
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Peer Reviewed Articles Chemistry Department

5-2006

Programs to Compute Distribution Functions and Critical Values Programs to Compute Distribution Functions and Critical Values

for Extreme Value Ratios for Outlier Detection for Extreme Value Ratios for Outlier Detection

George McBane
Grand Valley State University, mcbaneg@gvsu.edu

Follow this and additional works at: https://scholarworks.gvsu.edu/chm_articles

 Part of the Chemistry Commons, and the Statistics and Probability Commons

ScholarWorks Citation ScholarWorks Citation
McBane, George, "Programs to Compute Distribution Functions and Critical Values for Extreme Value
Ratios for Outlier Detection" (2006). Peer Reviewed Articles. 33.
https://scholarworks.gvsu.edu/chm_articles/33

This Article is brought to you for free and open access by the Chemistry Department at ScholarWorks@GVSU. It
has been accepted for inclusion in Peer Reviewed Articles by an authorized administrator of ScholarWorks@GVSU.
For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/chm_articles
https://scholarworks.gvsu.edu/chm
https://scholarworks.gvsu.edu/chm_articles?utm_source=scholarworks.gvsu.edu%2Fchm_articles%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=scholarworks.gvsu.edu%2Fchm_articles%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.gvsu.edu%2Fchm_articles%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/chm_articles/33?utm_source=scholarworks.gvsu.edu%2Fchm_articles%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

JSS Journal of Statistical Software
May 2006, Volume 16, Issue 3. http://www.jstatsoft.org/

Programs to Compute Distribution Functions and

Critical Values for Extreme Value Ratios for

Outlier Detection

George C. McBane
Grand Valley State University

Abstract

A set of FORTRAN subprograms is presented to compute density and cumulative
distribution functions and critical values for the range ratio statistics of Dixon (1951, The
Annals of Mathematical Statistics) These statistics are useful for detection of outliers in
small samples.

Keywords: Dixon’s r, outlier detection, gross errors, Q test.

1. Introduction

Dixon (1951) described a set of statistics for the purpose of detecting outliers in simple data
sets so that they could be excluded from subsequent analysis. For a set of n observations
xi, ordered such that x1 ≤ x2 ≤ . . . ≤ xn, the statistics are defined by rj,i−1 = (xn −
xn−j)/(xn−xi). The first subscript on the r symbol indicates the number of outliers that are
suspected at the upper end of the data set, and the second subscript indicates the number
of outliers suspected at the lower end. Dixon gave analytic formulas for the density and
cumulative distribution functions for r10, r11, r12, r20, r21, and r22 for a few small values of
n, and presented numerically generated tables of critical values for each of those statistics for
n ≤ 30.

Dixon (1950) described the use and performance of these “range ratio” statistics for the pur-
pose of rejecting outliers, and Dixon (1950); Beckman and Cook (1983); Barnett and Lewis
(1984) and Hampel (1985) compared them to other approaches to the same problem. Dixon’s
ratios and many other approaches share the weakness that the user must guess the number
of outliers that exist in the data set, and the tests often fail if the guess is wrong. In other
ways Dixon’s tests perform as well as or better than most other tests and they are very easy
to use. Dixon’s tests have become a standard for outlier rejection in analytical chemistry and

http://www.jstatsoft.org/

2 Distributions for Dixon’s Extreme Value Ratios

are used in other fields as well. Dixon’s r10 is also called Q, and the outlier rejection test
using it is called the Q test in the chemistry literature.

I can find no indication in the literature that anyone has recomputed the numerical values in
Dixon’s tables in the 55 years since he published them. In fact, the literature gives the impres-
sion that the art of generating the critical values for his statistics has been lost. Rorabacher
(1991), in a paper intended to provide definitive reference values for the analytical chemistry
community and to add critical values for new confidence levels, interpolated in Dixon’s tables.
The outliers package (Komsta 2005) for version 2 of the R statistical environment (R Devel-
opment Core Team 2005) similarly interpolates between Dixon’s published values. Efstathiou
(1992) estimated critical values stochastically and compared them to Dixon’s tables.

