomy has disappeared. The presence of autonomy is particularly dependent upon point
of view and the choice of starting points when describing a sequence of causal events.

Animacy 65

Animacy, then, i s more properly understood as a framework or way of thinking, rather
than as a category. Animate thinking stems from a basic need to explain happenings and tel l
simple stories about them, and a need to fi t things into roles in the stories as actors and objects
of action. Scienti fic and mechanistic ways of thinking are in some sense attempts to get beyond
these basic animistic tendencies, in that they tend to el iminate autonomy by searching for a
cause for every action. But the tendency to describe the world in terms of autonomous acters
is strong. Even scientists who should know better tend to try to find simple explanations and
single actors rather than grapple w i th the distributed causal i ty of a complex system (Kel ler
1985) (Resnick 1992).

3.3 Animacy and Computation

Animacy is a primary domain, in that i t is not i tself grounded in metaphor but in more basic
processes. H ow ever, i t can and does serve as a source domai n for the metaphor i cal
understanding of other realms. Obvious and fanci ful versions of these metaphors are qui te
common in everyday l i fe, as in utterances l ike “ this bottle just doesn’ t want to be opened” .
Some mechanical systems are so complex that they need to be treated as having moods,
particularly vehicles, and are thus anthropomorphized. I w i l l refer to such usages as animate

metaphors. Computer systems in particular are prone to be anthropomorphized, due to thei r
complexity and apparent autonomy:

Anthropomorphization9 — Semantical ly, one rich source of jargon constructions is the hackish
tendency to anthropomorphize hardware and software. This isn' t done in a naive way; hackers
don' t personalize their stuff in the sense of feel ing empathy with i t, nor do they mystical ly believe
that the things they work on every day are 'alive' . What is common is to hear hardware or software
talked about as though it has homunculi talking to each other inside it, with intentions and desires.
Thus, one hears “ The protocol handler got confused” , or that programs “ are trying” to do things, or
one may say of a routine that “ i ts goal in l i fe is to X” . One even hears explanations l ike “ ... and its
poor l i ttle brain couldn' t understand X, and it died.” Sometimes modeling things this way actually
seems to make them easier to understand, perhaps because i t' s instinctively natural to think of
anything with a really complex behavioral repertoire as ' l ike a person' rather than ' like a thing' .

The computer bridges the animate and inanimate worlds as few other objects can. Although
even humans can become subj ect to physi cal rather than i ntenti onal expl anati ons, the
computer, as a manufactured object designed around animate metaphors, inherently straddles
the divide. People who interact w i th computers must do the same. Sherry Turkle has wri tten
extensi vel y on ch i l d ren ’ s react i ons to computers as “ margi nal ob j ec ts” , not read i l y
categorizable as either living or inanimate:

Computers, as marginal objects on the boundary between the physical and the psychological ,
force thinking about matter, l i fe, and mind. Children use them to build theories about the animate
and the inanimate and to develop their ideas about thought itself (Turkle 1984, p31).

But animate metaphors for computation can be problematic as wel l . AI, which might be
considered an attempt to bui l d an extended metaphori cal mapping betw een humans and

9From the communally-written Hacker Jargon File, Version 3.0.0, 27 July 1993,
http://fount.journalism.wisc.edu/jargon/jarg_intro.html

66 Animacy

machi nes, i mpi nges upon hi ghl y controversi al i ssues i n phi l osophy, and gi ves r i se to
contradi ctory i ntui t i ons, i ntense passi ons, and stubborn di sagreements about w hether
computational processes can truly achieve intel l igence (Dreyfus 1979), (Penrose 1989), (Searle
1980). The stereotypical AIs and robots seen in fiction are l i fel ike in some ways, but mechanical
i n others—i nfl exi bl e, i mpl acabl e, even hosti l e. Computers are sai d to l ack certai n key
components of humani ty or al iveness: consciousness, free w i l l , intentional i ty, emotions, the
abil i ty to deal with contradiction. People exposed to computers wil l often end up defining their
own humanness in terms of what the computer cannot apparently do (Turkle 1991). Something
about the nature of computers, no matter how intel l igent they are, seems to keep them from
being seen as full members of the animate realm.

O ur focus on animate metaphors al low s us to sidestep this often steri l e phi losophical
debate. Instead, we w i l l examine the ways in which computational practi ce makes use of
animism to structure itself.

W i thin the field of computation, anthropomorphic metaphors are sometimes denied as
wrongheaded or harmful:

Never refer to parts of programs or pieces of equipment in an anthropomorphic terminology, nor
al low your students to do so...The reason for this is that the anthropomorphic metaphor...is an
enormous handicap for every computing community that has adopted i t...It is paralyzing in the
sense that because persons exist and act in time, i ts adoption effectively prevents a departure from
operational semantics and, thus, forces people to think about programs in terms of computational
behaviors, based on an underlying computational model. This is bad because operational reasoning
is a tremendous waste of mental effort (Dijkstra 1989).

But most computer practi t i oners are not of the opi ni on that anthropomorphi sm (or
operati onal thi nki ng, for that matter) i s such a bad thi ng. Indeed, the del i berate use of
anthropomorphism has been a promising tool in computer education:

One reason turtles were introduced [into Logo] was to concretize an underlying heuristic principle
in problem-solving—anthropomorphize! Make the idea come al ive, be someone...Talking to
inanimate objects and thus giving them life is an implicit pattern in our lives; we have tried to turn it
to our advantage and make it an explicit process (Solomon 1976).

A common worry about anthropomorphic descriptions of computational system is the
danger of causing overattribution errors. That is, people might draw incorrect inferences about
the abi l i ties of computers, assuming that they share more properties of the animate than they
actual ly do, such as the abi l i ty to reason or to learn. Sometimes this is dealt with by instructing
students to regard the l i ttle people as particularly dumb, mechanical instruction fol lowers with
no goals, judgment, or intell igence of their own, much like a player of the “ Simon Says” game. In
Papert’s phrase, “ anthropomorphism can concretize dumbness as well as intel l igence” .

Thi s secti on expl ores the ani mate roots of computati on and the w ays i n w hi ch the
programming paradigms introduced in the last chapter make use of animate metaphors. We wil l
also look at the relation of animism to human interface design, arti ficial intel l igence, and the
teaching of programming. The questions to be asked are w hich attri butes of animacy are
mapped into the computational domain, and onto what parts.

Animacy 67

3.3.1 Animism at the Origins of Computation

The enti re enterpri se of computati on might be seen as being bui l t around a seri es of
anthropomorphic metaphors, beginning with Turing’s description of what are now called Turing
machines. At this point in time, the word “ computer” referred to a human calculator, who was
destined to be replaced by the described machine:

Computing is normally done by wri ting certain symbols on paper. We may suppose this paper is
divided into squares like a child’s arithmetic book... the behavior of the computer at any moment is
determined by the symbols which he is observing, and his ‘state of mind’ at that moment. We may
suppose that there is a bound B to the number of symbols or squares which the computer can
observe at one moment... Let us imagine the operations performed by the computer to be spl i t up
into ‘simple operations’ ... Every such operation consists of some change of the physical system
consisting of the computer and his tape [a one-dimensional version of the squared paper] ... The
operation actual ly performed is determined, as has been suggested by the state of mind of the
computer and the observed symbols. In parti cular, they determine the state of mind of the
computer after the operation.

We may now construct a machine to do the work of this computer (Turing 1936).

Here the anthropomorphism underlying computation is made quite explicit. Computation is
fi rst conceived of as a human activi ty, albei t one carried out in a rather formal and l imi ted
manner. The metaphor i cal mappi ng f rom the human domai n has some quest i onabl e
components—in particular, the characterization of the human computer as having a ‘state of
mind’ that is discrete and drawn from a fini te set of possible states. Nonetheless this metaphor
has proven extraord i nar i l y pow erfu l , and forms the basi s of the i mperat i ve model of
programming described in section 2.2.3.1.

This prototypical computer, while described in animate terms, has few of the properties that
are central to animacy. The computer is not particularly autonomous—it is “ doing what i t is
told, no more, no less” . Its purpose, i f any, comes from outside i tsel f—it has no representation
or access to i ts goal . It has no relationship w i th a world outside of i ts own tape memory, so
certainly cannot be said to be reactive. It is, however, repeatedly performing actions, and so
despi te i ts l imi tations is seen as animate. I cal l this particular reduced form of animism “ rote
instruction fol lower animism” , to contrast i t with the concept of animacy used in everyday l i fe,
which is l inked to autonomy, purposefulness, and consciousness.

It is interesting to contrast this form of computational animism w i th the related imagery
found i n the di scourse of computati on’ s cl ose cousin, cyberneti cs. Cyberneti cs and the
technology of computation developed in paral lel during and after World War II. Cybernetics
concerned i tsel f preci sel y w i th those propert i es of ani macy margi nal i zed by Turi ng’ s
hypothetical machine and the later actual machines: purposefulness, autonomy, reactivi ty, and
the importance of the relationship between an organism and i ts environment. These sciences
had origins in di fferent technological tasks (feedback control in the case of cybernetics, code-
breaking in the case of computation), di fferent mathematical bases (continuous time series vs.
discrete symbolic manipulation), and ultimately in different ideas about the mind (regulative vs.
cogni tive). Whi le the two approaches were discussed together during the period of the Macy
conferences (Heims 1991), they ul timately went their separate ways. Recent developments in
AI, such as the situated action approach to behavioral control (Agre and Chapman 1987) are in
some sense an attempt to bring back into AI the cybernetic elements that were split off.

68 Animacy

3.3.2 Animacy in Programming

The various programming models described in the last chapter can be analyzed in terms of
animacy. This wi l l mean looking at each in terms of what each model offers the programmer in
terms o f too l s fo r th i nk i ng abou t ac t i on and ac to rs. Li ke trans-frames, statements of
programming languages can be considered as representations of change. If we assume that the
operation of programs is understood, at least in part, by means of the appl i cation of such
frames, we can ask ourselves questions about the contents of the terminals of such frames.
What are the actions, what are the ACTORs and ORIGINs and DESTINATIONs? The identi ties
of the ACTORs are of particular interest: who or what is making these actions happen, who is
in charge? What images of control can inform our understanding?

To take an obvious example, consider an imperative assignment statement l ike LET A=B. In
the above terms, i t is a command to move a value OBJECT (contained in B) from a SOURCE (B)
into a DESTINATION (A). This is essential ly represented metaphorical ly as a physical transfer
(PTRANS) of an object from one place to another, al though nei ther the objects nor places are
truly physical in any tangible sense. But what about the ACTOR terminal of the trans-frames
that represents this action? Who is performing the move operation?

Imperative statements or commands l ike the one above are l ike imperative sentences—they
do not expl ici tly name their ACTOR, instead they have an implied actor who is the recipient of
the command. In the computational case, the computer i tsel f w i l l take on the role of ACTOR
when i t executes the instruction. This mode of address meshes with the image of the computer
as an animate but dumb being, who must be instructed in detai l and cannot real ly take any
action on its own.

While object-oriented programming languages also fol low a basically imperative model, the
image of their operation is somewhat different, because the objects are avai lable to fi l l ACTOR
terminals. In OOP, programs are written as methods for specific object classes, and are seen as
executing on behalf of particular objects. This tends to make the implied actor of an imperative
instruction that occurs inside a method be the object, rather than the computer as a whole. The
fact that methods can refer to their owning objects through reserved words l ike self heightens
this effect.

Message-passing OOP languages introduce MTRANS or information-transmission events to
the metaphorical underpinnings of the language. A message send is an action that transmits a
request or order from one object to another (or to i tsel f). OOP languages often use animistic
names like ask or send for this operation. In a frame representation of a message-passing action,
objects w i l l occupy both the ACTO R and D ESTIN ATIO N terminals. O nce the message i s
transmi tted, the D ESTIN ATIO N object executes i ts ow n method for the message and, i f i t
should take any action, wil l fi l l the ACTOR role of the next operation.

Message-passing languages thus provide a richer conceptual image of their activity than can
be found in the basic imperative model , even though the computations they support may be
identical . The activi ty is no longer the actions of a single actor, but a complex of interactions
between objects. Even though, in an ordinary object-oriented language, the objects are not in
any real sense active or autonomous (that is, they only take action when expl ici tly activated

Animacy 69

from the outside), they provide better handles for programmers to apply animistic thinking. The
partial l y animisti c nature of objects creates natural “ joints” that al low the programmer or
program reader to carve up the activi ty of the program into smal l segments, each of which is
more readi ly understood in animate terms. Whereas previously the computation was seen as a
single actor manipulating passive objects, under OOP objects are seen as taking action on their
own behalf.

Functional languages, by contrast, are those in which action, time, and change have all been
banished for the sin of theoretical intractabil i ty. Such languages do not support animate thinking
at al l , and there are no impl ied actors to be found. Some programming environments that are
quasi-functional, l ike spreadsheets, are amenable to a rather l imited animate interpretation, in the
sense that spreadsheet cel l s that have a functional defini tion can be thought of as actively
“ pul l ing in” the outside values needed to compute their own value. Spreadsheet cel ls are also
responsive to change, and purposeful in that they act on thei r own to maintain thei r value in
the face of change. But because they cannot act to change the world outside of themselves,
they are not going to be understood as animate in any broad sense.

Procedural languages blend the imperative and functional models, and so admit to being
understood as ani mate to varyi ng degrees dependi ng on the styl e of the program. The
modularization of a program into a col lection of procedures al lows each procedure to be seen
in animate terms; this is exemplified by the l ittle-person metaphor, described below.

Constraint systems and languages vary in thei r treatment of actors and agency. Like the
funct i onal model , they emphasi ze decl arat i ve statements of rel at i onshi ps rather than
specification of action, and so tend to be actorless. But some, l ike ThingLab, expl ici tly treat the
constraints as objects w i th procedural methods. This suggests that the constraints themselves

paradigm organizing metaphors and principles treatment of agents

imperative action, instruction-following single implicit agent

functional functional mappings no agents

dataflow flow of values through network cells can be seen as “ pull ing” agents

procedural society of computing objects; cal l and
return metaphors; combines impera-
tive and functional modes

procedures can be seen as agents;
l ittle-person metaphor

object-oriented communication metaphors, message-
sending, encapsulation

encapsulation helps to present ob-
jects as agents

constraint decl arat i ons of rel at i onshi ps to be
maintained

constrai nts can be seen as agents
with goals.

Table 3.2: Summary of metaphors and agents in programming paradigms.

70 Animacy

could take the role of actors in the system. But in practice, constraints are seen as passive data
used by a uni tary constraint-solver. The procedural side of constraints are single statements
that are manipulated as data objects by a planner, rather than active entities in their own right.

Animacy is a powerful conceptual tool with which to analyze programming paradigms (see
Table 3.2 for a summary). In particular, i t can help explain the speci fic appeal and uti l i ty of
object-oriented programming, which has in recent years become an extremely popular model
for commercial programming. OOP is fundamental ly just a way of organizing a program, and i t
has not always been clear why or even i f i t i s a superior way to do so. Animism provides a
theory about why OOP is powerful : i ts particular style of modularization divides up a program
so that animate thinking can be readi ly appl ied to any of i ts parts. Functional programming, on
the other hand, provides a model that systematical ly excludes animism, which might explain
why, despi te i ts undeniable theoretical advantages, i t has l i ttle populari ty outside of a smal l
research community.

Animism lurks in the background of these classic programming models. Can it be used as an
expl ici t basis for the design of new ones? Agent-based programming, to be described, attempts
to do j ust that . In par t i cu l ar , i t seeks to p rov i de a l anguage fo r p rograms that are
understandable in animate terms, but w i th the ACTOR slot fi l led by objects that partake of a
higher degree of animacy than the rote instruction fol lowers found in the imperative and object
models. They should be capable of being seen as possessing the main quali ties of real animacy:
purposefulness, responsiveness, and autonomy.

3.3.2.1 The Little-Person Metaphor

The l i ttle-person metaphor is a teaching device used to explain the operation of Logo to be-
ginners. The l i ttle-person metaphor was invented by Seymour Papert in the early days of Logo
development; the description here derives from the descriptions in (Harvey 1985) and (diSessa
1986). U nder thi s metaphor, the computer i s populated w i th l i tt l e people (LPs) w ho are
special ists at particular procedures, and “ hi re” other LPs to perform subprocedures. LPs are
normal l y asl eep, but can be w oken up to perform thei r task. W henever an LP needs a
subprocedure to be run, i t wakes up and hi res an LP who special izes in that procedure, and
goes to sleep. When the hi red LP finishes executing i ts procedure, i t reawakens the cal ler. A
“ chief” LP serves as the interface to the user, accepting tasks from outside the LP domain and
passing them on to the appropriate special ists.

The LP metaphor is an expl ici tly animate metaphor for a procedural language. Procedures
are sti l l rote instruction fol lowers, accepting commands from the outside and executing fixed
scripts, and not capable of autonomous activi ty in any sense. Sti l l , the LP metaphor succeeds
quite well in “ animating” procedures and making their activity understandable. In some respects
it is easier to see a procedure as animate than the computer as a whole. I believe this is because
a procedure, bei ng speci al i zed for a part i cu l ar task, br i ngs al ong w i th i t a feel i ng of
purposefulness. LPs thus can be seen as ful fi l l ing a task rather than as simply carrying out a
sequence of instructions. The social and communicative aspects of the metaphor are also im-
portant, since they give a metaphoric basis to the relationships between procedures.

Animacy 71

The l i ttle-person metaphor has been qui te successful as a device for teaching the detai led
workings of the Logo language.10 Sometimes the model is taught through dramatization, w i th

students acting out the parts of the l i ttle people. Not only does the model provide a good tan-
gible model for the otherw ise abstruse idea of a procedure invocation, but i t turns them into
animate objects, al lowing students to identify with them and to project themselves into the envi-
ronment.

3.3.3 Body- and Ego-Syntonic Metaphors

The Logo turtle was developed to encourage what Papert cal ls syntonic learning (Papert
1980, p.63). Turtles are said to be body syntonic, in that understanding a turtle is related to
and compatible wi th learners’ understandings of their own bodies. The turtle may also be ego

syntonic in that “ i t is coherent w i th chi ldren’s sense of themselves as people w i th intentions,
goals, desi res, l i kes, and disl i kes” . Syntonic learning, then, i s any form of learning which
somehow engages with the student’s existing knowledge and concerns, in contrast to the more
common style of dissociated learning (such as the rote learning of historical events or multipl i -
cation tables).

Papert’s theory of syntonic learning resonates with our theory of metaphorical ly-structured
understanding, which holds that al l real conceptual learning involves building connections with
existing knowledge. Looking at syntonic learning as a metaphor-based process might give us a
way to think about how i t works. Body syntonic learning involves creating a correspondence
between the body of the learner and some anthropomorphic element in the problem world (the
turtle). The learner is thus able to bring to bear a large store of existing knowledge and experi-
ence to what was an unfamil iar domain (geometry, in the case of the turtle). Metaphors based
on the body have the advantage of universal i ty: everyone has a body and a large stock of
knowledge about i t, even young chi ldren. The power of the turtle l ies in i ts abi l i ty to connect
bodily knowledge with the seemingly more abstract realm of geometry.

The uti l i ty of body-syntonici ty for problem solving has also been explored by (Sayeki
1989). Sayeki explored how people project themselves into an imaginary scene such as the
world of a physics or geometry problem, and found that problem solving times could be drasti-
cal ly decreased by including cues that al lowed solvers to map the problem onto thei r own
bodies (i .e. making what was a geometric figure resemble a body by the addi tion of a cartoon
head). By introducing anthropomorphic forms (which he labels kobitos, or l i ttle people) he can
apparently make i t much easier for subjects to find the appropriate mappings from their own
bodies to the objects of the problem, a process he refers to as “ throw ing-i n” . Thi s i s an
interesting case of the del iberate deployment of metaphor in order to aid in problem-solving. It
also highlights the active nature of the process of metaphorical understanding—learners actively
project themselves into the problem domain, as is the case with the turtle.

10 Seymour Papert, personal communication.

72 Animacy

The real ization of body-syntonici ty through turtles and simi lar physical or graphic objects
that permit identi fication would seem to be a clear success. Ego-syntonici ty, however, is more
problematic. The Logo turtle is only weakly ego-syntonic. A turtle always has bodi ly properties
(position and heading), but does not in i tself have goals and intentions of i ts own, or behaviors
that take into account the environment (Resnick and Martin 1991). If i t has any kind of ego, i t is
the simple-minded one of the rote instruction fol lower. And this of course does al low the
learner to project some of thei r own mental activi ty onto the turtle, but only a highly l imi ted
subset. The turtle can, in theory, be programmed to have ego-syntonic properties l ike goals,
but they are not inherent in the basic Logo turtle or the Logo envi ronment. In particular, in
many implementations of Logo the turtle lacks any kind of sensory capabi l i ty and thus cannot
real ly have goals because there is no way to veri fy when the goals are satisfied. Later work by
Papert and his students (Papert 1993) (Martin 1988) addresses the issue of augmenting the
turtle w i th sensors so that i t could have responsive behaviors and gave more emphasis to the
role of feedback. However, the Logo language is sti l l essential ly oriented around the procedural
model, rather than a reactive or goal-oriented one.

There are strong emotional factors at work in this process of projection and identi fication.
Chi ld programmers may have di fferent styles of relating to the computer that affect how or i f
they can identi fy with and project themselves onto the machine. Such styles are strongly condi-
tioned by gender and other social factors (Turkle 1984) (Papert 1993). It has been suggested,
for i nstance, that the chi l d-reari ng role of w omen predi sposes them to “ take pleasure i n
another’s autonomy” whi le men are more l ikely to be preoccupied w i th thei r own autonomy
and thus more prone to domination and mastery rather than nurturing the autonomy of others
(Kel ler 1985). This di fference in style has been observed in the di fferent programming styles of
boys and gi r l s l earn i ng to program (M otherw el l 1988) (Turk l e and Paper t 1991). In
Motherwel l ’s study, girls were considerably more l ikely to treat the computer as a person than
were boys.

3.3.4 Anthropomorphism in the Interface

Human interface design has considered anthropomorphism in the form of “ agents” . In this
context, an agent is an intel l igent intermediary between a user and a computer system, visual-
ized as an anthropomorphic figure on the screen with whom the user interacts, often by means
of natural language (Apple Computer 1991). Interface agents are sti l l mostly a fantasy although
there are some explorations of anthropomorphic interfaces with minimal backing intel l igence
(Oren, Salomon et al . 1990), as wel l as efforts to use more caricatured, less natural istic anthro-
pomorphi c metaphors that use emoti on to i ndi cate the state of a computati onal process
(Kozierok 1993).

There is a long-standing debate in the interface community about the uti l i ty and ethics of
agents (Laurel 1990). Anthropomorphic agents promise easier to use interfaces for novices; but
they also threaten to isolate the more experienced user from the abi l i ty to directly control their
vi rtual w orld (Shneiderman 1992) (Lanier 1995). O ther ethi cal i ssues revolve around the
question of whether having a computational system present i tsel f as a mock person requires or
el ici ts the same sort of moral atti tudes that apply to a real person, along w i th the even more

Animacy 73

provocati ve noti on that deal i ng w i th si mul ated peopl e w ho can be abused (del eted or
deactivated, for instance) will lead to similar callous attitudes towards real people.

Nass demonstrated that people interacting with computers are prone to treat computers as
social actors, when interaction is framed appropriately (Nass, Steuer et al . 1993). That is, i f the
interaction is framed as a conversation, users wi l l apply the usual social rules of conversation
to the interaction (i .e., praising others is considered more pol i te than praising onesel f). The
subjects of the experiments appl ied these rules even though they bel ieved that such rules were
not properly appl ied to computers. This research suggests that people can be induced to take
an animate view (in Goffman’s terms, to apply a social framework) by certain speci fic cues,
such as voice output. This cueing process seems to operate almost beneath conscious control ,
much as the motional cues used by Michotte to induce perceptions of animacy.

Many interfaces are not as expl ici tly anthropomorphic as those above, but incorporate a
few cues that induce a mild degree of animism. The Logo language, for example, is designed to
use natural -language terms in a way that encourages a form of interface anthropomorphism.
Commands, syntax, and error messages are careful ly crafted so that they resemble natural lan-
guage communication, casting the Logo interpreter, procedures, or turtle as communicating
agents. For instance, i f a user gives Logo an unrecognized command (say SQUARE), i t re-
sponds w i th “ I DON’T KNOW HOW TO SQUARE” , rather than something on the order of
“ Undefined procedure: SQUARE” . The student can then “ instruct” Logo by saying:

TO SQUARE

REPEAT 4 [FD 70 RT 90]

END SQUARE

The interesting detai l here is the syntax for procedure defini tion makes the defini tion re-
semble instruction in natural language: “ To [make a] square, do such-and-such...” . By putting
the user in the posi tion of addressing the computer (or the turtle) in conversation, the system
promotes the use of animate thinking. This syntactical design al lows Logo teachers to employ
the metaphor of “ teaching the computer” or “ teaching the turtl e” to perform procedures
(Solomon 1986).

Consider the di fferent shadings of meaning present in the fol low ing di fferent ways of ex-
pressing a textual error message:

 1 “ Missing argument to procedure square.”
 2 “ Procedure square requires more arguments.”
 3 “ Procedure square needs more arguments.”
 4 “ Procedure square wants more arguments.”

Of these, message 1 is the most formal, and the least animate. It is not even a sentence, just
a declaration of a condition. Message 2 casts the procedure as the subject of a sentence, which
is a large step in the direction of animacy. Messages 3 and 4 are of the same form as 2, but alter
the verb so as to imply increasingly human attributes to the procedure. Al l these variants and
more occur in various places in the discourse of computer science and in the discourse-l ike in-
teractions between programmers and their environments. Most professional programming envi-
ronments use messages that are l ike message 1 or 2, whi le those l ike message 3 are found in

74 Animacy

some Logo environments in keeping wi th the language’s use of animate and natural-language
constructs (see below). Statements l ike message 4 are rarely used as error messages, but are
common in the informal discourse of programmers.

Consider also the messages of the form “ I don’ t know how to square” , i ssued by some
Logo environments to indicate an undefined procedure. The use of the first person makes these
more explicitly anthropomorphic than the earl ier group. But since there is no procedure, the “ I”
must refer to the computer as a whole, or the interpreter, rather than a speci fic part. These
presentational subtleties are indicative of subtle modulations of animism in the Logo environ-
ment: the interpreter/turtle is fairly heavily animate, to the point where it can refer to itself in the
fi rst person, whereas procedures are less so: they have “ needs” , but do not present them-
selves as agents, instead letting the interpreter speak for them.

In recent years the term “ agent” has become overused in the commercial software world
almost to the point of meaninglessness. Sti l l , some core commonal ties appear among most
products and systems touted as agents. One of these meanings is “ a process that runs in the
background, autonomously, without being directly invoked by a user action” . Even the simplest
programs of this type, such as calendar and alarm programs, have been digni fied as agents.
Less trivial appl ications include programs that try to learn and automate routine user actions
(Kozierok 1993) (Charles River Analytics 1994).

 This usage seems to derive from the overwhelming success of the direct manipulation in-
teraction paradigm. Because of the current dominance of this model of computer use, any user
application that operates outside of the direct manipulation mode, even something as simple as
an alarm clock, becomes an agent if only by contrast.

Another popular type of “ agent” is the migrating program, such as “ Knowbots” that roam
the network looking for information that meets preset criteria (Etzioni and Weld 1994). Agents of
this sort can transport themselves over a network to remote locations where they wi l l perform
tasks for thei r user. Special languages, such as Telescript (General M agic 1995) are under
development to support the development and interchange of these agents. It is not clear to me
why a program running on a remote computer is any more agent-l ike than one running on a lo-
cal computer. The animism apparently arises from the ways in which these programs are in-
tended to be used. Remote execution might contribute to a greater feel ing of autonomy, and
agent programs can migrate from machine to machine, l ike a wandering animal, and reproduce
by copying themselves. The development of computer netw orks has gi ven ri se to spati al
metaphors (l ike the overused “ cyberspace”) which in turn seems to encourage the use of ani-
mate metaphors for the enti ties that are to populate the new space. Telescript in particular fea-
tures places, which are similar to processes, as one of i ts main object types.

3.3.5 Animate Metaphors in Artificial Intelligence

The task of Artificial Intell igence is to derive computational models of human thought, a pro-
cess that is metaphorical in nature but maps in the opposi te di rection from the one we have
been considering here, that is, the use of animate metaphors for computation. The two ways of
knowing are intimately related, of course: metaphorical mappings of this broad sort tend to be

Animacy 75

bidirectional, so that models of the mind and of the computer are necessari ly co-constructed in
each other’s image. I wi l l not directly address the issues raised by computational metaphors for
mind, a topic addressed w idely elsewhere (see (Agre 1996) for a view that emphasizes the
specific role of metaphor).

However, mental or animistic metaphors for computation are just as much a part of AI as
are computational metaphors for mind. From this standpoint, AI is less a way of doing psychol-
ogy and more an engineering practice that rel ies on the inspiration of human thought for design
principles and language. In other words, i t makes expl ici t the animism that has been implici t in
other approaches to computation. For example, here is a fairly typical description of the opera-
tion of an AI program, selected at random from a textbook:

When FIXIT [a program] reexamines a relation, it looks for a way to explain that relation using all but
one of the precedents... [the exception] is omitted so that F IXIT can explore the hypothesis that i t
provided an incorrect explanation... (Winston 1992, p390) [emphasis added].

The ital icized words above indicate verbs that put the program in the position of an animate
actor. Such talk is probably necessary, in that i t is the most compact and meaningful way to
communicate an understanding of the program to the reader.

AI has always pushed the frontiers of complexi ty in programming and thus has generated
many new metaphors for computational activi ty, metaphors which are not necessari ly l inked to
the founding metaphor of computation as thought. An example of this would be the blackboard
model of problem solving (Reddy, Erman et al . 1973), in which a blackboard metaphorical ly
represents a scratch memory and communications medium that can be shared by mul tiple
computational processes.

The w i l l i ngness of AI to freely leap between computational and animate language has
proved both frui tful and dangerous. The frui tfulness resul ts from the richness of animate lan-
guage for describing processes, and the inadequacy of more formal language. The danger re-
sul ts from the tendency to take one’s own metaphorical language too l i teral ly. (McDermott
1987) is a wel l -known diatribe against the practice of giving programs animistic names l ike
UNDERSTAND rather than more restrained, formal istic names based on the underlying algo-
ri thm. Such naming practices, however, are a consti tuent part of the practice of AI. Constant
cri tical self-evaluation is the only way to ensure that the metaphors are used and not abused.

The subfield of distributed arti fi cial i ntel l i gence (Bond and Gasser 1988), in which AI
systems are sp l i t i n to concurren t communi cat i ng par ts, makes more exp l i c i t use o f
anthropomorphic metaphors to represent i ts parts. Because communication often dominates
the activi ty of such systems, metaphors of communication and social interaction predominate.
The metaphors employed include negotiation (Davis and Smi th 1983), market transactions
(Malone, Fikes et al . 1988), and corporations or scienti fic communi ties (Kornfeld and Hewitt
1981). A particularly important thread of work in this field begins with Hewitt’s work on Actors,
a model of concurrent computation based on message passing (Hewitt 1976) (Agha 1986). The
Actor model i s a computational theory, i n essence a model of concurrent object oriented
programming, but the w ork on Actors has i ncluded a good deal of w ork on higher-l evel
protocols and on ways of organizing communication between more complex actors. This has
l ed to an i n terest i n “ open systems” (H ew i t t 1986), an approach to th i nk i ng about

76 Animacy

computati onal systems that acknow l edges thei r conti nual i nteracti on w i th an external
environment.

M insky’s Society of M ind represents perhaps the most figurative use of anthropomorphic
language in AI, perhaps out of necessi ty as i t is a semi-technical book wri tten in largely non-
technical language. By using anthropomorphic metaphors to talk about parts of minds, Minsky
risks being accused of resorting to homuncul i , and indeed has been (Winograd 1991). Dennett
has a lucid defense of homuncular theories of the mind:

It al l looks too easy, the skeptics think. Wherever there is a task, posit a gang of task-sized agents
to perform it — a theoretical move with al l the virtues of theft over honest toi l , to adapt a famous
put-down of Bertrand Russell’s.

Homunculi — demons, agents — are the coin of the realm in Arti ficial Intel l igence, and computer
science more general ly. Anyone whose skeptical back is arched at the first mention of homunculi
simply doesn’t understand how neutral the concept can be, and how widely applicable. Positing a
gang of homunculi would indeed be just as empty a gesture as the skeptic imagines, i f i t were not
for the fact that in homunculus theories, the serious content is in the claims about how the posited
homunculi interact, develop, form coalitions or hierarchies, and so forth (Dennett 1991, p261).

3.3.6 Conclusion: Computation Relies on Animate Metaphors

We have seen that animate metaphors and usages play a number of roles in computing:
they appear in the discourse of computation as foundational metaphors, in pedagogy as teach-
i ng devi ces, and are taken w i th vari ous degrees of l i teral i sm i n i nterface design and AI.
Fundamental ly, computers are devices that act, and thus we are prone to see them in animate
terms.

But in most cases the animism attributed to the computer is of a l imited kind, the “ rote in-
struction-fol lower” kind of animism. In some sense, this is proper and unexceptional—after al l ,
the computer is a rote instruction fol lower, at the level of i ts inner workings. Students must
learn to give up their animism and look at the computer as i t “ real ly is” , that is, under the me-
chanical viewpoint, as a device w i thout goals or feel ings, i f they are to understand i ts opera-
tions in detail.

But what i f our goal is not to teach how machines work, but particular styles of thought? If
our interest is in exploring programming as a means of controll ing action and of building animate
systems, the fact that the language of computation provides only a narrow concept of animacy
is unfortunate. With that in mind, the next section looks at the idea of agents as the basis for
programming languages that can support a richer notion of animacy.

3.4 Agent-Based Programming Paradigms

This section develops a theory of agent-based programming, that is, a model of program-
ming strongly based on animate metaphors. Agent-based programming begins w i th the tradi -
tional anthropomorphic mapping underlying the idea of computation and changes i t in two
ways. First, i t changes the nature of the mapping so that instead of presenting the computer as
a single anthropomorphic enti ty, i t i s instead seen as a society of interacting autonomous

Animacy 77

agents. Second, i t extends the mapping between the anthropomorphic representation and the
underlying computational real i ty to include new characteristics, such as goals and emotions
based on the state of goals.

Using multiple appl ications of the anthropomorphic metaphor in the description of a pro-
gram is not a particularly new idea. It is present, in varying degrees of expl ici tness, in the l i ttle-
person model, in object-oriented programming, in the Actor model of computation, and in the
Society of M ind. However, in these systems, the metaphor has for the most part remained in
the background, used only for teaching purposes or to i l lustrate a set of concepts that quickly
become detached from their metaphorical roots. The animate parts in such systems are for the
most part seen as rote instruction fol lowers.

I n agen t -b ased p ro gram m i n g, t h e an i m ate m etap h o r i s t ak en m o re ser i o u sl y .
Anthropomorphic characteristics are del iberately brought forward into the language and inter-
face, and the user is encouraged to think of agent activi ty and interaction in those terms. More
importantly, agent-based programming seeks to provide a richer form of anthropomorphism
than earl ier models. In contrast to the rote-instruction-fol lower version of animacy found in
most of the standard models of computation, the animacy of agent-based systems attempts to
emphasize the characteristics of animacy we have found to be the most important: autonomy,
purposefulness, and reactivi ty.

We wil l see that the single most important technique for realizing this concept of agents is to
give them expl ici t goals—that is, concrete and accessible representations of what i t is they are
supposed to accomplish. Goals can help crystal l ize the anthropomorphic metaphor: an agent is
not just any sort of person, i t’s a person with a job to do. Goals can support reactivi ty (agents
react to events that affect their goal) and support detection of confl icts when one agent inter-
feres with another’s goal.

3.4.1 Principles of Agent-Based Programming

In the loosest sense of the term, an agent-based system is simply one whose functional i ty is
distributed among active functional modules. If a module can be seen to be taking an action to
achieve a purpose, i t partakes of agenthood. By this cri terion, even the most ordinary pro-
grams wri tten in standard procedural languages may be seen as agent-based: agents are proce-
dures, while the communications between them are procedure cal ls. So this definition does not
capture anything very distinctive, al though i t does al low us to see that the roots of the agent
metaphor are to be found in standard programming practice.

How can we design agents that are more l ikely to be seen in animate terms? We have iden-
tified three characteristics in particular that contribute to the feeling of animacy: purposefulness,
autonomy, and reactivi ty. These characteristics do not have simple technical defini tions, and
are deeply intertwined with one another. The fol lowing sections explore how these characteris-
tics can be realized in concrete computational terms. Other criteria must be taken into consider-
ation when designing an agent language. We would l ike our agent system to be at least as pow-
erful and usable as more traditional languages. This means that we also need to consider tradi-

78 Animacy

tional language design issues such as understandabi l i ty, expressiveness, modulari ty, and com-
posabil ity.

