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ABSTRACT
In previous decades, researchers have explored the formal foun-
dations of program testing. By exploring the foundations of test-
ing largely separate from any specific method of testing, these re-
searchers provided a general discussion of the testing process, in-
cluding the goals, the underlying problems, and the limitations of
testing. Unfortunately, a common, rigorous foundation has not
been widely adopted in empirical software testing research, making
it difficult to generalize and compare empirical research.

We continue this foundational work, providing a framework in-
tended to serve as a guide for future discussions and empirical stud-
ies concerning software testing. Specifically, we extend Gourlay’s
functional description of testing with the notion of a test oracle, an
aspect of testing largely overlooked in previous foundational work
and only lightly explored in general. We argue additional work
exploring the interrelationship between programs, tests, and ora-
cles should be performed, and use our extension to clarify concepts
presented in previous work, present new concepts related to test
oracles, and demonstrate that oracle selection must be considered
when discussing the efficacy of a testing process.
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1. INTRODUCTION
For several decades, testing has been an important research topic

and a standard part of software development practice. In the 1980s
and early 1990s, several authors explored the theory of testing in
an attempt to put testing research on a solid formal foundation and
provide coherent frameworks for discussion. Notable contributions
include explorations of: the problem of test set selection [16, 17];
the problem of constructing test data adequacy criteria [26, 38, 44];
the need to compare test data adequacy criteria [12, 17, 41]; the
use of input partitioning when constructing test data adequacy cri-
teria [12, 40]; and the use of test hypotheses when selecting test
sets [4, 5, 14]. This body of work largely discusses the founda-
tion of testing—the goals, underlying problems, and limitations of
testing—separate from any specific method of testing.

While these early contributions are valuable and helped shape
the direction of testing research as well as our understanding of
testing practice, this body of work has unfortunately not established
itself as a foundation for continued testing research; new testing
approaches are typically informally described and generally poorly
evaluated. This lack of a formal foundation and rigorous evaluation
of proposed new approaches has been a persistent problem in the
research community [6].

Consider as examples the generally well conducted and highly
influential studies of Rothermel et al. [31], and Wong et al. [42].
Although these studies provide insight into test suite reduction, cru-
cial aspects of the experimental setup such as what test oracle was
used and the nature and structure of the programs under test are
omitted or left implicit, leaving the reader to infer these proper-
ties of the artifacts. This in turn makes it difficult to interpret the
conflicting conclusions reached in the studies. We believe these
problems can be traced to the lack of a common foundation for
empirical testing research, making it difficult—if not impossible—
to conduct, for example, meta-analysis synthesizing the empirical
results from several independent investigations.

In this work, we attempt to remedy this situation and provide
a common framework for empirical testing research by revisiting
work on the formal foundations of testing, highlighting and clar-
ifying issues with the existing work. We have identified two is-
sues with the existing formalizations that we believe should be ad-
dressed. First, the existing formalizations overlook certain factors
influencing testing—notably test oracles—leading to implicit as-
sumptions about testing that may not be true in practice. These
assumptions make it straightforward to prove properties about dif-
ferent aspects of testing, for example, properties about test cover-
age criteria, but such assumptions lead to research results that may
be misleading or may not be generally applicable in real testing
projects. In addition, as mentioned above, such implicit assump-
tions makes comparisons of research efforts difficult.
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Figure 1: Example relationships between testing factors.

Second, most foundational research has focused on narrow as-
pects of the testing problem, for example, criteria for selecting tests
or techniques to generate tests from programs. We believe a holistic
view of the testing problem is essential to move the field forward
and yield practically useful results in testing research, both in terms
of theoretical and empirical results. In particular, the interrelation-
ship between the programs under test, the test set selected, and the
oracle used is not well understood. For example, the effects of pro-
gram structure on the efficacy of structural coverage criteria and the
effect of oracle selection on fault finding have not been adequately
explored in current literature.

The implications of this extend to all testing processes. We have
in our empirical work observed how failing to consider all factors
in testing can impact the efficacy of the testing process, specifi-
cally: how the the structure of the program under test affects the
efficacy of the MC/DC structural coverage criterion [28], and how
the percentage of program state considered by an oracle and the
size of a randomly generated test set jointly influence fault finding
ability [32].

In this paper, we begin to address these issues by first providing a
formal foundation of testing acknowledging the role of test oracles
in the testing process. We then use this framework to explore the
interrelationship between the artifacts involved in software testing.
In particular, we consider how one common implicit assumption—
the existence of a test oracle—affects the results of previous work
on the theory of testing. We find this implicit assumption is key to
existing results, demonstrating, for example, that comparisons be-
tween test coverage criteria must be made with respect to a constant
test oracle; we clarify existing work, demonstrating, for example,
that the spectrum of mutation testing techniques in fact represents
one technique defined in terms of the adequacy of both a test set and
an oracle; and finally we discuss new concepts, defining, for exam-
ple, desirable properties of test oracles such as sound and complete.
Based on our formalization and observations, we identify a collec-
tion of research challenges we see as important to further the fron-
tiers in software testing.

2. A HOLISTIC VIEW OF TESTING
Early work on the testing process focused on test selection, lead-

ing to the definition of test data adequacy criteria by Goodenough
and Gerhart [16] as well as others [17, 40]. Subsequent work
in testing has reinforced this test-selection-centric view of testing,
with one author even observing that the problem of testing is to

“find a graph and cover it” [3].

Unsurprisingly, a large quantity of work explores issues such as

what test coverage criteria to use and how to generate tests satisfy-
ing those criteria.

Nevertheless, some authors have acknowledged and explored the
influence of other artifacts on testing research. In Figure 1, we il-
lustrate the interrelationships between 4 testing artifacts commonly
discussed in the literature: specifications, programs, tests, and ora-
cles. In this context, specifications S represent the abstract, perfect
notion of correctness; the only arbiter of correctness representing
the true requirements of the software—not the possibly flawed re-
quirements as captured in a document or formal specification.

