
UCSF
UC San Francisco Previously Published Works

Title
Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) 
treatment: Cells, biomaterials, and devices.

Permalink
https://escholarship.org/uc/item/655271nr

Authors
Song, Shang
Roy, Shuvo

Publication Date
2015-11-28
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/655271nr
https://escholarship.org
http://www.cdlib.org/


Progress and Challenges in Macroencapsulation
Approaches for Type 1 Diabetes (T1D) Treatment:
Cells, Biomaterials, and Devices

Shang Song, Shuvo Roy

Department of Bioengineering and Therapeutic Sciences, University of California—San

Francisco, San Francisco, California 94158; telephone: þ1 415-514-9666;

fax: þ1 415-514-9766; e-mail: shuvo.roy@ucsf.edu

ABSTRACT: Macroencapsulation technology has been an attrac-
tive topic in the field of treatment for Type 1 diabetes due to
mechanical stability, versatility, and retrievability of the macro-
capsule design. Macro-capsules can be categorized into extravas-
cular and intravascular devices, in which solute transport relies
either on diffusion or convection, respectively. Failure of macro-
encapsulation strategies can be due to limited regenerative capacity
of the encased insulin-producing cells, sub-optimal performance of
encapsulation biomaterials, insufficient immunoisolation, excessive
blood thrombosis for vascular perfusion devices, and inadequate
modes of mass transfer to support cell viability and function.
However, significant technical advancements have been achieved in
macroencapsulation technology, namely reducing diffusion dis-
tance for oxygen and nutrients, using pro-angiogenic factors to
increase vascularization for islet engraftment, and optimizing
membrane permeability and selectivity to prevent immune attacks
from host’s body. This review presents an overview of existing
macroencapsulation devices and discusses the advances based on
tissue-engineering approaches that will stimulate future research
and development of macroencapsulation technology.
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Introduction

Type 1 diabetes (T1D) mellitus results from autoimmune

destruction of insulin-producing b cells in the islets of Langerhans

of the endocrine pancreas, causing reduction in b cell mass and

dysfunction. Of the more than 366 million people worldwide

affected by diabetes today, it is estimated that as many as 40 million

patients have T1D (Rewers, 2012). The global incidence of T1D

doubles approximately every 20 years (Harjutsalo et al., 2008; Vehik

et al., 2008), increasing up to 5% per year (Nokoff et al., 2012).

As the prevalence of T1D increases worldwide, the associated

chronic complications are the main cause of morbidity and

mortality, which adversely affect the quality of T1D patients’ lives

(Zhao et al., 2009). Specifically, complications of diabetes have been

classified as either microvascular (e.g. retinopathy, nephropathy,

and neuropathy) or macrovascular (e.g. cardiovascular disease and

peripheral vascular disease) (Melendez-Ramirez et al., 2010;

Nathan, 2014). Macrovascular complications in T1D show

significant morbidity and mortality in comparison to individuals

with Type 2 diabetes. For T1D patients under age 40, the onset of

macrovascular complications occur much earlier in life, exacerbate

throughout the course of disease, and result in a higher mortality

compared to the general population (Melendez-Ramirez et al.,

2010). The total estimated financial burden for T1D is $14.9 billion

in health care costs in the U.S. each year, including medical costs of

$10.5 billion and indirect costs of $4.4 billion (Dall et al., 2009). The

economic burden per case of diabetes is greater for T1D than type 2

diabetes and the difference increases with age (Dall et al., 2009).

This trend will only continue given the escalation in global

incidence and worsen as the T1D population ages and disease

progresses, especially for patients in low-resource settings.

Current Treatment Methods

There are currently two dominant paradigms associated with the

treatment of T1D: insulin infusion therapy and whole organ

transplantation.

Insulin Infusion

Insulin therapy is administered with multiple daily injections or

subcutaneous infusion using an insulin pump (Golden et al., 2012;

Little et al., 2012; Yardley et al., 2013). To survive, T1D patients must

measure their blood glucose levels and administer insulin in response

to those glucose levelsmultiple times perday for the rest of their lives.