Agent-based programming, by i ts nature, emphasizes action-taking rather than computation
in the narrow sense. Because of this, i t is crucial that agents be embedded in some kind of envi-
ronment in which they can act on other active or passive objects. The environment, then, wi l l
be just as important as the language in determining the nature of agent-based programming,
since it determines the kinds of action and interaction that can take place. Chapter 4 treats these
issues in detai l ; for now, we should just keep in mind that agents are involved in interactions
with a complex world.

3.4.1.1 Purpose, Goals, and Conflict

When we talk about a “ goal” , we mix a thousand meanings in one word.
 — Marvin Minsky, Society of Mind

In a complex software system, every component is there to achieve some goal of the de-
signer. This goal may be evident to an expert fami l iar w i th the global workings of the system
and the relationships of the parts, but may not be at al l evident to a novice attempting to under-
stand the system from scratch. In fact, even experts often have trouble understanding the pur-
pose of other’s code, and occasional ly even their own.

Agent-based programming can make these underlying purposes expl ici t, by including a
computational representation of the state of affairs the agent is supposed to bring about. Agents
allow procedural programs to be associated with declarative information about what they do. In
the same way that objects in a dynamic language l ike Lisp can carry around thei r type w i th
them, agents can carry around their goals. Expl ici t goals serve a number of di fferent purposes
in an agent system:

Control: The most basic use of goals is simply to control and structure activi ty by triggering
procedures at appropriate times. A goal tel ls an agent when to run—that is, when its goal is un-
satisfied.

Verification: Goals al low agents to monitor the success or fai lure of their actions—success-
ful actions make the goal become satisfied. This can make debugging easier, since parts of pro-
grams that fai l to achieve their stated purpose are expl ici tly revealed. The fact that agents can
have an idea of success and fai lure also provides a way to deal with unrel iable problem-solving
techniques. Agents may create several subagents to help achieve i ts goal, each subagent having
the same goal as i ts superior, but using di fferent methods of achieving i t. Because the agents
can tel l whether or not they have succeeded, the superior agent can use this knowledge to dis-
patch among i ts subagents.

Conflict detection: If an agent achieves i ts goal, i t can continue to monitor that goal and de-
tect i f some other agent causes the goal to no longer hold. This is one way to detect inter-agent
confl ict. Confl ict situations are quite common in complex systems, and are a common source of
bugs. The presence of explicit goals permits an agent to detect situations in which another agent
interferes with i ts goal, and makes it easier to convey to the user the nature of the problem.

Animacy 79

Organization: Agent-based programming can be viewed as a particular way of organizing
program fragments, by analogy with object-oriented programming. Just as OOP organizes pro-
cedures around the objects that i t manipulates, in agent-based systems procedures can be
viewed as organized around the goals they are meant to achieve. Each of these forms of modu-
lari ty provides a degree of encapsulation or black-boxing, that is, a separation between the ex-
ternal interfaces of objects and their internal implementations. In OOP, this means that an object
can send another object a message without having to know about the internal structure of the
receiving object or the methods that process the message. The analogous property for agent-
based systems is that an agent can assert a goal to be satisfied w i thout having to worry about
the details of the other agents that wil l be recruited to satisfy that goal

Visualization: Expl ici t goals can also make programs more comprehensible to an observer
who is reading the program or watching i t execute. The goals serve as annotations or com-
ments that explain in a declarative style what a procedure is trying to do. But unl ike textual
comments, goals are in a machine-usable form and can thus be used for a variety of interface
tasks.

Goals thus form the conceptual and computational basis for giving agents explicit represen-
tations of their purpose, which also contributes to the real ization of the other two major qual i-
ties of animacy we seek: autonomy and reactivity.

3.4.1.2 Autonomy

In the standard procedural model of programming, programs run only when they are ex-
pl ici tly invoked by an outside enti ty, such as a user or another program. Agents, by contrast,
should be able to invoke themselves, w i thout the need for external invocation. That is, they
should be autonomous in the sense we have been using the word in this chapter—capable of
ini tiating action, or being seen as such. Of course, since an agent is also a constructed mecha-
nism, one which the programmer builds and understands using a more mechanical, causal point
of view, this apparent autonomy may only be skin-deep. No action real ly happens al l by i tself.
So agents wil l always have to be capable of being seen in at least two ways: as autonomous ac-
tion takers and as mechanical responders to outside conditions.

The simplest way to real ize agent autonomy is to make each agent into a separate process,
and let i t run in a loop concurrently w i th al l other agents (and other activi ty, such as user ac-
tions). Concurrency in some form is a minimal requirement for agent autonomy. But concur-
rency by i tsel f is a bare-bones approach to constructing agents. It provides a necessary plat-
form to support autonomy, but no structure for handl ing confl icts or expl ici tly deal ing w i th
goals.

A somewhat di fferent approach is to al low agents to be triggered by speci fi c events or
states. That is, agents speci fy somehow what states or events they are interested in, and are
activated whenever these occur, w i thout having to continuously check for them. This has the
same effect as the concurrent approach, but i t can be more efficient and the metaphor is differ-
ent. In some sense triggering is causal or non-autonomous, because the agent is being activated
by an outside force, but i f we use the moni toring metaphor the agent may sti l l be seen as the
source of action.

80 Animacy

3.4.1.3 Reactivity

Reactivi ty means that agents should be responsive to the world. But what does this mean?
For one thing, i t implies that the agent is operating in a changing world—an assumption at odds
with the standard model of procedural programming, where the environment is general ly static.
It also implies that the agent has some readily available means of sensing the state of the world.
More importantly, i t means that the image of the agent is different from the sequential executor
that the rote-instruction-fol lower model suggests. Whi le agent-based systems should certainly
be capable of executing sequences of operations, i t should also be easy for them to respond to
changes in the world at any time.

Reactivi ty is related to the properties of autonomy and purposefulness. An autonomous
enti ty ini tiates action—but to seem purposeful must have some reason for taking action. For
simple systems, the reason is usual ly going to be a change in the state of the world, that is, the
entity is reacting to something in its environment.

3.4.2 Computational Realizations of Agents

This section examines some of the ways in which the term “ agent” has been used to refer
to elements of larger computational systems, and analyzes their strengths and deficiencies com-
pared to the criteria outl ined above.

3.4.2.1 Agent as Process

The simplest real ization of computational agents is as concurrent processes that can exe-
cute simple loops. This approach is used by MultiLogo (Resnick 1988). In MultiLogo, agents are
processes that can execute any procedure. Agents are thus general purpose enti ties rather
than being special ized for particular functions. Each agent has a graphic turtle of i ts own, so
turtles are control led by a single agent, but the agents can communicate freely with the sensors
and effectors of LEGO creatures, permi tti ng experiments in w hich mul tiple agents can be
control l ing a single creature. Agents communicate by sending messages to one another. Each
agent has an input queue for messages and has some control over how messages are inserted
into the queue of recipients.

MultiLogo agents, being separate processes, are certainly autonomous. The language pro-
vides no special constructs for supporting goals or reactivity, although it is a fairly simple matter
to set up procedures with conditionals that provide these kinds of features. There are no bui l t-
in facil i ties for handling confl ict: i f two agents try and control the same LEGO motor, contention
wil l arise. Agents, however, are protected from confl icting commands by handling them through
a queue, which effectively serializes them.

O ne major di fference betw een M ul ti Logo’s approach and the agent-based systems of
LiveWorld is the sharp distinction in the former between agents and procedures. This fol lows
standard computi ng practi ce, but l ed to some confusion among students l earning to use
Mul tiLogo, who had to learn to perform two separate types of problem decomposi tion. In ef-
fect, agents (processes) are a separate faci l i ty for concurrent operation that is augmenting a

Animacy 81

standard procedural language (Logo). Perhaps the confusion arises because both concepts par-
take of animacy in different ways, and get conflated in the students’ minds.

3.4.2.2 Agent as Rule

Another model for agent is a rule or demon. In this model, agents have a condition and an
action to be taken when the condition is met. A col lection of such agents, together with a pro-
cedure for resolving confl icts, forms a forward-chaining rule system, that is, a system that is
driven solely by the current state of the world rather than by goals. Whi le agents may have a
purpose, they do not have expl ici t goals. Teleo-reactive programming (N i lsson 1994) is an
example of a formal ism that uses sets of rules to implement agents; for more discussion see
Section 5.1.3.

Although the agent-as-process model is more general (since a process can presumably im-
plement a rule using condi tionals), the more restrictive format of the agent-as-rule model can
simpl i fy confl ict resolution and makes possible certain control strategies (such as recency or
specifici ty) and efficient implementations (such as storing rules in a data structure that permits
fast triggering (Forgy 1982)).

Rules, considered as a programming metaphor, are quintessential ly reactive but are not
goal-oriented and are not usual ly thought of in particularly anthropomorphic or autonomous
terms. One way in which rules are anthropomorphized is to think of them as demons that are
triggered by specific events or conditions.

3.4.2.3 Agent as Enhanced Object

Shoham’s Agent Oriented Programming (AOP) formalism (Shoham 1993) is a computational
framework explicitly designed as an extension or specialization of object-oriented programming.
O bjects become agents by redefi ni ng both thei r i nternal state and thei r communicati on
protocols in intentional terms. Whereas normal objects contain arbi trary values in thei r slots
and communicate w i th messages that are simi larly unstructured, AOP agents contain bel iefs,
commitments, choices, and the l ike; and communicate with each other via a constrained set of
speech acts such as inform, request, promise, and decl ine. The state of an agent is expl ici tly
defined as a mental state.

The AOP concept of agent is coarser-grained than that found in LiveWorld’s agent systems.
Each agent has i ts own mental i ty or bel ief system as opposed to components of a single mind.
There is no real opportunity for confl ict in AOP, because each agent is responsible for maintain-
ing consistency among i ts commitments. If given contradictory information a choice must be
made, but there is no built-in mechanism for doing this.

Oddly enough, the AOP formal ism appears to have no expl ici t representation of desire or
goals. Nor do the languages that implement AOP provide processes or other constructs that
support autonomous activi ty. Agents, despite their mental qual i ties, are essential ly passive l ike
ordinary objects, but communicating at a higher level of abstraction. The agency in AOP is en-
tirely representational, rather than active. The roots of agency are seen as having explici t bel iefs
and knowledge, rather than in being goal-directed or autonomous.

82 Animacy

This makes Shoham’s concept of agency almost enti rely orthogonal to LiveWorld’s. They
are not necessari ly incompatible though—there is the interesting possibi l i ty that i t might be pos-
sible to combine Shoham’s representational agency w i th the purposive, autonomous idea
agency developed here. This is an area for future research.

3.4.2.4 Agent as Slot and Value-Producer

Pl ayground (Fenton and Beck 1989) had a rather i d i osyncrat i c v i ew of agents as a
combination of a slot and a value-producing form for that slot. An agent in thi s system is
something l ike a spreadsheet cel l that is also part of an object. See Section 2.2.3.2 for further
discussion of Playground.

Playground’s model of agent seems rather un-agent-l ike in the context of our discussion, in
that i t cannot take any action to effect the world outside of i tsel f. Functional agents l ike these
can be anthropomorphized to some extent by describing thei r computation as a “ pul l ing” of
values from other cel ls in the system to use in i ts computation of i ts own value. This is opposed
to the usual “ pushing” activi ty of more imperatively-structured languages. This terminology at
least puts the agent in an active role, but does not really allow it to act on the world.

A Playground agent i s autonomous, in the sense that i t continuously updates i ts value
without outside intervention, and reactive for the same reason. It has no expl ici t representation
of goal or purpose. Since there is exactly one agent per slot, there is no real opportuni ty for
conflict to arise.

3.4.2.5 Agent as Behavioral Controller

A wide variety of systems for control l ing the behavior of an intel l igent creature employ dis-
tributed networks of simple modules. Some of these refer to the modules “ agents” , but i t i s
more common in this realm for the creatures themselves to be cal led agents. To avoid confu-
sion we wil l continue to use agent to refer to the internal active parts.

These systems arise from a movement within the AI and arti ficial l i fe fields that focuses on
intel l igent action rather than the more tradi tional symbol ic problem solving. In part this focus
stems from frustrations with the state of work in tradi tional paradigms, in part from an interest
in model ing animal behavior for i ts own sake, in part from phi losophical standpoints about the
nature of human intel l igence and activi ty (see section 2.1.4), and in part by a search for al ter-
natives to the dominant planning and reasoning paradigm, which can be computational ly in-
tractable and has a limited abil ity to deal with a dynamic world (Chapman and Agre 1986).

Whi le si tuated action does not rule out representation and reasoning, i t de-emphasizes
them. Intel l igent action is generated fi rst by responsiveness to current conditions in the world.
Systems that work in this way tend to be organized around a functional modulari ty. Rather than
the central ized architecture of traditional AI, these systems are divided up into more-or-less in-
dependent, modules each of which is in charge of a particular behavior. These modules are
connected in networks so that some control can be exerted, but each module is in charge of
managing i ts own connection to the world through sensors and effectors.

Animacy 83

A variety of computational constructs are used to implement the internal agents of these
situated creatures. I wi l l survey a few of these systems; for a ful ler treatment see (Agre 1995).

The subsumption archi tecture (Brooks 1986) (Connel l 1989) is a design methodology for
robot control systems. A subsumption program consists of a number of modules connected in
a network, usual ly arranged in a layered fashion, with each layer capable of control l ing action
independently. Higher-level layers are capable of preempting lower-level ones using a scheme
based on fi xed pri ori ty gates that make up the netw ork. Each module i s an autonomous
augmented fini te-state machine, w hich can communicate w i th the outside w orld through
sensors, to other modules through the network, and to i tsel f through a smal l set of registers.
Modules typical ly implement fairly simple behavioral control rules, sometimes augmented with
state. Goals are impl i ci t rather than expl i ci t, and confl i ct between modules i s handled by
hardwired priorities in the connections between the modules and the network.

The Agar system is a software ki t for model ing animal behavior (Travers 1988), and i ts
conception of control is based loosely on Tinbergen’s ethological models (Tinbergen 1951)
(also see section 5.2). In Agar, an animal ’s behavioral control system consists of a network of
agents. An agent is something of a cross between a process and a rule, and has an activation
level and a threshold that determines when i t can run. Agents in general connect a sensory
stimulus to an action, which may be an external action or the activation of another agent.
Agents affect one another by passing activation in this manner, and the usual practice is to
arrange them into a control hierarchy so that higher-level agents can activate ones at lower
levels. There are no expl ici t goals. Confl ict is avoided by hard-wired inhibi tory l inks between
agents that confl ict.

Maes’ Action Selection Algori thm (Maes 1989) (Maes 1990) is somewhat di fferent from the
above systems. It too posi ts a di vi si on of a control system into functi onal modules, w i th
variable activation levels. However, the relations between them are modeled after the relations
of classical STRIPS-like planning operators, so that modules are connected to other modules that
represent thei r precondi tions and expected resul ts. Unl ike the other models, this al lows the
activation of the system to respond to changing goals as well as to conditions in the world. The
action selection algorithm is explicitly non-hierarchical so that there are no managers, however,
there is a “ bottleneck” in that only one module can actually act at any one time.

The agents of these systems are highly l imited, yet can perform complex tasks. As agents in
the sense of this chapter, they are somewhat deficient. Al l three systems offer a high degree of
reactivi ty. Agar’s agents and Brooks’ behavior modules are semi-autonomous: they run con-
currently, and take action on their own. Maes’ competence modules are less so, since only one
can act at a time. Al l the archi tectures implement purposefulness, but only Maes’ uses an ex-
plicit representation of goals.

3.4.3 Agents and Narrative

Narrative deals with the vicissitudes of intention.
— Jerome Bruner (Bruner 1986)

84 Animacy

The agent metaphor allows computational elements to be envisioned using more natural and
powerful conceptual tools than those provided by more formal istic approaches. But thinking
about program parts in animate terms is only the fi rst step. Once that mapping is created, what
other uses can be made of i t? One possibi l i ty is to explore the tradi tional methods for express-
ing the interactions and histories of human agents; that i s, of narrative forms. There would
seem to be great potential in using the form of stories both to create software agents (through
programming-by-example or case-based techniques) and to present the activi ty of such agents
to the user.

Thi s second techni que w as expl ored i n prototype form i n the N ose Gobl i ns system
(Travers and Davis 1993). This project included an agent archi tecture that was one of the
predecessors of Li veW orl d’ s, and al l ow ed users to construct constrai nt-l i ke agents that
performed tasks in a graphic design domain. In this archi tecture, agents related goals and
methods, and could detect inter-agent conflict.

When an agent confl ict was detected, Nose Gobl ins created a story about the confl ict and
expressed the story to the user using a format that combined a comic-strip/storyboard format
w i th cl ips of animated cartoon characters (see Figure 3.1). The storyboard served to present
the temporal qualities of the story, while the animated characters presented the emotional states
of the actors, based on the satisfaction state of thei r goals (happy, unhappy, or angry i f in a
confl ict situation). When a confl ict was detected, a partial storyboard was generated with the fi-
nal panel showing the characters in an angry state; i t was then up to the user to resolve the si t-
uation. The resolution was stored in a case l ibrary and used to deal with future confl icts.

Animacy 85

Figure 3.1: Four panels from a Nose Goblins storyboard. The first two frames il lustrate the goals of
the two agents involved, while the last two il lustrate how one agent clobbers another’s goal and

the resultant conflict.

Narrative is a natural form for describing action, particularly action that involves the inter-
action of multiple actors. If computational objects are going to be understood anthropomorphi-
cal ly, their actions are going to be best understood through narrative forms.

3.5 Conclusion

This chapter has defined and explored a particular mode of thought and i ts relationship to
computation. I imagine that some readers might have found this discussion to be highly i rri tat-
ing. “ Why al l this attention to such a marginal concept?” , I hear them saying. “ Don’t you know
that anthropomorphism is at best a useful pedagogical device, and not something that really has
anything to do with how computers work and are programmed?” Assuming any of those read-
ers have actual ly made i t to the end of the chapter, I would l ike to answer them. In computa-
tion, animism has become what I have cal led a transparent metaphor, one that is so much a
part of the structure of the discourse of the field that we have forgotten that i t i s there. This
chapter is an attempt to see a metaphor that has become close to invisible, w i th the hope of
understanding and extending it.

Is there a need for this treatment? I think that there is, because of the confusion that rages
in various segments of the computer world over issues that are deeply tied to the issue of just
what i t means to be animate and/or intel l igent. The current fad of using the word “ agent” for
software of al l types is one aspect of this unease, and i t generates a good deal of confusion.
Another symptom is the recent spl i t in AI between representational ists and the si tuated action

86 Animacy

approach, reminiscent of the older spl i t between AI and cybernetics. Mature science is sup-
posed to converge on a theory; but instead computational approaches to intel l igence and l i fe
seem to be diverging, with no consensus on the problems to be solved, let alone the answers.

This chapter, then, is an attempt to address these problems at a conceptual level, by trying
to understand how the languages of computation are related to the language used to describe
l i fe and action. We found that while animate metaphors are pervasive in computation, being in
some sense a founding metaphor for the field, the metaphors offer up only a l imi ted form of
animacy that leaves out many of the key properties associated with al iveness. The rote-instruc-
tion-fol lower image affects and infects our thinking and l imits our imagination about what com-
puters can do.

Agent-based programming systems set out to bring a ful ler form of animacy to the descrip-
tion of computational processes. By picturing the components of programs as animate objects
that can have expl ici t goals, a degree of autonomy, and the abi l i ty to dynamical ly react to their
surroundings, languages can be designed that are more sui table for creating animate worlds.
The fol lowing chapter i l lustrates some agent systems based on these ideas and explores what
they can do.

Animacy 87

Chapter 4 LiveWorld
If the computer is a universal control system,

let’s give kids universes to control.

— Theodore H. Nelson (Nelson 1974)

The substrate of LiveWorld, upon which the agent systems were constructed, consti tutes a
general purpose computational medium, designed for l i vel iness and ease of construction.
LiveWorld consists of a tightly integrated object system and interface, which permi ts ready
manipulation of the various components needed to make animate worlds. In addition to making
the animated graphic objects or actors easy to create, manipulate, and control, i t was necessary
to make the internal parts and operations of the objects and the programs that drove them
visible and manipulable as wel l . W hi le LiveW orld i tsel f i s not based on agents or animate
metaphors, i t provides a world in which languages and programs based on those metaphors
can be developed.

Note: this chapter goes into a good deal of detai l about the inner workings of LiveWorld.
Readers who are interested only in the agent systems may w ish to skip over al l but the fi rst
sect i on of th i s chapter . The f i rst sect i on i s an overv i ew w hi ch i n troduces enough of
LiveWorld’s terminology to make the next chapter understandable.

4.1 Overview of LiveWorld

LiveWorld’s vi rtual space consists of a hierarchical structure of objects cal led boxes (see
figure 1.1). Boxes can be created and manipulated w i th the mouse; they are concrete and
tangible graphic representations of underlying computational objects. The intent of the interface
is to make the entire computational state of the virtual world available to the user in the form of
boxes.

Boxes are named and can have values. If a box color is inside of a box turtle, then color is
someti mes referred to as an annotation o f turtle. Annotati ons can functi on l i ke sl ots of
standard object-oriented languages, so in the above example the value of the color box wi l l be
interpreted as a slot of the turtle. Boxes are sometimes referred to as frames, reflecting their
underlying representation.

Some boxes represent graphic objects; these are cal led actors. Actor boxes are contained
inside theaters, which present them in two separate views: a stage view which shows them in
graphical form, and a cast view which shows them in the form of boxes. These two views are
interconstrained so that changes in one are reflected in the other.

Boxes can inheri t properties from a prototype. New boxes are often made by cloning an
existing box, which just means making a new box with the original as prototype. Cloned boxes
(also called spinoffs) inheri t various properties from thei r prototype, such as values for slots.
Inheritance is dynamic, meaning that changes in the prototype may affect the spinoff. The initial

LiveWorld environment consists of special ized objects including theaters, actors, slots, sensors;
users usual ly begin the programming process by cloning and combining these into a world of
their own. After an object is cloned the new object may be customized by modifying any of i ts
properties to be different from i ts prototype.

LiveWorld is programmed using an extension of Common Lisp. Since boxes are named and
are in a hierarchy, they can be referred to by paths. There are two forms of box paths. The
absolute form gives the name of a box starting from the top, or root, of the hierarchy. For
instance, the path

#/theater-1/cast/turtle/color

names the color f rame of a turtle i nsi de the cast o f theater-1. Relative boxpaths al low
references to be made relative to a local box; these are explained in section 4.5.4.2.

A message passing language is defined on frames: The ask pri mi t i ve i s used to send a
message to a box. For instance,

(ask #/theater-1/cast/turtle :forward 10)

wi l l cause the named turtle to move forward 10 uni ts. Boxes speci fy thei r responses to
messages by means of methods, which are themselves boxes containing a program.

Specialized boxes called animas offer process-l ike capabi l i ties. An anima repeatedly sends a
:step message to i ts containing box, concurrently with other animas and user-ini tiated actions.
Animas can be used as the basis for bui lding agents.

4.2 Design

4.2.1 General Goals

LiveWorld was designed to support certain basic qual i ties of interaction: al l parts of the
system should be concretely represented and accessible, the system should feel reactive, i t
should permit exploratory or improvisatory programming, and there should be a clear learning
path that leads a user from simple to more complex modes of use.

4.2.2 A World of Lively Objects

Creating animate systems requires the creation and organization of many different kinds of
parts, i ncluding w orlds, actors (graphi c objects, al so cal l ed creatures), agents (behavior
generators). Each of these parts i n turn can have parts of i ts ow n or aspects affecti ng i ts
appearance and function. The number of objects can be quite overwhelming unless del iberate
steps are taken to present the complexity in a form that a novice can comprehend.

The approach used by LiveWorld is in the tradition of Smalltalk and Boxer, in that i t tries to
make computational objects real for the user. Objects should be concrete—that is, they should

90 LiveWorld

appear to have a sol id existence, metaphorical ly rooted in the properties of physical objects,
and tangible—they should be accessible to the senses and actions of the user.

The techniques used to achieve these goals include a simple yet powerful object-oriented
programming system with prototype-based inheritance (arguably more concrete in i ts operation
than class-based inheri tance); and the integration of the object system with an equal ly simple-
yet-pow erfu l d i rect mani pul at i on i nterface (see Fi gure 4.1). Together obj ect-or i ented
programming (OOP) and di rect manipulation serve to make computational objects appear as
concrete and tangible. These properties al low users to make use of thei r visual and motor
abilities to interact with computational objects.

Li veW orld i s designed to support agent-based programming, or programming w i th an
animate flavor. It is not i tself constructed from agents11, but is intended to support the creation

of agents, both computational ly and from a design standpoint. Object-oriented programming is
the existing programming paradigm best capable of supporting animate thinking (see 3.3.2), so
LiveWorld starts from that basis. Objects are animate in the sense of being capable of acting,
but only in response to messages from outside themselves. This is a powerful paradigm, ful ly
capable of representing a wide range of computational activity, but its metaphorical implications
may be l imiting. OOP presents a picture of objects as passive, taking action only in response to
a stimulus from the outside. For LiveW orld, we want objects to seem capable of acting as
animate creatures.

As set out in Chapter 3, the three sal ient characteristics of animacy are purposefulness,
autonomy, and reacti v i ty. The agent systems descri bed i n Chapter 5 are more di rectl y
concerned w i th these i ssues, but the underl ying level i s capable of providing some basic
support for the latter two. Autonomy is supported by special objects cal led animas, which
provi de a faci l i ty si mi l ar to processes, but i n a sty l e desi gned to support agent-based
programming. Animas provide a “ power source” which can be combined with other objects to
produce independent behavior, running independently from user activi ty and from each other.
They form the underlying basis of some of the simpler agent systems detai led in section 5.1.
Reactivi ty is supported by sensors that al low objects to detect other objects or condi tions in
thei r envi ronment, and by the more general computed-slot faci l i ty that al lows values to be
automatically updated from changing environments.

4.2.3 Spatial Metaphor and Direct Manipulation

To make computational objects real for the novice, who has not yet developed the ski l ls to
mental ly visual ize them, objects can be given some of the properties of physical objects, such
as appearance, location, and responsiveness to action. In other words, they should be brought
out to the user by means of a direct manipulation interface (Shneiderman 1983). The interface
should disappear as a separate enti ty; instead the user should be able to think of computational
objects as identical with their graphic representation (Hutchins, Hollan et al. 1986, p97).

11Section 6.3.4 dicusses the prospect of building a system that is entirely based on agents.

LiveWorld 91

LiveWorld presents i tsel f as a col lection of recursively nested graphic objects, arrayed in
space and manipulable by the user. This idea is largely borrowed from Boxer (diSessa and
Abelson 1986), fol low ing the design principle referred to as naive real ism. LiveWorld retains
Boxer’s basic metaphor of recursively nested boxes, but di ffers from Boxer in the way i t treats
i ts basic object. In Boxer, boxes are understood in reference to a textual metaphor. A Boxer
box is l ike a character in a text string that can have internal structure, which wil l be other l ines
of text that also may include boxes. Boxes have no fi xed spatial posi tion, but are fi xed in
relationship to the text l ine that contains them. There are no classes of boxes (except a few
built-in system types) and no inheritance.

In contrast to Boxer, LiveWorld boxes are to be understood as graphic objects that may be
moved with the mouse. While Boxer’s interface is rooted in word processing (specifical ly in the
Emacs text edi tor (Stal lman 1981) from which Boxer derives i ts command set), LiveWorld’s is
rooted in object-oriented draw ing programs. Both systems extend thei r root metaphor by
allowing for recursive containment.

LiveWorld’s object system supports the idea that a user should always be able to access
internal data, but shouldn’ t have to see detai l that is i rrelevant to her needs. Complex objects
can be treated atomical ly as necessary, but opened up so that thei r workings can be viewed
and their parameters can be changed.

4.2.4 Prototype-based Object-oriented Programming

Object-oriented programming (OOP) makes programs more concrete by giving them a
feel ing of local i ty. Under OOP, each piece of a program is closely associated with a particular
object or cl ass of objects. Rather than an abstract set of i nstructi ons, a routi ne i s now a
method, bel ongi ng to a par t i cu l ar ob j ec t and i n tended to hand l e a spec i f i c c l ass o f
communication events. It has a location, and in a sense i ts function is made more concrete by
its association with a class of objects.

 Prototype-based languages (Lieberman 1986) (Ungar and Smith 1987) are an alternative to
the class-based object schemes used in more tradi tional OOP languages such as Smal l talk,
CLOS, or C++. Prototype-based OOP arguably offers addi tional concreteness by dispensing
w i th cl asses. In a cl ass-based object system, every object i s an i nstance of a cl ass, and
methods are associated with a class rather than with particular concrete objects. While classes
are usual ly represented by objects, these objects are of a di fferent order than normal objects
and are sometimes cal led meta-objects to emphasize this distinction. In contrast, a prototype-
based system has no distinction between classes and instances or between objects and meta-
objects. Instead of defining objects by membership in a class, they are defined as variations on
a prototype. Any object may serve as a prototype for other objects.

The advantages of prototype-based programming are simpl ici ty, concreteness, and the
possibi l i ty of a better cognitive match between program construct and the thinking style of the
programmer. It el iminates whole classes of metaobjects, and simpl i fies the speci fication of
inherited properties. In a sense it is object creation by example.

92 LiveWorld

For example, the properties of elephants might be defined by a prototypical elephant
(Clyde) w ho has color gray and mass heavy. Properti es of Cl yde become defaul ts for the
spinoffs, so al l elephants w i l l be gray and heavy unless thei r defaul t is overridden, as in the
case of pink elephants. With prototypes, the speci fication of defaul ts and exceptions are done
in exactly the same way, that is, simply by specifying concrete properties of objects. In a class
system, one w ould general l y have to use separate sorts of statements to express both “ al l
members of the class elephant are gray” and “ except for the pink ones” .

There are some indications that mental representation of categories is structured around
prototypes (Lakoff 1987). Whether this translates into any cogni tive advantage for prototype-
based computer l anguages i s open to quest i on . W hat pro to types do accompl i sh fo r
programmi ng i s to smooth out the devel opment process, by easi ng the transi t i on from
experimentation to system-building.

LiveWorld’s prototype-based object system is a modified version of Framer (Haase 1992), a
know ledge representation tool that provides a hierarchical structure for objects, prototype-
based inheri tance, and a persistent object store. It is based on a single structure, the frame,
w hich can take the place of a number of constructs that are usual l y separate. Framer i s a
representation-language language in the tradi ti on of RLL-1 (Greiner 1980). In thi s type of
language, slots of a frame are fi rst-class objects (frames) in their own right. This abi l i ty to put
recursive slots-on-slots makes it relatively easy to implement advanced programming constructs
that are difficult or impossible to realize in conventional object systems, such as facets, demons,
dependency networks, and histories. For example, any slot-frame can have a demon added to
it, which wil l be stored on a slot of the slot.

Framer was not designed as an object system for dynamic envi ronments l ike LiveWorld,
and requi red a few modi fi cati ons, addi ti ons, and speedups. I chose Framer for thi s task
because of i ts hierarchical structure, which was a perfect match for the Boxer-l ike interface I
envisioned for LiveWorld, because of i ts simpl ici ty, because of i ts prototype-based inheri tance
scheme, and because the abi l i ty to recursively annotate slots made i t a very flexible vehicle for
experimentati on. Li veW orld’ s graphi c representati on for the frames i s the box, w hi ch i s
described below. From the user’s perspective boxes and frames are identical , and for the most
part I wil l use the terms interchangeably.

4.2.5 Improvisational Programming

A programming system for novices ought to support experimentation and improvisation.
The model of use should not assume that the user has a ful ly worked-out model of the task.
Rather, the system should assume that the user i s engaged i n an acti vi ty that consi sts of
incremental and interleaved design, construction, debugging, and modification. This means that
each part of the user’s cycl ical path between idea, execution, and evaluation has to be short
and relatively painless.

LiveWorld 93

idea

execution

evaluation

kits;
libraries;

prototypes

immediate feedback

browsing;
affordances

Figure 4.1: How LiveWorld supports improvisational programming.

Improvisational programming rel ies on the abi l i ty to bui ld programs incremental ly12. Thi s

faci l i ty is an important part of dynamic programming environments for novices such as Boxer
or Smal l talk, since novices need the short feedback cycle that incremental programming can
provide. From the standpoint of interface design, incremental programming is akin to non-modal
interface design: conventional programming requires constant switching between wri ting and
testing, while incremental programming attempts to reduce or eliminate that modal switch.

A graphic browsing and edi ting interface contributes to the improvisatory feel of a system
by l aying out al l the avai l able parts and opti ons for the user, encouraging combinati on,
modification, and experimentation. Lisp and Logo general ly have not included such a faci l i ty,
but Boxer and Smalltalk have made browsing interfaces a prominent part of their design.

The combination of object system, incremental programming, and graphic construction
gives the system the feel of a construction ki t. A construction ki t essential ly provides a set of
parts that are both more complex than “ raw material ” and are designed to fi t together. Ki ts
support improvisation because they reduce the effort needed to try new configurations.

Prototype-based object systems are arguably better at supporting improvisation than their
class-based equivalents. A class-based system makes i t hard to create one-of-a-kind objects, so
bui l di ng somethi ng i s al w ays at l east a tw o stage process (f i rst defi ni ng the cl ass, then
instantiating an instance). Prototype-based systems el iminate this barrier, freeing users to bui ld
concretely without having to first turn their concrete ideas into abstract classes.

The immediate feedback of the system closes the gap between execution and evaluation.
Graphic displays that provide affordances for action can involve the user in object manipulation
and suggest courses of action.

12 Sometimes the abi l i ty to bui ld programs incremental ly is conflated w i th the distinction between
interpreted and compiled languages. While the idea of interactive incremental program construction has its
roots in interpreted languages, modern programming environments support incremental compilation, so that
the benefits of compilation and incremental construction can be combined.

94 LiveWorld

4.2.6 Parsimony

Also borrowed from Boxer is the idea that a single structure, the box, can be made to serve
a mul ti tude of purposes. In most languages, variables, data structures, sets, graphics, classes,
buttons, and palettes are very di fferent sorts of things w i th very di fferent interfaces. In Boxer
and LiveWorld al l of these structures are replaced by the box, which is flexible enough that i t
can perform al l of their functions. This technique is of great value in reducing the complexity of
the interface, since only a single set of manipulation skil ls needs to be learned.

4.2.7 Metacircularity

As much as possible, the interface of LiveWorld is defined in the language i tself, giving the
user control over i ts appearance and operations. Framer’s recursive structure makes i t easy to
use frames to represent information about frames, and LiveWorld makes frequent use of this
capabi l i ty. For instance, display information for frame boxes is stored in (normal ly invisible)
frame annotations to each displayed frame (% box-position, for instance). If you display these
frames, they get their own display annotations, recursively. Because LiveWorld represents i ts
internal processes in the same w ay as i ts user-level i nformation, i t may be considered as
capable of a degree of computational reflection (Maes 1987) (Ferber and Carle 1990) in that i t is
possible for programs w i thin LiveW orld to modi fy thei r underlying interpreter and related
mechanisms.

4.2.8 Graphic Realism and Liveness

LiveWorld strives for a feel ing of real objects interacting in real-time. The principle of naive
real ism is heightened in LiveWorld by displaying boxes and actors as sol id objects that retain
their sol idity as they are moved around. This simple but important technique serves to heighten
the realistic and concrete feel of the medium.13

13 The abi l i ty to do smooth double-buffered dragging w as made possible by the Sheet system
developed by Alan Ruttenberg.

LiveWorld 95

Figure 4.2: A cloned sensor about to be dropped into a turtle actor.

W hen a box or actor i s in transi t (for instance, just after being cloned but before being
dropped i n i ts home) i t appears to fl oat over the w orl d, casti ng a shadow to i ndi cate i ts
transitional state (see figure 4.2).

The “ l iveness” of LiveWorld requires that many activi ties are ongoing simultaneously. This
means that screen objects must be able to move concurrently, and also that screen animation
can proceed concurrently with user interaction. The feeling of l iveness is enhanced by updating
displays immediately. For instance, dragging an object wil l cause any related displays to update
continuously, not only after the object is released. Also, autonomous screen objects continue
to act during user interaction, and responsive objects may change their behavior as a resul t of
user moti on, agai n even before the operati on i s compl ete. The goal of the system i s to
encourage users to interact with the systems they bui ld.

Many systems that al low interactive editing of a runnable system use global mode switching
as a predominant feature of thei r interface (for example, the NeXT Interface Construction Ki t
has a big i con of a kni fe sw i tch for this purpose). These systems impose a barrier between
construction and use that should be unnecessary. LiveWorld avoids the need for global mode
switching,

14
 encouraging users to modi fy thei r systems as they run. Thi s has the effect of

tightening the debugging loop as well as making the interface less modal.