Some of these relationships are straightforward and intuitive. For
example, the relationship between the specification and the other
artifacts is obvious—the program is derived from, and intended to
implement, the specification (for instance, through requirements
capture, architecture, design, and coding, or through the creation
of a formal model and code generation), tests are in a similar way
derived from the specification and are intended to demonstrate exe-
cutions where the program violates the the specification, and, sim-
ilarly, the oracle is based on the specification and is intended to
determine, for each test, if the program has violated the specifica-
tion. The interrelationships between programs, tests, and oracles
are less obvious, however, and warrant further discussion.

It is easy to see that all three artifacts are intertwined in the test-
ing process. For example, consider a stateful embedded program
with a sequence of simple decisions1. In testing such a program,
it is likely that longer test cases will be beneficial, allowing cor-
rupted state to propagate to outputs. It is also likely that a more
powerful oracle considering internal state information will be ben-
eficial since it may be able to detect corrupted internal states early.
In using longer test cases, however, we reduce the benefits of using
an oracle observing internal state, as corrupted state information is
more likely propagate to the output. Thus, the characteristics of the
program suggest two methods of improving fault finding, but the
use of one method diminishes the value of the other. Such issues
involve the largely unexplored interrelationship between programs,
tests, and oracles.

While programs, tests and oracles are intertwined, to manage the
complexity of testing research we tend to think of the artifacts in
terms of pairs. Most testing research has been concerned with the
relationship between programs P and tests T . Examples include
the development of structural coverage criteria, where the adequacy
of a test suite is based on how well it covers syntactic aspects of the
program structure [46] and the creation of automated techniques
to generate tests providing the desired coverage [29, 13] . Work

1A decision in this context is any boolean expression containing a
boolean operator.
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relating other aspects of programs and tests is less common, and
includes work by Rajan et al. on how the structure of the program
affects the efficacy of a test suite providing structural code cover-
age [28], and work by Voas et al. and others demonstrating how the
likelihood of errors propagating to the output can be used to guide
test selection [1, 10, 33].

In comparison, the interrelationships between oraclesO and both
the programs P or the tests T have received relatively little atten-
tion. Concerning the interrelationship between the programs P and
oracles O, Voas et al. explored how testability information can be
used to identify program locations where faults can hide, thus in-
dicating locations where assertions may be placed to improve the
quality of the oracle [35]. Concerning the interrelationship between
tests T and oracles O, there have been a handful of studies inves-
tigating how the oracle and test set used jointly affect fault find-
ing, including work by Memon et al. in the domain of GUI test-
ing [24], work by Briand et al. comparing state-based invariants
and input/expected value oracles [8], and our own work exploring
the joint affect of oracle data and test suite size [32].

The practical implications of this holistic view of testing are
threefold. First, we must develop new theories, techniques, and
tools for finding effective combinations of program characteristics,
tests, and oracles. In the next section, we propose an extension to
Gourlay’s testing framework aimed at addressing the lack of test-
ing theory related to oracles. We provide a formal treatment of
oracles, oracle selection, and oracle properties similar to that pro-
vided for tests and test selection. Note that this formal framework
is intended to provide a conceptual framework that can be used as
a foundation for future work in empirical software testing research,
not as a framework intended to prove obscure (and often unrealis-
tic) properties of the testing process.

Second, empirical research should more accurately reflect the
holistic nature of testing. At a minimum, testing research should
make explicit what is changed (e.g., the coverage criterion) and
what is kept constant (e.g., the structure of the program and the or-
acle). Authors should then clearly state why their experimental pa-
rameters were chosen and argue why they are reasonable. Unfortu-
nately, this has not generally been the case in the literature, leaving
the reader to guess what types of programs and oracles the research
generalizes to. Other researchers have also expressed concerns re-
garding these issues, for example, Briand touches upon some of
these issues in his discussion of validity issues in empirical testing
research [7].

Finally, we must study the interrelationships between artifacts
in greater detail; in particular, we believe greater study on the ef-
fect of test oracles is warranted. Example questions concerning the
relationship between oracles and programs include: “how do we
create suitable oracles for stateful programs where errors may take
significant time to propagate to outputs?”. Example questions con-
cerning the relationship between oracles and tests include: ”given
test coverage criteria sensitive to program structure, which internal
variables should the oracle observe to improve fault finding abil-
ity [28]?”, and more generally, ”given finite testing resources, for
this a program P what combination of tests T and oracleO should
I use to achieve high levels of fault finding?”—maybe improving
the test oracle by inserting more assertions in the code may be a
more cost effective solution than producing more tests.

3. FUNCTIONAL MODEL OF TESTING
Beginning with Goodenough and Gerhart’s seminal work [16], a

significant portion of the research in the theory of testing has used
a functional model for testing, a convention we follow here. We
define our functional model of testing based on Gourlay’s frame-

work [17], extending and modifying it for our discussion. We have
selected Gourlay’s framework as a basis for two reasons. First, a
significant quantity of relevant theoretical work is based on this for-
malization; by extending his framework, we can easily reexamine
this previous work. Second, the framework is easy to understand
and mostly matches our intuitive sense of the testing process.

In Gourlay’s approach, a testing system is defined as a collection
(P, S, T, corr, ok) where:

• S is a set of specifications
• P is a set of programs
• T is a set of tests
• corr ⊆ P × S
• ok ⊆ T × P × S

As in our discussion in the previous section, each specification
s ∈ S represents an abstract, perfect notion of correctness.

The predicate corr is defined such that for p ∈ P , s ∈ S,
corr(p, s) implies p is correct with respect to s. Of course, the
value of corr(p, s) is generally not known; this predicate is thus
theoretical and used to explore how testing relates to correctness.
The predicate ok is defined such that for p ∈ P, s ∈ S, t ∈
T ok(t, p, s) implies that p is judged as correct with respect to
specification s for test t. Furthermore, ok is defined such that
∀p ∈ P, ∀s ∈ S, ∀t ∈ T corr(p, s) ⇒ ok(t, p, s), i.e., if p is
correct with respect to s then ok is true for all tests. The predicate
ok approximately corresponds to what is now called a test oracle
or simply oracle.