Even in the most compliant patients, tight glucose control is difficult

to maintain. For example, patients must calculate insulin dose at

mealtimes by taking in account of several factors, such as blood
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glucose levels, insulin/carbohydrate ratio, carbohydrate intake,

intensity of physical exercise after injection, and individual insulin

sensitivity. Any small miscalculation can result in episodes of hypo-

and hyperglycemia, causing life-threatening conditions. These

dangerous fluctuations in glucose levels are the primary cause of

diabetic complications (Cryer, 2002; Little et al., 2012). Hypoglycemia

can result in cognitive impairment, unconsciousness, seizures, and

death (Cryer, 2002). Hyperglycemia leads to similarly devastating

complications, such as kidney failure, heart attack, stroke, blindness,

nerve damage, and many other diseases (Cryer, 2012). The elevated

levels of glucose may induce glycation of various structural and

functional proteins that leads to advanced glycation end products

(AGES), which are thought to be themajor causes of different diabetic

complications (Negre-Salvayre et al., 2009).

Although use of insulin injections and insulin pumps are life-

prolonging technologies, they do not mimic real-time secretory

patterns of pancreatic b cells nor do they prevent long-term

complications (Hinshaw et al., 2013; Penfornis et al., 2011).

Medtronic has recently designed a new algorithm, Predictive Low

Glucose Management (PLGM), which automatically stops the

delivery of insulin when a sensor detects a predetermined low

glucose level (Danne et al., 2014). However, designing algorithms to

make therapeutic decisions with accurate and instantaneous

regulation of blood sugar level with minimal human input remains

a challenge (Dolgin, 2012).

Pancreas Transplantation

Whole pancreas transplantation presents an alternative intervention

for T1D by re-establishing normoglycemiawithout the excessive need

for insulin therapy. From 2004 to 2008, the most common pancreas

transplant category was a combined pancreas/kidney transplant

(SPK) (�73%) where immunosuppressives were used for both

transplants, followed by a kidney transplant before undergoing a

pancreas transplant (PAK) (�18%), and pancreas transplants alone

(PTA) (�9%) (Gruessner and Sutherland, 2008). Prior to 2000, PTA

and PAK transplant categories had experienced more graft loss

comparing with SPK (Sutherland, 1998; Sutherland et al., 2001).

Graft loss happens frequently in PTA and PAK patients because these

patients do not suffer from the uremia associated with renal failure,

hence their healthy platelet function places them at a higher risk for

thrombosis in the low-flow state of the pancreas graft (Troppmann

et al., 1996; Venstrom et al., 2003). Treatment with anti-coagulant

agents like heparin and dipyridamole are required during the

perioperative period to decrease the likelihood of graft thrombosis,

but they increase bleeding risk (Farney et al., 2012).With advances in

immunosuppression since 2000, the use of antibody induction

and steroid avoidance-based maintenance protocols (Tacrolimus/

Mycophenolate Mofetil or Sirolimus) in all transplant categories has

been shown to improve the outcome of pancreas transplantation

extensively, as illustrated by the pancreas graft survival rates of 85%

and 52% in PTA, 81% and 55% in PAK, and 87% and 72% in SPK at

one year and five years, respectively (Kandaswamy et al., 2013).

Although pancreas transplantation can achieve insulin-indepen-

dence with a greater than 80% graft survival rates in all categories

after one year, this approach has many drawbacks. First, whole

organ transplantation is constrained by the number of donors. Of

8,000 available donors in the US, just around 1,400 donors (16%)

are potentially suitable for whole organ transplantation annually

(Gruessner et al., 2010). Second, T1D patients with accelerated

course of cardiovascular complications are not recommended for

such a complex operation due to their underlying cardiovascular

disease and increased risk of perioperative complications

(Gruessner et al., 2004; Nathan, 2003). The combination of

perioperative cardiac risk coupled with surgical complications

places whole pancreas transplantation as the procedure with

highest morbidity among all routinely performed abdominal

solid organ transplantation surgeries (Humar et al., 2000; Schenker

et al., 2011).