4.2.9 Learning Path

A programming system for novices should be both easy to learn and powerful . It i s too
much to expect a powerful system to be learned al l at once, so the system needs to provide a
learning path consisti ng of techniques that al l ow a user to progressively l earn and adopt
features of the system. Each layer of the system should provide “ conceptual scaffolding” that

14 LiveWorld does have a master switch to turn off animation, but i ts use is optional—editing can take
place while things are running.

96 LiveWorld

al lows the learning of the next layer to be rooted in existing ski l l s. Complexi ty needs to be
hidden until it is needed, at which time it should reveal itself in understandable terms.

In LiveWorld, there are a number of distinct levels of usage that exist w i thin an integrated
framework. The intent is that simple modes of use should be easi ly learnable and also lead the
user into the more complex modes. For example, a user whose only experience is in using
di rect-manipulation graphics programs can approach the use of LiveW orld as she would a
drawing program. Unl ike a drawing program, however, LiveWorld makes the properties of the
object into manipulable objects in their own right, and can thus introduce this novice user to
the idea of properties; slots; and values.

The learning path of a novice might fol low these steps:

• use of direct manipulation graphics to create pictures;

• opening up the graphi c obj ects to manipulate properti es and sl ots; usi ng objects as
prototypes;

• adding behavior to objects by copying agents from a l ibrary;

• debugging behavior interactions;

• customizing behaviors by modifying agents.

The coexistence of several modes of use that shade natural l y into each other creates a
learning curve. Mastery at one level can function as scaffolding for learning the next.

4.2.10 Rich Starting Environment; Libraries

O ne important stage of use i n the scaffolding model i s programming by copying and
combining pre-bui l t objects and behaviors from l ibraries. Later, users may open up these
obj ects to see how they w ork and change them. Al an Kay has termed thi s sty l e of use
“ differential programming” (Kay 1981). The idea behind differential programming is to support
the common desire to make an object that is almost identical to an existing one, but with a few
small modifications.

This is qui te di fferent from Logo’s approach (see section 1.3.3), whi le Boxer is somewhere
in between. Logo environments general ly begin as blank slates, containing only a turtle. A new
Boxer environment presents a blank slate to the user, but the educational community around
Boxer has al so devel oped a styl e i n w hi ch the user begi ns w i th an al ready-constructed
microw orld containing both w orking examples and components that can be used in new
simulations.

Li veW orld goes beyond Boxer i n that i t i s designed to permi t easy modi fi cati on and
combination of pre-existing components by di rect manipulation. Any existing object (from a
l ibrary or elsewhere) can be cloned, and the clone can then be modified incremental ly without
affecting the original. If a modification turns out to have an undesirable effect, the modification
can be undone by deletion, and the object wil l revert back to the properties and behavior of the
original. LiveWorld’s hierarchical object system allows l ibrary objects to be combined into new

LiveWorld 97

configurations: i .e., a user might combine a graphic representation for an actor cloned from a
l ibrary of pictures and add to i t sensors and agents cloned from separate l ibraries.

Aside from thei r use as sources of prototypes and components, the l ibraries also act as
sources of examples. That is, each entry in a l ibrary may be treated as a closed object, which is
used as is, or an open object that can be modified or inspected.

4.3 Box Basics

This section introduces the essential features of LiveWorld’s representation and interface.

4.3.1 Boxes Form a Hierarchical Namespace

The Li veW or l d env i ronment i s made out o f boxes or f rames. The terms are used
interchangeably except in contexts where there is a need to distinguish between the screen
representation (box) and the internal structure (frame). From the user’s perspective, they are
the same. Boxes are named and can contain other boxes as annotations. Boxes thus form a
hierarchi cal namespace, w i th a si ngl e di sti ngui shed box as the root. The i nverse of the
annotation relation is called home, so that al l boxes except the root have exactly one home.

Framer’ s syntax for referr i ng to frames uses a syntax based on U ni x pathnames. #/

designates the root frame, #/ theater-1 designates an annotation of #/ named theater-1, and
#/ theater-1/ cast/ bug/ xpos designates a frame named xpos several levels down in the hierarchy
w hose home i s #/ theater-1/ cast/ bug. Li veW orl d i ntroduces some vari ants on thi s syntax
which are explained in section 4.5.4.2. Boxes also can have a value o r ground, which may be
any Lisp object, including another box. The value al lows a box to serve as a slot.

4.3.2 Inheritance, Prototypes and Cloning

A box can have a prototype, from which i t inheri ts values and annotations. For example,
the prototype of #/ poodle i s #/ dog. #/ poodle wil l inherit al l the properties of #/ dog, but can
override ones in which i t di ffers, such as #/ poodle/ hair-curliness. The inverse of the prototype
relation is the spinoff, so #/ dog has #/ poodle as a spinoff.

 By defaul t, a frame’s prototype is the annotation of i ts home’s prototype w i th the same
name. For exampl e, i f the prototype of #/ dog i s #/ wolf, then the defau l t pro to type o f
#/ dog/ personality will be #/ wolf/ personality. However, the prototype can be any frame at al l ,
so that while #/ rover might be a spinoff of #/ dog, #/ rover/ personality could be changed to be a
spinoff of #/ sheep/ personality. W i thin LiveWorld, new frames are usual ly created by cloning

existing frames; see 4.4.4.

Framer provides only single inheritance (a frame can have at most one prototype). But since
contained frames can have thei r own prototypes that violate the defaul t rule, i t is possible to
simulate some of the effects of multiple inheritance.

98 LiveWorld

4.3.3 The Basic Box Display

LiveWorld’s display consists of a single hierarchy of nested boxes, each representing a
frame. A typical set of boxes is i l lustrated in Figure 4.3.

handle namehome annotations

value

prototype

resizer

icon

Figure 4.3: Boxes and their parts. The labels denote parts or relations relative to the object my-
turtle.

Boxes consist of the following graphic elements (from left to right on the top in Figure 4.3):

handle – control s w hether the box i s open (di splaying i ts annotati ons) or closed. The
handle appears in sol id form i f there are (interesting) annotations to display, otherw ise i t
appears in outl ine form.

icon - icons can give a box a more distinctive visual appearance. Icons, inheri ted l ike other
box properties, serve to indicate broad types of boxes (in the i l lustration, the icons for
worlds, actors, and sensors are visible) and may also be used to indicate the state of the
object represented by the box (as in Goal Agents, see 5.1.2).

name – the name of the box. Required; and must be unique within the box’s home.

value – the value or ground of the box, i f i t has one.

The following elements are only visible when the box is open:

annotations – these appear as contained boxes. Only interesting annotations are displayed,
see 4.4.6.

• prototype – the name of the boxes prototype appears in the lower-right corner of the box.

• resizer – used to change the size of the box.

Each of these elements also functions as an affordance for action. For instance, cl icking on a
box’s prototype indicator can select the box’s prototype, or change i t. Cl icking on the name or

LiveWorld 99

value accesses simi lar functional i ty. The actions selected by cl icks can be customized through
click tables; see 4.4.3.

4.3.4 Theatrical Metaphor

Graphic objects are implemented by special frames cal led actors that l i ve i n theaters.

Theaters offer two views of their objects, a cast view and a stage view. Both the cast and stage
are frames themselves, and the actor frames are actual ly contained w i thin the cast frame and
draw themselves in the stage frame. The two views of the objects are interconstrained (so that,
for instance, dragging an object w i l l continuously update the relevant slot displays). In Figure
4.3, simple-world is a theater with the stage and cast visible as annotations.

A l ibrary of basic actors i s provided, which the programmer can clone and customize.
These include various shapes, l ines, turtle-l ike rotatable objects, and text-actors. The l ibrary
i tsel f is a theater and new objects are created by using the standard cloning commands. There
is no need for specialized palette objects.

Figure 4.4: The library of graphic objects

Actors respond to roughly the same commands as boxes. Both may be cloned by the same
mouse-keyboard gesture, for instance. Both may be dragged, although the meaning of dragging
an actor i s di fferent from dragging a box. The meaning of gestures may be independentl y
customized for both actors and boxes.

100 LiveWorld

Composi te actors can be created by making a separate theater and cloning i ts stage (see
figure 4.5). Instead of another stage, this makes an actor that contains al l the actors of the
original stage as parts. The “ inheri tance” of parts is dynamic, which means that changes in the
original parts are immediately reflected in the composite.

Figure 4.5: Composite actors. The theater on the right allows the parts of the face to be manipulated; while
on the left the face is a single actor.

The l ink between graphic and non-graphic objects may help novices who are experienced
users of di rect manipulation interfaces make the transi tion to programming, both by showing
them a di fferent view of thei r actions and by permi tting them to interact w i th computational
objects in a fami l iar way. On the other hand, the l ink between the graphic and box views is
somewhat ad hoc and in confl ict w i th the goal of making objects seem concrete by strongly
identifying objects and their representation (see section 4.8.1).

4.4 Interface Details

An interface is what gets in between you and what
you want to do.

— Carl Havermiste (Havermiste 1988)

4.4.1 Selection

LiveWorld’s interface command structure is based on the standard select-then-operate user
interface model. Once a box is selected, i t may be operated on by menu commands, keyboard
commands, or mouse gestures, al l of which can be customized for particular boxes and their
spinoffs.

LiveWorld 101

M ul tiple selection i s partial l y supported. Several frames can be selected together and
operated on as a group. For instance, i f a group of actors is selected they can al l be sent a
:grow message w i th a single menu selection. However, not al l operations make sense for al l
groups of selected boxes. This is especial ly true when boxes on different levels are selected. In
parti cular, i f a box and one of i ts containing boxes are both selected, dragging becomes
problematic, because the base against which the inner box is moving is itself moving.

4.4.2 Menus

LiveWorld has three menus of i ts own. The LiveWorld menu contains global controls and
i tems that operate on the selected box. This is about the same set of operations described in
the mouse-gesture table below, plus some additional commands for saving and restoring frame
structures to fi les.

The Slots menu shows what slots (annotations) are accessible for the selected box. Both
local and inheri ted slots are included. Slots are organized under the prototype box in which
they appear in the regular box view , and the prototypes are arranged in inheri tance order,
providing self-documentation of the inheritance structure.

Figure 4.6: Slots and Ask menus, in this case for the box named
#/ theater-1/ cast/ rectangle-2.

Selecting an i tem from the Slots menu finds or creates a slot frame as an annotation to the
selected frame, declares that slot interesting (see 4.4.6) so that i t w i l l be visible, and selects i t.
Since this has the effect of moving down one level in the box hierarchy, the Slots menu also
includes an inverse operation, Up, which al lows the user to navigate up the box hierarchy by
selecting the box enclosing the current selection.

The Ask menu l i sts al l avai l able methods or sl ots w i th values for the selected frame.
Choosing an i tem from the menu sends the corresponding message to the selected frame, that
i s, i t i s equi valent to a cal l to the Li sp ask procedure (see secti on 4.5.2). If the message

102 LiveWorld

corresponds to a method that takes arguments, the user w i l l be asked to supply them. The
menu i tems i ndi cate w hether or not they take arguments and i f they have an equi valent
keyboard command (see section 4.5.3. If the ask procedure returns a value i t is displayed next
to the Ask menu.

Both menus are customized for the selected box or boxes. In the case of multiple selection,
the Ask menu shows only methods or slots that are val id for each of the selected boxes. It’s
more di ffi cul t to define a sensible behavior for the Slots menu when more than one box is
selected; currently i t simply shows the slots for a single selected object.

4.4.3 Mouse Operations

Many operations in LiveWorld can be performed with mouse gestures. A mouse gesture is
a combination of a mouse cl ick on some part of a box together with some set (possibly empty)
of modifier keys.

The use of modifier keys is somewhat unfortunate, since they are not a particularly easy-to-
learn interface technique. Ideal ly, there would be an affordance (that is, a visible and cl ickable
part) for every possible action. If this were so then there would be no need for modi fier keys.
But the l imitations of screen real estate, together with the large number of operations possible,
does not al l ow th i s. The combi nat i on of separate box regi ons and modi f i er keys i s a
compromise measure. To ameliorate the difficulty this may cause, several rules are adopted:

• All gesture operations can also be accessed from the LiveWorld menu.

• The interface tries to maintain consistency of meaning among the particular modifier keys.
For instance, the command modi fier usual l y indicates an edi ti ng operation, w hi le the
command-option-control modi fier indicates a deletion (of a frame, value, or prototype,
depending on the region of the click).

LiveWorld 103

no shift keys cmd opt ctrl shift-opt cmd-opt-ctrl

body drag edit value clone step move delete

title - edit name - - - -

value - edit value - - copy value
(shift-cmd)

delete value

handle open or close open or
close all

open with
internals

- - -

prototype select
prototype

edit
prototype

- - - delete
prototype

resizer resize - default size - windowize -

actor drag actor resize
actor

- step - -

Table 4.1: Global mouse gestures. An entry of “ -” means the behavior of a click on the region is
the same as the corresponding click on the body.

Boxes can customi ze thei r hand l i ng o f mouse gestures by changi ng the val ue o f
annotations within a set of frames knows as click tables. For example, buttons (Figure 4.7) work
by providing an entry in the body-click-table for ordinary cl icks that calls a user-specified action
(and makes control -cl i ck take over the ordinary function of drag, so the button can sti l l be
moved). A separate cl i ck tabl e can be defi ned for each part of the box (body, resi zer,
prototype, and so forth). For the purposes of mouse cl ick handl ing, the graphic representation
of an ac tor i s consi dered a regi on and has i ts ow n tab l e. Cl i ck tab l es al so serve as
documentation for mouse gestures

Figure 4.7. Illustrating the use of click-tables. The left-hand box is a button which performs an
action when clicked (it can be dragged with control-click). The box on the right is a turtle actor,
which will be rotated rather than resized (the default) when given a cmd-click mouse gesture.

104 LiveWorld

4.4.4 Cloning

New objects are usually made by cloning existing objects w i th a mouse gesture. The steps
involved are as fol lows:

• The user clones an existing box with a mouse gesture.

• A new box is made that has the original as i ts prototype. The new box l ives in a special
frame called #/ limbo.

• The new box appears to float over the world, casting a shadow (see figure 4.2). As i t i s
dragged, potential homes are indicated by highl ighting them. Some boxes specify that they
can only be dropped into parti cular types of boxes (for i nstance, sensors can only be
dropped into actors).

• The new object is dropped into i ts home when the user releases the mouse.

• Instal l methods are run (see section 4.7.4).

4.4.5 Inheritance

LiveW orld objects that are cloned from a prototype maintain a l i ve l i nk back to that
prototype, and continue to look up values for local annotations in the prototype unti l local
values are defined. This resul ts in what I cal l dynamic inheritance, meaning that changes in
prototypes can affect spinoffs, a fact which is reflected in the interface. This is most noticeable
in the case of actors, whose properties can be affected by mouse motions. If an actor w i th
spinoffs is resized, for example, and the spinoffs are inheriting size values from it, they wil l also
change as the mouse moves. This gives a strong tacti le feel ing for the nature of inheri tance.
However, i t can also lead to expectation violations. An attempt was made to mitigate this by the
use of special dragging handles that indicate which objects wi l l be affected by a drag or resize
operation (see Figure 4.8).

Figure 4.8: Dragging handles. oval (on the left) is selected, so it has solid handles that allow the
user to change its position or size slots. oval-1 inherits its xsiz and ysiz slots from oval , so it has

hollow handles to indicate that it too will change if those properties are modified in oval .

LiveWorld 105

Dynamic inheritance is a useful feature for conveying the idea and feel of inheritance, but i t
is somewhat in tension w i th the real ist metaphor. Al though i t is based on real istic cogni tive
model s i t does not correspond to the behavi or of real w orl d obj ects. W hi l e you mi ght
understand your neighbor’s car in terms of a “ prototypical car” (perhaps your own) you do
not expect the neighbor’s car to change colors i f you should happen to paint your own!

This issue is an example of what (Smith 1987) refers to as “ the tension between l i teral ism
and magic” . There is a tradeoff between adherence to a real -world metaphor and providing
access to the useful properties of the computational world that might appear to violate that
metaphor. In this case I was particularly interested in exploring the properties of an interface
that incorporated dynamic inheri tance, so the decision was made to al low this “ magical ”
property i nto the system. A system aimed solel y at novices might choose to adhere more
closely to the l iteral metaphor, or perhaps make dynamic inheritance available as an option.

4.4.6 Interestingness

Framer creates local annotations for slot references. This means, for example, i f a rectangle
object inherits its color from a parent, it will nonetheless get a local color annotation on the fi rst
reference. This is done primari ly for efficiency—the local annotation serves as a cache that wi l l
speedup future lookups. However, i t means that there are many slots in existence which are
not of direct interest to the user. A newly created rectangle has about 12 such local slots, with
only 2 of them (the x and y positions) actually containing information unique to that rectangle.

To deal with this problem, LiveWorld defines an interestingness predicate for frames which
controls whether or not they are displayed. Essential ly a frame is deemed interesting i f i t i s
acting as other than a local cache. This is true if it fulfi l ls at least one of the following criteria:

• It has a local value;

• Its prototype is other than the default;

• It contains an interesting annotation; or

• It has been explicitly marked as interesting by the user.

The last clause al lows users to make local slots visible, usually for the purpose of modifying
their value. For instance, when a user creates a new frame using the Slots menu i t is marked as
interesting to ensure that i t actual ly appears. Some frames have this property set by the system,
such as the cast and stage annotations of theaters, because such frames should alw ays be
visible.

4.4.7 Box Sizes and Positions

The size and posi tion of a box are speci fied by internal annotations on the corresponding
frame. These annotations are internal , that i s, they are not normal l y seen by the user (see
section 4.7.2). Using the system to represent information about i tself has several advantages:

106 LiveWorld

• Sizes and posi tions are automatical ly saved and restored along w i th the rest of a set of
boxes when they are closed or written out to a fi le.

• Box sizes and posi tions inheri t dynamical ly, just as those of actors do. This means that
dragging or resizing a box might change the posi tion or size of a spinoff. This behavior
mi ght be d i sconcert i ng, but can al so serve to rei n force the real i ty o f i nher i tance
relationships to the user.

• A user can choose to make the internal frames visible, which results in a dynamic display of
the internal workings of the system.

By defaul t, boxes w i l l automatical ly resize themselves to be just large enough to contain
their contents. This too is done on a dynamic basis, so i f an internal box is being dragged, i ts
container w i l l resize i tsel f during the drag. This process is known as “ shrink-wrapping” . O f
course a user might also want to speci fy the size of a box by hand, for instance i f she was
planning to drop a large set of new i tems into i t and wanted to make the space in advance so
they could be arranged properly. To deal w i th this a box has a thi rd internal slot, preferred-

size, w hich contains the user-speci fi ed preferred si ze or nil i f the defaul t shrink-w rapping
behavior is desired.

4.5 Language Extensions

This section describes LiveWorld’s extensions to Lisp. The faci l i ties include accessors for
boxes and their components, a message passing language defined on boxes.

4.5.1 Accessors for Boxes

Framer extends Lisp with the frame structure and accessors for i ts components (i .e., frame-

home, frame-prototype). Li veW orld has a sl i ghtl y modi fi ed set of functi ons for accessing
annotations and grounds: names of boxes are given in the form of Lisp keywords, which are
preceded with a colon and not evaluated.

(getb box name)
Returns the annotation of box named name, or generates an error i f the annotation is not
present.

(getb-safe box name)
Same as getb but returns nil rather than getting an error.

(getb-force box name &optional prototype)
Same as getb, but wil l create the frame if necessary (as a spinoff of prototype).

4.5.2 Message-Passing with ask

LiveWorld defines a message-passing protocol on boxes. When a box receives a message,
which consists of a name and some optional arguments, i t looks for an annotation w i th the
same name as the message. This annotation should be a method object, which speci fies an
action (see the next section). In other words, methods are themselves boxes and are inheri ted

LiveWorld 107

by the usual mechanism. A single primitive, ask, i s used both to send messages and to retrieve
values from slots. The syntax of ask is as fol lows:

(ask box message arguments*)

Ask examines the annotation of box named by message. If i t is a method, that method is
appl ied to the box and arguments. If i t’s an ordinary slot, the value of the slot is retrieved and
returned. For example:

(ask turtle :color) Returns the value of turtle’s color slot.

(ask turtle :forward 10) Causes the turtle to move forward 10 pixels.

There are also functions send and slot, which are l ike ask except that they alw ays do a
message send or a slot-lookup, respectively. This can be useful i f a program wants to access a
method object as a value rather than invoke i t (something users would not ordinari ly need to
do).

ask-self is a variant of ask that can be used to access a slot or method directly. Whi le ask i s
analogous to message-sending constructs in other languages, ask-self i s rather unusual . I t
depends upon the fact that slots and methods are fi rst-class objects and are local to thei r
containing object:

(ask-self slot-or-method arguments*)

will return the value in slot-or-method, or invoke i t as a method i f i t is one. Ask-sel f is often
used to extract a val ue from a box. Because thi s operati on i s qui te common, i t can be
abbreviated as v for value. The fol lowing constructs are thus equivalent:

(ask box name)

(ask-self (getb box name))

Setting values is done by sending them a :set message:

(ask slot :set value)

This al l ow s objects to speci fy special acti ons to be performed on sets. For i nstance,
computed slots (see section 4.6.3) get an error i f an attempt is made to set their value. Because
setting values is such a common operation, i t may be abbreviated using the Common Lisp
construct setf with a value accessing construct such as ask or v:

(setf (v slot) value)

(setf (ask box slot) value)

4.5.3 Methods

108 LiveWorld

Methods are wri tten in Common Lisp augmented w i th Framer and LiveWorld extensions.
There are several di fferent kinds of methods, and i t is possible for users to add further kinds.

The system defines the fol lowing standard classes of methods:

• primitive methods: these methods are bui l t into the system code. Their defini tions cannot
normally be seen or changed by the user15. Primitive methods can take arguments.

• simple methods: these methods consi st of a si ngl e box w hi ch contai ns the method
defini tion in the form of a Lisp expression. They cannot take arguments. See Figure 4.9 for
an example.

• complex methods: complex methods can take arguments. A complex method is a box with
internal boxes that specify the arguments and body of the method.

Figure 4.9: A turtle with a simple method for :step messages.

Figure 4.9 i l lustrates a simple method for a turtle that implements a behavior. The method is
named step, so that (ask #/ circler/ cast/ turtle :step) w i l l execute i t. The method cal ls several
other methods such as forward and turn-left, which are inherited from the prototype turtle and
are not visible. The @^ / notation is a boxpath that refers to the turtle (see section 4.5.4.2).
Triangle-sensor is a sensor (see section 4.6.4). The anima causes step to be cal led repeatedly
(see section 4.6.1).

The body of a method can access several special symbols that are bound to values that
indicate the local context. The symbol here i s bound to the box i n w hi ch the text of the
expression appears. The symbol self is bound to the object which is the method’s container.
The symbol call-next is function-bound to a function that wi l l invoke the method belonging to
the object’s prototype. This functional i ty i s analogous to call-next-method i n CLO S (Steele

15The existence of primitive methods is an arti fact of the way in which LiveWorld was bootstrapped,
and they could be eliminated.

LiveWorld 109

1990), al though the way in which next-methods are found in LiveWorld is very di fferent. If a
method calls call-next, the system fol lows the method’s prototype l ink back unti l an appropriate
next method is found. This al lows any object to special ize a method whi le making use of the
default behavior, and i t also al lows behaviors from one object to be imported to another, while
preserving appropriate inheritance and call ing paths.

M ethods can have other slots besides thei r body and arguments. Among the standard
defined slots are documentation, whose value can be an explanatory string, and command-

key, whose value is a character which wil l make the method invokable by a keyboard command
when the parent object is selected (see Figure 4.6).

4.5.4 Relative Box Reference

Methods often need to refer to thei r containing object or to other boxes. Absolute box
names are usual ly not sui table because they wi l l break i f the method is cloned. Methods thus
need to refer to boxes in relation to their own location.

4.5.4.1 Self

The simplest way to handle relative reference is through a special variable that refers to the
local object. In many other OOP languages this variable is called self, and LiveWorld continues
that tradi tion. In the body of a method, the name self can be used to refers to the object that
contains the method. However, LiveWorld’s hierarchical object system generates needs for
more complex forms of relative reference. Also, the name self i s somewhat confusing in the
context of a hierarchical object system: i t might just as logical ly be taken to refer to the box in
which i t occurs, rather than the box for which i t is a method, which might be several levels up
in the hierarchy.

4.5.4.2 Boxpaths

To solve these problems, I defined a new syntax for boxpaths, which provides a more
flexible faci l i ty for relative reference to boxes and their values. Boxpaths specify a relative path
from one box to another. Boxpaths are alw ays speci fi ed relati ve to the box in w hich they
occur, removing the ambigui ty of self. Boxpaths al so al l ow reference based on types. For
instance, a boxpath can speci fy paths that say “ go up to the nearest enclosing actor box and
then get the value from its prey-sensor’ s other slot.”

Boxpath syntax i s based on Framer’ s defaul t syntax. An @ i ntroduces a boxpath, and
fol lowing characters speci fy navigation paths through the box hierarchy, ei ther up or down. A
caret (^) means “ go up” , that i s, access an ancestor of the current box. A boxpath can go a
fixed number of steps up the container hierarchy, or i t can search upwards for a particular kind
of box. Downward navigation is expressed by the standard frame syntax (see 4.3.1) but w i th
an extension that al lows box values, as wel l as boxes themselves, to be accessed.

 Thi s extensi on i s based on U ni x di rectory nami ng conventi ons, w i th a box treated
analogously to a di rectory. A final / in a boxpath indicates that the path is to return the final

110 LiveWorld

box in the path, whi le the absence of a final / indicates that the final box’s value should be
returned.

Some examples of how boxpaths express common patterns of box reference:

@/ Th e l o c al b o x (t h e b o x i n w h i c h t h e b o x p ath
appears).

@ The value of the local box.

@^ / The immediate container of the local box.

@^/ food-sensor The val ue of the box named food-sensor that i s a
sibling of the local box.

@^^/ The container of the immediate container.

@^actor/ prey-sensor/ other The example above: “ go up to the nearest enclosing
actor box and then get the val ue f rom i t s prey-

sensor’ s other slot.”

Boxpaths are essential ly a syntactic abbreviation for complex sequences of box accessing
functions. For example, the last example above expands into the Lisp code:

(ask (getb (lookup-box *here* :actor)

 :prey-sensor)

 :other)

W here *here* i s bound to the box i n w hi ch the boxpath appears. Lookup-box i s a
function that searches up the box hierarchy for a box of a specified type.

4.5.5 Demons

The standard :set method includes a faci l i ty for establ ishing demons on a sl ot. These are
procedures that get executed whenever the value of a slot changes. While similar effects can be
accomplished by defining a local :set method, the advantage of demons are that they can be
easily added dynamically, and if there are more than one they wil l not interfere with each other
(that i s, a box can have many demons, w hi l e i t can have at most one l ocal :set method).
LiveWorld uses demons for many internal functions, such as inval idating computed slots (see
4.6.3) and updating the display of graphic actors i f one of their parameters should change.

Demons are stored in an internal annotation (name % demons) and are inheri ted by clones
of the parent object. To avoid the potential of infini te recursion, the % demons slot i tsel f has a
:set method for that prototype that avoids the usual demon mechanism.

The demon mechanism can general i ze to handle other types of events besides value
changes. For instance, boxes can also have annotation demons that get cal led whenever an
annotation is added to or removed. A typical use is for a sensor to put an annotation demon

LiveWorld 111

on the cast box of a theater, so that i t can be informed whenever a new actor appears in the
world.

4.5.6 Global Object

The inheri tance scheme of Framer was modified to include the concept of a global default
prototype. Named #/ global, this box serves as a last resort when looking up slots. This object
provides the defaul t methods for common operations such as :set, the defaul t annotations for
interface operations such as cl ick tables, and defaul t templates for universal ly shared slots,
such as documentation and % demons.

4.6 Specialized Objects

4.6.1 Animas and Agents

Animas are objects that provide an i nterface to the background executi on faci l i ty of
LiveWorld. An anima causes i ts enclosing object to be sent messages repeatedly. Animas run
concurrently w i th user actions and provide the underlying abi l i ty to create autonomous and
reactive objects. Animas are the foundation on which the agent systems of Chapter 5 are buil t.

When the animas are running, al l objects containing active animas are sent :step messages
repeatedly. Any object can have a :step method, but they are most commonly found in method
objects. The effect of sending :step to a method object is to apply the method to i ts container. A
method of zero arguments can thus be converted into an agent of sorts simply by dropping an
anima into it (see Figure 4.9 for an example). Animas are thus conceptually similar to processes,
al though the execution of animas are not truly concurrent (Chapter 5 goes into more detai l
about how animas can be modified to provide better concurrency as well as confl ict resolution
facil ities). The execution of animas is interleaved with each other and with user action.

Animas may be turned on or off individual ly, and there is also a “ master sw i tch” in the
LiveWorld menu that can disable al l animas. When this master switch is off, the enti re system
can be single stepped by the user, which means that each active anima gets sent a single :step

message. This is useful for debugging.

It i s i nteresti ng to note that the metaphori cal descripti on of the relati onship betw een
processes and procedure is inverted. In more tradi tional systems, processes are establ ished
that execute procedures inside themselves, whi le in LiveWorld, the process mechanism l ives
inside the procedural object that i t cal ls. This inversion of the usual relationship is one part of
LiveWorld’s attempt to change the metaphors used to describe computation into a form that
suggests a greater degree of animacy and autonomy (see Chapter 3).

112 LiveWorld

4.6.2 Specialized Slots

LiveWorld defines some slot objects that are special ized for particular kinds of values, such
as colors or points, that have special display requi rements. The prototypes for these objects
live in a library named #/ slots (see Figure 4.10). For example, #/ slots/ color-slot defines special
methods that cause i t to display i ts value as a color swatch, and to invoke the system color
picker when i ts value is edi ted. These slots are incorporated into other system objects (i .e.,
most actors have a color-slot, and turtles and some sensors use an angle-slot to speci fy thei r
headings).

Figure 4.10: The slot library.

Some special ized slots take advantage of Framer’s recursive annotations to have parameters
of their own. In the figure, bar-graph-slot and formatted-slot are open to show their parameter
slots.

4.6.3 Computed Slots

Computed slots are slots that dynamical ly compute their value from an expression, in the
manner of spreadsheet cel ls. The value of a computed slot is defined by a to-compute method
defined as an annotati on to the slot. For example, the computed slot area i n Fi gure 4.11
computes the area of i ts containing actor as the product of the actor’s regular xsiz an d ysiz

slots. Note the use of boxpaths in the method, which al lows the area slot to be cloned into
other actors.

LiveWorld 113

Figure 4.11: An example of a computed slot.

A computed slot’s value is accessed using normal mechanisms, but trying to set i t wil l cause
an error. The value is displayed in an italic font to indicate that it is not settable.

There are actual ly several varieties of computed slots. The simplest just computes i ts value
on demand (that is, whenever the rectangle is asked for i ts area, the multipl ication specified in
the to-compute method w i l l be run). The more complex varieties cache thei r value and only
recompute i t when necessary. This requires that the cached value be inval idated whenever any
of the values that i t depends upon change. Since these values are in other slots, this can be
accompl ished by putting demons (see 4.5.5) on the depended-upon slots which inval idate the
cached val ues (a techni que devel oped i n (Fi sher 1970) to support w hat w ere cal l ed
“ cont i nuousl y eval uat i ng expressi ons”). These demons are i nstal l ed automati cal l y by
monitoring slot accesses during the evaluation of the to-compute method.

Figure 4.12 i l l ustrates some of the internal structures and mechanisms that implement
computed slots. Every cached computed slot has an internal l y stored value and a flag that

Figure 4.12: The same computed slot, with the internal slots that comprise the computational
mechanism revealed.

114 LiveWorld

speci fies whether or not that value is val id. Each slot upon which the computed slot depends
has a demon added, which causes the computed slot to become inval id whenever the value of
the depended-upon slot changes. In this case the demon appears as a compiled Lisp closure.

4.6.4 Sensors

Sensors are objects that al low actors to obtain information about thei r surroundings, and
are implemented special ized versions of computed slots. That is, they are computed slots that
compute their value based on the actors’ world, and are designed to be annotations of actors.
Sensors can also provide a graphic representation of themselves as an add-on layer to the
actor they are part of. An example of a sensor may be seen in Figure 4.3. This triangle-sensor is
so cal led because i ts field is in the shape of a triangular region, and is sensitive to objects that
enter that field.

Sensors make particularly effective use of Framer’s hierarchical representation structure,
which lets them be seen as both slots and objects with slots of their own. Sensors contain slots
that speci fy thei r parameters or detai ls about the resul ts they are computing (the to-compute
method can set other slots besides returning a value). An example is shown in Figure 4.13.
Shape is a computed slot i tsel f, that depends upon field-heading, field-width, field-range, and

Figure 4.13: Inside a triangle-sensor.

Figure 4.14: The sensor library

LiveWorld 115

on the heading of the containing actor. The effect of these dependencies is to let the shape of
the sensor be computed automatical ly when the actor moves or when the user changes the
values of one of the sensor’s slots. Other parameters al low the sensor to be customized to be
sensitive to particular kinds of objects (for instance, only ovals).

There are many kinds of sensors (see Figure 4.14). Some, l ike the triangle-sensor, have a
predicate value. Others have numerical values (for instance, the range-sensor, which monitors
the distance of a single object) or return the detected actor or actors themselves (such as
nearest-object-sensor). Whi le most sensors respond to actors, some, l ike wal l -sensor, respond
to other features of the environment.

4.6.5 Multimedia Objects

LiveWorld’s object system makes i t straightforward to provide special ized objects for a
variety of media, and also to provide l ibraries of samples. The two most useful and most ful ly
supported media forms are pictures and sounds. Pictures are simply a form of actor. Sounds
are special ized boxes with :play and :record methods. Both pictures and sounds objects are
implemented as encapsulations of the corresponding Macintosh system objects, and can be
imported from external applications.

Figure 4.15: Libraries of pictures and sounds.

116 LiveWorld

Sound objects can be used to provide audi tory responses for creatures or sound effects
for games, but also have a special use for debugging, a technique sometimes cal led “ program
aural ization” (D iGiano, Baecker et al . 1993) by analogy to the wel l -establ ished techniques of
program visualization.

LiveWorld supports audioization by providing a special kind of object, cal led an auto-

sound, which can be dropped into a method. The effect of this i s to cause the sound to be
played whenever the method is cal led. This technique not only supports program audioization,
but makes i t easy to add sound effects to games and simulations.

4.6.6 K-lines

Frames can also be used to implement a form of memory loosely based on Minsky’s K-l ine
learning mechanism (Minsky 1980). In Society of Mind, a K-l ine records a partial mental state
represented as the activation state of a set of agents. In LiveWorld, a K-l ine can record the state
(that is, the values) of a selected set of boxes. A K-l ine is a box created in the usual way. To
specify that a slot is to be recorded by the K-l ine, the user makes a clone of the slot and drops
it into the K-l ine. The K-l ine thus contains spinoffs of al l the frames that i t covers and responds
to two basic messages, :store and :recall , which have simple implementations. Store forces each
spinoff to have the current value of i ts prototype, whi le recal l copies the value of the spinoff
back to the prototype. An additional message, :add-object, w i l l cause the K-l ine to cover al l of
the interesting slots of an object.

LiveW orld’s K-l ines were constructed mostly to see how far the prototype relationship
could be extended into other uses (for a simi lar experiment, see the discussion of ports in
4.9.1). While these K-l ines are not powerful enough to be of much use in mental modeling, they
have proved to have some uti l i ty in recording ini tial states for appl ications l ike animations and
games.

4.7 Miscellaneous Issues

4.7.1 Shallow vs. Deep Cloning

A question arises when a box is cloned about which of i ts internal parts should be cloned
along wi th i t. For example, in the case of an actor w i th no complex internal parts, there is no
need to clone any of i ts slots—the values w i l l be inheri ted. But i f the actor has sensors, the
sensors need to be copied so that the new creature has i ts ow n percepti ons, rather than
inheriting those of i ts parent! So, in some cases internal parts do need to be cloned.

Which objects require this treatment? Ordinary slots, in general, do not need to be copied
by this mechanism, since their values are inherited. The objects that need to be copied explicitly
are those that cause some side-effect, such as creating an image on the screen (actors) or
compute a value based on local information (sensors).

LiveWorld 117

LiveW orld provides a mechanism that al lows any box to speci fy that i t must be cloned
whenever a box that contains i t is cloned. Such boxes are flagged with an internal annotation,
% copy-as-part. Whenever any box is cloned, al l of the original box’s annotations are examined
via recursive descent for the presence of this flag, which i f present causes the box containing i t
to be cloned into the appropriate place. Since the appropriate place might be several levels deep
in the new box, the intervening container boxes must also be cloned.