While intuitively appealing, there are problems with this frame-
work. First, each testing system has only one possible oracle (ok).
Just as there exist many possible tests and programs, however, there
exist many possible oracles for determining if test executions are
successful [30]. Selecting an oracle is the problem of oracle selec-
tion, and we cannot easily discuss or even formulate this problem
using Gourlay’s framework.

Second, the notion of correctness and how it relates to test or-
acles is—in our opinion—too coarse. If for p ∈ P and s ∈ S,
if corr(p, s) then we know that ∀t ∈ T, ok(t, p, s). However,
there are no requirements on oracles in terms of their effectiveness
in finding faults. For example, the oracle that universally returns
true for all programs and specifications satisfies this relationship.
Furthermore, it will often (always?) be the case that the program p
does not satisfy the specification s, i.e., ¬corr(p, s), in which case
the framework places no constraints on ok.

Both the inability to discuss oracle selection, and the loosely
specified relationship between program correctness and oracle be-
havior create difficulties and ambiguities when discussing the ef-
fectiveness of test selection techniques and test oracles. We there-
fore make two major changes to Gourlay’s definition of a testing
system. First, we remove the predicate ok, replacing it with the set
O of test oracles. We state that an oracle o ∈ O is a predicate:

o ⊆ T × P

An oracle determines, for a given program and test if the test passes.
Second, we add a predicate defining correctness with respect to a
test t ∈ T . This predicate is2:

corrt ⊆ T × P × S

The predicate corrt(t, p, s) holds if and only if the specification s
holds for program p when running test t. Obviously,

∀p ∈ P, ∀s ∈ S, corr(p, s) ⇒ ∀t ∈ T corrt(t, p, s)
2Note that the t subscript in corrt is used to differentiate the pred-
icate from Gourlay’s corr predicate. It does not relate to any spe-
cific test t
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In summation, we define a testing system to be a collection
(P, S, T,O, corr, corrt) where:

• S is a set of specifications
• P is a set of programs
• T is a set of tests
• O is a set of oracles
• corr ⊆ P × S
• corrt ⊆ T × P × S

To keep things general, we make no attempt to define what ex-
actly constitutes a test, oracle, specification, or program. We state
that a test (sometimes called test data) is a sequence of inputs ac-
cepted by some program. As in Gourlay’s framework, we consider
a specification s ∈ S to be the true (idealized) specification of
the desired functionality of program P , possibly including inter-
nal state behavior. As mentioned earlier, it is quite likely that the
stated software requirements or formal specifications used in the
development of a program differ from s. Finally, we note that the
predicates are partially defined: not all tests can be executed on all
programs, and not all oracles can be used to determine if a test t is
successful when run against a program p.

These modifications to the framework allows us to have a more
realistic discussion of the testing problem and explore the interre-
lationships between programs, tests, and oracles.

3.1 Test Oracles
A test oracle determines if the result of executing a program p

using a test t is correct. There are many methods of creating an or-
acle, including manually specifying expected outputs for each test,
monitoring user-defined assertions during test execution, and veri-
fying if the outputs match those produced by some reference imple-
mentation, for example, an executable model. A uniform method
of describing the numerous types of oracles is outside the scope of
this work.

Nevertheless, we can define general oracle properties. We be-
gin by defining oracle properties related to correctness of the pro-
gram being testing, borrowing terms commonly used in software
verification. An oracle is complete with respect to program p and
specification s for a test case t if:

corrt(t, p, s) =⇒ o(t, p)

Complete oracles relate to correctness as we intuitively expect: if
the result of running t over p is correct with respect to s, the oracle o
will state the test passes. Most oracles discussed in testing research
and used in practice are designed to be complete, though like all
software engineering artifacts, oracles are imperfect and may con-
tain flaws. For example, a common problem is an oracle that is too
precise. The oracle may have been defined to expect an output of
1 1

3
but the program generates 1.3334. In the application domain,

this accuracy in the computation is perfectly fine and the program
is thus correct, but the oracle will reject the test. Nevertheless, in
order to discuss the efficacy of the testing process, researchers of-
ten assume the oracle used is complete. Note that Gourlay’s ok
predicate is by definition complete if corr(p, s).

An oracle is sound with respect to p and s for a test case t if:

o(t, p) =⇒ corrt(t, p, s)

Sound oracles represent the conventional wisdom in testing that
“testing may be imperfect, but at least we know that the program
is correct for the tests we have run.” For this statement to hold,
we must use a sound oracle. Unfortunately, in practice, oracles are
rarely sound. For example, an oracle might only observe a sub-
set of the program outputs (and/or the program’s persistent state)

and would naturally miss any faults manifested in the variables (or
state) not observed by the oracle. For this reason, we do not assume
sound oracles in our discussion.

We say that an oracle is perfect with respect to p, s, and t if it is
both sound and complete. We can now generalize the definitions of
complete, sound and perfect to test suites and again to the entire set
of tests. For example, an oracle is perfect for p and s if:

∀t, o(t, p) ⇔ corrt(t, p, s).

As mentioned above, oracles need not be sound nor complete;
oracles may both fail to detect faults and may detect faults that do
not exist. Heuristic oracles may be neither sound nor complete,
and may be used in domains like image processing where precisely
defining correctness is difficult or time consuming [23]. Relating
this type of oracles to correctness would require probabilistic argu-
ments and is beyond the scope of this work. Weyuker informally
discusses these oracle characteristics in [37], noting several practi-
cal challenges concerning test oracle construction; we are unaware
of any formulation of these oracle properties however.

In this paper, we will often consider oracles which base correct-
ness partly on the internal state of the program. Such oracles may
be constructed if the specification defines behaviors internal to the
program (e.g., state invariants or class invariants). In some situa-
tions, these oracles will detect faults that do not propagate to the
output (at least not immediately). We use Avizienis and Laprie’s
terminology [2], in which a fault is defined as a system state where
a design error manifests. Thus, detecting a fault is not synonymous
with detecting a failure.