Dixon gives enough information in his paper to permit recomputation of his results at higher
precision. This article describes one numerical approach to that task and gives FORTRAN
functions for the probability density, cumulative distribution function, and critical values for
each of the statistics presented by Dixon. The functions should be easy to translate into other
languages for incorporation into larger software packages.

2. Formulas for density and cumulative distribution functions

2.1. Probability density for r

Each of Dixon’s ratios is a function of three of the n data values: rj,i−1 = (xn−xn−j)/(xn−xi).
The joint probability density for those three variables is obtained by multiplying the density
functions for all of the data values, integrating over the possible values of all the variables
except the three being used, and applying a combinatorial normalization factor. There are i−1
observations below xi, n− j− i− 1 observations between xi and xn−j , and j− 1 observations
between xn−j and xn. The joint density for normally distributed data is therefore

P (xi, xn−j , xn) =
n!

(i− 1)!(n− j − i− 1)!(j − 1)!

[∫ xi

−∞
φ(t) dt

]i−1 [∫ xn−j

xi

φ(t) dt

]n−j−i−1

×

[∫ xn

xn−j

φ(t) dt

]j−1

φ(xi)φ(xn−j)φ(xn), (1)

where φ(x) = (2π)−1/2 exp(−x2/2) is the density function for the standard normal distribu-
tion. Equation 1 in Dixon (1951) is the special case of Equation 1 for r10, that is, for j = i = 1.
Following Dixon, I simply write r when there is no ambiguity.

Dixon then changes variables from {xi, xn−j , xn} to {x, v, r}: x = xn, v = xn − xi, r =
(xn − xn−j)/v. The Jacobian for this transformation is v. To obtain the density for r alone
we integrate x and v over their ranges (−∞ < x < ∞, 0 ≤ v < ∞) to yield

P (r) =
n!

(i− 1)!(n− j − i− 1)!(j − 1)!

∫ ∞
−∞

∫ ∞
0

[∫ x−v

−∞
φ(t) dt

]i−1 [∫ x−rv

x−v
φ(t) dt

]n−j−i−1

×
[∫ x

x−rv
φ(t) dt

]j−1

φ(x− v)φ(x− rv)φ(x)v dv dx. (2)

Journal of Statistical Software 3

Equation 2 in Dixon (1951) is Equation 2 for j = i = 1. The last equation in his paper
should be exactly Equation 2, but it is missing the Jacobian factor v. Similarly, his equation
14 should be my Equation 2 for j = 1, i = 2, but it has several errors; it should read

P (r11) =
n!

(n− 4)!

∫ ∞
−∞

∫ ∞
0

[∫ x−v

−∞
φ(t) dt

] [∫ x−r11v

x−v
φ(t) dt

]n−4

× φ(x− v)φ(x− r11v)φ(x)v dv dx. (3)

Despite these printing errors, all the tables in Dixon’s paper were computed from correct
formulas.
Rewriting Equation 2 in terms of the cumulative standard normal distribution Φ(x) gives

P (r) =
n!

(i− 1)!(n− j − i− 1)!(j − 1)!

∫ ∞
−∞

∫ ∞
0

[Φ(x− v)]i−1

× [Φ(x− rv)− Φ(x− v)]n−j−i−1 [Φ(x)− Φ(x− rv)]j−1 φ(x− v)φ(x− rv)φ(x)v dv dx. (4)

The main numerical problem solved in this paper is the evaluation of Equation 4 by numerical
quadrature.

2.2. Cumulative distribution function and critical values for R

The cumulative distribution function G(R) is

G(R) =
∫ R

0
P (r) dr. (5)

The range of r is 0 ≤ r ≤ 1, so G(0) = 0 and G(1) = 1. The critical values are the roots of
(1− α)−G(R) = 0 where α is a specified probability; G(R) increases monotonically from 0
to 1 so there is exactly one critical value for each value of α.