Alternative Treatment Methods

Cell Therapy

Intraportal alloislet transplantation, as described by The

Edmonton Protocol (Shapiro et al., 2000), has shown promise

in becoming a viable T1D treatment after demonstrating that a

cohort of seven patients remained insulin-independent with an

average of 12 months under steroid-free immunosuppressive

drugs during the last decade. The Clinical Islet Transplantation

Consortium (CIT) created by the US National Institute of Diabetes

& Digestive & Kidney Diseases (NIDDK) and the US National

Institute of Allergy and Infectious Diseases (NIAID) is a network

consisting of 13 clinical centers to conduct studies of islet

transplantation in T1D patients to improve the safety and long-

term success of intraportal islet transplantation. The CIT initiated

two Phase III clinical trials to demonstrate that islet

transplantation could improve glycemic control in T1D patients

with severe hypoglycemia and extreme glycemic lability (CIT-07;

NCT00434811) and in T1D patients who had received a kidney

transplant (CIT-06; NCT00468117). The CIT-07 protocol

markedly improved the beta-cell mass and secretory capacity

compared to the Edmonton protocol (Rickels et al., 2013). Islet

graft function and insulin independence were achieved for 94%

and 52.1% of all participants a year after the first islet transplant

(Ricordi et al., 2014). The CIT-07 protocol showed a favorable

safety profile and patients experienced substantially reduced

insulin use and glycemic lability. Human islet product release can

be prepared at multiple manufacturing centers using this

standardized protocol. The current islet transplant procedure

involves catheter delivery of islets into the liver via the hepatic

portal vein under radiological guidance. Once the catheter is in

place, a suspension containing islet tissue is infused. Unlike

whole organ transplant, the clinical procedure of islet transplant

is less invasive and patients require minimal time to recover. The

main advantage of using the portal vein is that it allows rapid

delivery of insulin to the hepatic portal circulation in response to

post-prandial glucose delivery to portal vein from intestine

(Rajab, 2010). Other benefits of islet transplantation include

reduced need for exogenous insulin administration among

recipients, improved blood glucose control, and greatly reduced

risk of severe hypoglycemic episodes (Paty et al., 2006).

Islet transplantation based on the Edmonton Protocol possesses

limitations. A long-term follow up revealed that only 10% of
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patients were free from exogenous insulin use after five years (Ryan

et al., 2005a). This technology also faces the donor shortage

problem. Islet transplantation requires infusion of high-quality

islets isolated from a total of two to four donors to treat one recipient

(Markmann et al., 2003). Multiple donors are needed because islet

attrition occurs during the islet isolation process where

uncontrollable factors such as donor’s body mass index, pancreas

size, chemical digestion, and pancreatic surface integrity could all

damage islet quality (Sakuma et al., 2008). This could also happen

during the post transplantation where 50% to 70% of islets die due

to the immediate hypoxia and inflammatory response (Lehmann

et al., 2007). Similar to whole pancreas transplants, islet transplants

require chronic immunosuppression to ensure long-term perfor-

mance of the grafts (Lehmann et al., 2004). Detrimental side effects

of chronic high-dose immunosuppressive regimens can also lead to

nephrotoxicity and kidney dysfunction in T1D patients who are

already at heightened risk (Hirshberg et al., 2003; Ojo et al., 2003).

The high metabolite concentrations in the liver may cause graft

failure over time (Pileggi et al., 2006). Hence, the applicability of

this type of procedure is still greatly constrained by the limited

supply of human donor tissue, graft damage from long-term usage

of immunosuppressive regimens, and inadequate implantation sites

that result in graft failure from hypoxia.