3.1.1 Oracle Data
As noted above, the problem of constructing an oracle, while in

principle simply involved partitioning each (t, p) tuple into True
and False outcomes, is quite complex in practice. Many factors in
oracle selection are dependent on the method underlying the con-
struction of the oracle; these factors are outside the scope of our
framework.

One factor present in all oracles, however, is the portion of the
program state considered by the oracle, which we term the oracle
data. For example, a commonly used oracle in the testing literature
is one which determines correctness for test t by comparing the
outputs produced by the program to outputs specified in the oracle.
The oracle data for this oracle is the set of outputs. If the oracle
were instead to consider the value of every internal variable as well
as the output, the oracle data would be the set of program variables
(internal as well as outputs). For simplicity, in this paper we limit
our discussion to oracles where the oracle data is a set of variables.

In our discussions, we will use as examples oracles that operate
by comparing values produced by the program for some test against
expected values for said tests. We will refer to such oracles as
input/expected value oracles. When presenting several oracles for
the same system, these oracles will typically differ in their oracle
data.

Highly related to our discussions in this section, Richardson et
al. discuss the oracle problem—the need for testers to provide a
test oracle for the testing process [30]. This work has served as the
standard for oracle terminology; the authors define the oracle infor-
mation and the oracle procedure. The oracle information specifies
the correct behavior, and the oracle procedure verifies the test exe-
cution with respect to the oracle information.

We consider the issues of oracle information and oracle proce-
dure to be specific to the method of oracle construction. Defining
precisely what constitutes oracle information and what constitutes
oracle procedure is difficult, and we therefore make no attempt to
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incorporate them into our framework. We instead opt to use defini-
tions that are useful in discussing all oracles (such as complete and
oracle data).

3.2 Test and Oracle Adequacy
Gourlay defines a test method M as a function:

M : P × S → T

Thus, a test method takes a program and a specification and gen-
erates a test. Gourlay appears to also consider test methods

M : P × S → 2T ;

that is, test methods producing sets of tests. Nevertheless, the use of
test coverage criteria (also called test data adequacy criteria [38]
or test selection criteria [16]) where one or more (or none) test
sets are acceptable for a given program and specification is much
more common in both the testing literature and in practice. We thus
adopt it here, using the predicate definition originally presented by
Weiss [36]:

TC ⊆ P × S × 2T .

We are exploring how test oracles influence the testing process.
We therefore propose an analogous concept for oracles, termed an
oracle adequacy criterion. An oracle adequacy criterion OC is a
predicate:

OC ⊆ P × S ×O.

This predicate reflects how oracle selection is usually done in prac-
tice: a single oracle is used to evaluate the result of every test. Most
testing approaches used in practice or described in the testing liter-
ature can be described using TC andOC . However, it is possible to
define adequacy of the testing process in terms of both the test set
and the test oracle used, i.e., define adequacy as a pairing of a test
set and an oracle. We define a complete adequacy criterion as the
following predicate:

TOC ⊆ P × S × 2T ×O

For example, a stateful program responsible for mode switching
in an avionics systems may be best combined with a test suite pro-
viding MCDC coverage and an oracle observing a majority of the
internal state variables in addition to all outputs. In Section 5, we
will explore an existing example of a complete adequacy criterion.

4. ORACLE COMPARISONS
By extending Gourlay’s framework with a set O of oracles, we

have introduced the problem of oracle selection: the problem of
selecting an oracle o from a set of possible oracles. Just as with
the problem of test selection, we desire some method of estimating
the relative usefulness of oracles. Unfortunately, we are unaware of
any comparison relations specific to oracles (though mutation test-
ing represents a method of comparing combinations of test inputs
and test oracles; see Section 5.2). To facilitate such comparisons,
we present several possible oracle comparison relations, based on
the test coverage criteria comparison relations explored by several
authors [17, 41] and discussed in this paper in Section 5.1.

Our oracle comparisons, like test coverage criteria comparisons,
are based on the ability of the oracles to detect faults. Recall that
an oracle is complete with respect to p and s if for all tests t,

corrt(t, p, s) =⇒ o(t, p)

in other words, when a fault is detected by o, the fault is real, i.e.,
it represents an error in the program. As most oracles discussed

in testing research are designed to be complete, the oracle compar-
isons we present assume complete oracles. Comparisons between
non-complete oracles would require a different approach account-
ing for oracles signaling faults when none have occurred.

4.1 Power Comparison
Our first relation is based on Gourlay’s definition of power [17].

We state an oracle o1 has a power greater than or equal to oracle
o2 with respect to a test set TS (written o1 ≥TS o2) for program p
and specification s if:

∀t ∈ TS, o1(t, p) ⇒ o2(t, p)

In other words, if o1 fails to detect a fault for some test, then so
does o2. If o1 ≥TS o2, it is possible that o1 and o2 are equally
powerful, i.e.,

∀t ∈ TS, o1(t, p) ⇔ o2(t, p).

We may wish to state that some oracle o1 is strictly better than
an oracle o2. We state that o1 is more powerful than o2 for test set
TS (o1 >TS o2) if:

∀t ∈ TS, o1(t, p) ⇒ o2(t, p) ∧
∃t′ ∈ TS,¬o1(t′, p) ∧ o2(t

′, p)

In other words, o1 ≥TS o2 and for some test t ∈ TS, o1 detects a
fault where o2 fails to detect a fault.