The same mechanism is used to maintain dynamic inheritance relationships after an object is
cloned. For example, if turtle-1 is cloned to form turtle-2, and then turtle-1 i s given a sensor,
turtle-2 shoul d recei ve a cl one of that sensor. The % copy-as-part fl ag al so control s thi s
propagation.

4.7.2 Internal Frames

Li veW orld uses annotati ons to record i nformati on about i ts i nternal functi oning (for
example, the screen posi tion of a frame’s display is stored as an annotation on that frame).
Showing these to the user would be confusing. LiveWorld therefore al lows certain frames to be
marked as internal , w i th the resul t that they are not normal ly displayed to the user in the box
view or in menus. The convention used is that internal frames are those whose names begin
wi th the % character16. An advanced user can choose to di splay these frames, by holding

down an additional key during a command that opens a box or displays a menu. A frame with
i ts internal frames exposed may be seen in Figure 4.16. Internal frames serve some of the same
purposes as closets do in Boxer.

Figure 4.16: A box that has (some) of its internal frames showing. One of them, % view-size, also
has its own internal frames visible. The values in these slots are Lisp point objects that denote x-y

coordinate pairs.

Aside from the display information shown in the figure, internal frames are used to store
data for internal mechanisms l ike demons, internal state l ike interestingness (see 4.4.6), and
slots whose value would be meaningless to the user, such as pointers to M acintosh sound
objects.

16 It would be more elegant to use an annotation to convey this information. The % convention is an
artifact of LiveWorld’s development history, and has been retained for reasons of efficiency.

118 LiveWorld

4.7.3 Deleting Boxes

Deleting objects can be problematic in a prototype-based object system. One issue is the
question of how to deal with objects that inherit from the object being deleted. Framer’s buil t-in
handler for deletion simply disal lows deletion of a frame w i th spinoffs. LiveW orld extends
Framer by al l ow ing the user to speci fy a w ay to proceed w hen a problemati c deleti on i s
detected.

The user’s options are to:

• abort the deletion;

• delete all the spinoffs as well; or

• try to preserve the spinoffs by splicing out the deleted frame.

Spl icing out a frame involves removing i t and i ts annotations from the inheri tance chain so
that i t may be deleted. Each spinoff of the spl iced-out frame (and i ts annotations, recursively)
must have i ts prototype changed to point to the prototype of the spl iced-out frame, and i f the
spl iced-out frame provides a value that value must be copied into each spinoff. This complex-
sounding procedure retains the old values of slots and retains as much of the inheri tance
relationship as is possible.

Giving the user choices is fine for interactive use, but does not deal w i th the problem of
deletion by a program in a l ive simulation. For instance, in a dynamic biological simulation,
animals wil l reproduce by creating spinoffs of themselves. If a parent is eaten by a predator, we
don’t want the chi ld to be affected, but we also don’t want the system to stop and ask the user
what to do.

There are also some fundamental problems with spl icing out prototypes. Consider the case
where there is a prototype ant, and many spinoffs of i t (and possibly spinoffs of the spinoffs).
Say further that there is an anteater in the simulation with an ant sensor. Sensors often speci fy
the type of object they are sensitive to. If the prototypical ant gets spl iced out and deleted, the
ant sensor w i l l be pointing to a deleted frame. Even worse, the ants w i l l have no common
prototype that al lows them to be considered to be a class of objects17. Furthermore, the ants

now each have their own copy of whatever properties were defined by the prototype (such as
the compl ement o f sensors and agen ts) so i t i s no l onger possi b l e to change these
characteristics without changing them individually for each ant.

A better solution to the deletion problem, which makes good use of LiveWorld’s hierarchical
structure, is to keep prototype objects in a separate theater (see Figure 4.17). These prototypes
are then outside of the simulation, inactive, and so in no danger of being deleted.

17It might be argued that using prototypes to specify classes is a bi t inelegant anyway. If the sensors
were truer to their real-world models, they would not specify a type of object to be sensitive to, but instead
would use a detectable characteristic of the object (i.e. the ant sensor would look for objects that were small
and black). This is certainly implementable within the framework of LiveWorld, but would be considerably
less efficient than the current scheme.

LiveWorld 119

Figure 4.17: Il lustrating the use of a separate theater to hold prototypes.

 The deletion problem is one that is not found in class-based object systems, where there is
no danger that the definition of a class of objects wil l be taken as an element of that class. Some
other prototype-based object systems, such as Sel f (see section 4.9.2) avoid this problem by
using static rather than dynamic inheri tance. In Self, spinoffs inheri t properties from prototype
at the time they are created and do not maintain a pointer back to their prototype, so deleting
the prototype is not problematic.

4.7.4 Install and Deinstall Protocol

LiveWorld defines an instal l /deinstal l protocol on frames. Whenever a frame is created,
deleted, or moved i t is sent :% install and :% deinstall messages as appropriate (a move w i l l
generate both). Methods for these messages handle operations such as instal l ing demons for
computed slots or creating the graphic representation for actors.

4.7.5 Error Handling

Any programming environment must be able to deal with unexpected conditions. LiveWorld
uti l izes Common Lisp’s condi tion handl ing system to provide an error handl ing faci l i ty w i th a
box-based interface. When an error is detected, i t generates a Lisp condi tion object which is
then encapsulated into a box. For any type of error, the system can provide special ized error
boxes that provide user options or other information.

120 LiveWorld

Figure 4.18. An error has occurred in the execution of the trail-rule method, generating the error
object no-method-error.

An example i s show n in the fi gure. The error box contains three buttons that speci fy
restart options. Cl i cking the create but ton, for i nstance, causes a method obj ect o f the
appropriate name and type to be created, after which the user can fi l l in i ts slots.

4.8 Some Unresolved Issues

LiveWorld in i ts current state has a few shortcomings and inconsistencies in i ts design,
which are discussed here. Solutions to some of these problems are also discussed in Chapter
6.

4.8.1 Multiple Views of Actors

The workings of the theater/stage/cast mechanism is somewhat ad hoc relative to the rest of
the user interface metaphor. These boxes have special relationships between each othber that
are not found elsewhere in LiveWorld and are not capable of being explained by the basic
mechanisms of the system. This magical mechanism is motivated by the need to have multiple
vi ew s of actors. They must be capable of being seen both as graphi cs and as structured
objects, and so the interface goal of having a perceived identi ty between object and screen
representation must be relaxed.

This is not a severe problem for the interface; the relationship between the views is not
hard to understand. Nevertheless i t is annoying that a special mechanism is requi red in this
case. Furthermore, the need for multiple views may not be confined to graphic objects, and this

LiveWorld 121

suggests that the solution to the ad hoc-ness of the theater mechanism should be a general

mechanism for supporting multiple views.

A related issue has to do w i th the need for actors to be able to change thei r appearance.
LiveWorld al lows graphic properties of actors to be changed, but not the general form, which is
determined by the actor’s prototype. Some other actor-based systems (i .e. Rehearsal World
(Finzer and Gould 1984)) separate out an object’s appearance into a separate object cal led a
costume, which can be attached to an actor and easily changed.

One solution to these problems is to introduce the idea that an object is distinct from i ts
graphic appearance and that i t can have mul tiple appearances. Both costumes and the dual
views of actors and boxes can be handled by a more general mechanism. This view mechanism
might even be able to subsume other aspects of the system such as composi te actors and
special ized slots. The problem with this solution is that i t significantly increases the complexity
of the system by introducing new objects, and i t might interfere with the feel ing that users are
manipulating real objects rather than representations of them.

4.8.2 Uniform Interfaces Have a Downside

LiveWorld’s box was designed to fulfi l l many functions with a single uniform construct. This
makes learning the system easier, but may impose certain cogni ti ve penal ties as wel l . The
elements of the LiveWorld system appear rather uni form, both in terms of graphic appearance
and at the functi onal l evel . For i nstance, objects and slots l ook the same—they are both
boxes—and so i t is possible, during the course of an interaction, to confuse one for another.
The abi l i ty for boxes to have i cons that indicate thei r type or states was a late addi tion to
LiveWorld and helps ameliorate the uniformity problem. However, there is sti l l a tension in the
design between the desire for uniformity and particularity.

The deeper issue is one of abstract vs. concrete constructs. The box, which is designed to
be capable of being a great many di fferent things, is necessari ly abstract in comparison w i th,
say, a button that serves a single purpose and has onl y one operati on i t supports. W hi l e
constructing a broad class of functions out of a smal l set of structural elements i s elegant,
esthetical ly pleasing, and reduces the number of things to learn, i t can also cause difficulties for
novi ces (di Sessa 1986). The di ff i cul ty ari ses because the mi ni mal el egant el ements are
necessari ly abstracted from the concrete functional goals of the user. In contrast, systems in
which each component is special ized by an expert for a particular use are less flexible, but they
can be careful ly designed so that each component is distinguishable, as are, for instance, the
various elements of the standard Macintosh user interface (Apple Computer 1987).

4.8.3 Cloning and Dependent Objects

In the early versions of LiveWorld, sensors had to be contained di rectly w i thin an actor.
This caused a problem when trying to define l ibraries of drop-in behaviors. The behaviors were
dependent upon the presence of the appropriate sensors, so cloning the behavior alone from
the l ibrary would not, by i tsel f, produce the needed behavior. Somehow the behavior needed

122 LiveWorld

to bring the sensor along w i th i t. A number of solutions w ere considered (and some w ere
implemented). This design issue, whi le fairly minor, is typical of many such issues that arise in
an environment like LiveWorld.

• Give the behavior an :% install method that created the needed sensors. The effect for
the user would be that cloning an agent would resul t not only in the agent appearing in the
desti nati on, but a sensor appeari ng al ongside i t. Thi s scheme has the problem that tw o
behaviors might try to create two di fferent sensors with the same name. Another, more serious
problem is that the instal l mechanism is intended to be below the user’s level of awareness,
meaning that users cannot (easi ly) write new behaviors with included sensors.

• Equip the model behaviors in the l ibrary with actual sensor objects, that would somehow,
when cloned, migrate upwards to the proper place w i th the actor. This solves the problem of
having to write :% install methods but not the name confl ict problem. It also introduces a rather
magical new form of object movement to the interface.

• The third (and best) approach is to modify the implementation of sensors to al low them to
l ive anywhere w i thin an actor rather than requi ring them to be di rectly beneath. This al lows
prototype behaviors to carry thei r sensors along w i th them in the natural way, el iminates the
need for migration, and also eliminates the potential for name confl icts. The only disadvantage is
that sensors w i l l now no longer be so directly associated wi th their actors (i .e., i t is no longer
possible to gain access to al l of an actor’s sensors by opening up only the actor).

4.9 Relations to Other Work

4.9.1 Boxer and Logo

Boxer was a central influence in the design of LiveWorld. As explained in section 4.2.3,
LiveWorld retains Boxer’s emphasis on the concrete, i ts use of hierarchical nesting to hide detail
and provide a uni form medium, and i ts use of a single structure to perform a mul tipl ici ty of
computational and interface tasks. LiveW orld extends Boxer’s ideas by making Boxes into
objects w i th inheri tance relationships and a message-passing language, and by providing a
direct manipulation interface.

Boxer’s interface is based around a general ization of text edi ting. Whi le the benefi ts of
LiveWorld’s object-orientation and direct manipulation are many, there is at least one advantage
to Boxer’s approach: the text-based model provides for the ordering of the parts w i thin a box,
making i t easier to express constructs l ike l ists and arrays.

Boxer includes a port mechanism that al lows references across the box hierarchy. A port is
rather l i ke an al ias for a box that can be placed in a remote part of the system, and in most
respects functions l ike the original box. The port displays the value in the original box, and
setting the contents of the port changes that of the original box. Ports are an al ternative to
referring to remote boxes by names or by complicated access paths. For the most part a faci l i ty
l ike this has not been needed in LiveWorld. However, ports can be mimicked in LiveWorld

LiveWorld 123

using the prototype relationship. A port is just a spinoff w i th a special ized :set method that
changes the value of the original frame rather than the local value. It’s somewhat more difficult,
thought not impossible, to handle the other operations on frames in a port-l ike fashion, such as
adding annotations.

Logo, a di rect ancestor of Boxer, was also influential in many ways, but primari l y at a
conceptual rather than design level (see sections 1.3.3 and 3.3.3). The turtle, of course, derives
from Logo.

4.9.2 Self

Self (Ungar and Smith 1987) is the prototypical prototype-based object-oriented language.
Its chief feature is an extremely simple object and inheri tance model , which makes i t easy to
teach and implement. From the standpoint of object-oriented programming, LiveWorld’s (real ly
mostly Framer’s) major contributions over and above what Sel f provides are in providing slots
that are first-class objects, and dynamic inheritance. Another difference is that in Self, an object
general l y does not inheri t values from i ts prototype, but from a separate object (cal led the
parent). Whi le this has certain advantages, Framer’s method is in many respects simpler to
understand, and i t i s easier to represent the inheri tance relationships in a dynamic graphic
environment like LiveWorld.

Sel f has an exploratory graphic interface (Chang and Ungar 1993) which has much in
common w i th LiveW orld’s interface. Both systems emphasize animation, but use i t in very
different ways. The Self interface animates its object representations (akin to LiveWorld’s boxes)
in a fashion designed to make them seem real to the user (i .e., when a new object is made, i t
does not simply appear, but sw oops in from the side of the screen), but thi s animation i s
outside the realm of the user’s control . LiveWorld is more concerned with al lowing the user to
control the animation of graphic objects, leaving the more abstract, structural representation of
objects unanimated.

4.9.3 Alternate Reality Kit

ARK, or the Alternate Reali ty Kit (Smith 1987), is another environment with goals similar to
that of LiveWorld. In this case the commonal i ty is in providing a l ively, reactive feel , and in
integrati ng graphic objects w i th computati onal objects. O ther shared properti es i nclude
prototypes (ARK’s prototypes work more l ike those of Sel f), step methods to drive concurrent
objects, and a special l imbo state (called MetaReality in ARK) for objects in a state of transition.

Both ARK and Rehearsal W orld, as w el l as many other vi sual envi ronments, rel y on a
separation of user levels. Components are bui l t by sophisticated users, general ly outside of the
visual environment, whi le more naive users are al lowed to connect these components together
graphical ly but not to open them up or modify them. LiveWorld, on the other hand, tries hard
to make every object openable and accessible.

124 LiveWorld

4.9.4 Rehearsal World

The Rehearsal W orl d system (Finzer and Gould 1984) explored the use of theatri cal
metaphors as an interface to an object-oriented programming envi ronment. Rehearsal world
presents objects as “ players” w hich come in “ troupes” and can be moved onto “ stages” ,
objects are control led by “ cues” , and putting objects through thei r paces is, of course, done
via rehearsal , which in practice is a weak form of programming-by-demonstration (Cypher
1993) in which objects can record user actions and play them back on command.

LiveWorld borrows from Rehearsal World the theatrical metaphor, and the idea of providing
a large set of existing players (a troupe) which users can use as components and starting points
for further development. The purpose and feel of the two systems also have many points of
commonality: both aim to provide a friendly and dynamic world where programming and direct
manipulation are integrated. The main differences are LiveWorld’s unusual object system and its
emphasi s on concurrent reacti ve obj ects. Rehearsal W orl d’ s programs, i n contrast, are
general ly “ button-driven” , that is, driven directly by user actions.

LiveW orld also incorporated a form of “ rehearsal ” -based programming, where objects
could record a sequence of message sends for later playback. This faci l i ty was not developed
very far, however.

4.9.5 Ágora

Ágora (Marchini and Melgarejo 1994) is a platform for model ing distributed simulations
based on graphic objects, concurrent i terated programs, and communication between them.
O ne of Ágora’ s more i nnovati ve i deas i s the noti on of a communication medium, w hich
provides a metaphor for broadcast style of inter-actor communication. In this model, any actor
can connect i tsel f to one or several communication media. Objects communicate w i th each
other by sending messages to a medium w hi ch then rebroadcasts i t to the other objects
present.

A medium can correspond to various sensory modal i ti es such as vi sion or smel l . The
various media can have di fferent behaviors and properties that determine the duration and
disposi tion of messages. Mediums thus take the place of LiveWorld’s sensors. In LiveWorld,
sensors compute values obtained di rectly from the world. The sensors themselves are trusted
to look only at slots that make sense given the sensor’s designed-in local i ty. Having media
objects encapsulates this constraint into a separate object. By rei fying the idea of a medium,
Ágora presents an al ternati ve to the tradi ti onal one-to-one image of message passing and
provides a conceptual basis for thinking about object i nteraction in a variety of di fferent
circumstances.

4.9.6 IntelligentPad

Intel l igentPad (Tanaka 1993) is a “ media archi tecture” visual ly qui te simi lar to LiveWorld.
The basi c uni t i s the pad, graphi c objects w hi ch can be gi ven vari ous appearances and

LiveWorld 125

behaviors and pasted w i thin other pads to form hierarchical structures. Pads when pasted
establ ish message-passing l inks between them. Pads serve as displays, buttons, containers, and
can represent complex simulation objects l ike springs and gears.

While the pad environment al lows end users to manipulate and combine given sets of pads,
it does not support ful l programming capabil i ties. Users cannot modify the behavior of the basic
pads nor create new kinds of objects. In this respect i ts design phi losophy resembles that of
Agentsheets (see section 6.2.2).

4.10 Conclusion

I w ish that I hadn’ t needed to spend the time I did bui lding LiveWorld. In fact, I was both
annoyed and somewhat puzzled that there was no system like this available already—an object-
oriented system coupled w i th a powerful underlying language, w i th an interface that could
support multiple moving objects and concrete viewing. This seemed l ike something that should,
in thi s day and age, be al ready commercial l y avai lable and in the hands of chi ldren. The
absence of such systems is, I think, a reflection of the fact that we don’ t have languages that
are ori ented tow ards programming i n such envi ronments. And of course the absence of
sui table languages is in part due to the absence of envi ronments! I chose to break this no-
chicken-and-no-egg cycle by bui lding the envi ronment fi rst, partly to avoid fal l ing into the
common language-design trap of elegant languages that can’t do anything tangible. Because of
this, LiveWorld is oriented towards agents but not i tsel f based on agents. Nonetheless, i t has
unique features which derive from the agent-based point of view . W hi le the language and
environment may be formally separable, the design values that inform them are the same.

126 LiveWorld

Chapter 5 Programming
with Agents

Putting the control inside was ratifying what de facto had already
happened—that you had dispensed with God. But you had taken on a

greater, and more harmful, il lusion. The illusion of control. That A could do
B. But that was false. Completely. No one can do. Things only happen, A

and B are unreal, are names for parts that ought to be inseparable...

— Thomas Pynchon, Gravity’s Rainbow p34

Earl ier chapters showed that the discourse of computation is founded on a diverse set of
metaphors, with anthropomorphic or animate metaphors playing a particularly central role. This
chapter presents a series of agent-based systems and languages that are expl ici tly designed to
exploi t animate metaphors. Several implementations of agents within LiveWorld are presented
here, ranging from extremely simple agents that have only impl ici t goals, to somewhat more
complex agent systems that al low agents to have expl ici t goals and thus moni tor thei r own
activity, and finally to Dynamic Agents, a system which allows agents to dynamically create new
goals and agents. This system is flexible enough to bui ld agent systems that operate w i th a
variety of control structures and can perform a variety of tasks in the problem domains set out
in Chapter 1.

5.1 Simple Agent Architectures

In this section we develop and examine a couple of “ toy” agent architectures that i l lustrate
some of the i ssues involved in using agents in a dynamic envi ronment. In the fi rst system,
Simple Agents, goals are implicit and agents are simply repeating procedures. Trivial though it is,
the Simple Agents system sti l l i l lustrates some of the issues involved in agent concurrency and
confl i ct handl ing. In the second system, Goal Agents, agents are more structured and have
expl ici t goals that can be used for a variety of purposes. Both systems offer an essential ly static
agent model , that is, agents are not created or deleted during the course of activi ty. Systems
that allow for the dynamic creation of agents wil l be the subject of the next section.

5.1.1 Simple Agents

The simplest form of agent that we w i l l consider is essential ly just a procedure that can
arrange for i tsel f to be invoked repeatedly, or in other words, a procedure that can be readi ly
converted into a process. These agents have no expl ici t goals or declarative aspect, nor do
they have any convenient way to communicate with other agents. Their agenthood rests solely
with their abil i ty to carry out their function independent of outside control.

Li veW orl d provi des a w ay to turn any method of zero arguments i nto an agent by
dropping i n an anima (see secti on 4.6.1). Thus, the Simple Agents system i s real l y j ust a
straightforward extension of the existing LiveWorld method structure. Animas are hooks for

Figure 5.1: a turtle executing a classic turtle circle using two simple agents, one to go forward, and
one to turn by a variable amount.

LiveWorld’s activi ty driver, so to understand the action of simple agents in more detai l , we wil l
need to look at the anima driver mechanism, and modify i t to handle some of the issues raised
by agents.

The defaul t anima driver is a simple loop which cal ls the function run-animas repeatedly.
Each cal l is considered an anima cycle. This driver is shown in Listing 5.1. Note that this driver
ensures that anima-driven agents run in lock-step with each other, in the sense that each gets to
execute exactl y once duri ng each cl ock cycl e. Thi s form of concurrency makes agents
synchronized by defaul t, al l ow ing them to be simpler than they w ould have to be i f they
needed to achieve synchronization through expl ici t constructs.

(defun run-animas ()

 (dolist (a *running-animas*)

 (send a :step)))

Listing 5.1: The very simplest anima driver.

5.1.1.1 Simulating Concurrency

When several animas are active, issues of concurrency and confl ict can arise. The defaul t
anima driver shown in Listing 5.1 basical ly ignores these issues. Each agent simply executes in
turn, creating problems of unpredictabi l i ty and order-dependency. The unpredictabi l i ty comes
from the fact that the ordering of agents in this round-robin execution is arbi trary, so that two
seemingly identical agent systems might exhibi t di fferent behavior i f the animas happen to be
l isted internal ly in di fferent orders. Addi tional ly, the execution of one agent may affect the
subsequent action of another. Ideal ly, al l agents would execute concurrently, so that the results
of one could not affect the other and the results of execution would always be predictable.

A form of simulated concurrent execution can be accomplished rather easi ly in LiveWorld
by modi fying the anima dri ver. The basi c i dea i s thi s: al l effects of agents are ul timatel y
expressed as side-effects to the values of boxes. So i f al l side effects are delayed unti l the end
of an agent cycle, the effects of concurrent execution can be simulated. To do this, the agent

128 Agents

driver needs to be changed. Rather than simply stepping each anima in turn, i t needs to operate
in two phases: one to compute the new values, and another to make those new values current.

The abi l i ty to annotate boxes makes this simple to implement. Al l that is necessary is to
modify the global :set method so that instead of actual ly altering the value of a box, i t wi l l store
the new value in an annotation on the box. Then this action is made conditional on the value of
a variable *phase* . The master anima driver now wil l step all animas with *phase* set to 1, then
go back and update the actual values of any changed boxes. The implementation of this is
shown in Listing 5.2. This code basical ly says that when *phase* i s 1, the new value is stored
on the annotation named :new-value of the given box, and the box is saved in a global l ist for
later processing in phase 2. If *phase* i s 2, a normal set is done using set-slot-1, the primitive
function for changing a slot’ s value. The anima driver i s changed so that i t dri ves the two
phases alternately.

(defvar *phase* 0)

(defvar *phase2-boxes*)

(def-lw-method :set #/global (new-value)

 (case *phase*

 (1 (progn

 ;; use lower-level mechanism to save new value in annotation

 (set-slot-1 (getb-force self :new-value) new-value)

 (pushnew self *phase2-boxes*)

 new-value)) ; return the new value

 ((0 2) (set-slot-1 self new-value))))

(defun run-animas ()

 (let ((*phase* 1)

 (*phase2-boxes* nil))

 (dolist (a *running-animas*)

 (send a :step))

 (setf *phase* 2)

 (dolist (f *phase2-boxes*)

 (send f :set (slot f :new-value)))))

Listing 5.2: two-phase slot setting in Simple Agents.

In addi tion to properly simulating concurrency, this two-phase-clock technique has an
additional advantage and one severe drawback. The advantage is that i t also gives us the hooks
to deal with confl ict in a systematic way, a topic dealt with in the next section. The drawback is
that it significantly changes the semantics of the languages. Under the two-phase clock regime, if
a method sets a slot value and then uses that slot value in further computation, i t wi l l no longer
obtain the right answer. This serious problem is somewhat offset by the fact that agents are
usually quite simple and rarely need to examine the value of a slot that has been set in the same
cycle.

5.1.1.2 Handling Conflict

Delaying the operation of :set to achieve concurrency also gives some leverage for deal ing
with confl ict. A confl ict occurs when two or more agents try to speci fy di fferent values for the
same slot. If this happens under the system as described above, we w i l l again suffer order-
dependencies among the agents (since the last agent to run during phase 1 wi l l be the one that

Agents 129

ends up supplying the new value). To deal with this, we can extend the above scheme to keep
track of all the :sets done to a slot during the course of a single agent cycle (during phase 1),
and then during phase 2, figure out for each slot which value wil l prevail.

(def-lw-method :set #/global (new-value)

 (case *phase*

 (1 (progn (push (list new-value *agent*)

 (slot self :proposals))

 (pushnew self *phase2-boxes*)))

 ((0 2) (set-slot-1 self new-value))))

(defun run-animas ()

 (let ((*phase* 1)

 (*phase2-boxes* nil))

 (dolist (a *running-animas*)

 (let ((*agent* (box-home a)))

 (send a :step)))

 (setf *phase* 2)

 (dolist (f *phase2-boxes*)

 (send f :resolve-set))))

(def-lw-method :resolve-set #/global ()

 (let ((proposals (slot-or-nil self :proposals)))

 (case (length proposals)

 (0 (error "No proposals for ~A" self))

 (1 (send self :set (caar proposals)))

 (t (send self :resolve-conflict)))

 (setf (slot self :proposals) nil)))

(def-lw-method :resolve-conflict #/global ()

 (let* ((proposals (slot self :proposals))

 (best (maximize proposals

 :key

 #'(lambda (proposal)

 (let ((agent (cadr proposal)))

 (or (ask-if agent :urgency)

 0))))))

 (send self :set (car best))))

Listing 5.3: Conflict handling in Simple Agents.

To make this work, we need some way to arbi trate between confl i cting agents. This i s
accomplished by equipping them with an :urgency slot. W hen an agent sets a slot’ s value, a
pointer to the agent gets saved along w i th the proposed new value, so the phase 2 code can
compare the urgency values of confl icting agents (we assume that no agent sets the same slot
twice on the same cycle).

In this version of the system, during phase 1 each slot col lects proposals for what i ts new
val ue shoul d be. Proposal s consi st of the new val ue and a poi nter to the agent that i s
responsible for suggesting i t. During phase 2, the proposals are evaluated and resolved by the
:resolve-set an d :resolve-conflict methods. maximize i s a uti l i ty function that w i l l select an
element from a l ist (in this case the l ist of proposals) that yields the maximum value of a key
function (in this case, the urgency of the agent that generated the proposal).The code above is
not as efficient as i t could be, since there is no real need to store al l the proposals and find the

130 Agents

maximum later, but we wil l see that keeping the proposals around wil l be useful for generating
user displays and for establishing alternative confl ict resolution strategies.

Since urgency values are just slots, they can be dynamical ly updated by addi tional agents
(for instance, the urgency of a find-food agent might increase with time and decrease when food
was found).

Figure 5.2: Three simple agents, with urgency.

An example where agents confl ict is shown in Figure 5.2. This is the same as the previous
example with the addition of a new agent, bounce-agent, a sensor, and a new rectangle actor.
Bounce-agent checks to see i f the turtle overlaps this rectangle, and i f so i t makes i t back up
and turn around. The :urgency slot of bounce-agent is 1, al low ing i t to supersede the other
agents, w hich have the defaul t urgency value of 0. The resul t i s that the normal ci rcl i ng
behavior prevai ls except when the turtle is in contact w i th the rectangle, when bounce-agent

takes charge.

A few other things to note about this example: i t is obviously necessary for bounce-agent

to move the turtle as well as changing its heading, since otherwise, the turtle would sti l l overlap
the rectangle and the :turn-right action would be repeated on the next cycle. Less obvious is
the fact that the two asks in bounce-agent are effectively done in paral lel , because of the delay
bui l t i nto slot-setting in this agent system. That i s why the turtle must back up rather than
si mpl y turni ng around and then goi ng forw ard. Essenti al l y, no sequenti al l y-dependent
operations can appear inside the action of a single agent when the two-phase-clock method is
used. The two asks can appear in either order without changing the effect of the agent.

Note that this method of confl ict resolution can resul t in part of an agent’s action being
carried out whi le another part is overridden by another agent w i th a higher urgency. In other
words, confl icts are resolved at the slot level rather than at the agent level . Whether this is
desi rable or not depends on how one interprets the anthropomorphic metaphor. A partial ly-
successful action might be interpreted as a compromise.

Agents 131

(def-lw-method :resolve-conflict #^/cast/turtle/heading ()

 (let* ((proposals (slot self :proposals))

 (average (/ (reduce #'+ proposals :key #'car)

 (length proposals))))

 (send self :set average)))

Listing 5.4: An alternative conflict resolution method.

Also note that other methods of resol vi ng a confl i ct are possible. For i nstance, for a
numerical slot like heading, the values of al l proposals could be averaged rather then selecting
one of them. These al ternate resolution methods can be implemented on a per-slot basis by
specializing the :resolve-conflict method. Listing 4 shows an example in which proposals to set
the heading of any turtle wil l be averaged.

5.1.1.3 Presenting Conflict Situations to the User

The abi l i ty of the simple agent system to capture confl i ct can be exploi ted to generate
di splays for the user. Thi s al l ow s the user to speci fy the resoluti on to confl i cts, and can
automatically generate agent urgency values.

Figure 5.3: Presenting the user with an agent conflict situation.

An example of this is shown in Figure 5.3. In between phase 1, when each agent has made
its attempt to set slots, and phase 2, when actions must be selected and performed, the system
surveys the changed slots for agent confl icts. If confl icts are found that cannot be arbitrated by
the urgency mechani sm (because the agents i nvol ved have equal urgency), the system
generates a display i l lustrating the effects of each agent and presenting the choice of agents to
the user. Each agent generates a corresponding box containing copies of the slots i t effects, and
a thumbnai l snapshot of the world as i t would be i f that agent alone was al lowed to execute.
Thumbnails are based on a special kind of slot whose value is a picture. In this case, the confl ict
is a complex one: bounce-agent is in confl ict w i th turn-agent over the heading sl ot, and i n
conflict with fd-agent over the xpos and ypos slots.

The user then has to select some combination of agents that avoids confl icts. In the figure,
bounce-agent coul d be sel ected by i tsel f , or turn-agent a n d fd-agent coul d be sel ected

132 Agents

together, since they don’t confl ict with each other. The system can then adjust the urgencies of
the selected agents so that this particular conflict wil l be arbitrated the same way automatically in
the future.

In a more complicated system (for instance, one with multiple active actors) there are l ikely
to be multiple sets of confl icting agents. This si tuation could be handled wi th multiple sets of
thumbnails to choose among, although this could get confusing rather quickly.

5.1.1.4 Behavior Libraries

The simpler agent systems lend themselves particularly wel l to a mode of programming in
which behaviors are selected from a l ibrary and cloned and dropped into an actor. An example
of such a l ibrary i s shown in Figure 5.4. This l ibrary contains both simple agents and goal
agents (which are described below). Library agents general ly refer to other objects through
relative boxpath references (see 4.5.4) so that thei r clones w i l l work properly in any context.
Addi t i onal l y , l i brary agents may refer to sl ots of thei r ow n, w hi ch al l ow s them to be
parameterized (see behavior get-to in the figure for an example).

Figure 5.4: A library containing a variety of drop-in behaviors.

Agents 133

Figure 5.5: A library of objects containing agents.

Figure 5.5 i l lustrates how agents can be embedded into a l ibrary of other objects. This
l i brary contains a vari ety of turtl es and patches (actor objects that are stati onary but do
something when another object contacts them). Velocity-turtle, for exampl e, has a si mpl e
agent, f d, that gi ves i t a constant forw ard veloci ty, and another Goal Agent (see the next
section) that implements the wrapping behavior seen in most Logo environments. The sound-

patch object plays a sound when another object passes over i t (the sound, l ike the agent that
generates the behavior, is an internal annotation to the patch object i tsel f). The other patches,
curve-patch and slow-patch, wil l change the motion of turtles that pass over them.

5.1.2 Goal Agents

This section describes a sl ightly more sophisticated form of agent-based programming called
Goal Agents. This system i l lustrates several additional aspects of agents. Speci fical ly, i t shows
how agents can be based around goal s, and how thi s further enabl es the use of si mpl e
anthropomorphic metaphors to i l lustrate agent activity.

A goal -agent consi sts of a box w hose value i s a goal i n the form of a Li sp predi cate
expression. The agent’s task is to keep this goal satisfied. In addition to the goal i tsel f, the box
display includes an icon that indicates the state of the agent. A satisfied goal displays a smiley
face icon, whi le an unsatisfied one produces a frown. Goal agents have a few other properties
which are stored as internal annotations. O f these, the most signi fi cant is the action, which
specifies how the agent is to attempt to satisfy i ts goal.

In Figure 5.6 we see an instance of a satisfied goal agent inside an actor (Opus). The agent’s
goal i s that the overlap-sensor have a value of :no, or i n other w ords that i ts parent actor
should not be in contact with any other actor.

134 Agents

Figure 5.6: A satisfied goal-agent.

In Figure 5.7 the turtle has moved, causing the agent to become unsatisfied, as indicated by
the changed icon. The agent has been opened to reveal the action w i thin. This action w i l l
execute repeatedly unti l the agent is once again satisfied. In this case the action moves the actor
20 pixels in a randomly chosen direction, so eventual ly (assuming the turtle is static) Opus wil l
elude the turtle and the goal will once again be satisfied.

Figure 5.7: The goal-agent, unsatisfied and open.

Goal-agents act somewhat l ike an i terative construct of a procedural language, such as the
repeat...until construct of Pascal, running the action unti l the test is satisfied. Goal Agents are
also somewhat simi lar to si tuation/action rules, with the di fference that instead of specifying a
triggering condition and action, a goal-agent contains the negation of the triggering condition as
i ts goal , and acts only when this goal i s unsatisfied, or as the ethologist H inde put i t, “ The
concept of a goal refers always to a situation which brings a sequence of behaviour to an end.”
(Hinde 1978, p. 624).

It’s worthwhi le noting that this agent (and al l the other types of agents presented in this
chapter) operate concurrently w i th user interaction. For example, the above agent al lows the
user to chase Opus around by dragging another object. It is this property, the abi l i ty to interact
with running agent programs, that gives LiveWorld its feeling of l iveliness.

Goal -agents can al so have precondi t i on, urgency, and sat i sf i ed-act i on sl o ts. The
precondition sl ot contains another predi cate and determines w hether or not the agent i s

Agents 135

allowed to run its action. Satisfied-action is an action to take i f the goal is satisfied, as opposed
to the normal action which is done if the goal is unsatisfied. The satisfied-action slot is included
mainly for the sake of symmetry, although since it is somewhat in confl ict with the goal-seeking
metaphor i ts use is discouraged.

(def-lw-method :step #/goal-agent ()

 (if (ask self :precondition)

 (if (ask-self self) ; are we satisfied?

 (progn (ask self :satisfied-action)

 (setf (ask self :icon) *smile-icon*))

 (progn (ask self :action)

 (setf (ask self :icon) *frown-icon*)))))

Listing 5.5: Step method for goal agents.

Goal Agents (as described so far) can be implemented by equipping a LiveWorld object with
the :step method shown in Listing 5.5. Implementing goal-agents also requires install ing defaults
for the slots involved, that i s, goal agents must have a defaul t :satisfied-action method that
does nothing, and a defaul t :precondition that i s al w ays true. Some other mappi ngs i nto
emotional icons are possible; for instance, an agent whose goal was unsatisfied but could not
act because of a precondition might appear as frustrated.

As described so far Goal Agents don’ t real ly have much more computational power than
Simple Agents, since simple agents can simulate the goal/precondition/action mechanism of goal
agents w i th ordi nary Li sp condi ti onal s. H ow ever, Goal Agents provide some addi ti onal
structure, in that the separate parts of the conditional are now separate objects and can thus be
accessed separately. This means that the system now has the abi l i ty to know more about the
state of agents. This property is what enables the anthropomorphic icon display. It also enables
some al ternative control strategies. Agents can test the satisfaction condi tion of other agents,
and confl ict resolution strategies can be used that take into account the knowledge about which
agents need to run, based on the state of thei r goals. This permi ts agents to be arranged in
sequences, albeit awkwardly (see the next section).