Insulin Therapy Via Cell Encapsulation

Given the aforementioned deficiencies associated with current

transplantation methods in T1D treatment, researchers need to

tackle the challenge of immunosuppressives, along with the issues

of donor shortage and physiological mimicry of a functional

pancreas. An attractive strategy for the development of a

bioartificial pancreas that would eliminate the need for immuno-

suppressives is encapsulation of insulin-producing islets within a

semipermeable membrane. The properties of the suitable

semipermeable membrane are such that it protects islets from

the host’s immune system, while allowing the exchange of nutrients

and small molecules (including glucose and insulin) between the

encapsulated islets and their external environment (Chang, 1964).

Successful immunoisolation would potentially allow cells from

xenogeneic and stem cell sources to be used as alternatives to

standard human pancreatic islets or b cells, thereby significantly

easing the donor shortage problem. Stem-derived cell sources or

xenotransplantation are, however, highly challenging with respect

to safety and immunologic perspectives. The implantable

bioartificial pancreas would mimic physiological responses by

functioning autonomously and dynamically to the varying state of

the human body.

To date, existing semipermeable membranes can be categorized

into ultra-thin coatings, microcapsules, and macrocapsules based

on differences in diffusion distance (Fig. 1a). Ultra-thin coatings

using conformal or Layer-by-Layer (LbL) assembly directly modify

the surface of islets to enhance transport and mechanical properties

(de Temmerman et al., 2012; Matsusaki et al., 2012; Paulick et al.,

2007; Rabuka et al., 2008; Tomei et al., 2014). The conformal

coatings aim to cover each islet with a uniform thickness rather

than controlling the overall capsule diameter like the microencap-

sulation. These techniques create polyelectrolyte multilayer thin

films based on sequential adsorption of oppositely charged

components. However, cytotoxic byproducts released during the

manufacturing process could disrupt the integrity of cell

membrane, causing cell death (Bieber et al., 2002; de Koker

et al., 2007; Godbey et al., 1999; Wilson et al., 2008).

Microencapsulated islets ranging 400-800mm in diameter rely

on diffusive nutrient transport and require minor surgery for

implantation in the peritoneal cavity, subcutaneously, or under the

renal capsule due to their relatively small size (Maria-Engler et al.,

2001). In particular, Calafiore’s Minimal Volume Capsules which are

small alginate micro-capsules with 300-400mm in diameter were

implanted intraperitoneally in patients under echography guidance

and local anesthesia and showed clinical relevance with reduced

exogenous insulin requirements (Basta et al., 2011b; Calafiore et al.,

2006a,c). The large surface area to volume ratio is advantageous for

mass transport in microcapsules; however, limitations of this

technology include the need for a large transplantation site that

accommodates the necessary number of capsules, a favorable

microvascular bed that provides immediate nutrient access,

difficulty in microcapsule removal if required, and insufficient

long-term survival rates for functional islets to adequately address

the daily insulin requirement (Khanna et al., 2010; Levesque et al.,

1992; Moya et al., 2010; Shin et al., 2013). Though notable

applications of microcapsules have been attempted in large animals

(Elliott et al., 2005; Wang et al., 1997) and human subjects (Basta

et al., 2011a; Calafiore et al., 2006b; Elliott et al., 2007; Limited,

2012; Soon-Shiong, 1999; Tuch et al., 2009), the challenges such as

cell sources, implant location, mass transfer, and vascularization

remain unsolved.

Unlike microencapsulation where only few islets are grouped

together, the large capsule size of the macroencapsulation strategy

requires assembling a greater number of islets, and hence, it

imposes an mass transport limitations and challenges conventional

sites such as renal capsules for implantation. Specifically, vascular

perfusion macrocapsules may cause life-threatening blood

coagulation and thrombosis in vascular surgery and surface-

induced thrombosis (Chaikof, 1999). Nonetheless, macrocapsules

have successfully demonstrated the feasibility of implantation and

retrieval (Jain et al., 1995; Suzuki et al., 1998). While far from a

comprehensive review of islet encapsulation, Table I summarizes

some notable macroencapsulation methods to restore normogly-

cemia in animals and human.