0: var: x : int = 0
1: var: y : int = 0
2: if input() = true:
3: x = 1
4: else:
5: y = 1

Figure 2: Oracle Comparison Example Program

Note that power is relative to a fixed test set TS. Given different
test sets, the relative power of oracles may vary. Consider the sam-
ple program p in Figure 2. Consider two oracles, ox and oy , with
both oracles being simple input/output oracles, and with ox having
oracle data x and oy having oracle data y. Consider two test sets
Tt and Tf , each with exactly one test, such that Tt sets input() to
true and Tf sets input() to false. Assume both lines 3 and 5 are
incorrect (e.g., wrong constant is assigned). Then:

ox >Tt oy

oy >Tf ox

For some pairs of of oracles, it may be the case that:

∀TS ⊆ 2T , o1 ≥TS o2

In other words, o1 has power greater than or equal to o2 for all
possible test sets TS. In such a case we state that oracle o1 has
power universally greater than or equal to oracle o2 (written o1 ≥
o2). For example, consider an oracle oa defined in terms of a set
of assertions A, where ¬oa(t, p) indicates that test t violates an
assertion a ∈ A. Let A′ be an additional set of assertions, and
let oracle oa2 be an oracle defined in terms of a set of assertions
A ∪ A′. As the set of assertions used by oa2 is a superset of the
set of assertions used by oa, for any test set TS, oa2 ≥TS oa

and thus oa2 ≥ oa. A similar situation occurs when an oracle o1
is observing a superset of the oracle data observed by an oracle
o2, for example, o2 observes the outputs from the program and o1
observes additional internal state information. Given that both o1
and o2 are complete, o1 ≥ o2.
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4.2 Probabilistic Comparison
The power relation is a fairly restrictive relation between oracles:

if o1 ≥TS o2, then not only does o1 detect more faults, it must de-
tect every fault detected by o2. While this relationship will often
hold for oracles constructed using the same basic principle (e.g.,
sets of assertions), we desire a method of comparing the effective-
ness of all oracles, i.e., a total comparison relation.

Weyuker et al. recognized this problem with respect to test cov-
erage criteria and have defined a more useful probabilistic com-
parison between test criteria called PROBBETTER [41]. (We will
hereafter refer to PROBBETTER as PB.) A criterion C1 is PB than
C2 with respect to program p and specification s if a randomly se-
lected test set satisfyingC1 is probabilistically more likely to detect
a failure in p than a randomly selected test set satisfying C2 (writ-
ten asC1 PB C2). A ‘randomly selected test set’ refers to a test set
drawn from the set of all possible test sets satisfying a criterion C.
As most criteria are monotonic, the number of test sets satisfyingC
is often very large or infinite [38]. Consequently, it can be difficult
to prove that C1 is PB than C2; nevertheless, empirical studies of
test coverage criteria effectiveness can be used to approximate this
relationship (indeed, this is arguably one of the primary contribu-
tions of such studies), thus, rendering this criterion comparison and
other similar probabilistic comparisons useful.

We base our total oracle comparison on the Weyuker et al. PB
relation. We state an oracle o1 is PB than oracle o2 with respect to
a test set TS

o1 PBTS o2

for program p if for a randomly selected test t ∈ TS, o1 is more
likely to detect a fault than o2. We state o1 is universally PB than
o2 if o1 PBT o2, where T is the entire set of tests that can be
run against p. (This is conceptually different from the definition of
universally greater power outlined above.)

We can show power is a strictly stronger relation than PB when
applied to oracles, i.e., for test set TS and program p,

o1 >TS o2 ⇒ o1 PBTS o2.

Assume we have oracle o1 and o2 such that for test set TS and
program p, o1 >TS o2. For any test t ∈ TS, one of the following
is true:

o1(t, p) ∧ o2(t, p) (1)
¬o1(t, p) ∧ ¬o2(t, p) (2)
¬o1(t, p) ∧ o2(t, p) (3)

In other words, for all t ∈ TS it must be true that (1) neither
oracle detects a fault, (2) both oracles detect a fault or (3) o1 detects
a fault while o2 does not. Based on the definition of oracle power,
it cannot be the case that o2 detects a fault if o1 does not detect a
fault. Clearly, given an randomly selected t ∈ TS, o1 is at least as
likely to detect a fault as o2. Furthermore, we know there exists at
least one t ∈ TS such that ¬o1(t, p) ∧ o2(t, p) (note the use >TS)
and thus for at least one t ∈ TS, o1 is detects a fault that o2 does
not. Therefore o1 PBTS o2.

4.3 Oracle Metrics
Arguably, one of the core contributions of testing research is

evaluating how testing approaches relate to one another. Unsurpris-
ingly, then, a number of metrics have been proposed for discussing
the set of programs P and the set of tests T , including software
testability [33], various test coverage criteria, and the test coverage
criteria comparison relations of power, PROBBETTER, subsumes,
etc. [41].

However, we are unaware of any metrics specific to test oracles.
In this section, we have proposed two basic oracle comparison met-
rics, and have shown that the more restrictive (but non-total) com-
parison, power, implies the less powerful, but total comparison,
PB. These metrics allow us to compare oracles, and highlight a po-
tential (albeit in retrospect rather obvious) avenue for research into
oracles—analytically and empirically comparing different oracles,
as is commonly done for test coverage criteria. Future work in or-
acles may yield more metrics not explicitly based on fault finding
ability. In the remainder of the paper, we will explore how our ex-
tended framework explicitly considering test oracles influences the
testing process.

5. APPLICATIONS TO PREVIOUS WORK
In this section, we revisit some earlier influential work in test-

ing, exploring how explicitly considering a test oracle affects the
results. We also explore how existing research can be used to dis-
cuss problems related to test oracles.

5.1 Comparing Coverage Criteria
A significant portion of the theoretical and empirical testing re-

search is concerned with methods of comparing coverage criteria.
While several methods have been proposed, they implicitly assume
the presence of an oracle. This can lead to conclusions relying on
key assumptions that are either unstated or minimally discussed.
If we instead consider that the oracle may vary, we can arrive at
conclusions that are different from published results in subtle, but
important ways.

5.1.1 Power Comparison
We first illustrate why oracles are relevant using the power rela-

tion, first proposed by Gourlay for test methods and subsequently
adjusted by Weiss [36] for use with test coverage criteria. Weiss
states a criterion C1 is at least as powerful as C2, written as C1 ≥
C2, if for any program p and specification s, if all test sets satisfy-
ing C2 exposes an error in p then so do all test sets satisfying C1.
Note here that the definition requires all test sets satisfying the cri-
terion reveal the fault—an unlikely occurrence in practice. Weiss’s
discussion completely omits the notion of an oracle; we assume a
constant complete oracle o is used.