3. Numerical approach

3.1. Probability density

The integrand in Equation 4 can change sharply because of the Gaussian form of the φ terms,
and for large n also because of the high power in the second Φ term. I chose to regard
the Gaussian dependences on x and v as weight functions and use Gaussian quadratures to
accomodate them; the integral over x can be done with a classical Gauss-Hermite quadrature,
but the integral over v requires a special quadrature because of the [0,∞] limits.
Writing out the three φ terms in Equation 4 and gathering terms in x2 and v2 yields

P (r) =
n!

(i− 1)!(n− j − i− 1)!(j − 1)!
(2π)−3/2

∫ ∞
−∞

e−3x2/2

∫ ∞
0

e−(1+r2)v2/2

× [Φ(x− v)]i−1 [Φ(x− rv)− Φ(x− v)]n−j−i−1 [Φ(x)− Φ(x− rv)]j−1

× exv(1+r)v dv dx

(6)

= N

∫ ∞
−∞

e−3x2/2

∫ ∞
0

e−(1+r2)v2/2J(x, v, r)exv(1+r)v dv dx, (7)

4 Distributions for Dixon’s Extreme Value Ratios

where N is the normalization factor (including the (2π)−3/2 term) and J(x, r, v) represents
the terms containing Φ.
The change of variable t2 = (1+r2)v2/2, u2 = 3x2/2 converts the integral into a form suitable
for Gauss-Hermite quadratures:

P (r) = N

√
2
3

√
2

1 + r2

∫ ∞
−∞

e−u2

∫ ∞
0

e−t2J(x(u), v(t, r), r) exp

(
2ut(1 + r)√

3(1 + r2)

)
dt du, (8)

where x(u) = u
√

2/3 and v(t, r) = t
√

2/(1 + r2).
Now the quadrature rules ∫ ∞

0
e−t2f(t) dt ≈

nhh∑
l=1

wlf(tl), (9)

∫ ∞
−∞

e−u2
g(u) du ≈

nfh∑
k=1

wkg(uk), (10)

can be introduced. Here the wl are the weights and the tl are the abscissas for an nhh-
point half-range Hermite quadrature. The abscissas and weights can be obtained with the
ORTHPOL program package described in Gautschi (1994); the test7 program in that package
does the calculation that is needed. In the programs accompanying this paper, the weights
and abscissas for nhh = 17 and nhh = 15 are included in tabular form. Similarly the wk

and uk are the weights and abscissas for an ordinary nfh-point Gauss-Hermite quadrature.
Application of the quadrature rules yields

P (r) ≈ N

√
2
3

√
2

1 + r2

nfh∑
k=1

nhh∑
l=1

wkwlJ(x(uk), v(tl, r), r) exp

(
2uktl(1 + r)√

3(1 + r2)

)
(11)

The function rdens(r) implements Equation 11.

3.2. Cumulative distribution function

P (r) is a well-behaved function, and its integral over the domain [0, R] presents no numeri-
cal difficulties. For purposes of computing critical values it is important that the numerical
implementation of G(R) should be monotonic and smooth, so it is best to avoid numerical pro-
cedures that incorporate convergence tests. I have chosen to use Gauss-Legendre quadrature
with a fixed number ngl of quadrature points, so that

G(R) ≈ R

2

ngl∑
m=1

wmP (Rym/2), (12)

where wm and ym are the usual Gauss-Legendre weights and abscissas on the range [−1, 1],
and the variable transformation y = 2r/R−1 was used to change the [0, R] range of integration
to [−1, 1]. The function rcdf(R) implements Equation 12.

3.3. Critical values of R

The critical values are the values of R such that 1−α−G(R) = 0, and they always lie between
0 and 1. The function rcrit(alpha) uses Brent’s method (Brent 1973) to converge on the
critical values.