A useful variant of goal agents can be made by replacing the goal w i th a condi tion. The
result is an if-then-agent, which consists of three clauses corresponding to the usual parts of a
conditional statement: i f, then, and else (see section 5.4.1 for an example). Sometimes this is a
more natural way to formulate an agent, but because it is not based on a goal i t is less amenable
to anthropomorphization.

5.1.3 A Comparison: Teleo-Reactive Programming

It is instructive to compare Goal Agents w i th other goal-based formal isms for control l ing
action. The teleo-reactive program formal ism (Ni lsson 1994) was developed to address one of
the same issues that motivated LiveWorld: the fact that sequential programming is not always
sui ted to the control of agents that are in a continuous relationship w i th thei r envi ronment.
O ther l anguages at thi s l evel i nclude GAPPS (Kaelbl i ng 1988), Chapman’s ci rcui t-based
architecture (Chapman 1991), and universal plans (Schoppers 1987).

136 Agents

The teleo-reactive program formalism is particularly simple to understand. A teleo-reactive
program consists of an ordered set of rules, rather l i ke production rules. Unl ike tradi tional
production systems, however, actions are not discrete events (such as adding a token to a l ist)
but durative actions l ike move. Durati ve actions persist as long as the triggering condi tion
remains the fi rst satisfied condition in the program. Ni lsson suggests thinking of the program in
terms of a ci rcui t, which i s constantl y sensing the world and turning on a speci fi c action.
Equivalently, one can think of the T-R program as being called repeatedly in a loop whose cycle
time is short compared with the typical length of time of actions. Rules are tested in order unti l
one of the left-hand sides is true, and when one is found i ts right-hand side action w i l l be
executed. Then the process is repeated. For instance, here is a sample program (from Ni lsson)
that is intended to get the actor to navigate to a bar and grab it:

is-grabbing → nil
at-bar-center & facing-bar → grab-bar

on-bar-midline & facing-bar → move
on-bar-midline → rotate

facing-midline-zone → move
T → rotate

The equivalent program in Lisp would be something l ike this, w i th the understanding that
the program is enclosed in a rapidly-repeating loop:

(if is-grabbing

 nil

 (if (and at-bar-center facing-bar)

 grab-bar

 (if (and on-bar-midline facing bar)

 rotate

 (if ...

While this language is rather simple, there are a few nonintuitive peculiari ties about i t. One
thing to note is that actions are not di rectly associated w i th their goals. Instead, the action of
rule n i s intended to achieve the goal of rule n-1. Another i s that considered as a plan for
action, i t reads backwards: the last action to be performed, grab-bar, comes first.

To express the equ i val en t p rogram w i th Goal Agents requ i res c reat i ng an agent
corresponding to each rule as fol lows (the notation Gn is short for “ agent n’s goal is satisfied”):

n goal action precondition

5
.

is-grabbing grab-bar G2

5
.

at-bar-center & facing-bar move G3 & ~G1

5
.

on-bar-midline & facing-bar rotate G4 & ~G1 & ~G2

5
.

on-bar-midline move G5 & ~G1 & ~G2 & ~G3

5
.

facing-midline-zone rotate T & ~G1 & ~G2 & ~G3 & ~G4

Table 5.1: A teleo-reactive program expressed in goal agents.

Agents 137

This transformation makes for a more natural modulari ty (actions are associated w i th the
goals they achieve) but necessitates explicit preconditions, rather than having them be implicit in
the order of productions. There is no simple way to express any ordering of the goals.

One problem w i th this i s that the precondi tions get rather compl icated for long action
chains. Agent n has to check that agent n+1 has been satisfied and check that al l agents 1...n-1
have not been satisfied! The reason for this is our refusal to have any sort of central arbi trator
or serial izer that decides which agent should run. Instead we want each agent to figure out for
i tsel f i f i t is appl icable, but that means that each agent has to know about al l the other agents
involved that come before it in the sequence. This is hardly modular.

Figure 5.8: A teleo-reactive program expressed as Goal Agents. The long visible sensor of the ant
is the facing-midline-zone sensor; other predicates are implemented with overlap-sensors. The bar

is the thick rectangle, the bar midline is visible as a guideline.

The Goal Agents system thus provides a richer way to al low agents to interact than does
Simple Agents, but sti l l does not make i t very natural to talk about sequences of action. This
issue (and others) are addressed by Dynamic Agents.

138 Agents

5.2 Dynamic Agents

The agent-based programmi ng systems i ntroduced so far are qui te l i mi ted i n thei r
expressive power. Whi le agents can pursue goals, they are l imited to a single fixed method for
achieving them. Agent systems have fixed sets of agents and cannot readi ly modify their goals
during execution. There is no easy way to speci fy sequences of action or l ists of goals to be
achieved sequential ly. This essential ly means that actors driven by simple agent systems are
limited to a single fixed response to a given situation.

Dynamic Agents (DA) was designed to overcome some of these l imitations, and is the most
powerful agent language implemented within LiveWorld. In contrast to earl ier systems in which
agents were basically static entities, in Dynamic Agents, new goals can be created on the fly and
agents created to real ize them. As in Goal Agents, agents are responsible for a single goal or
task. But to carry out their task, they can create new tasks which in turn results in the creation
of new, subordinate agents. The agents in a DA system thus form a hierarchy, but a hierarchy
that can dynamically change over time.

Imagine an agent as a person. It has a job to do, which can involve ei ther keeping a goal
satisfied or carrying out an action. It is created and activated by i ts superior, but otherwise acts
autonomousl y. I ts act i ons can consi st of d i rect changes to the w orl d, or i t can recrui t
subordinate agents to pursue subtasks that contribute to i ts own success.

In terms of the anthropomorphi c metaphor, the hi erarchy consi sts of managers and
workers. Managers can have goals, which they moni tor but take no di rect action to achieve.
Instead they create and supervise the activi ty of other agents. Worker agents actual ly make
changes to the world. Managers have some flexibi l i ty in the manner in which they activate their
subordinates. For example, an agent to stack blocks might have a subordinate in charge of
finding blocks, another in charge of moving the hand to the block, another to grasp the block,
another to move the hand so that the block is on top of the stack, and another to release the
block from the hand. This agent would want to activate i ts subagents sequential ly and in a fixed
order. An agent which maintains a set of graphic constraints would have a subagent for each
constraint, but would typical ly not care about the order in which they were achieved. It would,
however, need to make sure that one agent did not interfere w i th the goals of another agent.
The language for speci fying agents has to be flexible enough to accommodate these di fferent
sorts of managers.

Agents 139

little-person model Tinbergen model dynamic agents

basic model procedural reactive task-driven

uni ts “ little people”
(procedure invocations)

drive centers agents

persistence dynamic static dynamic

goals no support implicit explicit

action executing procedures releasing energy performing tasks

communi–

cation

LPs ask other LPs to
perform procedures

passing energy agents post tasks which
generate new agents

conflict no model intra-layer inhibition slot conflict and goal conflict

multiple

methods

one LP per procedure
call

one unit per behavior can have multiple agents for a
task

failure

handling

none none (except repetition) agents can fail, allowing other
methods to be tried

state running, dormant,
waiting

blocked; activation
energy

dormant,[un]satisfied, failed,
succeeded, determination

concurrency exactly one LP active at
a time

one active unit per layer multiple active agents

top “ chief LP” initiates
activity

top-center God agent organizes activity

bottom primitive procedures motor uni ts worker agents

Table 5.2: Programming models compared.

Two earl ier forms of hierarchical control system have influenced the design of the agent
hierarchy underlying DA. The fi rst of these is the hierarchy of procedure cal ls generated by the
activity of an interpreter for a procedural programming language, and the l i ttle-person metaphor
sometimes used to i l lustrate i t (see 3.3.2.1). The notion of a society of experts performing tasks
on demand is retained, but extended in several signi fi cant ways. A l i ttle person executes a
procedure once then disappears, but a dynamic agent is a persistent enti ty. This al lows agents
to have signi ficantly greater capabi l i ties. Agents operate in paral lel , they can monitor goals as
wel l as carry out procedures, and there can be more than one agent created to accompl ish a

140 Agents

given task. Because agents can have goals, there is a basis in the model for thinking of agents as
satisfied or unsatisfied, successful or fai led, and for handling confl ict.

The other major model for D A’ s hi erarchy of agents i s Ti nbergen’ s model of animal
behavior control systems (Tinbergen 1951), and computational attempts to real ize i t such as
(Travers 1988) and (Tyrrel l 1993). Like Tinbergen’s drive uni ts and releasing mechanisms,
agents in a DA hierarchy are constantly checking their state against the world, and so can take
control when necessary, possibly overriding other agents. This flexibi l i ty is not found in the
standard procedural models of programming. In some sense, DA can be understood as an
attempt to integrate the reactive hierarchies of Tinbergen with the formal simplicity and power of
the procedural model.

Table 5.2 shows a point-by-point comparison of dynamic agents w i th the l i ttl e-person
model of procedural programming and Tinbergen’s model of animal behavior. The basic
metaphor behind procedural programming is serial ized fol low ing of instruction, whi le in the
Tinbergen model i t is reacting to environmental stimul i . Dynamic Agents attempts to integrate
these by basing i ts model of an agent on tasks which can speci fy both sequences to execute
and goals to be achieved. From the LP model , DA takes the idea that agents can dynamical ly
create subagents as part of thei r activi ty. From the Tinbergen model , DA takes the idea that
agents w hi l e arranged i n a hi erarchy have a measure of autonomous control , can run
concurrently, can constantly check on the state of the world and can seize control from each
other. The possibi l i ty of combining the best features of these two rather di fferent models of
control was the inspiration behind the design of Dynamic Agents.

5.2.1 Overview

This section presents a technical overview of the structures, concepts, and operation of the
Dynamic Agents system. The DA system works by bui lding a hierarchy of agents (see Figure
5.8) based on user speci fied tasks. In a cycl ic process, the agents are activated and may take
actions which consist of ei ther a di rect action which changes the world, or the creation of
subtasks and subagents. Agents may come into confl ict by attempting to perform incompatible
actions or by interfering with another agent’s goal. The system attempts to resolve confl icts and
schedule agent activi ty in such a way as to satisfy as many agents as possible.

Each agent is in charge of a single task, which determines i ts type and behavior. Primitive

tasks speci fy a di rect action to take in the world. Other kinds of tasks can speci fy goals to be
achieved, or complex procedures to perform that i nvoke a number of subtasks. Tasks are
speci fied using a vocabulary of bui l t-in control constructs and user-defined templates. For
i nstance an and task spec i f i es a number o f sub tasks, al l o f w h i ch must be sat i sf i ed
simul taneously for the and task to be satisfied. A script task, on the other hand, activates i ts
subtasks sequential ly. Agents have a numerical determination value which corresponds roughly
to how hard they try to take their action in the face of confl icts.

At the top of the agent hierarchy is an agent w i th a special task cal led (god). This agent
serves to organize the activi ty of the next lowest layer of agents, which embody top-level tasks.

Agents 141

Worker agents
take action in the world.

template

task

prim.
task

prim.
task

template
Templates specify subordinate agents.

Satisfied agents
don't need to

create subordinates
template

task

This agent supervises activity.

top
task

top
task

top
task

These agents handle top-level tasks.

(god)

Figure 5.9: An agent hierarchy.

These tasks can be speci fied expl ici tly by the user in task objects, or arise impl ici tly from user
actions. They can also be part of objects in a simulation or l ibrary.

Agents can be in a number of di fferent states. Agents whose task is a goal can be satisfied

o r unsatisfied. Agents that carry out an act i on can be successful, failed, o r waiting f o r a
subordinate. Worker agents succeed when they are able to carry out their action. They can fai l
for a variety of reasons, including coming into confl i ct w i th other agents. M anager agents
general ly succeed or fai l based on the success or fai lure of their subordinates. For example, the
failure of a single subordinate wil l cause an and agent to fai l , while a similar subordinate fai lure
under an or agent wil l instead cause a different subordinate to be activated.

The agent interpreter begins i ts process of activating agents from the top agent and works
its way downwards. At each level, the task of an agent determines which subagents, i f any, wi l l
become activated. For instance, a script agent wi l l only activate one subagent, whereas an and

agent wil l activate al l of i ts subagents. An agent that is satisfied needs to take no action and wil l
not activate any subagents.

Eventual ly this process bottoms out in worker agents who attempt to execute primi ti ve
tasks. The actions of these agents are deferred so that concurrency and confl ict resolution can
work right, in a manner very similar to that used in simple agents (see 5.1.1.2). The confl icts are
resolved using the determination values of the agents involved. Agents that prevai l (or are not
in confl ict) are marked as successful , whi le losers are marked as fai led. Success and fai lure
propagate upwards in a manner determined by the tasks involved. The successful actions are

142 Agents

real ized, that is, thei r proposed changes for LiveWorld slots become the current values. This
may cause other agents to become unsatisfied. Agent determination values can change as other
agents fai l and succeed, so that confl ict resolution is not permanent—the “ balance of power”
can shift. This cycle is repeated either indefinitely or until all top-level tasks are satisfied.

5.2.2 Structures

This section explains the major structures used in dynamic agents: tasks, agents, and
templates. To briefl y summarize the relationship between these three separate but closely
related concepts:

• A task is an expression that specifies a job to do;

• An agent is a structure created to carry out a particular task;

• A template is a structure that speci fies, for some set of tasks, how to create agents to carry
them out.

Templates extend the kinds of tasks that can be handled and thus in some sense consti tute
the program speci fication of an agent system. To extend this rough analogy w i th tradi tional
procedural programming, tasks correspond to procedure cal l s, w hi l e agents correspond
(roughly) to the stack frames or other i nternal structures used to keep track of procedure
i nvocati ons. H ow ever, agents are l onger-l i ved, keep more i nformati on, and have more
complicated associated control mechanisms than stack frames.

5.2.2.1 Tasks

A task i s an expression in Lisp syntax that represents ei ther a goal to be achieved or an
action to be taken. W hi le tasks are in the form of Lisp structures, they are not (in general)
interpreted as Lisp expressions. The fi rst element of a task speci fies the general type of task,
and may be a special symbol such as and or do, or the name of a domain task. Because tasks
and agen ts are c l osel y coup l ed , w e w i l l use the term i no l ogy fo r tasks and agen ts
interchangeably (for instance, we might refer to the type of agent, which is simply the type of i ts
task). There are a number of different general classes of task:

• goals are tasks that have an i nterpretat i on as a predi cate (i n other w ords, they are
satisfiable. Some special tasks (such as and-type tasks) are also goals, and tasks that are in
the form of user or system-defined predicates are also goals.

• actions are tasks that are not predicates.

• primitive tasks are action tasks that take direct action in the world.

• manager tasks include al l non-primi tive tasks. Agents w i th manager tasks take no di rect
action on the world. Instead they specify and control some number of subordinate agents.

• special tasks are manager tasks w hose type i s a member of the vocabulary of control
constructs presented below . They generate thei r subordinate agents according to rules
presented in section 5.2.4. In general , special tasks have one or many subforms, each of
which is a task and generates a single subordinate agent.

Agents 143

• domain tasks are manager tasks with a user-defined, domain-dependent type. Domain tasks
generate subagents according to templates that match the task.

To summarize: tasks can be spl i t along several dimensions into disjoint pai rs of classes.
Goals and actions are one such pai r, as are manager and primi ti ve tasks; and special and
domain tasks. For instance, an and task is a special task, a goal, and a manager task.

Some sample tasks are presented here. More detai led examples may be found later (see
especially section 5.4).

 (= #^/rect/xsiz #^/rect/ysiz)

This task is a goal since i t has a predicate value. The task i t denotes is to keep the values of
two slots equal (i t ensures that the #/ rect object is a square). An agent for this task would take
no action i f the task was satisfied. If i t was unsatisfied, the agent would create subagents to try
to achieve satisfaction.

 (go-to #^/ant #^/food-3)

This is a user-defined goal task. The goal is satisfied when the ant is in contact w i th food-3,
and when unsatisfied w i l l create subagents that w i l l cause the ant to move towards i ts goal .
These subagents wil l manage the ant’s direction and movement.

(do (ask #^/turtle :forward 20)

This is a primi tive task. An agent w i th this task w i l l make the turtle go forward when i t is
activated.

(script (find-free-block @^/marker/)

 (go-to @^/hand @^/marker/)

 (grasp @^/hand))

This script task from the blocks world instructs the agent to make three subagents and
acti vate them serial l y. The fi rst i nstructs a marker object to fi nd a free block, the second
instructs the actor representing the hand to go to the marker, whi le the third instructs the hand
to grasp whatever object i t finds. Al l three of these subtasks are high-level domain tasks that
generate manager agents.

5.2.2.2 Agents

An agent i s a structure created to carry out and moni tor a task. Agents are arranged
hierarchical ly as described above. Internal ly agents are represented by low-level Lisp structures
for efficiency, but they also have representations in box form for presentation to the user.

The most important property of an agent is i ts task. An agent also contains an assortment
of additional state variables that are used to control i ts activi ty. This includes i ts precondition,
i ts current subordinate agent (for script tasks and others that activate only one subagent at a
time), its determination, and its success or failure state including information about lost confl icts.
Agents also contain the necessary pointers to maintain the agent hierarchy. If an agent was

144 Agents

generated by a template, i t contains a pointer back to that template along w i th the variable
bindings that resulted from the match of the template’s task-pattern to the agent’s task.

Agents are intended to be understood anthropomorphical ly as the active and interested
components of the system. To that end, a set of icons are used to represent the state of agents
in terms suggestive of human emotion. In addition to the icons for goal satisfaction used in goal-
agents (see 5.1.2), dynamic agents can express the state of thei r action (succeeded, fai led, or
waiting) and the presence of confl ict. The icons and their interpretation are:

• inactive (asleep)
The agent is inactive.

• satisfied (happy)
The agent is active and its goal is satisfied.

• unsatisfied (sad)
The agent is active and its goal is not satisfied.

• in conflict (angry)
The agent w as satisfied, but was made unsatisfied by another agent.

• fai led (thumbs-down)
The agent failed.

• succeeded (thumbs-up)
The agent succeeded.

• waiting (tapping fingers)
The agent is waiting for a subordinates to complete.

Roughly, an iconic face is used to indicate the satisfaction state of the task, whi le an iconic
hand is used to show the state of any action taken to achieve that task. These are somewhat
independent, since an agent’s task can become satisfied without direct action by the agent.

5.2.2.3 Templates

A template speci fies a method for constructing an agent to handle a parti cular class of
domain task. The relationship between templates and agents i s simi lar to the relationship
betw een a procedure speci fi cati on and a procedure i nvocati on i n a standard procedural
language: that i s, the template i s a stati c, general i zed structure that serves as a pattern for
dynamical ly creating other structures (agents) to deal w i th particular instances of tasks. Thus,
templates correspond to what is normally thought of as “ the program” , that is, they contain the
specifications of what the computer is to do.

Agents 145

When an agent w i th a domain (non-special) task is expanded, the system matches i ts task
against all

18
 templates. If exactly one template matches, then a single subagent is created using

that template’s information. If more than one template matches the task, an intervening ONEOF
task is created to manage the multiple agents that result.

Templates consist of a number of fields. Some of these have values that are patterns used
to match and generate tasks. The most important of these are the task-pattern and the action-
pattern, which specifies a new task. The semantics of a template are (roughly) that i f there is an
active task that matches the task-pattern of the template, then a subagent should be bui l t that
i ncorporates the new task speci f i ed by the act i on-pattern. Templ ates can al so speci fy
preconditions for the agent and other relevant agent properties.

In this document, templates are shown defined by Lisp forms. It is also possible to create
templates in the form of box structures w i thin LiveWorld, by the usual method of cloning a
specialized object and fi l l ing out the appropriate slots.

Patterns are specified using a pattern-matching language based on the one in (Norvig 1992).
A pattern consists of a Lisp l ist in which some of the elements are pattern variables. Pattern
variables are symbols beginning with the ? character. For example, the pattern (= ?a ?b) would
match the task (= @^/ rect/ x @^/ rect/ y), binding the variables ?a an d ?b to the appropriate
matched values. This information is used to substi tute the values for pattern variables in the
other patterns in the template, such as the action.

Here is an example of a template from an animal-behavior simulation:

(deftemplate (get-food-forward ?a)

 :precondition ´(and (yes? (ask ?a :left-food))

 (yes? (ask ?a :right-food)))

 :action ´(repeat (do (ask ?a :forward 10))))

The task-pattern of thi s template i s (get-food-forward ?a), and the ef fect o f the
template i s to say that i f a task of that form is asserted (for some actor that w i l l match the
pattern variable ?a), and the two food sensors are both returning :yes values, then go forward.
The pattern variable ?a w i l l be bound to the actor w hen the template i s matched against
outstanding tasks, and the precondition and action are evaluated in a context that includes the
resultant bindings of the pattern variables.

In the above example, the pattern matching faci l i ty does not add much power over and
above the agent systems al ready seen. H ow ever, the next example uses mul ti pl e pattern
variables to establish templates for tasks that involve relations between slots:

(deftemplate (= (+ ?b ?c) ?a)

 :name +left

 :precondition ´(settable ?b)

 :action ´(= ?b (- ?a ?c)))

18 Actually the implementation organizes templates into buckets based on their first element in order to
minimize the relatively expensive process of pattern-matching. This is an implementation detail.

146 Agents

This template speci fies one method for satisfying a particular form of ari thmetic constraint
by reducing i t to a simpler constraint. This template is part of the system’s general ari thmetic
capabi l i ties. As this example suggests, there can be more than one template matching a task.
When a task matches with multiple templates, the system wil l generate multiple agents under a
oneof agent (see 5.2.4.4).

The fields of a template specification are:

• The task pattern (the header or second element of the deftemplate form) is used to match
the template against a task. It can contain pattern variables that get bound to elements in the
original task.

• The action pattern (speci fied by the :action keyword) generates a new task based on the
values of pattern variables bound in the goal pattern. This task becomes the basis for a
subagent of the original task’s agent. This field must be suppl ied (or calculated from the
satisfied field, see below).

• The precondi tion pattern speci fi es a precondi ti on that al so becomes part of the new ly
created agent. The default value is t, that is, by default agents are always able to run.

• The satisfied field allows a predicate and action to be defined together (see below).

• The name fi eld assigns the template a name that uniquely i denti fi es i t for purposes of
debugging and redefini tion. The defaul t value of the name is the goal-pattern. This means
that i f mul tiple templates are being defined for a single goal-pattern, they had better have
unique names so the system does not interpret them as redefinitions of one template.

• The determination-factor field is a number used to scale the determination value assigned to
the agent (see 5.2.7). The default value is 1.

U sers can defi ne thei r ow n goal s by usi ng the :satisfied parameter of templates. This
essential ly defines both the declarative and procedural parts of a high-level goal simultaneously.
For instance,

(deftemplate (square ?a)

 :satisfied (= (ask ?a :xsiz) (ask ?a :ysiz)))

This template definition both defines a one-argument Lisp predicate square w i th the obvious
definition, and creates a template that i f given a square task wil l attempt to achieve it by posting
the appropriate equal i ty task. This process involves converting the task-pattern into a Lisp
function specifier and argument l ist, and for this reason a template that includes a :satisfied field
must have a task-pattern that is of the form (<symbol> <pattern-var>*).

The pattern-matcher is actually more powerful than described so far. Most of i ts capabil i ties
(for instance, matching a variable to a segment of arbi trary length) have not been used. One
extension that has proved useful is syntax that al lows patterns to specify that a pattern variable
must match a box of a particular type. For instance, the pattern

(yes? (?spinoff ?sensor #/sensors/overlap-sensor))

w i l l m atc h an y t ask o f t h e f o r m (yes? foo) , i f an d o n l y i f foo i s a sp i n o f f o f
#/ sensors/ overlap-sensor.

Agents 147

5.2.3 Control

From the implementation standpoint, agents do not really operate independently but instead
are control led through a central ized agent interpreter. This interpreter is in charge of creating
agents for the initial tasks, finding templates to match tasks and creating the new tasks specified
by the templates, and so on recursively. The interpreter is also in charge of determining what
subset of these agents are to be active at any time.

The interpreter i s cycl i c, that i s, i t consists of a process that repeatedly examines and
updates the structure of agents. There are a number of di fferent ways such an interpreter could
work. For instance, i t could pick a single agent to activate on each cycle, or pick a single agent
on each level, or activate as many agents simultaneously as i t can. To be true to the distributed
form of the anthropomorphic metaphor, we have chosen the latter, even though the single-
agent-at-a-time methods might be more tractable. So a single major cycle of agent activi ty
consists of acti vating as many agents as are appropriate, and, i f any actions are proposed,
resolving confl icts and executing them. This section describes the internal mechanics of agent
activation and control . For an extended example of the consequences of such activi ty, see
section 5.3.5.

5.2.3.1 Activation and Expansion

Activation i s the process of making an agent check i ts goal (i f any) and take necessary
action. Agents are activated in a top-down process, starting from the top-agent and working
down to the worker agents. Activating one agent may resul t in the creation of subagents and
their subsequent activation.

When an agent is activated, i t fi rst performs several checks. Fi rst, i f the agent has al ready
completed, nothing is done. This does not necessari ly mean that each agent can run only once,
since the completion state of an agent can be reset (see below). If the agent is not complete, i t
checks whether i t may already be satisfied (i f i t is a goal) and whether or not i ts precondition is
met (i f i t has one). After passing these checks, an agent has determined both that i t needs to run
and that it can.

At this point i f i t is a primitive agent i t runs i ts action. Otherwise i t expands i tself and marks
its subordinate agents for later activation. Expansion is the process of creating subagents for an
agent. This involves di fferent processes for di fferent types of agents. For agents w i th domain-
speci fi c tasks, expansion involves finding templates that match the task and using them to
create subagents. For special tasks, the process varies but most typical ly involves making one
subagent per clause of the task. For the god task, expansion involves collecting al l the top-level
tasks and making a subagent for each. Each agent is expanded at most one time.

5.2.3.2 Cycles

The process of agent interpretation is essential ly i terative. The system activates some set of
agents, they perform thei r tasks, and the process i s repeated. In the earl i er systems thi s
process w as rel at i vel y si mpl e, w i th an an i ma-based dr i ver that c l ocked each agent
i ndependentl y, w i th a gl obal confl i ct resol ut i on phase. The dynami c agents system i s

148 Agents

significantly more complex and requires a more complex driver. I have found i t useful to think
of three different levels of cycle for the different levels of agent activity:

• A microcycle is the smal lest-scale cycle, and a single microcycle consists of activating a
single agent.

• A major cycle o r millicycle i s a round of microcycles that starts from the top agent and
proceeds downwards unti l the leaves of the agent tree are reached, which w i l l be worker
agents executing primi tive tasks. This is fol lowed by a confl ict resolution phase and the
actual state change. A major cycle is like a single unit of real-time, in which all the agents can
act i f they need to.

• A macrocycle consists of ini tial izing the agent tree and performing mil l icycles unti l the top
agent successfully completes. Note that a complete macrocycle is possible only if all the top-
level tasks are able to be completed.

M icrocycles are useful mostl y for the purpose of user stepping, and macrocycles only
make sense for constraint-l ike problems where al l the top-level tasks are goals. The mil l icycle is
real ly the fundamental uni t of dynamic agent activi ty, and when the system is being driven by
an anima (see 4.6.1) it is essentially performing a millicycle per anima clock.

5.2.3.3 Success and Failure

An agent can succeed or fai l at various points in i ts activi ty. Success or fai lure hal ts the
agent activity and signals the agent’s boss agent, which wil l take action dependent upon its task.

Agents succeed when:

• a worker agent successful ly executes i ts action.

• an agent with a goal-task is activated and finds its goal already satisfied.

• a subordinate agent succeeds and appropriate task-specific conditions are met.

Agents fail when:

• a worker agent gets a Lisp error.

• a worker agent loses a slot confl ict to another agent.

• an agent’s precondition is unsatisfied.

• no templates can be found for a domain-specific task.

• a subordinate agent fai ls and appropriate task-specific conditions are met.

• subordinate agents succeed but the agent’s goal is sti l l not satisfied.

Lisp errors may occur due to bugs in the speci fication of primi tive tasks, of course, but
they may also be generated by general templates being appl ied in si tuations where they don’ t
work. For instance, an agent that attempts to satisfy the task (= a (* b c)) by setting b equal to
(/ a c) wil l get a Lisp error (and thus fail) if c happens to be zero. When this happens, the Lisp
error is caught by the agent interpreter, the agent is marked fai led, and other methods are tried.
This means that the user can be rather free in specifying methods.

Agents 149

The “ task-speci fic condi tions” mentioned above refer to the way in which agents react to
success or fai lure for di fferent special tasks. For instance, the fai lure of an agent whose boss is
an and agent w i l l cause the boss to fai l as wel l . In the case where the boss i s an or agent,
however, the fai lure w i l l cause a di fferent subordinate of the boss to be activated during the
next mil l icycle. What happens next depends on the parent’s action type. For instance, i f a chi ld
of an agent with an and special action (which we will call an and agent for short) fai ls, then the
parent agent wil l fai l as well . If a chi ld of a script agent succeeds, i t makes the next sequential
child the current one so that it wil l be activated on the next agent cycle.

Agent success and fai lure persists across cycles but may be reset in some ci rcumstances,
al low ing the agent to attempt to run again. These ci rcumstances include when a successful
agent’s goal becomes unsatisfied (a goal confl ict, see 5.2.6.2) or when a fai led agent has i ts
determination increased due to sibling failures.

5.2.4 Special Tasks

This section describes the vocabulary of control constructs that are used to create special
and primi tive tasks, and how they are interpreted by the agent system. The interpretations of
other types of tasks (that is, domain tasks) are specified by templates. Special tasks al low tasks
to be combined in di fferent ways, and in some sense represent di fferent “ managerial styles” or
ways of accompl ishing a complex task by parcel ing i t out to subordinate agents. Some tasks
activate al l their subordinates at once, whi le others activate them one at a time. Of the latter,
some speci fy a fixed order of activation whi le others don’t care. Some tasks are goals that can
be satisfied or not, whi le others are just actions. These distinctions are somewhat confusing,
but each task represents a di fferent strategy for accompl ishing a complex task. Examples of
special tasks in use may be seen in section 5.4 and elsewhere.

5.2.4.1 Combining Tasks

These special tasks serve to combine several subordinate tasks in various ways.

(AN D goal*), (O R goal*)

These special task types are duals of each other in many respects. And and or tasks are
goals, and their satisfaction is a function of the satisfaction of their subtasks (which must also
be goals). An and agent activates al l of i ts subagents simultaneously, and expects them al l to be
satisfied eventual ly. If any of them fai l , the and agent fai ls. An or agent activates i ts subagents
one at a time, in an unspeci fied order, choosing another i f one fai l s and only fai l i ng i f al l
subagents fai l .

(ALL <task>*), (ONE <task>*)

All and one are simi lar to and and or , but are acti ons rather than goals, and can have
actions as thei r subtasks. An all agent activates al l of i ts subagents, in paral lel , and completes
successful ly when al l of the subagents complete successful ly. A fai led subagent wi l l cause i t to
fail. one acts like or in activating subtasks one at a time in arbitrary order, but requires only one

150 Agents

successfu l subtask to succeed. In o ther w ords, w hereas a n d an d o r pay attenti on to
satisfaction, all and one only care about success.

(SCRIPT <task>*)

Script tasks are actions. A script causes i ts subordinate tasks to be activated one at a time,
in the order speci fied. Each task must complete successful l y before the next task is begun.
Scripts succeed when the last task is done and fai l i f any subtask fai ls.

(TRY <task>*)

Try is simi lar to script, i n that subtasks are acti vated one at a time and in the speci fied
order. However, only one of the subtasks needs to succeed for the try task to succeed. In
other words, try tries running each subtask unti l one succeeds, at which time i t succeeds i tself.
Roughly, try is to script as or is to and.

(AN D -SCRIPT <goal>*)

This special task combines the semantics of and wi th the sequential properties of script.
Like the former, and-script tasks must be satisfiable goals and thei r subtasks must be as wel l .
But unl ike and, and l i ke script, they acti vate thei r subordinates one at a time, in the order
specified by the task.

The di fference between and-script and script i s that the former requi res that i ts tasks
remain satisfied after they are completed. That is, once a subagent of a script is finished, i t no
longer cares about i ts goal , but al l steps of an and-script up to the current step must remain
satisfied even after they are completed. If they become unsatisfied, the and-script fai ls (there is
no or-script because its behavior would be identical to the more general try construct).

5.2.4.2 Control Tasks

(REPEAT <task>)

REPEAT tasks are actions that never complete, and thus cause thei r inner task to remain
activated indefini tely. General ly, REPEAT tasks are used as the expansion of goals, so that the
inner task wil l be executed only unti l the goal is satisfied. REPEAT is most useful for actions that
achieve a goal only after multiple i terations. For an example, see the template for GET-TO tasks
in section 5.2.5.3.

The REPEAT construct al lows for i teration at the agent level . Iteration in primi tive actions
(that is, at the Lisp level) is discouraged, because i t blocks other agents from running. Using
REPEAT allows the iteration to be interleaved with other agent actions.

5.2.4.3 Primitive Tasks

(D O <lisp>*)

Agents 151

Primitive tasks are specified using the do task type. Primi tive tasks are handled by worker
agents that have no subordinates and always complete immediately. They can fai l due to Lisp
errors or by coming into confl i ct w i th a more determined agent. W hi le primi ti ve tasks can
speci fy the execution of arbi trary Lisp programs, they are expected to be simple and fast, and
wil l typical ly involve nothing more complicated than sending an object a message, or changing
the value of a slot or two.

5.2.4.4 Internal Special Tasks

Some special tasks are for the internal use of the system, and are not meant to be used in
user-specified tasks and templates.

(O N EO F task*)

oneof tasks are used onl y i nternal l y: they cannot appear i n user-speci f i ed tasks or
templates. They act essential ly l ike one tasks, but are generated by the system when mul tiple
subagents are required for a single domain task. So for instance, a goal of (= @/ a @/ b) would
generate two subtasks corresponding to the two obvious ways to make an equal i ty constraint
be true:

(do (setf @/a @/b))

(do (setf @/b @/a))

Because domain tasks can have only one subagent, a oneof task and subagent is created to
intervene between the equal i ty constraint and the two methods. Here an outl ine notation is
used to show the relationship between an = constraint, i ts subordinate oneof task, and tw o
further subordinates:

a1: (= @/a @/b)

 a2: (oneof <a3> <a4>)

 a3: (do (setf @/a @/b))

 a4: (do (setf @/b @/a))

Note that since oneof tasks are used only internal ly, they are able to refer di rectly to their
subagents. In actual i ty the treatment of equal i ty is somewhat more compl icated; see section
5.2.5.1 for more detai ls.

(GO D)

The GOD special task is used internal ly by the system for the top agent. It gathers together
all the top-level tasks, makes them into subagents, and otherwise acts essentially l ike an all task.

5.2.5 Domain Tasks and Templates: Examples

D omai n tasks are i nterpreted accordi ng to templ ates; that i s, the user speci f i es an
interpretation for them. This section presents some detai led examples of domain tasks and the
templates that interpret them.

152 Agents

5.2.5.1 Numerical Constraints; Equality

N umeri cal constraints are expressed as algebrai c relati ons. For example, one w ay to
express a task to maintain the relationship between Fahrenhei t and centigrade temperature
representations looks l ike this:

T1: (= @^/Fahrenheit

 (+ 32.0 (* 1.8 @^/centigrade)))

Equal i ty constraints are usual ly handled by templates that propose two subagents: one that
proposes to make the equal i ty constraint hold by making the expression on the left-hand side
be equal to the one on the right, and the inverse. These tasks are expressed by means of the
<== operator, known as one-way equali ty. This operator has the same declarative meaning as
=, that is, i t is satisfied if i ts two arguments are numerically equal. Its procedural meaning is that
equal i ty can only be achieved by altering left hand side to match the right. A similar construct,
<=equal , i s avai l able for non-numeri c values. The basic defini ti on of one-w ay equal i ty i s
provided by the fol lowing set of templates:

(deftemplate (<== ?a ?b)

 :satisfied (= ?a ?b)

 :precondition `(settable? '?a)

 :action ‘(do (setf ?a ?b)))

(deftemplate (= ?a ?b)

 :name =left

 :action '(<== ?a ?b))

(deftemplate (= ?a ?b)

 :name =right

 :action '(<== ?b ?a))

The temperature conversion task would result in the two subtasks:

T3: (<== @^/Fahrenheit

 (+ 32.0 (* 1.8 @^/centigrade)))

T4: (<== (+ 32.0 (* 1.8 @^/centigrade))

 @^/Fahrenheit)

If the left-hand side of a one-way equal i ty constraint is settable, i t can be expanded into a
w orker agent by the fi rst template show n above. Settable-ness i s defined by the settable?

function, and is true of anything that can be a legitimate first argument to the Common Lisp setf

macro. @^/Fahrenheit is settable, so T3 can be expanded into:

T5: (do (setf @^/Fahrenheit

 (+ 32.0 (* 1.8 @^/centigrade)))

T4, how ever, has a l eft-hand side that i s not settable. Thi s does not mean the task i s
hopeless, how ever! O ther templates can match i t and transform i t i nto subtasks that w i l l
eventually allow action to be taken:

(deftemplate (<== (+ ?b ?c) ?a)

 :name +right

Agents 153

 :action `(<== ?c (- ?a ?b)))

This template says that a one-way equal i ty task that is trying to change the value of a sum
((+ ?b ?c)) can be transformed into a new task that sets one of the i tems being summed (in
this case, ?c). The template wil l match T4 and generate a new subtask:

T6: (<== (* 1.88 @^/centigrade)

 (- @^/Fahrenheit 32.0))

In effect, the template has performed an algebraic transformation on T4. This process of
transformation continues, control led by other templates which have forms similar to the +right

template, unti l i t results in a runnable worker agent. In this case, the penultimate task, which wil l
expand directly into a worker agent, is:

T11: (<== @^/centigrade

 (/ (- @^/Fahrenheit 32.0) 1.8))

A rew ri ti ng system l i ke thi s poses a danger of generati ng a non-terminati ng chain of
transformed tasks, ei ther through looping or through infini te expansion. The bui l t-in set of
templates for handl ing numerical constraints avoids this problem by ensuring that templates
always generate new tasks whose left side is a sub-part of the left side of the original task. Since
each transformation must produce a new task whose left side is strictly smaller than the starting
task, the process of transformation must eventual ly terminate.