We restate the definition of the power of a test coverage criterion
using our framework. A criterion C1 is at least as powerful as a
criterionC2 with respect to a complete oracle o (writtenC1 ≥o C2)
if:

∀p ∈ P, s ∈ S, T1 ∈ C1, T2 ∈ C2 :

(∃t2 ∈ T2¬o(p, t2) ⇒ ∃t1 ∈ T1¬o(p, t1))
In other words, if all test sets satisfying C2 are guaranteed to find
a fault for p when using oracle o, then so are all test sets satisfying
C1. This formulation makes the role of the oracle explicit—the
relative power of a test coverage criterion is defined with respect to
a constant oracle.

It is easy to show that the oracle is relevant in the power relation.
Consider the statement (ST ) and branch (BR) coverage criteria.
As subsumption between criteria implies power [41], we know that
BR ≥ ST . Generally speaking, this is a vacuous relationship,
as neither coverage is guaranteed to find faults for most programs
p. Nevertheless, assume there exists a program p which has some
fault f revealed by every test set satisfying statement coverage (and
thus every test set satisfying branch coverage), but does not always
propagate to the output (e.g., an incorrect constant is used).

Let oout be an input/expected value oracle considering only the
outputs, and let oall be an input/expected value oracle consider-
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ing both the outputs and the internal variables. If a test set TBR

satisfying branch coverage is paired with oout, and a test set TST

satisfying statement coverage is paired with oall, then TST , oall is
guaranteed to detect f , but TBR , oout is not. Thus, the power re-
lation for test coverage criteria requires the same oracle to be used
with both coverage criteria.

5.1.2 Probabilistic Comparison
The power relation between test coverage criteria is known to

be vacuous for most criteria and is thus of limited value [41]. We
extend the Weyuker et al. PB relation [41] to consider oracles ex-
plicitly using the same notation and terminology used for power
above.

0: var: temp : int = 0
1: var: out : int = 0
2: forever:
3: out = temp
4: temp = input() * 2

Figure 3: PROBBETTER Example Program

To demonstrate the effect of oracles on PB, consider the follow-
ing example. Let p be the program in Figure 3, and let the spec-
ification s state that out at iteration i should be equal to the input
at iteration i − 1, or 0 if i = 0. Assume the number of possible
inputs is bounded at 100, with a range of -49 to 50. Let TL1all and
TL2sin be coverage criteria such that for a test set TS, TL1all is
satisfied if TS contains every test of length 1 and no other tests,
and TL2sin is satisfied if TS contains exactly one test of length
2. (We define length as the number of loop iterations.) Let oout

be an oracle with oracle data out, and let oall be an oracle with
oracle data out and temp. Both oracles are input/expected value or-
acles, signaling a fault when the value of a variable is incorrect. out
is considered incorrect when s is violated and temp is considered
incorrect when the value is not equal to the prior input.
p contains a fault, as line 4 should not double the input. Con-

sequently, the value of out at iteration i is only equal to the input
at iteration i − 1 if the input at iteration i − 1 was 0. We make
two observations about detecting this fault. First, to detect the fault
we must use an input other than 0, as p satisfies s for 0. Second,
the fault requires at least least two inputs to reach the output, and
thus out will be correct for all tests of length one. Consequently,
no test set satisfying TL1all will detect the fault using oracle oout,
while all test sets satisfying TL1all will detect the fault using oall.
Furthermore, most test sets satisfying TL2sin will detect the fault
using either oracle; when using oout, only tests in which the first
input is 0 will fail to detect the fault, while when using oall only
the test in which both inputs are 0 will fail to detect the fault.

Let Prob(C,O) be the probability of detecting a fault when us-
ing oracle O and a randomly selected test set satisfying criteria C.
We can state:

Prob(TL1all, oout) = 0.0

Prob(TL1all, oall) = 1.0

Prob(TL2sin, oout) = 0.99

Prob(TL2sin, oall) = 0.9999

Thus, for program p and specification s:

TL2sin PBoout TL1all

TL1all PBoall TL2sin

5.1.3 Implications
These results highlight the relationship between oracles, tests,

and programs on the efficacy of the testing process. The relation-
ship between oracles and tests can easily be seen from these results.
Both the power and PB relation were defined to compare the effi-
cacy of the test coverage criteria (with respect to a program and
specification in the case of PB). However, it is clear that oracles
cannot be ignored when discussing test selection; to do so may
yield misleading or incorrect conclusions.

While less obvious, these results also highlight the relationship
between oracles and programs. The construction of the program in
Figure 3 is such that the error on line 4 produces incorrect internal
state for 99% of the inputs, but cannot affect the output unless a
test length of at least 2 is used. If instead the error had occurred
on line 3 (i.e., out was doubled and temp was not), the program
would be semantically equivalent in terms of input/output behav-
ior, but PB would be unaffected by the oracle used. That such a
subtle change can completely negate the benefit of using a more
powerful oracle indicates that as with test selection and oracles, we
cannot ignore program characteristics when discussing oracle se-
lection. We further explore the relationship between programs and
test oracles later in this section.

5.2 Mutation Testing
Mutation testing is a test selection method based on selecting a

set of tests to detect small (usually syntactic) changes in the pro-
gram [11]. Briefly, to select a set of tests satisfying mutation cover-
age for a program p, we first produce a set of mutants M that differ
from p in small ways (e.g., change arithmetic operators, swap vari-
able names, etc.). We then select a set of tests T such that each
semantically different mutant m ∈ M is distinguished from p.