Journal of Statistical Software 5

4. Implementation

4.1. User callable routines

The program package includes five user-callable routines. All floating-point arguments and
function results are DOUBLE PRECISION.

1. The subroutine rinit(n,i,j,prec) initializes the programs. Its arguments are integer
n, i, and j as used above, and the integer variable prec, whose value must be 1 or 2. If
prec is 2, the programs use 17, 31, and 16 quadrature points in the integrals over v, x,
and r respectively; if prec is 1, it uses 2 fewer quadrature points in all three integrations.
Comparison of results obtained with the two values of prec gives an estimate of the
numerical error in the results. prec=2 is adequate to converge all the values in Dixon’s
tables to an absolute error of 5× 10−4 or less.

The user must call rinit once before calling any of the other programs, and again
if the value of prec needs to be changed. It sets up the quadrature abscissas and
weights, stores all the r-independent terms needed for evaluation of Equation 11, and
calls rreset to compute the normalization factor. All the information is stored in a
COMMON block in the file dixonr.fi.

2. The subroutine rreset(n,i,j) stores n, i, and j, and computes and stores the value of
N in Equation 11 for use by the other functions. It must be called any time the values
of n, i, or j need to be changed.

3. The function rdens(r) returns the value of the probability density function at r for
rj,i−1 for n data points, where n, j, and i were specified in the most recent call to
rreset or rinit. It implements Equation 11 with a single loop over a “composite
index” that runs from 1 to nhhnfh, using values of t, x, ut, wkwl, and Φ(x) that were
computed at all the quadrature points by rinit.

4. The function rcdf(R) returns the value of the cumulative distribution function at R,
for the current n, i, j. It implements Equation 12 by calling rdens to obtain the values
of P (r) at the necessary quadrature points.

5. The function rcrit(alpha) returns the critical value of R for the specified α, for the
current n, i, j. It solves 1 − α − G(R) = 0 using Brent’s method (Brent 1973) as
implemented in the routine zeroin. It uses a subsidiary function rcerr(R), called by
zeroin, to evaluate 1− α−G(R). In the package the error tolerance for zeroin is set
to 10−6, which is adequate for the numbers of quadrature points provided; users who
generate larger numbers of quadrature points for special purposes may want to decrease
the error tolerance.

4.2. Utility routines

The package contains several support routines in utility.f.

1. fhquad(nfh,xfh,wfh) returns Gauss-Hermite abscissas and weights for 29 or 31 quadra-
ture points; hhquad(nhh,xhh,whh) returns half-range Hermite absicssas and weights for

6 Distributions for Dixon’s Extreme Value Ratios

15 or 17 quadrature points; and glquad(ngl,xgl,wgl) returns Gauss-Legendre abscis-
sas and weights for 14 or 16 quadrature points.

Many numerical libraries contain routines that can generate Gauss-Hermite or Gauss-
Legendre abscissas and weights for arbitrary numbers of quadrature points, and fhquad
and glquad can easily be replaced with such routines. The only source of the half-range
Hermite abscissas and weights I know is the ORTHPOL package. More points may
become necessary if i increases beyond 3 or n increases beyond 30.

A user who wishes to use different numbers of quadrature points must replace fhquad,
hhquad, and/or glquad with other versions, and change the values of maxfh, maxhh,
and maxgl in dixonr.fi. In addition he may want to change the error tolerance used
in rcrit.

Phi(x) is a double precision routine to return the cumulative standard normal distri-
bution at x. I have included the “little C function” of Marsaglia (2004), translated to
FORTRAN.

zeroin is a function from Netlib (Browne, Dongarra, Grosse, and Rowan 1995, http:
//www.netlib.org/) that uses Brent’s method to find the roots of a function of one
variable. It calls d1mach to obtain a value of the machine precision, and I include the
current d1mach routine from Netlib that adapts automatically to the host machine.