5.2.5.2 Geometry

Geometrical constraints ultimately turn into numerical constraints of the type shown above.
The combination of the template pattern language and LiveWorld’s object facil ities allow them to
be expressed as higher-level relationships.

For example, the (rectangle <actor>) form of goal i s heavi l y used in graphic constraint
probl ems such as the graphi c versi on of the temperature converter. The di mensi ons of
Li veW orld actors are di rectl y control l ed by the four sl ots xpos, ypos, xsiz a n d ysiz. The
rectangle constraint defines two addi tional slots, bottom an d right, and enforces geometric
consistency among the resulting set of six slots. Rectangle does not by i tsel f put any constraint
on the appearance of an actor, instead i t al lows other constraints to be placed on any one of a
rectangle’s sides or dimensions. It should also be noted that rectangle constrai nts can be
applied to any actor, or indeed anything with the appropriate slots. For instance, i t makes sense
to give ovals a rectangle constraint. The constraint actual ly means “ enforce consistency on an
object’s rectangular bounding box.”

The rectangle constraint is defined by the following template:

(deftemplate (rectangle ?r)

 :satisfied

 (and (= (ask ?r :right) (+ (ask ?r :xpos) (ask ?r :xsiz)))

 (= (ask ?r :bottom) (+ (ask ?r :ypos) (ask ?r :ysiz)))))

154 Agents

This means that an unsatisfied rectangle task wil l expand into an and task which wi l l in turn
expand into two equali ty tasks.

Geometric constraints can also express inter-object relationships. The within constraint
specifies that one object should l ie entirely within another:

(deftemplate (within ?a ?b)

 :satisfied (and (>= (ask ?a :xpos) (ask ?b :xpos))

 (<= (ask ?a :right) (ask ?b :right))

 (>= (ask ?a :ypos) (ask ?b :ypos))

 (<= (ask ?a :bottom) (ask ?b :bottom))))

A within task expands to an and subtask w i th four subtasks of i ts ow n. Each of these
enforces a numeric relationship. When >= and <= tasks are unsatisfied, they are expanded into
equality tasks. That is, i f the task (>= a b) is encountered and unsatisfied, the system wi l l
attempt to enforce it by trying to equate a and b. This technique obviously is incomplete, in that
i t only tries a very smal l subset of the possible ways to make the constraint true. However, i t
produces reasonable interactive behavior in the case of the within constraint. If the user drags
an object constrained to be within another, the agents wi l l do nothing as long as the constraint
i s sat i sf i ed. I f the ob j ect goes outsi de the boundar i es o f the surroundi ng ob j ect , the
surrounding object wil l be moved as if bumped and dragged.

N ote that the tw o ob j ec ts const rai ned by a within t ask m u st al so h av e rectangle

constraints defined so that their bottom and right slots are defined and maintained properly.

Figure 5.10: A world combining numerical and geometrical tasks. The conversion task (T1 in the
text) appears in the task object within temperature. Within the centigrade bar, task-1 asserts that

the bar is a rectangle while task constrains its vertical size to be equal to the computed centigrade
temperature.

Agents 155

5.2.5.3 Behavior

Tasks and templ ates from behavi oral domai ns tend to make more use of the repeat

construct, reflecting the fact that the actions that satisfy goals in this domain general ly do not
satisfy immediately, as they do in the more abstract domains above. Instead, they achieve their
goal only by repeated application. A simple example:

(deftemplate (get-to ?creature ?place)

 :satisfied (eq (ask (ask ?creature :overlap-sensor) :other)

?place)

 :action '(repeat

 (script

 (head-towards ?creature ?place)

 (do (ask ?creature :forward 10)))))

This template defines a goal cal led get-to, that expects to have actors match i ts pattern
variables. The goal is satisfied when i ts two actor arguments are in contact, as defined by the
creature actor’s overlap-sensor. This template generates a subagent w i th a repeat task. Thi s
means that the innermost task (the script) wi l l be repeated unti l the get-to task is satisfied. The
script fi rst attempts to satisfy the head-towards goal , and when i t is satisfied w i l l proceed to
activate the do agent, w hich w i l l move the creature forw ard. The script task ensures that
forward motion only happens i f the head-towards goal is satisfied, that is, only i f the creature is
facing the target. The fact that the repeti tion i s outside of the script ensures that the head-

towards goal wil l remain monitored and if the target object moves, the creature wil l realign itself
before moving forward. By contrast, a goal of the form:

(script

 (head-towards ?creature ?place)

 (repeat (do (ask ?creature :forward 10))))

w ould adjust the heading once, and then go forw ard i ndefi ni tel y w i th no further course
corrections.

5.2.6 Conflict

There are two types of confl ict that can occur during the execution of a DA system. The
first, slot conflict , occurs when two or more agents attempt to set a slot to di fferent values. The
second, goal conflict, occurs when a successful action results in another agent’s goal becoming
unsatisfied. These two types of confl ict represent di fferent constraints on agent activi ty. Slot
confl ict models the physical impossibi l i ty of an object being in two states at once or taking
simul taneous actions that are physical ly incompatible (for instance, an actor cannot move in
two di fferent directions at once). Goal confl ict, on the other hand, reflects the fact that agents
w i l l often interfere w i th each other’s goals, and that ei ther compromises must be reached or
some agents will remain unsatisfied.

5.2.6.1 Slot Conflict

Each major cycle might result in many worker agents attempting to take action. This raises
the possibi l i ty that they might come into confl ict. As in Simple Agents, al l the actions of worker

156 Agents

agents are ul timately expressed as changes to the values of slots, and so slot confl ict is defined
as more than one agent tryi ng to set a sl ot to i ncompati bl e val ues. The D A system uses
techniques simi lar to the two-phase clock technique used in the simpler agent systems. Under
this technique, the actions of worker agents are not actual l y performed when the agent i s
activated but instead get deferred and turned into proposals for each slot.

At the end of each major cycle, therefore, a confl ict resolution procedure is requi red to
determine which slots have confl icting proposals and which agents shal l prevai l . This involves
col lecting al l the slots that have proposals, al l the worker agents that have made proposals,
computing sets of agents that are in confl ict, and for each set, picking an agent to prevail. This is
done by comparing the determination of the agents i n the confl i cti ng set. The agent thus
selected gets to make i ts proposals take effect, and is marked as successful , whi le the losing
agents fail.

In some cases, i t is important to detect confl icts between agents that do not necessari ly get
activated during the same major cycle. This is the case for agents that are jointly underneath an
and agent, for instance.

W hen an agent’ s proposal i s real i zed, the slots that are changed record w hich agent
provided the value, and the current clock tick. When the persistent-slot-values sw i tch i s on,
this data is used in future cycles. In this case, in addition to any proposals suggested by agents
running in the current cycle, the prevai l ing value and the agent that set i t are also compared in
the confl ict resolution stage. This essential ly means that in order to change a slot value, an
agent must have a higher determination than the last agent to successful ly set that slot’s value.

5.2.6.2 Goal Conflict

Goal confl ict occurs when the action of one agent causes another agent, previously marked
as satisfied, to become unsatisfied. When this happens, the newly-unsatisfied agent is reset,
that is, i ts completion state is revoked so that i t can run again. In addi tion, i t is marked as the
v i c t i m o f a conf l i c t , w h i ch causes no add i t i onal p rocessi ng bu t causes the graph i c
representati on of the agent state to be an “ angry” i con rather than the l ess descri pt i ve
“ unsatisfied” icon.

The intent of the goal-confl ict handl ing mechanism is to al low these “ angry” goals to have
another chance to satisfy themselves. In the most usual case, the goal was original ly satisfied
w i thout taking any acti on, so i t had not asserted i ts control over any slots. N ow that the
confl i cting agent has run, when the original agent runs again i t i s l i kely to encounter slot-
confl i cts w i th the agent that caused the goal -confl i ct. The slot-confl i ct mechanism is more
speci fic, and gives the confl icting agents a chance to search for non-confl icting methods of
attaining their goals.

5.2.7 Determination

Each agent has a determination value between 0 and 1 that is used to resolve confl icts. The
metaphorical interpretation of determination is a measure of how much the agent wants to be

Agents 157

successful , and how strongly i t w i l l “ press i ts case” when coming into confl i ct w i th other
agents. An agent’s determination value can depend on a number of factors:

• the determination and type of i ts superior agent;

• how many sibl ings exist, and how many of them have fai led;

• the determination scaling factor of the creating template.

The default determination value is 1. Agents that have subordinates pass the determination
down to them according to their type. and-type agents, that require al l of their subordinates to
be successful, wil l give each subordinate the same determination as itself. or-type agents (which
include or and oneof agents) wil l split their determination among their subordinates.

More precisely, an OR-type agent’s determination is spl i t up among those subordinates that
have not fai led. When a subordinate does fai l , the determinations of i ts remaining sibl ings are
recalculated.

The effect of thi s determinati on cal culati on i n constraint-type domains i s roughl y to
implement local propagation of known states. A ful ly known state, in this interpretation, is a slot
that i s being held to a value by an agent w i th a determination of 1. A constraint agent that
supervises several different methods wil l ini tial ly give each method a determination less than 1.
If a method tries to set a slot that has been locked (that is, set by a highly-determined agent) i t
wi l l fai l . If al l methods fai l , the system tries to determine which agents have fai led permanently
(for reasons other than confl ict) and which sti l l have a chance for succeeding i f their activation
is increased. Then each of the latter class is given a chance to run with the ful l determination of
i ts parent.

Figure 5.11 i l lustrates a typical sequence of events that make up a propagation. When slot1

slot1

1) slot-1 value
set by agent
with high
determination

ONEOF

DO... DO...

3) fails due
to conflict
with slot-1

4) runs with
increased
determination

slot-2

5) changes the
value of another
slot

(= ...2) goal
becomes
unsatisfied

DO...

Figure 5.11: How agents implement local propagation of constraints.

158 Agents

i s set by an agent w i th a high determinati on (step 1), i t causes the goal agent to become
unsatisfied (step 2). The goal agent activates i ts subordinates, and whi le the fi rst one now fai ls
where previously i t might have succeeded (step 3), the second one succeeds (step 4) because
it alters a different slot, which might result in further propagation. For a detailed example of how
this method of propagation works in practice, see section 5.3.5.

5.3 Interface

We have described how agents work but have not yet described how the user speci fies
and controls them. The most important need for the interface is to al low the user to create and
remove top-level tasks. In addi tion the user needs to be able to exert some control over the
agent interpreter, such as cycl ing manually for debugging or control l ing certain parameters that
affect the operation of the interpreter.

5.3.1 Top-Level Tasks

Top-level tasks are those speci fied di rectly by the user. They are used to create the ini tial
population of agents directly subordinate to the top agent. Top-level tasks can be created in a
couple of di fferent ways: they can be expl ici tly speci fied by the user by using task objects, or
they can be automatical ly generated as a result of user actions such as dragging, which al lows
the user’s intentions to be represented to the agent system as tasks.

Expl ici t top-level tasks are speci fied by means of task objects (see Figure 5.10 for some
examples). Like other LiveWorld objects, these are created by cloning a prototype. The task is
entered as the value of the object. Task objects also incorporate a toggle button, which al lows
them to be turned on or off, and icons that indicate the task’s status. Relative box paths (see
4.5.4.2) may be used in the speci fication of tasks, which makes i t possible to incorporate task
objects into other objects which can then be used as prototypes for further objects (that is, the
task objects wi l l be cloned along with their container objects, and the new tasks wi l l properly
refer to the new object).

5.3.2 Auto-tasks and Locks

In order for DA to be used as an interacti ve constraint system, the user’s actions must
somehow be represented w i thin the system. This is done by translating user actions such as
dragging, size changing, or setting the value of a slot into goal tasks.

Auto-tasks general ly have the form:

(<== (v <slot>) <value>)

That i s, they use one-way equal i ty to speci fy that the slot i s to hold a certain value. In
general auto-tasks persist only briefl y, and are removed as soon as the user takes another
action. For example, during a drag, each time the user moves the mouse, two tasks are created,

Agents 159

one to hold the x posi tion at a constant value and simi larly for the y posi tion. During the next
move, these tasks are removed and new ones wil l take their place.

Lock tasks are similar in form to auto-tasks, in that they specify that a slot or slots are to be
held to constant value. Lock tasks, however, are created expl ici tly by sending a slot a :lock

command. This command simply creates the appropriate task and marks the slot with an icon.

5.3.3 The Agent Display

Agent activi ty may be moni tored through an agent display that shows the status of every
active agent in the system. The graph uses LiveWorld’s hierarchical box display to convey the
hierarchical structure of the agent tree. This also al lows the user to control the level of detai l by
closing uninteresting boxes. Each agent shows i ts state by means of anthropomorphic icons
(see 5.2.2.2). When active, the agent display is dynamically updated as agents change state.

Figure 5.12: The agent display.

5.3.4 Controlling When and How Agents Run

The agent system is designed to run concurrently w i th user interaction. There are several
ways to do this, the best method being dependent upon on the type of problem being modeled.
One technique is to have the agent system driven by an anima. This is best for domains in
which the modeled system is basical ly independent of the user, such as an animal behavior
simulation. For constraint domains, where objects do not move except in response to the user,
a smoother interface is obtained by triggering the agent interpreter expl ici tly after each user
action.

160 Agents

A number of user-settable switches are avai lable to control the detai ls of agent activation.
These switches appear in the agent control panel (see Figure 5.13).

• agents-on?
When this switch is on, agents wi l l be activated automatical ly after every user action. That
i s, after every user operat i on (such as draggi ng an obj ect—each i ndi v i dual mouse
movement counts as an operation) the system wil l execute a macrocycle.

• auto-tasks?
This switch controls whether or not user actions get translated into auto-tasks.

• eager-locks?
This switch, when on, causes lock-type tasks (including auto-tasks) to execute early on in
each macrocycle. This makes constraint-solving faster by ensuring that al l locked slots have
thei r val ue asserted earl y on. W hen the sw i tch i s off, l ock agents must f i rst become
unsatisfied before they can run, which leads to extra cycles of activi ty.

• hide-activity?
This switch controls when redisplay happens, but does not affect agent activi ty. When off,
redisplay happens after every mi l l i cycle, that is, after every agent operation. When on,
redisplay only happens after every macrocycle, that i s, i t happens only after the agent
system is quiescent w i th al l satisfiable agents satisfied. Turning this sw i tch on can make
constraint solving seem “ smoother” at the cost of hiding the processing from the user.

The remaining switches in the control panel control how much information is displayed but
do not affect agent operation. show-auto-tasks?, for i nstance, control w hether or not auto-
tasks are turned into visible task objects. These switches exist only for the sake of al lowing the
user to save on both time and the consumption of screen real estate.

Figure 5.13: The agent control panel.

The control panel also contains methods that al low the user to manual ly ini tiate agent
cycles, an anima-based agent driver (run-tasks), the prototype for task objects, and other agent-
related miscellany.

Agents 161

5.3.5 Agent Displays and Storyboards

The operation of a system of agents is a complex affai r, w i th possibly hundreds of agents
acting and interacting. It is a chal lenge to present this activi ty to the user in a comprehensible
manner. Si mi l ar probl ems are present i n any programmi ng system, of course, but the
concurrency and distributed control model of DA makes fol lowing a sequence of action even
more di fficul t than i t might be otherw ise. The anthropomorphic metaphor underlying agents
suggests that narrati ve forms might be useful for the purpose of conveying the underlying
structure of activi ty (see section 3.4.3). Users of Dynamic Agents can generate storyboards, or
comic-strip-l ike graphic representations, as one method of visualizing agent activity.

Storyboards have an advantage over other methods for representing temporal processes
(such as animation) in that a storyboard maps time into space, so that a number of di fferent
moments of time may be seen together and compared visually. The comic-strip form, defined as
“ j uxtaposed images i n del i berate sequence” (M cCloud 1993), has a ri ch vocabulary for
expressing both temporal and spati al rel ati ons, at a vari ety of scales. Comics are al so a
narrative form, meaning that they lend themselves to expressing the “ vicissi tudes of intention”
in Bruner’s phrase. In plainer terms, stories deal w i th characters w i th goals, thei r attempts to
real ize those goals, and their success or fai lure—a format which nicely supports the activi ty of
agent systems.

The sto ryboards au tomat i cal l y generated by D A on l y sc ratch the sur face o f the
representational and narrative language avai lable. A storyboard is composed of a sequence of
panels, each of which represents some segment of time in the evolution of the agent system.
Panels can contain a variety of relevant types of information, such as graphic snapshots of the
changing world that the agents are manipulating, textual description of the action (modeled after
comic-strip captions), or other representations of activi ty.

In general , there is too much going on in an agent system to put every agent and every
action in a storyboard. Thus the problem of storyboard generation requires selectivity in terms
of the information displayed, as wel l as the abi l i ty to translate events into sui table graphic
representations. The system must select which moments to translate into panels, and what
detai ls of those moments are significant enough to take up space in the storyboard.

The strategy used to generate D A storyboards i s to emphasize change and the agents
responsible for i t. Each panel of a storyboard represents a moment in which the world changes,
and the panel includes both the results of that change (in the form of a snapshot of the relevant
parts of the world) and information about the agents responsible for the changes. There are too
many agents involved in a typical step to display them all, so further selectivity is called for. The
generator chooses agents from the top and bottom of the agent hierarchy that reflect the why
and how behind the actions.

This selectivi ty is in contrast w i th the more direct, lower-level representations used in the
ful l agent display (see 5.3.3). These take di fferent approaches to i l lustrating the same thing,
namely agent activity. The agent graph display is intended to be a direct, transparent, and l i teral
picture of the agents, whi le the storyboard is intended to tel l a story about agent activi ty. Thus
the displays are quite different, albeit with certain common features.

162 Agents

Figure 5.14: A storyboard.

Fi gure 5 .14 i s an examp l e o f a fai r l y si mp l e sto ryboard ,
i l l ustrat i ng a sequence of acti on from the graphi c temperature
conversi on p rob l em (see sec t i on 5 .2 .5 .1). Each panel o f a
storyboard represents a major cycle, a reasonable choice given that
a maj or cyc l e corresponds to a un i t o f w or l d t i me. H ow ever,
storyboard panel time does not include a panel for every major cycle
of the agent interpreter. O nly major cycles that actual l y resul t i n
change to the world are included, or in other words, major cycles
that include no successful executions of worker agents are excluded.
Thi s i s to conserve space, to keep the narrati ve i nteresti ng (by
omi tti ng panel s w here nothing vi si bl e happens) and to l imi t the
display to the most sal ient i nformation. For example, the sample
storyboard show n has 6 panel s, but w oul d have 14 i f al l maj or
cycles were included. The omitted major cycles include agent activity,
but in these cycles all agents fail and so take no action in the world.

This pol icy has interesting narrative consequences. As i t stands,
each panel of the storyboard represents a moment of change in the
w orld. If the excluded steps w ere i ncluded, the story being told
would be more “ internal” , reflecting not just the actions of the agents,
but their internal starts, pauses, proposals, and fai lures. This level of
detai l might be of value under certain ci rcumstances, but for the
present purposes, the presentations of such internal detai l w i l l be
minimized (as implemented, the storyboard generator has user-
settable switches that control the level of detail presented).

Each panel i ncludes a snapshot o f the changed par ts o f the
world, which may include both changes to graphic actors or changes
to the values of other boxes. Since the pi cture i s not enough to
convey the reasons and sources of change, panels must also include
some information about the agents responsible for the action in the
panel. Listing all agents involved in a single cycle would be too much
detai l . The system selects the agents that best convey the how and
the w hy behind the acti on of the panel . In practi ce, thi s means
including the worker agents that actual ly performed the action (the
how) and the top-l evel agents that the w orkers are w orki ng for,
which convey the purpose (the why) of the action. The effect is to
i ncl ude both the ul timate goal or purpose of the acti on and the
concrete physical events that were taken to real ize i t, whi le omitting
the intermediate stages of computation.

Also included are any top-level agents that have experienced a
change in their state as a result of the action of the major cycle, even
i f they themselves have not taken acti on. In practi ce thi s means
agents that were satisfied but have become unsatisfied due to the

Agents 163

acti on of another agent (that i s, there has been a goal confl i ct; see secti on 5.2.6.2). The
narrative rationale for including these is to i l lustrate the further effects of the panel ’s action,
beyond the immediate physical effects. General ly such agents wi l l become the active agents of
the next panel, so this is also a device for l inking the panels of the storyboard together.

Panels i l lustrate changes in agent state by using a variant of the usual agent icon notation.
Each agent that is shown in a panel is shown with a pair of icon sets, separated w i th an arrow,
i l l ustrati ng the state of the agent before and after the acti on of the panel . Typi cal l y thi s
information shows that some agents went from being satisfied to unsatisfied, or the reverse.

Figure 5.15: The first panel of the storyboard.

There are six panels in this example storyboard, which is a recording of activi ty in the
constraint system show n in Figure 5.10. The acti on begins j ust after the user has made a
change (by moving the posi tion of the fi rst bar) but before the agents have had a chance to
respond to the change. This state is shown in panel-1. The “ changes” shown reflect the fi rst
activation of the various top-level task agents involved in this system. Al l the agents except a7

have managed to satisfy themselves. a7 ’ s task is to keep the rectangle slots of bar consistent.
Since bar/ xpos has changed, a7 is no longer consistent.

Note that a4 is satisfied and has succeeded in panel 1, indicating not only that the value of
bar/ bottom is set at 200 (at the level of the basel ine) but also that, since a4 has run, i t w i l l be

164 Agents

attempting to hold
t h e sl o t a t t h a t
val ue th roughout
the computat i on .
Th i s h as c o n se-
q u en c es f o r t h e
next panel.

Figure 5.16: Panel 2.

I n t h e n e x t
p a n e l , a7 i s
acti vated and suc-
ceeds in becoming
satisfied. By open-
ing up the box rep-
resen t i ng a7 , w e
can see that i t was
the w orker agen t
a29 t h at b r o u gh t
this about by al ter-
ing the ysiz sl o t of
bar . This omits much of the internal agent activity involved in accomplishing the end state, such
as an attempt to sati sfy a7 by set t i ng bar/ bottom i nstead o f bar/ ysiz . This attempt fai led
because it came into confl ict with the previously successful (and more determined) agent a4 .

a29 ’ s acti on has
satisfied a7 b u t h as
also caused a6, w ho
rel ates the ver t i cal
si z e o f bar t o t h e
v a l u e o f t h e
Fahrenheit s l o t , t o
become unsatisfied.

Figure 5.17: Panel 3.

In panel-3 a simi-
l a r p a t t e r n i s r e -
peated. a6 sat i sf i ed
itself by changing the
val ue o f Fahrenheit,
causi ng a11 , w h i ch
relates the values of
Fahrenheit a n d
centigrade, t o b e -
come unsatisfied.

Since Fahrenheit is not a graphic slot, the system cannot i l lustrate the action of this panel
w i th a snapshot of the actors involved. Instead, i t selects the appropriate boxes and thei r
surrounding context.

Agents 165

Figure 5.18: The final panel of the storyboard.

This pattern of propagating goal confl icts and resolutions continues in successive panels. In
panel-4, a11 sets centigrade to i ts correct value. In panel-5, the wave of change propagates
back into the graphic part of the world, causing a change in bar-1’s vertical size. Final ly, in
panel-6, bar-1’s vertical posi tion is adjusted w i thout violating any further constraints, so the
agents finally become quiescent, and the story is complete.

5.4 Additional Examples of Agent Systems

Some addi tional examples of agent based systems are presented here. The fi rst two are a
game and a simulation that use the simpler forms of agents, w hi le the rest are bui l t using
Dynamic Agents.

166 Agents

5.4.1 A Video Game

Figure 5.19: A video game.

This simple video game was constructed by a novice user (w i th assistance) from sets of
pre-bui l t components. The components i n th i s case come from a l i brary desi gned for
videogames which includes behaviors such as motion, shooting and col l ision detection, agents
that implement keyboard commands, and the score actors. In this game, two players attempt to
drive each other backwards by shooting frui t at each other. Each player controls a turtle from
the keyboard. Here one turtle is open to reveal i ts agents, which are mostly i f-then agents, a
variant of goal agents (see section 5.1.2).

The left-key-agent is bui l t out of a general purpose key agent, so the constructor needs to
fi l l in only the key and the action, which is performed repeatedly whenever the key is held
down. In this case the left-arrow key resul ts in the turtle moving left. Another agent, if-touch,

detects when a player is hi t by an opponent and moves backwards.

Agents 167

5.4.2 A Physical Simulation

Figure 5.20: An orbital simulator.

Physical forces can be modeled by simple agents. This example shows a simulation of a
spaceship orbi ting a planet. It was assembled from a ki t of parts that provide basic physical
simulation capabi l i ties, such as velocity and acceleration. A simple agent, move, provides the
ship with motion by constantly incrementing i ts posi tion by two veloci ty variables. The planet
exerts i ts force on the ship through another simple agent, gravity. Because the gravi ty agent is
part of the planet, cl oning the planet creates another gravi ty source w hi ch w i l l have an
immediate effect on the ship. The user can control the ship’s bearing and acceleration (w i th
sound effects) from the keyboard, which is moni tored by other agents (i .e. left-key) as in the
video game example.

This example i l lustrates how simple agents can be used to simulate physical systems, while
giving the user di rect tangible access to the variables (slots) and forces (agents) involved.
Simulations l ike this admit to a variety of different modes of use: as a game in which the object is
to put the spaceship in a stable orbit around the planet without col l iding with i t or shooting off
the screen; as a vehicle for experimentation (say, by observing the effects of di fferent masses,
gravi tational constants, or laws of gravi ty); or as both an example and ki t of parts for bui lding
further simulations.

168 Agents

5.4.3 A More Complex Graphic Constraint Problem

Figure 5.21: A complex constraint example.

This example shows a more complex constraint problem, involving the kinds of tasks found
in realistic graphic design problems. The scenario is based on one presented in (MacNeil 1989),
which involves designing a series of labels for a l ine of pesticides. Here we see an example of a
label for repel l i ng penguins. Thi s system invol ves about 22 top-l evel tasks and typi cal l y
generates around 100 agents. The top tasks speci fy relations among the posi tion and size of
the four graphic elements in the design.

For example, these user tasks:

constrain the graphic (pict) to be square, and to have i ts l eft si de abutt i ng the w orl d
“ Penguin” (pestname). O ther tasks include rectangle constraints for al l the objects, and text-

block constraints that ensure that the text actors are exactly large enough to contain their text

Agents 169

(these ensure that i f the user shoul d al ter the text, the obj ects w i l l adj ust themsel ves
accordingly). Sti l l others specify the left and right edge alignments, hold the bar’s vertical height
to be 1/3 the height of the main text, and ensure that the two words maintain the relative scale
of their font size.

This example i l lustrates a wel l -known problem with graphic constraint systems. A typical
constrained diagram involves far more individual constraints than can be easi ly speci fied by
hand. Dynamic Agents amel iorates this problem a bi t by al lowing abstract constraints, such as
within, so that fewer individual constraints have to be specified. Sti l l , the task can be daunting.
One possible solution i s to have agents that can create constraint agents by automatical l y
inferring them from user examples, as in (Kurlander and Feiner 1991).

5.4.4 A Creature in Conflict

This is a fai rly simple behavioral system, which i l lustrates arbi tration between competing
behaviors. Task-1 specifies that the turtle should attempt to get to the goal , whi le task specifies
that the turtle is to avoid overlaps w i th objects. These two goals are contradictory (because
getting to the goal requi res overlapping w i th i t), but of even greater concern i s the barrier
obstacle which lies in between the turtle and its goal.

This example indicates the use of determination in animal behavior worlds. When the two
tasks speci fy confl icting actions, the winner is the agent with the higher determination. In this
case, determination can be control led by the user through annotations to the user task objects.
I f the get-to task has higher determination, the turtle w i l l bravely penetrate the unpleasant
obstacle on i ts way to the goal, whi le i f the avoid-overlaps task is stronger, as in the figure, i t
w i l l end up going around i t. This i l l ustrates how determination may be set by the user as
annotations to tasks.

Figure 5.22: A conflicted creature.

The get-to task and template are described i n secti on 5.2.5.3. Avoid-overlaps i s onl y
satisfied when there is no overlap between i ts ?creature argument and any other actor. Its

170 Agents

action is a script that backs off from the overlap, then turns randomly and moves forward. The
effect of this is to move in a rather groping fashion around the edge of the obstacle.

(deftemplate (avoid-overlaps ?creature)

 :satisfied (no? (ask ?creature :overlap-sensor))

 :action `(repeat

 (script

 (do (ask ?creature :forward -15))

 (do (ask ?creature :turn-right (arand 0 180)))

 (do (ask ?creature :forward 15)))))

5.4.5 An Ant

This i s a sl i ghtl y more compl i cated behavioral simulati on, based on the real i sti c ant
simulation of Agar (Travers 1988). It i l lustrates some other methods for organizing mul tiple
goals. In this case, the goals are control led by special tasks that sequence them. script and try

tasks speci fy a series of subtasks to be performed in order. This is a di fferent style than in the
previous example, where both agents were active concurrently and confl ict was resolved at the
slot level using determination.

Figure 5.23: An ant..

The top-level be-an-ant task arranges three subgoals in a strict priori ty. The latter ones wi l l
not be processed unti l the earl ier ones are satisfied. The use of and-script rather than script

means that i f the early tasks in the sequence become unsatisfied (for instance, i f find-food

moves and thereby makes avoid-walls become unsatisfied) then control wil l revert to the earl ier
goal (see section 5.2.4.1). A plain script goal could cause the ant to get stuck in i ts find-food

subtask and wander off the screen.

(deftemplate (be-an-ant ?a)

 :action '(repeat

 (and-script

Agents 171

 (eat ?a)

 (avoid-walls ?a)

 (find-food ?a))))

This somewhat oddly-structured eat agent i s sati sfied when the ant i s not on top of any
food, and wil l eat any such food unti l i t is gone. The actual eating is accomplished by a method
named eat.

(deftemplate (eat ?a)

 :satisfied (no? (ask ?a :on-food))

 :action '(do (ask ?a :eat)))

An avoid-walls agent w i l l be satisfied when the ant is not touching any wal ls, and backs
away from wal ls when necessary.

(deftemplate (avoid-walls ?a)

 :satisfied (no? (ask ?a :wall-sensor))

 :action '(do (ask ?a :forward -10)

 (ask ?a :turn-right (arand 180 30))))

The following find-food agent is satisfied when the ant i s touching food19. Note the dual i ty

between script and try. Try i s useful for precondi tion-based subtasks that are l i kely to fai l ,
script (and and-script) works wel l w i th goal -based tasks. Note that the goal -tasks l ike avoid-

walls could easily be expressed in precondition/action form rather than as a goal. Unfortunately
i t is hard to mix these two types of task underneath one manager.

(deftemplate (find-food ?a)

 :satisfied (yes? (ask ?a :on-food))

 :action '(repeat

 (try

 (find-food-forward ?a)

 (find-food-left ?a)

 (find-food-right ?a)

 (find-food-random ?a))))

(deftemplate (find-food-forward ?a)

 :precondition '(and (yes? (ask ?a :right-eye))

 (yes? (ask ?a :left-eye)))

 :action '(do (ask ?a :forward 10)))

(deftemplate (find-food-left ?a)

 :precondition '(yes? (ask ?a :left-eye))

 :action '(do (ask ?a :turn-left 10)))

(deftemplate (find-food-right ?a)

 :precondition '(yes? (ask ?a :right-eye))

 :action '(do (ask ?a :turn-right 10)))

(deftemplate (find-food-random ?a)

19Note that this means that the and-script agent that manages the be-an-ant goal can never i tsel f be
satisfied, because i t contains two contradictory terms. This is permissible, and i t means that the repeat
around the and-script is not strictly necessary.

172 Agents

 :action '(do

 (ask ?a :turn-left (arand 0 90))

 (ask ?a :forward 20)))

5.4.6 A Recursive Function

While the DA system del iberately de-emphasizes computation in the l i teral sense, i t is sti l l
capable of performing the recursive computations that are the special ty of procedural and
functional languages. Because DA tasks cannot return values, making this work requires a bit of
tri ckery, w hich i s to use LiveW orld’ s hierarchy to store intermediate values in temporary
boxes.

Figure 5.24: Computing factorial with agents.

(deftemplate (factorial ?x ?x-fact)

 :name fact-end-test

 :precondition '(= ?x 1)

 :action '(<== ?x-fact 1))

(deftemplate (factorial ?x ?x-fact)

 :name fact-recurse

 :precondition ‘(> ?x 1)

 :action (let ((temp (getb ?x-fact :iresult)))

 `(all (factorial (- ?x 1) (v ,temp))

 (<== ?x-fact (* ?x (v ,temp))))))

Tw o templates defi ne agents that implement the end-test and recursi on steps of the
standard recursive factorial definition. The recursion step involves creating an intermediate box,
as an annotation of the final result, and posting two subtasks: one to compute the intermediate
resul t that w i l l be stored in the new box; and another to relate this intermediate resul t to the
final result. The user task specifies that anytime the value of n changes, fact-n w i l l be set to the
factorial of the new value, with intermediate result boxes being created as necessary. Note that
the tasks here involve one-way equal i ty (<==) rather than the equal i ty relations found in the
constraint examples. This means that changing fact-n w i l l just result in a fai led and unsatisfied
task, rather than an attempt to compute the (generally undefined) inverse of factorial.

Agents 173

5.4.7 A Scripted Animation

When young users first encounter a system that al lows them to create moving objects, their
first impulse is often to create a story based on simple movements: “ Sam the elephant leaves his
house, goes to the park, then goes to school , then goes back home” . Unfortunately systems
that are purely reactive make this simple task di fficul t. In DA, the script construct al lows this
task to be done natural ly.

Figure 5.25: A scripted journey.

(deftemplate (journey ?creature ?itinerary)

 :action `(script ,@(mapcar #'(lambda (place)

 `(get-to ?creature ,place))

 ?itinerary)))

This template for journey tasks uses a Lisp macro to al low the task to take a variable-length
i tinerary, which is converted into a script task w i th the appropriate number of arguments.
Because i t uses get-to tasks (see above), i t works even when the destinations are in motion—
the train wil l simply re-orient as necessary. The effect is that the train wil l seek its goal, even if i t
is moving, but as soon as i t touches the goal , the train w i l l go on to seek the next goal in i ts
script.

174 Agents

5.4.8 BUILDER in the Blocks World

Figure 5.26: Stacking blocks.

The sole user task in this world is play-with-blocks, w hi ch has tw o subordinates, build

and wreck. The all construct specifies that they should both be activated at once.

(deftemplate (play-with-blocks ?a)

 :action `(all (build ?a) (wreck ?a)))

The add task is the basic block-building script, which serial ly finds a block, gets i t, finds the
top of the tower, and puts the block there. Build simply repeats the add operation unti l a block
intersects the headroom object.