The goal of this review is to present the development of

macroencapsulation devices with an emphasis on its challenges and

limitations, progress in generating alternative sources for

pancreatic b cells, and the variety of biomaterials used for cell

encapsulation. With the great potential of a bioartificial pancreas in

mind, a successful macroencapsulation device will depend on the

availability of cell sources, the physical and chemical properties of

the underlying semipermeable membranes, and the mass transport

between cells and their outside environment.

Macroencapsulation of Islets

The early development of macroencapsulation dated from the 1950s

(S2.1, S2.2, Fig. 1S). Macroencapsulation devices may possess

different geometries such as hollow fibers (Lacy et al., 1991; Monaco

Song and Roy: Progress and Challenges in Macroencapsulation 3
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et al., 1991), bag-like structures (Brauker et al., 1995; Toleikis, 2010;

Pepper et al., 2015), polymeric hydrogel sheets (Storrs et al., 2001;

Stendahl et al., 2009), or planar membranes (Trivedi et al., 2000) for

high flow rate or reduced surface area. They can be categorized as

either extravascular or vascular perfusion based on their

mechanism of transport.

Extravascular Macrocapsules

The concept of extravascular macrocapsules is based on the

principle of diffusive transport. Because extravascular devices do

not require vascular anastomoses, the corresponding surgical risks

are much lower than vascular perfusion devices.

Hydrogels

During the past two decades, there has been a growing interest in

using hydrogels as a means to achieve greater biocompatibility for

macroencapsulation. Due to the hydrophilic nature of the material,

almost no interfacial tension is created with surrounding fluids and

tissues, hence, minimizing protein adsorption and cell adhesion.

Furthermore, the mechanical properties of hydrogels can be easily

controlled via crosslinking to obtain desired selectivity and

permeability, allowing the passage of low molecular weight

nutrients and metabolites entering the encased cells.

AN69, a copolymer of acrylonitrile and sodium methallyl

sulphonate, was one of the early hydrogels studied as a

macroencapsulation material (Kessler et al., 1991, 1995, 1997).

Early studies reported that AN69 induced onlyminimal fibrosis in the

peritoneal cavity of rats with low permeability for insulin (Kessler

et al., 1995, 1997). Application of corona discharge on AN69 caused a

more hydrophobic surface with less molecular adhesion. This

approach improved both the insulin permeability and the long-term

biocompatibility (Kessler et al., 1995, 1997). Poly(vinyl alcohol)

(PVA) hydrogel macrocapsules reinforced with mechanically strong

support also restored normoglycemia amonth after implantation into

the abdominal cavity of diabetic rats (Burczak et al., 1994; Lee et al.,

1991;Mitsuo et al., 1992b). Other supportive results from Jain and co-

workers demonstrated that macrobeads made of agarose contained

functional porcine islets for almost 200 days after intraperitoneal

transplantation into rats (Fig. 2) (Jain et al., 1999).

One of the most serious problems associated with macro-

encapsulated hydrogels is the loss of viability of the transplanted

islets due to central necrosis of the tissue clusters. The islet

aggregation has been reported to cause hypoxia and result in

gradual loss of tissue viability within 1-2 weeks (Mitsuo et al.,

1992a). To prevent undesired clustering, islets are usually

immobilized in gel matrices prior to encapsulation, as demon-

strated by previous studies that cell-matrix interaction could also

enhance islet viability (Stendahl et al., 2009).