Several types of mutation testing have been proposed. In strong
mutation testing [11], we must find a set of tests T such that ∀m ∈
M, ∃t ∈ T, p(t) 6= m(t), i.e., the output of each faulty pro-
gram m differs from p’s output for some test t. In weak mutation
testing [21], we need only find a set of tests T such that for each
m ∈ M , the internal state of the p and m differs for some test t.
In [43], Woodward and Haywood note that mutation testing exists
on a spectrum, with strong and weak mutation on opposite ends of
the spectrum.

This spectrum of approaches is primarily differentiated by the
method used to determine if a mutant has been detected. Recall
that in Section 3.2 we defined a complete adequacy criterion to
be an adequacy criterion defined in terms of both the test set and
the oracle used. If we view the method used to distinguish the
mutants M from the program p as an oracle, we can reformulate
the spectrum of mutation testing approaches as a single, complete
adequacy criterion.

For the set of mutants M , mutation adequacy MutM is satisfied
for program p, specification s, test set TS, and oracle o if:

MutM (p× s× TS × o) ⇒ ∀m ∈ M, ∃t ∈ TS : ¬o(t,m)

In other words, for each mutant m ∈ M , there exists a test t such
that the oracle o signals a fault.

This formulation of mutation testing differs slightly from the
usual approaches to mutation testing, as the oracle is part of the
actual testing process, whereas generally the method used to dis-
tinguish M from p is only used to select tests. Nevertheless, this
formulation captures the core of mutation testing—constructing a
testing process that is guaranteed to detect a set of pre-specified
faults—without focusing on how the faults are detected. A very
strong oracle can be used with a small number of simple tests; con-
versely, a weak output-only oracle can be used with a tests that
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ensure the mutant faults propagate to the output.
The relationship between the program being tested, the tests se-

lected, and the oracle used is clear in this formulation of mutation
testing. From the program p, a set of mutants M are generated.
Using the set of mutants, an oracle o and a set of tests TS are se-
lected such that each mutant is detected. If we change one testing
factor, the other factors must also change accordingly to satisfy the
criterion—a different program yields different mutants, thus requir-
ing different tests and/or a different oracle; a weaker oracle may
require more or different tests; simpler tests may require a more
powerful oracle. We believe the close relationship between fac-
tors in mutation testing to be worth considering—mutation testing
is based on detecting faults, and detecting faults is the goal of any
testing process. Insights related to mutation testing seem likely to
hold in many testing processes.

5.3 Testability
The testability of a software system, as defined by Voas et al.,

is the probability that the system will fail if faulty [34]. Generally,
methods of computing software testability estimate the probability
of a fault in a specific program location (e.g., a statement) propa-
gating to the output, usually with respect to an input distribution
or specific input. By computing the testability of each program
location, it is argued, we can focus testing resources on program
locations that have low probabilities of propagating errors. As a
representative technique, we explore only work led by Voas related
to the PIE (Propagation, Infection, and Execution) method [33, 34,
35].

Voas et al. define several testability metrics [33]. Consider the
propagation estimate metric, denoted ψl,a. The propagation es-
timate is the estimated probability that a perturbed value of a at
location l will affect the output. In practice, measuring testability
is about estimating failure probabilities, and ψl,a is therefore used
to estimate the probability that a, if incorrect, will cause the pro-
gram to fail. Consequently, ψl,a only makes sense if we assume the
presence of an oracle defined in terms of the outputs. If we instead
consider that the oracle may not be defined in terms of the outputs,
the propagation estimate above becomes less informative—we are
not interested in the probability of a fault propagating to any out-
put, we are interested in the probability of a fault being detectable
by the oracle used.

To account for the oracle, we redefine propagation estimate with
respect to an oracle o, denoting it ψl,a,o. This redefined propaga-
tion estimate is the estimated probability that a perturbed value of a
at location l will affect a variable in the oracle data of o. This metric
thus estimates the probability that a fault at a will be detectable by
oracle o. We can show that given an arbitrary o ∈ O, ψl,a,o is not
necessarily equal to ψl,a. Suppose we have a program p, a set of
tests t, and three oracles, oo and ov and oa. Let oo be an oracle with
oracle data containing every output and no other variables (i.e., the
oracle assumed by ψl,a), let ov be an oracle considering the single
internal variable v, and let oa be an oracle considering the single
variable a. Let 1.0 > ψl,a,oo > 0.0 and let a be some variable
defined after the last assignment of v (thus a cannot propagate to
v). Therefore:

1.0 > ψl,a,oo > 0.0

ψl,a,ov = 0.0

ψl,a,oa = 1.0

ψl,a,oa > ψl,a,oo > ψl,a,ov

ψl,a,oa > ψl,a > ψl,a,ov

We can see that in order to accurately use testability information to

guide software testing, we must account for the oracle used. If we
do not, we may select tests likely to propagate errors to variables in
which we are not interested, or we may direct resources to increase
testing of parts of the program unlikely to propagate errors to the
output, ignoring the fact that these parts of the program may already
be covered by the oracle data.

5.3.1 Effect on Oracle Selection
Software testability is often proposed as a method of directing

test selection; by determining which parts of the program are and
are not likely to hide faults, we can select tests proportionally.
However, software testability can also be used to guide oracle se-
lection.

Consider the previous example, assume the variable a is unlikely
to propagate to the output. If we wish to improve fault finding, we
can select tests aimed at improving the probability of a propagat-
ing to the output, or we can use a stronger oracle with oracle data
containing a variable to which an error in a is likely to propagate.
This leads to the observation that variables with low propagation
estimates represent opportunities for increasing the oracle power.
It then naturally follows that if all variables in the program have
high propagation estimates, increasing the oracle data is unlikely
to significantly improve the oracle power. Note here that the former
observation has been alluded to by Voas and Miller, who proposed
using testability to guide the creation of assertions [35].