(deftemplate (build ?a)

 :satisfied (yes? (ask #^/cast/headroom :block-sensor))

 :action '(repeat (add ?a)))

(deftemplate (add ?a)

 :action `(script (find-free-block ?a)

 (get-obj ?a)

 (find-tower-top ?a)

 (put-obj ?a)))

The find-free-block and find-tower-top agents cal l up behaviors wri tten in the lower-level
language. These functions use the marker as a kind of sensor, based on the idea of a visual
routine (Ullman 1984). For instance, find-free-block moves the marker to the left hand side of
the world, just above the table, and moves i t to the right unti l i t encounters a block. If so, i t
moves up unti l i t detects ei ther empty space (in which case i t returns the value of the block i t
was just on) or another block (in which case i t continues i ts leftward search). These operations

Agents 175

could have been w ri tten in DA, but have been implemented as methods in the underlying
language for speed.

(deftemplate (find-free-block ?a)

 :action '(do (ask (ask ?a :marker) :findfree)))

(deftemplate (find-tower-top ?a)

 :action '(do (ask (ask ?a :marker) :findtop)))

Get-obj and put-obj make use of the marker object to find their argument (the object to get
or the place to put i t). So get-obj fi rst makes the hand get-to to the marker, then activates a
grasp task, which cal ls an underlying method that effectively grabs an underlying block object
(grabbing is in fact implemented by a separate simple agent, which continual ly moves the
grabbed block to the location of the hand as it moves).

(deftemplate (get-obj ?a)

 :action `(script (get-to ?a (ask ?a :marker))

 (grasp ?a)))

(deftemplate (put-obj ?a)

 :action `(script (get-to ?a (ask ?a :marker))

 (release ?a)))

(deftemplate (grasp ?a)

 :satisfied (ask ?a :grasped-object)

 :action '(do (ask ?a :grasp)))

(deftemplate (release ?a)

 :satisfied (null (ask ?a :grasped-object))

 :action '(do (ask ?a :release)))

W reck works by finding the tower top, moving the hand to i t, and systematical ly scattering
the blocks. Since wreck i s acti vated concurrentl y w i th build, w e need to gi ve i t a l ow er
determination so that build has a chance to work. Once build is satisfied (which happens when
the tower is tal l enough), then it wi l l no longer attempt to run and wreck w i l l have a chance. In
fact, since wreck is only inhibited when there is a slot that both build and wreck are attempting
to change, wreck might occasional ly seize control of the hand while build is not moving i t (for
instance, when i t is moving the marker). This implementation of unconscious destructive urges
is considered a feature. If stricter control is necessary, script can be used in play-with-blocks

to ensure that wreck is dormant unti l build is done.

(deftemplate (wreck ?a)

 :determination .9

 :action ...)

5.5 Discussion

The design of the dynamic agent system and i ts predecessors attempts to weave together a
number of different ideas and influences:

• the del iberate use of anthropomorphic metaphors;

176 Agents

• the power and generality of procedural programming languages;

• the responsiveness of behavioral control networks;

• the declarative power of constraint systems.

The devel opmental h i sto ry o f the agent systems began w i th the i dea o f l oosel y
anthropomorphic agents. I bui l t several behavioral control systems using them, and then
attempted to integrate the agent idea w i th a more general -purpose language. This involved
thinking about agents driven by goals rather than by si tuations, and led to the real ization that
agents could be a good basis for constraint solving systems.

5.5.1 DA as a Procedural Language

DA provides equivalents to most of the basic control and modulari ty constructs found in
procedural languages: sequencing, condi tionals, i teration, abstraction, and recursion. These
appear i n di fferent forms than they do i n procedural l anguages, how ever. Iterati on, for
example, is to some extent impl ici t in the concept of an agent. Therefore rather than having an
explici t i teration construct, DA provides a construct, repeat, which does not generate a loop in
the way imperative loop constructs do but instead influences the behavior of the i terative agent
interpreter.

It i s w orth clari fying the conceptual relationship betw een D A agents and procedures.
Agents are clearl y simi lar to procedures (or more precisely, procedure invocations): both
perform tasks, both are capable of being anthropomorphized; agents can invoke other agents
and thus create a hierarchy simi lar to a tree of procedure invocations. However, there are
important di fferences. Agents can be running concurrentl y, w hereas only one thread of a
procedure tree can be active at any one time. Agents are persistent, and are driven i teratively
and thus capable of autonomous activi ty. An agent’s supervisor can activate or deactivate i t,
but while active it is in charge of i ts own operation. When an agent has a goal, this means that it
is in effect constantly monitoring the goal and taking action to achieve it when necessary.

One notable feature of procedural languages that is missing from DA is the notion of the
value of an expression. In DA, tasks do not have values, and al l computation is stri ctl y by
means of side-effects. The choice to omit values was made to emphasize the notion of an agent
as something that performs an action, rather than as something that computes a value. In part
this was a reaction (perhaps an over-reaction) to the emphasis on value computation found in
functional or mostl y-functional l anguages, as w el l as some attempts to model agents in a
functional style (see section 3.4.2.4) which did not, to my mind, capture agency adequately.
Another reason for de-emphasizing the return of values was the accessibi l i ty of Lisp substrate
for doing actual computation when necessary.

Programs that normal l y w ork by returning values can be transformed into equivalent
programs that work via side-effects, by creating temporary boxes to hold the intermediate
values (see the factorial example above). It might be possible to integrate value-returning back
i nto the l anguage. It di d not f i t i nto earl i er agent systems, i n w hi ch agents w ere total l y

Agents 177

independent, but since DA preserves a cal l ing hierarchy the idea that a cal led agent could
return a value would be more natural.

5.5.2 DA as a Behavioral Control System

As a behavioral control system, DA offers capabi l i ties roughly equivalent to those of i ts
predecessor Agar, Brook’s subsumption archi tecture (Brooks 1986), Pengi (Agre and Chapman
1987) or teleo-reactive systems (N i lsson 1994). Agents can implement a set of responses to
condi tions in the world that implement adaptive behavior. Unl ike these systems (except for
Agar), DA uses a hierarchy of agents for control . This makes wri ting agents simpler since sets
o f behav i o rs can be t reated as a group (fo r i nstance, see how get-to i s u sed as a
“ prepackaged” behavior in several of the examples above), and i t increases the salabi l i ty of the
system. Another advantage of DA in comparison to other behavioral control systems is bui l t in
structures for implementing sequences.

D A’s method of handl i ng i nter-agent confl i ct i s somew hat di fferent than these other
systems, most of which require hardwired confl ict l inks or other methods of arbi tration, i f they
treat confl i ct at al l . DA detects confl i cts at the last possible moment, that i s, only i f agents
actually attempt to simultaneously take incompatible actions (see section 5.2.6). When a confl ict
i s detec ted, arb i t rat i on i s per formed based on the determi nat i on o f the agents. The
determination of agents is usual ly fi xed, al though since i t i s speci fied by a regular slot i t i s
possible to al ter i ts value by other agents (say, a hunger-simulating agent that would slow ly
increase the determination of a food-finding agent).

M ore sophi st i cated methods of handl i ng determi nati on are possi bl e w i thi n the D A
framework. One possibil i ty would be to use a system similar to Maes’ Action Selection algorithm
(AS), which spreads acti vation energy (more or less equivalent to determination) between
behavior modules based both on current goals and the state of the world (Maes 1990). This
algori thm provides a flexible way for modules to string themselves into sequences of action in
an emergent fashion. There are some di fferences in style and goals between this work and DA
that make this complicated.

Fi rst of al l , AS i s expl i ci tl y non-hierarchical . There are no managers or “ bureaucrati c
modul es” ; i nstead al l modul es exi st i n an unl ayered netw ork, connected by successor,
predecessor, and confl ict l inks. To generate these l inks, AS modules must specify in detai l both
thei r precondi tions and the expected resul ts of thei r actions, expressed as l ists of condi tions.
DA is somewhat more flexible, al lowing agents to be control led by either preconditions or goals
(expected resul ts). DA does no backwards chaining through the precondi tion, relying instead
on supervisory agents to order goals appropriately. Only one AS module can run at any one
time, so al l are essential ly in competi tion w i th one another to run, which contrasts w i th DA’s
emphasis on concurrency.

Whereas AS del iberately avoids pre-speci fied sequences of behavior, preferring them to
emerge from the interaction of the avai lable behavior modules, the world, and the goals of the
creature, being able to specify sequences explicitly is a design goal of DA. This reflects a deeper
difference in the purpose of the two schemes. AS is deliberately done in an emergent or bottom-

178 Agents

up styl e. Thi s i s certai nl y a w orthw hi l e sci enti f i c goal . H ow ever, emergent systems are
notori ousl y di ffi cul t to understand, si nce thei r know ledge and acti vi ty i s concealed as a
col l ect i on of opaque numeri cal val ues. Thi s makes them l ess sui tabl e as a vehi cl e for
encouraging constructi oni st novi ce programming, w hich i s top-dow n (i n some sense) by
nature.

O f course D A must make use of numeri cal values too, as a l ast-resort mechanism for
resolving confl i cts. In any distributed control system, such values act as a l ingua franca f o r
making comparisons between agents. However, the semantics of such values are di fficul t to
define and their opacity makes systems that use them hard to understand. One alternative is to
use symbolic statements of preference: that is, expl ici tly state that behavior a has priori ty over
behavior b, rather than hiding this fact behind numbers. This technique has been used in the
Pengi and Sonja systems (Agre and Chapman 1987) (Chapman 1991). Symbolic Preferences are
easi er to understand, but must be speci f i ed expl i ci t l y for every new behavi or. Another
advantage they have is that they are easi ly specified by the user using a confl ict display l ike the
one described in section 5.1.1.3.

5.5.3 DA as a Constraint System

DA has been shown to be capable of performing some of the functions of a constraint
system. Tasks can be declarations of relationship, and templates can be wri tten that generate
agents that enforce these relationships. Since templates can take arbitrary action, i t is difficult to
characterize exactly how powerful the constraint system is. The abi l i ty to match task patterns
and generate new tasks is simi lar to the equational -rewri ting techniques of Bertrand (Leler
1988). This abi l i ty can be used to implement the simple constraint-solving technique of local
propagation of known states, as seen in the temperature conversion example and elsewhere
(see section 5.2.7). It can also be used to implement special -purpose methods for solving
constraints that cannot be performed by local propagation. For instance, a constraint of the
form (= a (* b b)) cannot be solved for b by local propagation, but DA al lows templates to be
added that know how to compute square roots in this particular case. Inequal i ties are another
instance where DA’s agent-based approach works well. While they cannot be solved in general,
special-purpose methods can be created to handle them in ways appropriate to the domain.

The mai n probl em w i th D A i s that i ts contro l system i s l i m i ted and of ten hard to
understand. Here is an example that i l lustrates some of these l imits. The world below contains
two rectangle tasks as well as the within task that is visible (see section 5.2.5.2). This latter task
specifies that the sol id rectangle is to be contained within the hol low rectangle. The effect is to
al low the user to drag ei ther object around, and have the other one adjust i ts posi tion or size
accordingly.

Agents 179

Figure 5.27: The within world, in working and anomalous states.

However, i f the user should increase the size of the inner sol id rectangle, the system fai ls to
come to a stable state (that is, a state in which al l top-level tasks are satisfied). Instead, both
objects begin traveling to the left unti l they are off the stage!

The reason for this behavior is a l imitation in the way confl icts are detected and handled. A
worker agent’s action wi l l be suppressed (that is, fai l) only i f there is a slot confl ict involved—
that is, i f i t attempts to al ter a slot that another more determined agent has laid claim to. As i t
turns out, in the si tuation above there is a confl ict but i t is a goal confl ict: agents interfere with
each other’s goals, but al ter mutual ly exclusive sets of slots (see section 5.2.6). Therefore,
rather than picking a better way of resolving the confl ict, the agents just al ternate their actions
ad infinitum.

There are several possible solutions to this problem: one is to support undoing an action. If
an agent’s action could be w i thdrawn i f i t was found to cause a goal confl ict w i th a stronger
agent, then i t could be undone. Another, perhaps more general technique is to employ another
type of manager agent that is separate from the main hierarchy of agents and moni tors i t for
looping behavior, and can intervene i f necessary (this idea derives from the Society of M ind
concept of a B-Brain (M insky 1987)). In fact, these i deas w ere explored i n vari ous earl y
versions of DA, but rejected as too di fficul t to fi t into the agent model. The current model is a
compromise between power and simplicity.

180 Agents

5.5.3.1 Related Work

There is a large body of work on constraint-based problem solving, and a smal ler one on
interacti ve graphic systems based on constraints, including the classic systems Sketchpad
(Sutherland 1963) and ThingLab (Borning 1979) as wel l as more recent efforts such as Juno-2
(H eydon and N elson 1994). Garnet (M yers, Giuse et al . 1994), w hi l e not providing true
constraints (i t has so-cal led “ one-way constraints” , which are more l ike spreadsheet cel ls or
LiveWorld’s self-computing slots) is of interest because i t also explores prototype-based object
systems in the context of interaction. ThingLab, in parti cular, i s oriented towards creating
dynamic simulations as well as static drawings.

(Ishizaki 1996) appl ied agents to problems of graphic design. The emphasis of this work
was di fferent, however. Rather than solving static constraints, agents were employed to create
dynamic designs, or to endow graphic elements w i th responsive behavior. For instance, in a
Dynamic News Display, an agent would be in charge of creating and placing a headline when a
news story arrived, based on i ts contents and the current display. The system (cal led Model of
Dynamic Design) had three levels of control , agents, strategies, and actions, which correspond
roughly to top-level agents, manager agents, and worker agents in DA. However, there is no
concept of confl ict resolution or constraint solving in the model.

5.5.4 DA and Anthropomorphism

DA agents are intended to be understood through animate metaphors. Recal l that for our
purposes animacy was defined by three key properties:

• autonomy (the ability to initiate action);

• purposefulness (being directed towards a goal);

• reactivity (the abil i ty to respond to changes in the environment).

These qual i ties are woven into the way DA agents work. An agent is continual ly clocked
(subject to being activated by i ts superior), which al lows i t to take action whenever i t needs to.
It should be emphasized that the clocking process in DA and the other agents systems exists in
some sense at a level beneath the animate metaphor, in the sense that in a person, a heartbeat
is something that is necessary for action but is not normal ly considered a factor in the process
leading to action. The clocking process (based on animas in the simpler agent systems) does, in
fact, serve to give the agents that are clocked the equivalent of both an energy source and a
metronomic pulse that can be harnessed to drive action when necessary. This clocking al lows
an agent to appear autonomous by ini tiating action at any time. It is equal ly responsible for
al l ow i ng agen ts to be responsi ve to changi ng cond i t i ons (i ndeed , au tonom y and
responsiveness are real l y two sides of the same coin (see section 3.4.1). Purposefulness is
realized by allowing agents to be controlled by goal-l ike tasks.

The anthropomorphic icons used in agent boxes serve to indicate, in a l imi ted way, the
state of the agents vis-a-vis thei r goals and actions. Two di fferent displays were created that
make use of these icons. The agent graph shows all the agents in the system in their hierarchical
structure, and updates them as the system runs through i ts cycles. It can be used to watch the

Agents 181

agents states change i n real t i me. The other form of di spl ay i s the storyboard, w hi ch i s
generated after the fact and selectively presents the dynamics of the agent system in a static
narrative form.

5.5.4.1 Creation of Agents

O ne aspect of the w ay the agent system w orks seems to violate the anthropomorphic
metaphor, or at least strain i t. This is the manner in which new agents come into being. When a
template specifies that new tasks are to be created, new agents are also created to embody and
supervise the tasks. However, this means that agents are constantly coming into being (and are
discarded rather unceremoniously as garbage when they have outl ived their usefulness). This
is a rather cal low way to treat anthropomorphic beings! Of course, the ease of creating agents
is also one of the chief features of DA, so this problem is fundamental in some sense.

One way to fi x this i s simply to change the metaphor a bi t, so that agents are recruited

instead of created. In this variant of the metaphor, tasks are created, but agents are drawn from
a pool of pre-exi sti ng agents to deal w i th the tasks as they are needed. W hen the task i s
completed, the agent (and any subordinates it might have recruited) are returned to the pool.

W hi l e thi s may make agents appear more l i ke real l i vi ng enti t i es, i t compl i cates the
implementation and i ts presentation. Now there is a new enti ty, the pool, and there wi l l be the
problem of how many agents i t should be staffed with, what happens when i t runs out, and so
forth.

In both variants of the metaphor, an agent is a general -purpose worker who can perform
any task. The knowledge of how to perform these tasks come from templates (which might be
metaphori cal l y presented as making up an “ employee’s manual ” , w ere w e to extend the
corporate metaphor a bi t more). Another possible modi fication to the metaphor would be to
conflate agents and templates. In this variant, an agent would be special ized for particular tasks,
and emerge from idleness to deal w i th them as necessary. The problem wi th this is that there
may be a need for mul ti ple agents of the same type, so there i s sti l l the problem of agent
creation, which now can’t even be handled by having a pool of general purpose agents (see the
next section for further discussion). Perhaps agents could train other “ new hire” agents in their
expertise.

Al l this shows that the detai l s of the mapping between the animate and computational
domains is not at al l straightforward. In this case the ease w i th which software enti ties come
into being, which is a principle source of the power of any programming system, is in di rect
tension with anthropomorphism.

5.5.4.2 Agents, Tasks, and Templates

The fact that there are three di fferent but closely related enti ties in DA—tasks, agents, and
templates—seems somew hat unfortunate. Al though they al l serve necessary and separate
functions, i t is confusing and can strain the anthropomorphic metaphor.

While developing DA, I resisted the separation of agents and templates for a long time. Most
of the earl ier prototypes did not have this distinction. In my earl ier images of how the system

182 Agents

should work, based on Society of M ind, agents are both program speci fications and concrete
instantiated mechanisms. Rather than having procedural instantiations and bound variables,
their “ arguments” are suppl ied again by fixed hardware buses cal led pronomes (Minsky 1987,
p226). This picture may be more biological ly real istic (in the sense that functional i ty is closely
l inked to a piece of hardware), but a programming language that works this way is severely
handi capped by the l ack of basi c tool s such as recursion. It i s concei vable to add these
capabi l i ties to a Society of M ind-based model w i th the addi tion of special stack memory that
incorporates K-l ines for remembering the state of agents, but this i s awkward. Some early
implementations of agents did work this way. However, my devotion to real ism gave way to a
greater need for simplicity. Working without the separation between program and invocation felt
l ike going back in time to older languages l ike FORTRAN that did not support recursion. To
address these problems, I developed the idea of templates as enti ties separate from agents.

It might be possible to hide this spl i t from the user. For instance, i t might be possible to
combine the functional i ty of agents and templates, cal l the results “ agents” , and al low them to
make copies of themselves, thus preserving the abi l i ty to support mul tiple instantiations. It is
al so probably possible to de-emphasize tasks as a separate enti ty, since tasks are mostl y
matched one-to-one with agents. There sti l l needs to be some way to talk about the specification
of an agent’s job (the task) as separate from the agent i tself, which includes a good deal of other
information besides the task.

5.5.4.3 Are Agents Too Low-level?

Each agent i s very si mpl e, j ust embodyi ng an expressi on from the rather basi c task
language and executing a simple interpreter to achieve them. This simpl ici ty makes for an
understandable system, yet i t strains somewhat against the anthropomorphic metaphor. Can
such simple things be thought of in animate terms? In particular, some constructs force us to
posi t more “ people” in the agent hierarchy than you might expect (i .e. the repeat construct
forms an agent whose only job is to tel l i ts one subordinate to continue doing whatever i t is
already trying to do20). The graphic version of Fahrenheit/centigrade conversion, for instance,

can use up to 70 agents to accomplish i ts task.

One early version of DA attempted to deal with this problem by compressing tasks into an
agent that was sl ightly more complex than the final version. This agent could have both a goal
and an action; that is, i t could combine what would be two agents in the final version. Because
the pattern of task-generation often al ternates between goals and actions, this had the effect of
generating about half as many agents as in the final version. It also helped strengthen the notion
of an agent as something that tied together declarative and procedural information. However,
the process of packing tasks two-to-an-agent was complex and confusing, and so I decided to
use the simpler form of agent described here.

This problem would only be worse in a system that was uniformly agent-based (see section
6.3.4). If al l computation was done with agents, rather than offloading some tasks to Lisp, there

20This may in fact accurately model the role of many real-world managers.

Agents 183

would be at least an order of magnitude more agents to deal with. The solution, then, might be
not to reduce the total number of agents but to use some form of hierarchi cal di splay to
normally hide the low-level ones from the view of the user. This is already done to some extent
in the current agent display and storyboard system, and is in keeping with the general interface
style of LiveWorld.

5.5.4.4 Variants of Anthropomorphic Mapping

Part of LiveWorld’s general design aesthetic is to not hide anything from the user. Detai l
must often be suppressed to save screen resources and the user’s attentional resources, but i t
should always be ultimately accessible. Another design goal is simpl ici ty and regulari ty. These
goals may sometimes be in confl ict w ith the goal of using anthropomorphic metaphors. It may
help convey the anthropomorphic feel of the system to suppress some of the internals of the
system. For instance, the god agent strains the metaphor of the system at several points. It
exists primari ly for the sake of internal regulari ty, making i t possible to treat the enti re group of
agents as a si ngle structure. But from the user’ s point of vi ew , i t i s at vari ance w i th the
metaphor of distributed agents. Why are we gathering the diverse set of top-level tasks under a
single director? Perhaps it would be better to hide god from the user, preserving the impression
of independent agents for top-level tasks.

Another instance in which the anthropomorphic mapping is not simple is in the area of
emotional icons. We would l ike to use the emotional state anger to indicate that two nodes are
in confl ict. But this can’t be done with a straightforward mapping between the agent states and
the displayed emotional states, because in the usual case, at any given time one of the nodes
involved in a confl ict is going to be satisfied (its goal is currently met) and one is not. Satisfaction
and being-in-confl i ct are thus somewhat orthogonal properties of nodes, and i f they were
translated straightforwardly into a screen representation, there would have to be an angry face
and a smi l ing face displayed (in fact an early version of the system worked in just this way).
H ow ever, thi s w ould strain the anthropomorphic metaphor, w hich di ctates that an agent
present a si ngl e face to the w orl d. The sol uti on w as to j ust show the angry face, w hi ch
encoded the more sal ient of the node properties. Another solution would be to have richer
icons that could represent angry-and-satisfied and angry-and-unsatisfied in a single expression,
or even better, generate faces parametrical ly rather than using fixed icons. This opens up the
possibi l i ty for incorporating al l relevant information about an agent (satisfaction, determination,
success, confl ict status) in a single highly expressive facial representation generated on the fly
(Thórisson 1996). Humans can read a lot into a face—whether the computer can wri te out i ts
state in such a way that i t can be so read remains to be seen.

5.6 Summary

The agent metaphor suggests that programs be bui l t out of components that are designed
to be understood in anthropomorphic terms. In order to achieve this, we attempt to endow our
agents w i th purpose, autonomy, and the abi l i ty to react to events in their world. This chapter
presents a series of agent systems and shows that the metaphor can be used to uni te several
disparate styles of computation:

184 Agents

• the behavior-module-based, acti on-selecti on approach to the generati on of creature
behavior (Tinbergen, Brooks, Maes);

• the dynamics, generative power, and abi l i ty to deal w i th sequential operations found in
procedural programming languages (Lisp, Logo);

• the abi l i ty to integrate declarative and procedural information found in early constraint
systems (Sketchpad, ThingLab).

DA is the most powerful agent system and integrates these three strands most ful ly, but i t is
somewhat hard to understand. The simpler agent systems lack the ful l power of a programming
language, but are simple to understand and lend themselves to the drag-and-drop, mix-and-
match construction paradigm of LiveWorld.

Agents 185

Chapter 6 Conclusions
You can’t have everything. Where would you put it?

– Steven Wright

6.1 Summary and Contributions

This dissertation was motivated by a desi re to find new ways of thinking about action,
programming, and the control of animate systems. To this end, i t has explored a particular
approach to programming based on the central idea of animate agents. There are three main
contributions:

• An analysis of how metaphors in general, and animate metaphors in particular, are used in
the construction and comprehension of computation and programming languages;

• A series of agent-based programming systems that take the insights of the above analysis
into account;

• An envi ronment, LiveWorld, that is designed to support the construction of agent-based
systems.

The analysis of metaphor and animacy (chapters 2 and 3) is an attempt to grapple with the
informal conceptual underpinnings of a domain usually presented in formal terms. The notion of
metaphorical models was chosen as the vehicle for this exploration because of i ts success in
reveal ing the structure of everyday domains. Whi le metaphor has been studied in the realm of
computer i nterfaces, there has been very l i t t l e pri or study of the metaphors underl yi ng
programming languages. This section of the dissertation thus took a broad approach to the
subject. Some effort was necessary to recover the abi l i ty to detect the presence of metaphors
that have become transparent. A number of establ i shed programmi ng paradi gms w ere
subjected to an analysis based on their underlying metaphors.

Particular attention was paid to the role of animate metaphors in these paradigms, and in
computation general l y. It was found that animate metaphors are part of the foundation of
computation, and play a role in most (but not al l) programming paradigms. However, the form
of animacy used to construct computation is of a pecul iarly l imited sort that rel ies on images of
humans behaving in a rote or mechanical fashion. Some of the key properties that otherw ise
defi ne the ani mate real m, such as autonomy and purposeful ness, are mi ssi ng from thi s
standard form of computational animism.

Agent-based programming is then introduced as an organizing metaphor for computation
that includes these properties. A variety of computational techniques for real izing agents were
examined. Different aspects of agent-l ike functionali ty can be found in the computational world
in the form of processes, rules, objects, goals, procedures, and behavior modules. The task of
desi gni ng an agent-based programmi ng system i s to use these el ements to generate a
programming system that is both powerful and can be seen in animate terms.

Chapter 5 presented a number of such systems. Simple Agents is a minimalist version of an
agent, offering only concurrency and a form of confl ict detection and resolution. Goal Agents
extends this model by introducing a more structured version of an agent that includes a goal. It
was shown that this can provide the necessary foundation for anthropomorphic interfaces and
for organizing systems of agents. Dynamic Agents is a more powerful system that introduces
dynamic creation of new agents, hierarchical control , sequencing, and a variety of control
constructs. This system approaches the general i ty of a ful l -powered programming language
using the agent metaphor. The uti l i ty of the system for behavioral simulati on, constraint
problems, and a variety of other uses is explored.

The LiveWorld environment (chapter 4) was conceived original ly as a platform or tool for
the expl orat i on i nto agent-based programmi ng l anguages, but contai ns some or i gi nal
contributions in i ts own right. In particular, i t combines Boxer’s style of hierarchical concrete
presentation in the interface w i th an underlying object system based on recursive annotation
and inheri tance through prototypes. LiveWorld extends the underlying object system, Framer,
in order to make i t operate in a dynamic interactive envi ronment. LiveWorld contains many
features to support agent-based programming, including sensors that al low objects to react to
one another, and animas that al l ow autonomous processes to be easi l y i ntroduced into a
constructed world.

6.2 Related Work

The individual chapters in the body of the thesis discuss work that is related to the separate
themes of this thesis. Here, we discuss a few systems that are related to more than one theme:
that i s, some other envi ronments that are designed for novices, stri ve for a l i vely feel , and
contain programming capabilities that are in some sense agent-like.

6.2.1. KidSim

KidSim (Cypher and Smith 1995) is a programming environment designed to al low chi ldren
to create graphic simulations, using a rule-based approach to programming. KidSim has a
colorful i nterface w hi ch permi ts di rect manipulati on of a vari ety of objects (i .e. agents,
costumes, and rules). In KidSim, an agent i s equivalent to w hat Li veW orld cal l s actors or
creatures (and what KidSim cal ls a rule, we would cal l an agent). Each agent has a set of rules
and a set of properties (slots) that are accessible through a graphic edi tor. Whi le you cannot
create enti rely new kinds of objects as in LiveWorld, agents once created can be used as a
basis for creating more agents of the same type. KidSim original ly had the abi l i ty to support a
deep inheri tance hierarchy as does LiveWorld, but this feature was el iminated because i t was
judged to be too confusing.

KidSim avoids text-based programming languages, instead using a form of programming by
demonstration to generate graphic rewri te rules, which can then be modified in an editor. The
world of KidSim is based on a grid of cel ls which can be occupied by various graphic objects.
The rewri te rules thus operate on patterns of cel l occupancy. Each agent has a set of rules
which can be arranged in order of priori ty.

188 Conclusions

KidSim is based on a simple idea which makes i t easy to learn, yet permits creating a wide
range of simulations. However, the rewri te rule approach makes some things di ffi cul t. For
instance, i f an object i s to both move and deal w i th obstacles in i ts path, i t must be given
separate rule sets for each of the four possible di rections of movement. More fundamental ly,
pure rule-based systems have difficulties deal ing with sequential action and control in general.
They also do not lend themselves to bui lding powerful abstractions in the way that procedural
languages do, and thus are limited in their ability to deal with complexity.

6.2.2. Agentsheets

Agentsheets (Repenning 1993) is not an end-user environment i tself, but a tool for creating
a variety of domain-specific graphical construction systems. Each such system includes a set of
parts (agents) which the end-user can arrange on gridded field (the agentsheet). The end-user
cannot construct the agents themselves; instead these are desigened and bui l t by a separate
class of expert designers. Agents in this system are autonomous objects that contain sensors,
effectors, behavior, state, and a graphical depiction. Agents can move from cell to cell, although
not al l of the visual languages supported by the system make use of this feature. They can also
sense and communicate with their neighbors. Their behavior is speci fied by a Lisp-embedded
language cal led AgenTalk. (In fact there are other ways to program agents, such as speci fying
graphi cal rew ri te rules as i n KidSim, but most of the system’s fl exibi l i ty comes from the
AgenTalk level).

This simple scheme supports a wide variety of metaphors. In flow-based languages, agents
are static but change their state based on their neighbor, and so can simulate electrical circuits
or fluid flow. In anthropomorphic metaphors, the agents represent creatures that move around
in the world and interact w i th one another, and can support behavioral simulations or certain
types of videogames. Limi ted programming can be done at the end-user level w i th languages
that provide agents with control-flow metaphors (one example is a visual language for designing
the flow of automatic phone answering services).

Agentsheets has been show n to be a very f l exi bl e system, but i ts fu l l range i s onl y
accessible to experts. There is a sharp division between the end user, who can only manipulate
a set of pre-constructed objects, and the expert designer who can bui ld new kinds of objects
and new languages. This is in contrast to LiveW orld’s goal of making as much of the inner
workings of the system accessible to the end-user as possible.

6.2.3. ToonTalk

ToonTalk is the most unusual of the envi ronments described here, and perhaps the most
powerful . Its interface is entirely visual and highly animated, and i ts underlying computational
model is a version of Concurrent Constraint Programming (CCP) (Saraswat 1993), an advanced
programming paradigm descended from logic programming. The system provides an elaborate
mapping from the constructs of CCP to animated objects. For example, methods are shown as
robots; their programs exist in thought bubbles; a communication is a bird flying out of i ts nest
and back; terminating an agent i s represented w i th an exploding bomb. Just as Logo w as

Conclusions 189

designed as a child-friendly version of Lisp, ToonTalk is a version of CCP in which mathematical
formalisms are replaced by animated characters.

ToonTalk is extremely l ively, sometimes to the point of causing confusion. The underlying
language is inherently concurrent, and so is the environment. Graphic objects or spri tes form
the basi s of user w orl ds. Games and si mul at i ons on the order of Pong can be readi l y
constructed. The programming style is a form of programming by example. The user performs a
sequence of concrete actions using a set of tools, which can be recorded into a robot (method).
The user can then make the resulting programs more abstract by expl ici tly removing constants
from them.

Program execution is animated, and since there is no textual code other than the graphic
actors, Kahn is justi fied in claiming that the programs themselves are in the form of animations,
not merely i l l ustrated by them. W hether thi s i s real l y easier to understand than a textual
description is debatable, however. While the idiom of animated video characters might be more
immediately accessible to a chi ld, i t is hard to fol low a complex set of moving objects. Static
descriptions of programs and thei r activi ty (such as storyboards; see section 5.3.5) have the
advantage of standing sti l l so you can read them!

Another problem is that some of these metaphors seemed strained—for instance, agents
and objects are represented as houses, presumably because they contain an assortment of
other objects, whi le an enti re computation system is a ci ty. However, when this metaphor is
extended via recursion i t leads to expectation violations such as objects that have within them
whole cities. In other cases, the metaphor is apt but not extensible: for instance, a scale is used
to indicate a comparison between numbers, but this metaphor does not readi ly extend to other
predicates.

CCP comes from an essential ly declarative logic programming tradi tion, which ordinari ly
would make i t an awkward tool for programming dynamic systems. Nevertheless ToonTalk
manages to represent action and perception using extensions to the basic model in the form of
sensors and “ remote control variables” which cause side effects. Because of these, ToonTalk is
quite capable of building animate systems such as videogames despite its declarative heritage.

6.3 Directions for further research

6.3.1 What Can Novices Do with Agents?

Li veW orl d has had onl y casual test i ng w i th novi ce programmers. Several students
succeeded in bui lding video-game worlds using simple agents and other objects drawn from a
l ibrary of video-game components (see sections 4.2.10 and 5.4.1). Obviously, more evaluation
with users is needed: of LiveWorld, i ts implementations of agents, and the basic ideas of agent-
based programming.

Dynamic Agents, at least in i ts present form, is probably too complex for novices. While the
basic concepts of the language are not that much more compl icated than those found in a

190 Conclusions

procedural language, and i t should not be beyond the abi l i ty of a novice to create tasks and
templates, i t can be very difficult to understand the resultant complex concurrent activi ty of the
agent system. A scaled-back version of DA that el iminated concurrency and confl ict detection,
but retained the goal-directed control structure, might be more tractable although less powerful.
There are many possible languages that l i e on the continuum between a basic procedural
language and DA, al low ing for a tradeoff between power and comprehensibi l i ty. At the low-
powered end of the spectrum, there are concepts from agent-based programming that could be
useful ly transferred to purely procedural languages, such as turning invocations into graphic
objects and displaying them anthropomorphically.

The simpler agent systems might be more promising places to start evaluating the uti l i ty of
agent-based programming for novices. The ideas behind these systems are sufficiently simple
and intui tive (at least to recent generations that have grown up w i th video games) that they
should be usable by young chi ldren. Work w i th chi ldren on programming environments w i th
similar capabil i ties is encouraging: (Marion 1992) describes elementary-school students building
animal behavior simulations in PlayGround; (Burgoin 1990) describes a group of somewhat
older chi ldren bui lding robots that are control led by a rule-l i ke language; and the systems
described in section 6.2 also have shown that chi ldren can create behavioral simulations using
agent-l i ke constructs. None of these systems use expl i ci t goals or anthropomorphize thei r
agents, so i t remains to be seen whether these features make agents easier to understand or
not. It would also be interesting to study the nature of chi ldren’s anthropomorphization of
computers and program parts, and w hether these tendencies are di fferent i n agent-based
systems.

The understandabi l i ty of any programming system w i l l be based both on the underlying
concepts and on how wel l those concepts are presented to the user through the interface.
Thus, the answers to this question and the next wil l be l inked together.

6.3.2 Can Agent Activity Be Made More Understandable to the
User?

Like any complex system, agent systems can be hard to understand. H ow ever, agent
systems also suggest new techniques for presenting program acti vi ty. The use of narrati ve
techniques to explain (and eventual ly to produce) agent activi ty is one of the more interesting
areas opened up by agent-based programming. The storyboards that DA can generate only
begin to explore this area. Presenting the activi ty of complex col lections of hundreds of agents
wil l require more knowledge about characters and narrative.

The representati on of agents i n anthropomorphi c terms can be extended. There are
additional emotional states that can be used to reflect computational states (such as surprise to
i ndi cate an expectati on vi ol ati on (Kozierok 1993)). The magni tude of emoti ons such as
happiness or anger can be conveyed by parameterizing facial displays (see section 5.5.4.4).
Perhaps more importantly, there is a need to individualize agents so that they can be thought of
as characters. Libraries of animated characters could be selected as representations that match
the characteri sti cs of the underlying agents. This idea was explored in (Travers and Davis

Conclusions 191

1993), but only for a two-agent system. Extending this idea to more complex systems of agents
is an interesting challenge.

The mappings from agent activi ty to narrative forms can also be extended. The stories told
now are al l of a fai rly simple type, and the technique used to tel l them is simpl istic. We can
imagine other kinds of stories when agent systems become more sophisticated, for instance,
stories about confl ict being resolved into cooperation, or developmental stories in which a
character l earns from experi ence. As for the presentat i onal forms, the medi um of the
storyboard has many rich possibi l i ties, such as paral lel time tracks and highl ighting detai ls, that
have yet to be explored.

6.3.3 Can Agent Systems Be Made More Powerful?

The Dynamic Agents system is somewhat l imited in terms of the intel l igence i t can apply to
performing i ts tasks. Whi le i t has some support for exploring multiple methods of achieving a
goal , i t cannot perform searches for solutions as do planners. Since an agent may perform
arbi trary actions, i t is di fficul t to represent the projected resul ts of a potential action, which is
planning requi res. M ore fundamental l y, putting actions under the control of a central i zed
planner violates the agent metaphor. Decentral ized methods that simulate some of the effects of
planning (such as Maes’ action selection algori thm; see section 5.5.2) might be an acceptable
substi tute.