Sheets and Pouches

Advances in technology and knowledge from studies conducted in

the 80s and 90s have pushed the development of extravascular

macroencapsulation forward. Islet sheets, developed by Hanuman

Medical Foundation, are composed of highly purified alginate (12–

45 kDa) with a reinforcing mesh that encapsulates islets (Fig. 3)

(Storrs et al., 2001). Lamb and co-workers reported that alginate

encapsulated human islets remained both viable and functional

Figure 1. An overview of various encapsulation methods to immunoisolation. Macro-scale encapsulation devices include extravascular (a), or vascular perfusion

(intravascular) (b) which are perfused with body fluid or blood. Micro-scale encapsulation devices typically group a few number of cells into microcapsules (a). Nano-scale

encapsulation directly coats surface of the islets with polymeric layers (e.g., conformal coating) (a).
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Table I. Macroencapsulation used in animals and human.

Macro-

encapsulation

Type of transplant

(e.g. allo, xeno) Device description Locations

No. of

encapsulated

islets (IEQ) Results

Extravascular Human to mice (xeno) TheraCyte (PTFE) device with an inner

semipermeable membrane (pore size of

0.4mm) laminated to an outer membrane and

covered by a loose polyester mesh. Device is

2-cm long with inner lumen volume of 4.5mL

Intraperitoneal 70–216 C peptide and responsiveness to

glucose changes were not

observed in the first 12 weeks

of transplantation but were

detected after 5 months (Lee

et al., 2009a)

Human to mice (xeno) Nanogland (silicon membrane: 6� 6mm2) with

channel sizes: 3.6, 5.7, 13, 20, and 40 nm

nanochannels and 20, 40, and 60mm

microchannels. The membrane has a circular

pattern of 161 square islets chambers

(200mm width by 200mm height) separated

by 50-mm walls

Subcutaneous 1000 Detectable insulin production

for at least 120 days (Sabek

et al., 2013)

Rat to rat (allo) Meshed PVA tubings Peritoneal 2500–3000 Normoglycemia was maintained

for 1 month (Mitsuo et al.,

1992b)

Dog, cow, pig to rat (xeno) Tubular, permselective acrylic-copolymer

membrane chambers (2–3 cm long, 1.8–

4.8 mm in inner diameter, 69–105mm in wall

thickness)

Intraperitoneal 4–6/mm3 or

20,000

Insulin independence for an

average of 138� 16 days, and

two animals showed 260 days

with higher dose (Lanza

et al., 1993)

Pig to rat (xeno) Agarose macrobeads Intraperitoneal 1000–1500 Macrobeads remained

functional for 199þ days

(Jain et al., 1999)

Human to rats (xeno) Alginate sheets Subcutaneous 1000 Encapsulated islets were viable

and functional after 8 weeks

(Lamb et al., 2011)

Dog to dog (allo) Wider-bore tubular membrane made of acrylic-

copolymer with a 1.7–4.8 mm in inner

diameter and a wall thickness of 69–105mm

Peritoneal 300,000 70 days insulin free (Lanza

et al., 1992a)

Pig to monkey (xeno) A monolayer of islet-seeded human acellular

collagen matrix covered in alginate

Subcutaneous 30,000/kg Diabetes was corrected for a

maximum of 6 months in 5

animals (Dufrane et al., 2010)

Human to human (allo) Acrylic-copolymer hollow fiber (1.5-cm length,

800mm in inner diameter, and 100mm in

wall thickness)

Subcutaneous 150–200 14 days with 90% viability

(Scharp et al., 1994)

Vascular

Perfusion

(intravascular)

Rat to rat (allo) Hollow-fiber setup with 100 11-cm capillary

fibers of polyacrylonitrile-PVC copolymer

sealed into cylindrical glass with 0.5 cm inner

dimaeter. Isets were seeded at the outside

surface of the fiber bundles

Silastic iliac 180 neonatal

rats

90-min decrease in plasma

blood glucose (Chick et al.,

1977)

Dog, cow, pig to dog (allo &

xeno)

A single-coiled tubular membrane made of

acrylic-copolymer. The coil membrane

contained disk-shaped acrylic islet housing.

The membrane has a normial molecular

weight cutoff of 50 kDa, an internal diameter

of 5–6mm, and a wall thickness of 120–

140 nm. The islet compartment was 5–6mL

in volume.