4.3. Example programs

Several example programs, with corresponding output files, are included. To create an ex-
ecutable for test1, for example, the user must compile and link test1.f, rfuncs.f and
utility.f; the file dixonr.fi must be in the same directory with rfuncs.f at compile time.

1. test1.f generates a table of the density and cumulative distribution functions of the
Dixon r11 statistic (j = 1, i = 2) for n = 7 by calls to rdens and rcdf.

! generate table of density and cumulative distribution function
! for Dixon’s r_{11} statistic for n=7

program test1
implicit none
double precision rdens, rcdf !functions
integer npts, i, j, n, k, prec
double precision r, rstep
j = 1
i = 2
n = 7
prec = 2 ! use higher available precision
npts = 50
rstep = 1.0d0/(npts-1)
call rinit(n, i, j, prec) !initialize
write(*,’(3(a,I2,2x))’) ’i = ’, i,’j = ’, j, ’n = ’, n
write(*,*) ’ r P(r) G(R) ’

http://www.netlib.org/
http://www.netlib.org/

Journal of Statistical Software 7

do k = 1, npts
r = (k-1)*rstep
write(*,’(3(2x,F6.3))’) r, rdens(r), rcdf(r)

end do
end

2. test2.f generates a table of critical values for r11 at α = 0.1, for 4 ≤ n ≤ 15 by calls
to rcrit. This table can be compared to the fifth column of Dixon’s Table II.

! generate table of critical values at alpha=0.1
! for Dixon’s r_{11} statistic for n=4 to 15

program test2
implicit none
double precision rcrit !function
integer npts, i, j, n, prec
double precision alpha
j = 1
i = 2
n = 4
prec = 2
alpha = 0.1d0
call rinit(n, i, j, prec) ! initialize
write(*,’(2(a,I2,2x),a,F7.4)’) ’j = ’, j, ’i = ’, i,
1 ’alpha = ’, alpha
write(*,’(a)’) ’ n Rcrit’
do n = 4, 15

call rreset(n,i,j) ! choose new n
write(*,’(I2,2x,F6.3)’) n, rcrit(alpha)

end do
end

3. test3.f generates a similar table of critical values, but it does the calculation for two
different values of prec, and prints the absolute and relative differences between the
results obtained at low and high precisions. Part of its output is

j = 1 i = 2 alpha = 0.1000
n low high diff diff/high
4 0.910 0.910 -0.10E-07 -0.11E-07
6 0.610 0.610 -0.42E-09 -0.70E-09
8 0.480 0.480 -0.34E-11 -0.71E-11

[. . .]

22 0.269 0.269 -0.22E-05 -0.81E-05
24 0.259 0.259 -0.15E-05 -0.58E-05
26 0.251 0.251 0.96E-06 0.38E-05
28 0.243 0.243 0.56E-05 0.23E-04
30 0.237 0.237 0.12E-04 0.53E-04

8 Distributions for Dixon’s Extreme Value Ratios

4. test4.f regenerates all the tables from Dixon’s paper in a single run. It takes a few
minutes to run on a circa-2001 computer.

Dixon asserted that Tables I–III in his paper (for r10, r11, and r12) were accurate to
within 0.002, and Tables IV–VI were accurate to within 0.004. His table for r10 nearly
meets that standard; two entries (n = 4 and 6 for α = 0.005) are in error by 0.005
and 0.003 respectively. The other tables, however, contain more entries that disagree
with the test4 output, in addition to the typographical errors identified in Rorabacher
(1991). Most of the discrepant entries are for 6 ≤ n ≤ 10 and for α ≤ 0.10, except that
in Dixon’s table for r22 most of the entries for n = 6 and 7 are incorrect by 0.01–0.02.

5. Usage notes

The language used is fixed-form FORTRAN 90, but the few FORTRAN 90 features used are
supported by most modern FORTRAN 77 compilers as well. The programs have been tested
with Compaq Visual FORTRAN version 6.6 and with GNU FORTRAN 3.3.1.