5.3.2 Implications
Like mutation testing, testability metrics highlight the close in-

terrelationship between programs, test sets, and oracles. Certain
faults may be difficult to uncover in a program p through testing.
By computing the testability of p, we can determine where these
faults are likely to hide, and then direct testing resources—both in
terms of tests and oracles—to finding them. Voas suggests adding
tests to better exercise parts of the code likely to hide faults [33],
thus using testability information to improve the testing process.
As noted above (and by Voas [35]) we can also use testability in-
formation to select better oracles. Clearly, doing both may be un-
necessary; if we use testability information to select a better oracle
and thus increase the testability, we may no longer need additional
tests. Similarly, given a large number of tests compensating for
a low propagation estimate, selecting a better oracle may provide
little improvement.

6. ADDITIONAL RELATED WORK
We have discussed several related works throughout this paper.

In this section, we discuss additional related works, with a focus
on work in the theory of testing. To the best of our knowledge, our
work is the only foundational work focused on how test oracles in-
fluence the testing process, though Weyuker has an interesting dis-
cussion on practical difficulties encountered in testing practice [37].

Goodenough and Gerhart’s seminal work outlines a theory of
testing based on test data selection [16]. Weyuker et al. [40], Budd
and Angluin [9], and Gourlay [17] subsequently highlight problems
in this theory; nevertheless, Goodenough and Gerhart’s ideal of a
testing criterion capable of finding all faults in a program captures
the general goal of test selection and subsequent theories of pro-
gram testing generally focus on methods of test selection. Gourlay
presents a mathematical framework for testing [17], and uses it to
re-interpret previous work by Goodenough and Gerhart [16], How-
den [20], Gellar [15], and Weyuker [40].

There exists a large body of formal and semi-formal work on
the specific problem of test selection criteria. Weyuker et al. pro-
poses a set of axioms for test data adequacy criteria that charac-
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terize “good” test data adequacy criteria [38]. This idea is further
discussed by Zhu and Hall [44, 45], by Parrish and Zweben [26,
27], and by Weyuker again [39]. Formal analysis of methods of
comparing test selection criteria has been performed by many au-
thors, including Weyuker, Weiss and Hamlet [41], and by Frankl
and Weyuker (specifically for partition testing methods) [12]. Hi-
erons illustrates how the presence of test hypotheses and fault do-
mains influence comparison of test selection criteria [19].

Several theories of program testing based on test selection exist.
Morell introduces a theory of fault-based testing in which the goal
of testing is to show the absence of a certain set of faults [25]. Ham-
let presents an outline of a theory of software dependability arguing
that the foundations of software testing should be statistical in na-
ture [18]. Zhu and He propose a theory of behavior observation for
testing concurrent software systems [47].

Bernot, Gaudel and other authors have developed a theory of
testing based on formal specifications [14, 4, 5]. In this work, they
define a testing context as a triple (H,T,O) where H is a set of
testing hypotheses (i.e., assumptions) about the program and spec-
ification, T is a set of tests, and O is a test oracle. This work uses
algebraic specifications as the basis of testing; tests are created
based on the axioms of the algebra that define the program inter-
face. Gaudel notes that it is not sufficient to provide a statement
of correctness (specification) and program, as it is often the case
that certain parts of the program necessary to ascertain correctness
are not observable, e.g., “opaque” type equality and internal com-
ponent state [14]. The oracle defines the often imperfect mapping
between the specification of correctness and what it is possible to
observe about the outcome of a test. The authors also discuss the
relationship between testing hypotheses and test selection criteria,
and the need for test oracles. Note that this body of work is in terms
of algebraic sorts and is not applicable to most real-world testing
situations; furthermore, the formalization is quite terse.

7. CONCLUDING REMARKS
In this paper, we have aimed to provide a foundation for software

testing research—in particular empirical testing research—that is
better suited for the task than previous attempts. In particular, we
include the notion of test oracles in the framework and point out the
crucial interrelationship between tests, programs, and oracles. To
accomplish our goals, we extended Gourlay’s well known frame-
work to account for oracles, allowing us to discuss the problem of
oracle selection and explore oracle properties. We then continued
to reexamine previous work in testing, demonstrating the effect of
explicitly considering oracles. It is worth reiterating that our goal is
not yet another formalization of software testing; our goal is to pro-
vide solid foundation for the future empirical exploration of soft-
ware testing. Given our results, we make two recommendations
related to future testing research directions.

First, in both theoretical and empirical testing research we must
acknowledge all factors influencing the efficacy of a testing ap-
proach; we must state and defend our all relevant assumptions. We
are often interested in exploring only one or two aspects of the test-
ing process. Nevertheless, we must be aware that our results are
influenced by other factors, for example, the choice of oracle. In
some cases, simply making our assumptions explicit is sufficient.
This was the case in the definition of the PROBBETTER relation
for test coverage criteria for example—the results were sound, but
only with respect to a specific oracle.

In other cases, we must argue that our assumptions are reason-
able. This is particularly important in empirical testing research
since it is labor intensive and time consuming and, thus, is gener-
ally only capable of thoroughly exploring one factor at the time,

holding other factors constant. Authors must explicitly chose con-
stant factors, argue why they were chosen and discuss the level of
generalizablity resulting from these choices. For example, in [10]
Chen et al. explore the effect of fault exposure estimates on the ef-
ficacy of the testing process. This is a exceptionally well conducted
study; nevertheless, the results are dependent on the tests used (cat-
egory partitioning, with manually generated tests), the oracle used
(presumably output-only), and the characteristics of the programs
studied (the popular Siemens programs [22]). By placing a greater
emphasis on these factors, the ability of other researchers to in-
terpret and apply the results could be greatly improved—ignoring
or leaving assumptions unstated or implicit makes interpreting and
comparing empirical studies impossible and hinders progress in the
field.

This leads to our next recommendation; greater emphasis should
be placed how combinations of factors influence the testing pro-
cess. Some work in this area, discussed previously, has been done.
Nevertheless, we strongly believe that more work exploring how
combinations of factors related to the program under test, the tests
themselves, and the oracle used influence the testing process is nec-
essary to better understand and make improvements in the efficacy
of the testing process. For example, questions such as how to mate
a coverage criterion with a suitable oracle and what coverage crite-
rion suits a particular program structure have not yet been system-
atically addressed.
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