External iliac

artery and

common

iliac vein

220,000–320,000 Zero or minimal insulin

required for �50 weeks

(Maki et al., 1991a,b, 2003)

Reduced exogenous insulin after

284 days and 106 days

(Monaco et al., 1991)

114,000–341,000 Minimal insulin required for

57–366 days (Maki et al.,

1996b)

Rabbit to dog (xeno) Polyamide or nylon capsules with 1–2mm pore

dimension, 20mm in length, and 5mm in

diameter

Abdominal

Aortic

lumen

500,000 Normoglycemia restored after

12 days of tranpslantation.

About 60% of encapsulated

cells were functional after

13 months. (Prochorov et al.,

2004, 2005)

Rabbit to human (xeno) Nylon macrocapsule with 1–2mm in pore size,

30–40mm in length, and 3–4mm in diameter

Deep femoral

artery or

fore arm

cubital vein

6000/kg 2 years with reduced insulin

requirement for 73.7%

recipients (Prochorov et al.,

2008)

Song and Roy: Progress and Challenges in Macroencapsulation 5
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after 8 weeks in culture and in the subcutaneous space of rats

(Lamb et al., 2011). The team has since moved to large-animal

efficacy studies using a canine model. Dufrane and co-workers

developed a similar system where porcine islets were seeded on a

human acellular collagen matrix to create a cell monolayer before

covering with high mannuronic acid alginate (Dufrane et al., 2010).

Alginate macrocapsules that were then transplanted into abdominal

subcutaneous tissue of cynomolgus monkey showed metabolic

control over the glucose course with an acute stimulation (Dufrane

et al., 2010). Encapsulated adult pig islets corrected streptozotocin-

induced diabetes up to a maximum of 6 months in five animals, in

spite of the strong humoral response that was elicited (Dufrane

et al., 2010). The authors concluded that failure at 6 months was

possibly due to the lifespan of adult pig islets (Dufrane et al., 2010).

Sernova’s Cell PouchTM, made from FDA approved materials,

consists of a multi-channel sheet inserted with an array of rods

(Toleikis, 2010). The pouch creates a favorable pre-vascularized

environment but it does not offer an immune-barrier to protect cells

from the host immune system. This device is first placed under the

skin for better vascular integrationwith the surrounding tissues for a

month. Once microvasculature is developed around the device, the

rods are removed to expose channels that allow the infusion of

transplanted islets into the device. Sernova devices were pre-

implanted in mice four weeks before diabetes induction and

transplantation. The implanted mouse islets restored glycemic

control and maintained normoglycemia until graft explantation after

100 days (Pepper et al., 2015). Although there was a 20-day delay in

the initial engraftment, the implants responded well to glucose

challenge and islets within the cell pouch stained positively for

insulin, glucagon, and microvessels. Glycemic control by cell pouch

encapsulated islets was also demonstrated in pigs for two months,

along with high infiltration of blood vessels to promote survival of

encapsulated islet autografts (Toleikis, 2010). Currently, this device

has moved to a three-year Phase I/II clinical study with human

patients under standard immunosuppressive regimes from the

Edmonton Protocol and an estimated date of completion in 2016

(Toleikis, 2010).

The TheraCyte device (Fig. 4) produced by Baxter Healthcare is

an example of pouch encapsulation that aims to promote

angiogenesis and immunoisolation (Brauker et al., 1995).

TheraCyte is a planar pouch featuring a double membrane of

polytetrafluoroethylene (PTFE) with its inner 30-mm thick

membrane of 0.4mm in pore size for selectivity and immunoi-

solation, and its outer 15-mm thick membrane of 5mm in pore size

for angiogenesis through an alternative foreign body response. (Lee

et al., 2009b; Trivedi et al., 2000). Undoubtedly, enhancing

microvasculature plays an essential role in promoting survival of

macroencapsulated islets (Thomlinson and Gray, 1955). The outer

membrane consisting of 5-mm pores showed a 80 to 100-fold more

vascular structure with much improved biocompatibility compared

with the 0.02-mm pores (Brauker et al., 1995). The vascular

structures were adjacent to the membrane surface and fibrosis

occurred beyond the vessels. It is also possible to integrate

angiogenic factors to further enhance vascularization of the device.