The programs are reasonably efficient implementations of the numerical procedures described
above, but they do the quadrature anew each time a new value of P (r) is needed. For single
calls or for generating tables of values this design is adequate. However, if many values of
P (r), G(R), or the critical values are needed, the programs in this package should not be
used directly. Instead, it will be faster to use these programs to generate a table of accurate
values with moderate density over the range of r or R needed, then use interpolation in that
table to generate individual values.

The notation used in this paper is consistent with that of Dixon, and the α values and
corresponding critical values of R are those appropriate for one-tailed tests. In most uses
of these tables for outlier rejection, a two-tailed test is needed, so that “90% confidence”
corresponds to the α = 0.05 columns in the output of test4. See Rorabacher (1991) for a
discussion.

References

Barnett V, Lewis T (1984). Outliers in Statistical Data. Wiley, New York, 2nd edition.

Beckman RJ, Cook RD (1983). “Outlier..........s.” Technometrics, 25(25), 119–149.

Brent RP (1973). Algorithms for Minimization Without Derivatives. Prentice-Hall, Englewood
Cliffs, N.J.

Browne S, Dongarra J, Grosse E, Rowan T (1995). “The Netlib Mathematical Software
Repository.” URL http://www.netlib.org/srwn/srwn21.html.

Dixon WJ (1950). “Analysis of Extreme Values.” The Annals of Mathematical Statistics,
21(4), 488–506.

Dixon WJ (1951). “Ratios Involving Extreme Values.” The Annals of Mathematical Statistics,
22(1), 68–78.

http://www.netlib.org/srwn/srwn21.html

Journal of Statistical Software 9

Efstathiou CE (1992). “Stochastic Calculation of Critical Q-Test Values for the Detection of
Outliers in Measurements.” Journal of Chemical Education, 69(9), 733–736.

Gautschi W (1994). “Algorithm 726: ORTHPOL – A Package of Routines for Generating
Orthogonal Polynomials and Gauss-type Quadrature Rules.” ACM Transactions on Math-
ematical Software, 20(1), 21–62.

Hampel FR (1985). “The Breakdown Points of the Mean Combined with Some Rejection
Rules.” Technometrics, 27(2), 95–107.

Komsta L (2005). outliers: Tests for Outliers. R package version 0.12, URL http://CRAN.
R-project.org/.

Marsaglia G (2004). “Evaluating the Normal Distribution.” Journal of Statistical Software,
11(4), 1–7. URL http://www.jstatsoft.org/v11/i04/.

R Development Core Team (2005). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Rorabacher DB (1991). “Statistical Treatment for Rejection of Deviant Values: Critical
Values of Dixon’s “Q” Parameter and Related Subrange Ratios at the 95% Confidence
Level.” Analytical Chemistry, 63(2), 139–146.

Affiliation:

George C. McBane
Department of Chemistry
Grand Valley State University
Allendale, MI 49401, United States of America
E-mail: mcbaneg@gvsu.edu
URL: http://faculty.gvsu.edu/mcbaneg/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 16, Issue 3 Submitted: 2006-01-09
May 2006 Accepted: 2006-05-04

http://CRAN.R-project.org/
http://CRAN.R-project.org/
http://www.jstatsoft.org/v11/i04/
http://www.R-project.org/
http://www.R-project.org/
mailto:mcbaneg@gvsu.edu
http://faculty.gvsu.edu/mcbaneg/
http://www.jstatsoft.org/
http://www.amstat.org/

	Programs to Compute Distribution Functions and Critical Values for Extreme Value Ratios for Outlier Detection
	ScholarWorks Citation

	Introduction
	Formulas for density and cumulative distribution functions
	Probability density for r
	Cumulative distribution function and critical values for R

	Numerical approach
	Probability density
	Cumulative distribution function
	Critical values of R

	Implementation
	User callable routines
	Utility routines
	Example programs

	Usage notes