O ther methods for improving DA performance that are more consonant w i th the agent
metaphor are also possible. For instance, there could be agents that are outside of the standard
agent hierarchy and act to improve its performance (see section 5.5.3). Manager agents l ike this
could also be used for more sophisti cated forms of confl i ct resolution than the contest-of-
strength technique currently employed by LiveWorld. Rather than have two confl icting agents
fi ght i t out, they could refer thei r confl i ct to an outsi de mediator w ho could implement
negotiation of compromises or make use of non-local information to help resolve the dispute.

Agents currently do not learn from experience, and thus have to solve each constraint
problem al l over again each time any element of the system changes. Smarter agents could
remember w hich methods w orked and under w hich ci rcumstances, and make the correct
choices without having to search through fai lures. Mediator agents too could have memories.
Some of these techniques were explored, for extremely simple cases, in (Travers and Davis
1993). Case-based techniques were used for learning, so that si tuations and solutions would
be remembered in a case l ibrary and matched with new si tuations as they arose. However, the
chal lenge is to implement such faci l i ties in a way that fi ts into the overal l metaphor and makes
the behavior of the system more understandable rather than more opaque. There is a tension
between making the system smarter and making it more comprehensible.

6.3.4 Can Agents be Organized in Different Ways?

The Dynamic Agents system is based on a hierarchical model of agent organization, and
employs metaphors based on human managerial hierarchies. This form of organization i s

192 Conclusions

common in computational systems, but is problematic to some because of i ts metaphorical
impl ications. Bureaucratic hierarchies can be unpleasant and inefficient in real l i fe, so why
duplicate them in the computer?

Hierarchy arises in computational systems for the same reason i t does in society: to al low a
measure of central ized control to be exerted over a domain that is too big or complex to be
control led by a single individual or agent. Hierarchy allows parts of the domain to be control led
by subordinate agents whi le keeping ul timate control central ized. This control is not obtained
w i thout a cost, how ever. In soci al systems, the costs i ncl ude the ethi cal and pol i t i cal
consequences that attend the subordination of individuals to the power of others. This sort of
cost i s presumably not a di rect i ssue when designing a software system around social and
anthropomorphic metaphors, except i nsofar as i t might promote the i dea of hierarchi cal
subordination in general.

But there are other problems with hierarchical organization that can affect both human and
arti fi cial societies. These stem from the fact that such systems lead to long and sometimes
unrel iable paths of communication between the worlds they manipulate and the agents that
make decisions. Information about the w orld must percolate upw ards through a chain of
command w hi l e deci si ons fi l ter dow nw ards. Thi s process can be sl ow and error-prone.
H ierarchical organization disempow ers agents w ho are most in touch w i th the w orld and
isolates the agents w i th power from the world they seek to control . Al low ing subordinates a
greater degree of independence can al leviate some of these problems, but at the risk (from the
manager’s perspective) of losing control and causing incoherent system behavior. As a resul t,
hierarchical organizations are constantly seeking a balance between top-down control and
autonomy.

The DA system was also designed to seek a balance between control and autonomy. In
contrast to procedural languages, which use a strict top-down command regime, DA employs a
more flexible style of control . Whi le they are subject to hierarchical management structure,
dynami c agents execute autonomousl y and concurrentl y, i n the manner si mi l ar to that
employed in hierarchical behavioral control systems (see 5.2). Managers actual ly manage,
rather than command: their role is to activate and coordinate the activities of their subordinates,
rather than to directly control them. The control path between perception, decision-making and
action is shortened, and most commonly only involves a single level of agent.

Certainly there are other ways to organize systems of agents that avoid hierarchical models
and metaphors. Perhaps an agent system coul d be organi zed around the i dea of group
negotiation towards a consensus, after the model of Quaker meetings. Such systems suffer
from scal ing problems, however, and presuppose a more sophisticated agent that is capable of
representing and negotiating among alternative courses of action. Another mode of organization
which avoids hierarchy is a market-based (or “ agoric”) system in which agents hired others to
perform tasks for them (Mi l ler and Drexler 1988). However, in such systems the relationship
between agents is looser, and i t is correspondingly harder for a manger to manage the activi ty
of a “ hired” agent when (for example) the subtask no longer needs to be accomplished because
ci rcumstances have changed (thi s sort of constraint i s presumably the reason real -w orld
economic activity makes use of both hierarchixal firms and non-hierarchical markets).

Conclusions 193

All non-hierarchical schemes have serious problems with comprehensibi l i ty. A large system
of agents is a formidable thing to understand, and organizing agents along hierarchical l ines is
the most powerful way to make such a col lection into something that can be understood. The
true advantage of hierarchy, from the standpoint of comprehensibi l i ty, is that i t is the scheme
that al l ow s the detai l s of agent acti v i ty to be abstracted aw ay. Thi s i s one reason w hy
hierarchical organization is so highly valued in the design of engineered systems.

The question of control in agent-based systems is fraught w i th pol i ti cal overtones, and
fo rces desi gners and users to th i nk about i ssues o f con t ro l , au tonomy, pow er , and
organization in the human world as well as the computational. There are many possible ways to
organize the activi ty of agents. From the standpoint of constructivist education, what would be
most desirable is a system that al lowed users to create and explore a variety of organizational
forms.

6.3.5 Can the Environment Be Agents All the Way Down?

One legitimate cri ticism of the system as a whole is that i t has a spl i t personal i ty: the basic
LiveWorld level and the agent languages are to some extent separate, and organized around
different metaphors. LiveWorld uses an unusual form of the OOP paradigm, highl ighted by an
interface which emphasizes the tangibi l i ty of objects. The DA system uses the agent metaphor
which emphasizes action, goal-seeking, and autonomous behavior. This is partial ly an arti fact of
the system’s developmental history—the object system had to be in place before the research
into agents could take place. But in the future, wouldn’t i t be better to use a single paradigm for
the system? Can an environment be made that is “ agents al l the way down” ?

There are several answ ers to thi s questi on. For one thing, i t i s not cl ear that a single
metaphor can real ly work at al l levels. Agents need to take their action in a world of objects, so
in some sense the operation of the agent-based level depends upon an object level al ready
being in place. Making everything an agent, the way some OOP systems make everything an
object, might require diluting the concept of agent to the point where it is no longer useful.

Sti l l , there could be more integration between the levels. One interesting prospect is to base
the agent system on a more suitable low-level general computational mechanism than Lisp and
the LiveW orld object system. One candidate is the Actors programming formal ism (Hew i tt
1976), which al ready supports object-orientation, concurrency, and message-passing. Actor
languages in theory could replace Lisp as the base language in which agents are programmed.
Actors are already qui te simi lar to dynamic agents in some ways. An actor is l ike a procedure
invocation, but can also persist over time and have state. Unl ike procedures, but l ike dynamic
agents, actors do not impl ici tl y return values. If an invoker of an actor wants a response, i t
must create another actor as a continuation to handle the value, and pass the continuation
along as an argument.

But actors are sti l l essenti al l y dri ven from external messages rather than running as
autonomously independent processes (Agha, Mason et al . 1993). They are not goal -oriented
and have no bui l t-in models for confl ict resolution. Thus i f Actors is to serve as a basis for an
agent system l ike DA, it wil l be necessary to build a layer of agent-based protocols on top of the

194 Conclusions

basic Actor model . Another problem is that the actor model has not, as yet, resul ted in many
practical programming tools. Actor programming can be di fficul t, unnatural , and verbose, and
actor languages do not have the sophisticated inheri tance mechanisms found in other object-
oriented systems. Nonetheless the Actor model looks l ike a promising way to put agent-based
programming on a more elegant and rigorous footing.

6.3.6 Agents in Shared Worlds

Animate systems natural ly lend themselves to implementation in distributed and multi -user
environments. In such environments, users at various locations would construct active objects
that would be loosed into common areas to interact w i th one another. Text-based systems of
this kind (cal led MUDs or Multi-User Dungeons) have become widespread in recent years, and
show promise as envi ronments for learning to program. The social nature of such arti fi cial
worlds provides an audience, context, and motivation for constructionist learning (Bruckman
1993).

However, the text-based nature of MUDs l imits the kinds of interactions that can take place,
and the programming languages that are avai lable are often l imi ted in what they can express.
Some M UDs are inhabi ted by sophisti cated arti fi cial personal i ties (Foner 1993), but these
general ly are developed outside of the MUD itself, and simulate a user connected to i t from the
outside. Users cannot general ly construct such complex autonomous actors from w i thin the
environment.

The ideas of agent-based programming and the LiveWorld environment should fi t natural ly
into shared worlds and might improve thei r uti l i ty. Programs in shared envi ronments have to
respond to a variety of events and changing ci rcumstances, a task wel l -sui ted to the agent-
based paradigm. LiveWorld’s design encourages thinking of programs and behaviors as objects
that can be manipulated inside of a graphic envi ronment. This objecti fi cation of program
components should be particularly useful in a shared social environment, al lowing programs to
become social objects that can be readily discussed and shared.

6.4 Last Word

We are entering an era in which a mul ti tude of new forms of media w i l l be invented and
deployed. Whether these new forms become tools for thought or mere distractions depends
upon how easy i t is for non-special ists to use them to express their ideas. Programmabi l i ty has
been neglected in the rush to develop new media, but what is new and interesting about the
new digi tal forms, namely thei r interactivi ty and dynamism, requi re some grasp of the art of
programming in order to be fully util ized.

Programming should thus be thought of as a basic intel lectual ski l l , comparable to wri ting.
Like wri ting, programming has to be learned, sometimes laboriously; and while i t can certainly
be made simpler and more accessible than i t has been, i t cannot and should not be reduced to
trivial i ty or el iminated. In my own experience, genuine learning takes place when the learner is
motivated to learn, when the topic is interesting for i ts own sake or is a means to a genuinely

Conclusions 195

desi red end. Programming can be ei ther, but too often i s presented in a dystonic manner
unconnected w i th the learner’s actual interests. And too often the tools that programming
envi ronments provide are too weak to al low a beginner to advance to the point where thei r
skil ls can match their vision.

My project has been an effort to set programming in new contexts and put a new face on i t.
Rather than framing computing and programming as a means of manipulating abstract and
disembodied data, LiveW orld frames i t as a task of bui lding concrete autonomous graphic
worlds, and suppl ies the tools necessary for bui lding such worlds. Rather than thinking of
programs in formal or mechanical terms, agent-based programming sees them in animate terms,
w i th purposes, reactions, and confl i cts of thei r own. The hope is that thinking about these
systems can engage the learner’s thinking about purpose, reaction, and confl ict in the w ider
world, a world that is inhabited by and largely determined by the purposeful mechanisms of l i fe.

196 Conclusions

Bibliography

Abelson, H . and G. J. Sussman (1985). Structure and Interpretation of Computer Programs.
Cambridge MA: MIT Press.

Ackermann, E. (1991). The "Agency" M odel of Transactions: Tow ard an U nderstanding of
Chi l dren' s Theory of Control . In Constructionism, ed i ted by I . H arel and S. Paper t .
Norwood, NJ: Ablex.

Agha, G. A. (1986). Actors: A M odel of Concurrent Computation in D istri buted Systems.
Cambridge: MIT Press.

Agha, G. A., I. A. M ason, et al . (1993). “ A Foundation for Actor Computation.” Journal of
Functional Programming 1(1).

Agre, P. E. (1992). “ Formalization as a Social Project.” Quarterly Newsletter of the Laboratory
of Comaprative Human Cognition 14(1), 25-27.

Agre, P. E. (1995). “ Computational Research on Interaction and Agency.” Artificial Intelligence
72((1-2)), 1-52.

Agre, P. E. (1996). Computation and Human Experience: Cambridge Universi ty Press.

Agre, P. E. and D. Chapman (1987). “ Pengi: An Implementation of a Theory of Situated Action” ,
Proceedings of AAAI-87.

Apple Computer (1987). Apple Human Interface Guidel ines: The Apple Desktop Interface.
Reading, Massachusetts: Addison-Wesley.

Apple Computer (1991). Knowledge Navigator. Videotape.

Apple Computer (1992). Dylan: an object-oriented dynamic language.

Baron-Cohen, S. (1995). Mindbl indness: An Essay on Autism and Theory of M ind. Cambridge,
Massachusetts: M IT Press.

Bateson, M. C. (1972). Our Own Metaphor. New York: Knopf.

Black, M. (1962). Models and Metaphors. Ithaca, NY: Cornel l University Press.

Boden, M. A. (1978). Purposive Explanation in Psychology: Harvester Press.

Bond, A. H . and L. Gasser, Eds. (1988). Readings in Distributed Artificial Intell igence, Morgan
Kaufmann.

Borges, J. L. (1962). Labyrinths: Selected Stories & Other Writings: New Directions.

Borning, A. (1979). Thinglab: A Constraint-Oriented Simulation Laboratory. Xerox PARC SSL-
79-3, July 1979.

Borning, A. (1986). “ Defining Constraints Graphical ly” , Proceedings of CHI'86, Boston.

Boulay, B. d. (1989). D i fficul ties of learning to program. In Studying the Novice Programmer,
edited by E. Soloway and J. C. Spohrer. Hil lsdale, NJ: Lawrence Erlbaum.

Boyd, R. (1993). M etaphor and theory change: W hat i s "metaphor" a metaphor for? In
Metaphor and Thought, edited by A. Ortony. Cambridge: Cambridge University Press.

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. Cambridge: MIT Press.

Brooks, R. A. (1986). Achieving Arti ficial Intel l igence through Bui lding Robots. Massachusetts
Institute of Technology Artificial Intell igence Laboratory AI Memo 899.

Brooks, R. A. (1986). “ A Robust Layered Control System for a Mobi le Robot.” IEEE Journal of
Robotics and Automation 2(1), 14-23.

Brooks, R. A. (1991). “ Intel l igence Without Representation.” Artificial Intelligence 47, 139-159.

Bruckman, A. (1993). Context for Programming. MIT Thesis Proposal, August 6, 1993.

Bruner , J. (1986). Actual M i nds, Possi bl e W orl ds. Cambri dge, M assachusetts: H arvard
Universi ty Press.

Bruner, J. S. (1966). On Cogni tive Growth: I. In Studies in Cognitive Growth, edi ted by J. S.
Bruner, R. R. Oliver and P. M. Greenfield. New York: Wiley.

Burgoin, M. O. (1990). Using LEGO Robots to Explore Dynamics, MS thesis, MIT.

Carey, S. (1985). Conceptual Change in Childhood. Cambridge, Massachusetts: MIT Press.

Chang, B.-W . and D . U ngar (1993). “ Ani mati on: From Cartoons to the U ser Interface” ,
Proceedings of UIST '93, Atlanta, Georgia.

Chapman, D. (1991). Vision, Instruction, and Action. Cambridge, Massachusetts: MIT Press.

Chapman, D. and P. E. Agre (1986). “ Abstract Reasoning as Emergent from Concrete Activi ty” ,
Proceedings of 1986 Workshop on Reasoning About Actions & Plans, Los Altos, Cal i fornia.

Charles River Analytics (1994). Open Sesame. Software.

Connel l , J. (1989). A Colony Archi tecture for an Arti ficial Creature. MIT Arti ficial Intel l igence
Laboratory Technical Report 1151.

Cypher, A., Ed. (1993). Watch What I Do: Programming by Demonstration. Cambridge, MA,
MIT Press.

Cypher, A. and D . C. Smi th (1995). “ Ki dSi m: End U ser Programmi ng of Si mul at i ons” ,
Proceedings of CHI'95, Denver.

Dahl, O. J., B. Myhrhaug, et al. (1970). Simula Common Base Language. Norwegian Computing
Center Technical Report S-22, October 1970.

Davis, R. and R. G. Smith (1983). “ Negotiation as a Metaphor for Distributed Problem Solving.”
Artificial Intelligence 20(1), 63-109.

198 Bibliograpy

Dennett, D. C. (1987). The Intentional Stance. Cambridge, MA: MIT Press.

Dennett, D. C. (1991). Consciousness Explained. Boston: Little Brown.

D iGiano, C. J., R. M . Baecker, et al . (1993). “ LogoMedia: A Sound-Enhanced Programming
Envi ronment for M oni tori ng Programming Behaviour” , Proceedings of InterCH I `93,
Amsterdam.

Dijkstra, E. W. (1989). “ On the Cruelty of Really Teaching Computing Science.” CACM 32(12),
1398-1404.

diSessa, A. A. (1986). Models of Computation. In User Centered System Design, edi ted by D .
A. Norman and S. W. Draper. Hil lsdale NJ: Lawrence Erlbaum Associates.

diSessa, A. A. and H . Abelson (1986). “ Boxer: A Reconstructible Computational Medium.”
CACM 29(9), 859-868.

D reyfus, H . (1979). What Computers Can' t Do: The Limits of Artificial Intell igence. New York:
Harper and Row.

Edel , M . (1986). “ The Tinkertoy Graphical Programming Envi ronment” , Proceedings of IEEE
1986 Compsac.

Etzioni , O. and D. Weld (1994). “ A Softbot-based interface to the Internet.” CACM 37(7), 72-
76.

Fenton, J. and K. Beck (1989). “ Playground: An Object Oriented Simulation System with Agent
Rules for Children of All Ages” , Proceedings of OOPSLA '89.

Ferber, J. and P. Carle (1990). Actors and Agents as Reflective Concurrent Objects: A MERING
IV Perspective. LAFORIA, Université Paris Rapport LaForia 18/90, 1990.

Finzer, W. and L. Gould (1984). “ Programming by Rehearsal.” Byte 9(6), 187-210.

Fisher, D. (1970). Control Structure for Programming Languages, PhD thesis, CMU.

Foner, L. N . (1993). What' s an Agent, Anyway?: A Sociological Case Study. M IT Media Lab
Agent Memo 93-01, May 1993.

Forgy, C. L. (1982). “ RETE: A Fast Algori thm for the Many Pattern/Many Object Pattern Match
Problem.” Artificial Intelligence 19(1).

Freeman-Benson, B. N., J. Maloney, et al . (1990). “ An Incremental Constraint Solver.” CACM
33(1), 54-63.

Gamma, E., R. Helm, et al . (1994). Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley.

Gelman, R. and E. Spelke (1981). The development of thoughts about animate and Inanimate
objects: impl ications for research on social cogni tion. In Social Cognitive Development,
edited by J. H. Flavell and L. Ross. Cambridge: Cambridge University Press.

General Magic (1995). The Telescript Language Reference. General Magic , October, 1995.

Gentner, D . (1989). The M echani sms of Analogi cal Learni ng. In Similarity and analogical
reasoning, edited by S. Visbuadiy and A. Ortony. : Cambridge Universi ty Press.

Bibliography 199

Gentner, D . and M. Jeziorski (1993). From metaphor to analogy in science. In Metaphor and
Thought, edited by A. Ortony. Cambridge: Cambridge University Press.

Gi bbs, R. W . (1993). Process and products i n maki ng sense of tropes. In M etaphor and
Thought, edited by A. Ortony. Cambridge: Cambridge University Press.

Goffman, E. (1974). Frame Analysis: An Essay on the O rganization of Experience. Boston:
Northeastern Universi ty Press.

Goldberg, A. and A. Kay (1976). Smal l tal k-72 Instruction M anual . Xerox PARC Technical
Report.

Gol dberg, A. and D . Robson (1983). Smal l talk-80: The Language and i ts Implementation.
Reading, MA: Addison-Wesley.

Grei ner , R. (1980). RLL-1: a Representat i on Language Language. Stanford H eur i st i c
Programming Project HPP-80-9.

Gross, P. R. and N . Levi tt (1994). Higher Supersti tion: the academic left and i ts quarrels with
science. Baltimore: Johns Hopkins Universi ty Press.

Haase, K. (1992). Framer, MIT Media Lab. Software.

Harvey, B. (1985). Computer Science Logo Style: Intermediate Programming. Cambridge, MA:
MIT Press.

Havermiste, C. (1988). The metaphysics of interface. Center for Computational Theology,
Universi ty of Erewhon CCT Memo 23, May 23, 1988.

Heims, S. J. (1991). The Cybernetics Group. Cambridge, MA: MIT Press.

Henderson, P. (1980). Is i t reasonable to implement a complete programming system in a purely
functional style? Universi ty of Newcastle upon Tyne Computing Laboratory PMM/94, 11
December 1980.

H etenryck, P. V. (1989). Constraint Satisfaction in Logic Programming. Cambridge MA: M IT
Press.

Hewitt, C. (1976). Viewing Control Structures as Patterns of Passing Messages. MIT AI Lab AI
Memo 410, December 1976.

H ew i tt, C. (1986). “ O ffi ces are O pen Systems.” ACM Transactions on O ffi ce Information
Systems 4(3), 271-287.

H eydon, A. and G. N el son (1994). The Juno-2 Constraint-Based D raw ing Edi tor. D igi tal
Systems Research Center SRC Research Report 131a, December 1994.

H inde, R. A. (1978). Animal Behavior: A synthesis of ethology and comparative psychology.
New York: McGraw-Hill.

Hudak, P., S. P. Jones, et al. (1991). Report on the Programming Language Haskell , A Non-strict
Purely Functional Language (Version 1.1). Yale University Department of Computer Science
Technial Report YALEU/DCS/RR777, August 1991.

Hutchins, E. L., J. D . Hol lan, et al . (1986). D i rect Manipulation Interfaces. In User Centered
System Design, edited by D. A. Norman and S. W. Draper. Hi l lsdale NJ: Lawrence Erlbaum
Associates.

200 Bibliograpy

Ingalls, D., S. Wallace, et al. (1988). “ Fabrik: A Visual Programming Environment” , Proceedings
of OOPSLA '88.

Ishi zaki , S. (1996). Typographic Performance: Continuous D esign Soluti ons as Emergent
Behaviors of Active Agents, PhD thesis, MIT.

Jones, S. L. P. and P. Wadler (1993). “ Imperative functional programming” , Proceedings of
ACM Symposium on Principles of Programming Languages, Charleston.

Kaelbl ing, L. P. (1988). “ Goals as Paral lel Program Specifications” , Proceedings of Proceedings
AAAI-88 Seventh National Conference on Artificial Intelligence.

Kay, A. (1981). New Directions for Novice Programming in the 1980s. Xerox PARC Technical
Report.

Kay, A. C. (1990). User Interface: A Personal View. In The Art of Human-Computer Interface
Design , edited by B. Laurel. : Addison-Wesley.

Keller, E. F. (1985). Reflections on Gender and Science. New Haven: Yale Universi ty Press.

Kornfeld, W . A. and C. Hew i tt (1981). The Scienti fi c Communi ty Metaphor. M IT AI Lab AI
Memo 641.

Kowlaski, R. (1979). “ Algorithms = Logic + Control.” CACM 22(7), 424-436.

Kozierok, R. (1993). A learning approach to know ledge acquisi tion for intel l igent interface
agents., SM thesis, MIT.

Kuhn, T. S. (1993). M etaphor in Science. In Metaphor and Thought, edi ted by A. O rtony.
Cambridge: Cambridge University Press.

Kurlander, D . and S. Feiner (1991). Inferring Constraints from Mul tiple Snapshots. Columbia
University Department of Computer Science Technical Report CUCS 008-91, May 1991.

Lakin, F. (1986). Spatial Parsing for Visual Languages. In Visual Languages, edi ted by S. K.
Chang, T. Ichikawa and P. A. Ligomenides. New York: Plenum.

Lakoff, G. (1987). Women, Fire, and Dangerous Things. Chicago: University of Chicago Press.

Lakoff, G. (1993). The contemporary theory of metaphor. In Metaphor and Thought, edi ted by
A. Ortony. Cambridge: Cambridge Universi ty Press.

Lakoff, G. and M . Johnson (1980). M etaphors W e Live By. Chicago: Universi ty of Chicago
Press.

Lakoff, G. and Z. Kövecs (1987). The cognitive model of anger inherent in American English. In
Cultural Models in Language & Thought, edi ted by D. Hol land and N. Quinn. Cambridge:
Cambridge Universi ty Press.

Lanier, J. (1995). “ Agents of Alienation.” ACM Interactions 2(3).

Latour, B. (1987). Science In Action. Cambridge, Massachusetts: Harvard Universi ty Press.

Laurel , B. (1990). Interface Agents: Metaphors with Character. In The Art of Human-Computer
Interface Design, edited by B. Laurel. Reading, MA: Addison-Wesley.

Bibliography 201

Lel er, W . (1988). Constraint Programming Languages: Thei r speci fi cation and generation.
Reading, MA: Addison-Wesley.

Lesl ie, A. M. (1979). The representation of perceived causal connection, PhD thesis, Oxford.

Leslie, A. M. and S. Keeble (1987). “ Do six-month-old infants perceive causality?” Cognition 25,
265-288.

Lieberman, H . (1986). “ Using Prototypical Objects to Implement Shared Behavior in Object
Oriented Systems” , Proceedings of First ACM Conference on Object Oriented Programming
Systems, Languages & Application, Portland.

Lloyd, D. (1989). Simple Minds: M IT Press.

Lopez, G., B. Freeman-Benson, et al . (1993). Kal ei doscope: A Constrai nt Imperat i ve
Programming Language. Department of Computer Science and Engineering, Universi ty of
Washington Technical Report 93-09-04, September, 1993.

MacNei l , R. (1989). “ TYRO: A Constraint Based Graphic Designer' s Apprentice” , Proceedings
of IEEE Workshop on Visual Languages.

Maes, P. (1987). “ Concepts and Experiments in Computational Reflection” , Proceedings of
OOPSLA.

Maes, P. (1989). “ The Dynamics of Action Selection” , Proceedings of Eleventh Joint Conference
on Artificial Intelligence.

Maes, P. (1990). Situated Agents Can Have Goals. In Designing Autonomous Agents, edi ted by
P. Maes. Cambridge: MIT Press.

M al one, T. W ., R. E. Fi kes, et al . (1988). Enterpri se: A M arket-Li ke Task Schedul er for
D istributed Computing Envi ronments. In The Ecology of Computation, ed i ted by B. A .
Humberman. : Elsevier/North-Holland.

M archini , M . Q . and L. F. B. M elgarejo (1994). “ Ágora: Groupw are M etaphors in O bject-
Oriented Concurrent Programming” , Proceedings of ECOOP 94 Workshop on Models and
Languages for Coordination of Parallelism and Distribution, Bologna.

Marion, A. (1992). Playground Paper.

M artin, F. (1988). Chi ldren, cybernetics, and programmable turtles, M S thesis, M IT M edia
Laboratory.

Mayer, R. E. (1979). “ A psychology of learning BASIC.” Communications of the ACM 22(11),
589-593.

M ayer, R. E. (1989). H ow N ovices Learn Computer Programming. In Studying the Novice
Programmer, edited by E. Soloway and J. C. Spohrer. Hil lsdale, NJ: Lawrence Erlbaum.

McCloud, S. (1993). Understanding Comics: The Invisible Art. Northampton, MA: Tundra.

McDermott, D. (1987). Artificial Intell igence Meets Natural Stupidity. In Mind Design, edi ted by
J. Haugeland. Cambridge, Massacustts: MIT Press.

Michotte, A. (1950). The Perception of Causality. New York: Basic Books.

202 Bibliograpy

Mil ler, M. S. and K. E. Drexler (1988). Markets and Computation: Agoric Open Systems. In The
Ecology of Computation, edited by B. Huberman. : North-Holland.

Minsky, M. (1980). “ K-l ines: A Theory of Memory.” Cognitive Science 4(2).

Minsky, M. (1987). Society of Mind. New York: Simon & Schuster.

M insky, M . (1991). “ Society of M ind: a response to four review s.” Artificial Intelligence 48 ,
371-396.

Motherwel l , L. (1988). Gender and style di fferences in a Logo-based environment, PhD thesis,
MIT Media Laboratory.

Myers, B. A., D. A. Giuse, et al . (1994). Making Structured Graphics and Constraints for Large-
Scale Applications. Carnegie Mellon University CS CMU-CS-94-150, May 1994.

Nardi, B. A. (1993). A Small Matter of Programming. Cambridge, MA: MIT Press.

Nass, C., J. Steuer, et al . (1993). “ Anthropomorphism, Agency, & Ethopoeia: Computers as
Social Actors” , Proceedings of INTERCHI'93, Amsterdam.

Nelson, T. H. (1974). Computer Lib/Dream Machines: self-published.

N i l sson, N . J. (1994). “ Tel eo-Reacti ve Programs for Agent Control .” Journal of Arti ficial
Intell igence Research 1, 139-158.

Norvig, P. (1992). Paradigms of Arti ficial Intel l igence: Case Studies in Common Lisp: M organ
Kaufmann.

Oren, T., G. Salomon, et al. (1990). Guides: Characterizing the Interface. In The Art of Human-
Computer Interface, edited by B. Laurel. Reading, Massachusetts: Addison-Wesley.

Papert, S. (1980). Mindstorms: Chi ldren, Computers, and Powerful Ideas. New York: Basic
Books.

Papert, S. (1991). Si tuating Constructionism. In Constructionism, edi ted by I . H arel and S.
Papert. Norwood, NJ: Ablex.

Papert, S. (1993). The Children's Machine: Rethinking School in the Age of the Computer. New
York: Basic Books.

Penrose, R. (1989). The Emperor's New Mind. Oxford: Oxford Universi ty Press.

Piaget, J. (1929). The Child's Conception of the World. London: Routledge and Kegan Paul.

Piaget, J. (1970). Genetic Epistemology. New York: Columbia University Press.

Pi m m , D . (1987). Speaking Mathematical ly: Communication in Mathematics Classrooms.
London: Routledge & Kegan Paul.

Premack, D. (1990). “ The infant's theory of self-propelled objects.” Cognition 36, 1-16.

Reddy, D . R., L. D . Erman, et al . (1973). “ A model and a system for machine recogni tion of
speech.” IEEE Transactions on Audio and Electroacoustics 21, 229-238.

Bibliography 203

Reddy, M . J. (1993). The condui t metaphor: A case of frame confl ict in our language about
l anguage. In M etaphor and Thought, ed i ted by A. O rtony. Cambr i dge: Cambr i dge
Universi ty Press.

Repenning, A. (1993). Agentsheets: A Tool for Bui lding Domain-Oreinted Dynamic, Visual
Environments, PhD thesis, Universi ty of Colorado.

Resnick, M. (1988). Mul tiLogo: A Study of Chi ldren and Concurrent Programming, MS thesis,
MIT.

Resnick, M . (1992). Beyond the Central i zed M indset: Explorati ons i n M assivel y -Paral l el
Microworlds, PhD thesis, MIT.

Resnick, M. and F. Martin (1991). Chi ldren and Arti ficial Li fe. In Constructionism, edi ted by I.
Harel and S. Papert. Norwood NJ: Ablex.

Saraswat, V. (1993). Concurrent Constraint Programming. Cambridge, MA: MIT Press.

Sayeki, Y. (1989). Anthropomorphic Epistemology. University of Tokyo.

Schaefer, R. (1980). Narration in the Psychoanalytic Dialogue. In On Narrative, edi ted by W. J.
T. Mitchell. Chicago: University of Chicago Press.

Schank, R. C. (1975). Conceptual Information Processing. Amsterdam: North-Holland.

Schoppers, M. J. (1987). “ Universal plans for reactive robots in unpredicatable environments” ,
Proceedings of Tenth International Conference of Artificial Intelligence, Milan.

Searle, J. R. (1980). “ Minds, Brains, and Programs.” The Behavioral and Brain Sciences 3, 417-
424, 450-457.

Shneiderman, B. (1983). “ D irect manipulation: A step beyond programming languages.” IEEE
Computer 16(8), 57-69.

Shnei derman, B. (1992). D esi gni ng the U ser Interface: Strategi es for Effecti ve H uman -
Computer Interaction. Reading, MA: Addison-Wesley.

Shoham, Y. (1993). “ Agent Oriented Programming.” Artificial Intelligence 60(1), 51-92.

Siskind, J. M. and D. A. McAllester (1993). “ Nondeterministic Lisp as a Substrate for Constraint
Logic Programming” , Proceedings of AAAI-93.

Sloane, B., D. Levitt, et al. (1986). Hookup!, Hip Software. Software.

Smith, B. C. and C. Hewi tt (1975). A PLASMA Primier. MIT Arti ficial Intel l igence Laboratory
Working Paper 92, October 1975.

Smi th, R. (1987). “ Experiences w i th the Al ternate Real i ty Ki t: An Example of the Tension
Betw een Li teral i sm and M agi c” , Proceedi ngs of SIGCH I+GI’ 87: H uman Factors i n
Computing Systems, Toronto.

Solomon, C. (1986). Computer Environments for Children: A Reflection on Theories of Learning
and Education. Cambridge, Massachusetts: MIT Press.

Solomon, C. J. (1976). Teaching the Computer to Add: An Example of Problem-Solving in an
Anthropomorphi c Computer Cul ture. M IT Art i f i c i al Intel l i gence Lab AI M emo 376,
December 1976.

204 Bibliograpy

Stal lman, R. M. (1981). EMACS: The Extensible, Customizable D isplay Edi tor. Massachusetts
Institute of Technology Artifical Intell igence Laboratory Memo 519a.

Steele, G. L. (1976). Lambda: The Ultimate Declarative. MIT AI Lab AI Memo 379, November
1976.

Steele, G. L. (1980). The Definition and Implementation of a Computer Programming Language
Based on Constraints, PhD thesis, MIT.

Steele, G. L. (1990). Common Lisp: The Language (2nd Edition): Digital Press.

Steele, G. L. and G. J. Sussman (1976). Lambda: The Ultimate Imperative. MIT AI Lab AI Memo
353, March 10, 1976.

Stewart, J. A. (1982). Object Motion and the Perception of Animacy, PhD thesis, Universi ty of
Pennsylvania.

Sutherland, I. (1963). Sketchpad: A Man-machine Graphical Communications System, PhD
thesis, MIT.

Sw eetser, E. (1990). From Etymology to Pragmati cs: M etaphori cal and cul tural aspects of
semantic structure: Cambridge Universi ty Press.

Tanaka, Y. (1993). “ Intell igentPad.” Japan Computer Quarterly(92).

Thórisson, K. R. (1996). ToonFace: A System for Creating and Animating Interactive Cartoon
Faces. MIT Media Laboratory Learning and Common Sense Section Technical Report 96-01.

Tinbergen, N. (1951). The Study of Instinct. Oxford: Oxford Universi ty Press.

Travers, M. (1988). Agar: An Animal Construction Kit, MS thesis, MIT Media Laboratory.

Travers, M . (1988). Animal Construction Ki ts. In Arti ficial Li fe: SFI Series in the Sciences of
Complexity, edited by C. Langton. Reading, MA: Addison-Wesley.

Travers, M. and M. Davis (1993). “ Programming with Characters” , Proceedings of International
Workshop on Intel l igent User Interfaces, Orlando, Florida.

Tu r i n g , A . M . (1 9 3 6) . “ O n c o m p u t ab l e n u m b er s, w i t h an ap p l i c a t i o n t o t h e
Entscheidungsproblem.” Proc. London Math. Soc., Ser 2 42, 2330-265.

Turkle, S. (1984). The Second Sel f: Computers and the Human Spi ri t. N ew York: Si mon &
Schuster.

Turkle, S. (1991). Romatic reactions: paradoxical responses to the computer presence. In
Boundaries of Humanity: Humans, Animals, Machines, edi ted by J. Sheehan and M. Sosna.
Berkeley, CA: University of Cali fornia Press.

Turkle, S. and S. Papert (1991). Epistemological Plural ism and the Revaluation of the Concrete.
In Constructionism, edited by I. Harel and S. Papert. Norwood NJ: Ablex.

Turner, M . (1991). Reading M inds: The Study of Engl i sh in the Age of Cogni ti ve Science.
Princeton, NJ: Princeton Universi ty Press.

Tyrrel l , T. (1993). Computational Mechanisms for Action Selection, PhD thesis, Universi ty of
Edinburgh.

Bibliography 205

Ullman, S. (1984). “ Visual Routines.” Cognition 18, 97-159.

Ungar, D. and R. B. Smith (1987). “ Self: The Power of Simplicity” , Proceedings of OOPSLA '87,
Orlando, Florida.

Winograd, T. (1991). Thinking Machines: Can There Be? Are We? In Boundaries of Humani ty:
Humans, Animals, Machines, edi ted by J. Sheehan and M. Sosna. Berkeley, CA: Universi ty
of Cali fornia Press.

Winston, P. (1982). Learning by Augmenting Rules and Accumulating Censors. MIT Arti ficial
Intell igence Laboratory Report AIM-678.

Winston, P. H. (1992). Artificial Intelligence. Reading, MA: Addison Wesley.

206 Bibliograpy