For example, the infusion of VEGF greatly enhanced angiogenesis

by increasing the number of surrounding blood vessels and

promoting insulin diffusion from the TheraCyte device (Trivedi

Figure 2. A number of agarose macrobeads retrieved from the peritoneal cavity

of a diabetic rat 145 days after implantation (Jain et al., 1999). None of the macrobeads

showed any fibrosis but small eruptions were detected on the wall of the peritoneal

cavity (indicated by black arrows). Image reproduced with copyright permission.

Figure 3. Diagrams of an Islet Sheet (a) and its cross-sectional view (b) (Lamb et al., 2011; Storrs et al., 2001). Islets-encapsulated alginate is enclosed between acellular

immunoprotective alginate layers. A polymer mesh can be included in the sandwiched layer to provide physical strength. Islet Sheets measure approximately 4� 8 cm2
� 250mm.

Molecular weight cutoff depends on the modification of the alginate chemistry and its processing conditions. Images by courtesy of Dr. Scott King and reproduced with copyright

permission.

6 Biotechnology and Bioengineering, Vol. 9999, No. xxx, 2015



et al., 2000). Lee and co-workers reported that transplant of

TheraCyte with human fetal pancreatic islet-like cell clusters led to

maturation of b-cells and correction of diabetes for at least 10 days

in immunodeficient mice (Lee et al., 2009b). ViaCyte has developed

an encapsulation system called Encaptra that is designed to be

implanted subcutaneously. This device (based on the TheraCyte) is

also a planar pouch with a single layer of membrane which will

protect transplanted cells from host’s immune system while

allowing oxygen and nutrients freely transport through the

membrane. This system will allow the encapsulation of stem cells

or pancreatic progenitor cells to differentiate into functioning

insulin-producing cells (Agulnick et al., 2015; Kroon et al., 2008).

ViaCyte recently announced a Phase I/II clinical trial using Encaptra

with stem cell-derived cell sources to assess safety and efficacy of

the system with an expected completion in 2017.

Beta-O2 is an implantable device composed of a central gas cavity

that connects to access ports for refueling oxygen from the outside

(Fig. 5) (Neufeld et al., 2013). Surrounding the central gas cavity are

the gas permeable membranes that house alginate-immobilized

pancreatic islets with 0.4mmPTFE porous membranes covering the

external surfaces. After implantation of the device in the abdomen,

Figure 4. Diagram of TheraCyte devices (Lee et al., 2009b; Trivedi et al., 2000). The

device was a planar pouch made of bilaminar polytetrafluoroethylene (PTFE) with its

inner membrane for immunoisolation, and the outer membrane for tissue integration.

The inner membrane was 30mm in thickness with 0.4mm in pore size. The outer

membrane was 15mm in thickness with 5mm in pore size. Image by courtesy of

TheraCyte, Inc.

Figure 5. A schematic of the Beta O2 device (Neufeld et al., 2013). The center of the device was built as an oxygen chamber, connected to access ports for exogenous oxygen

refueling. The oxygen chamber was sandwiches between two alginate-immobilized islets layers separated by gas permeable silicon membranes. The external surfaces were coved

by hydrophylized polytetrafluoroethylene (PTFE) membranes of 0.4mm in pore size. Image reproduced with copyright permission.
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oxygen is pumped daily to support islet viability. Results showed

that rat islets corrected glucose levels in diabetic mini-pigs for

90 days with no signs of islet disintegration (Neufeld et al., 2013).

One human case study using this device reported that encapsulated

islets were functional over the entire period of 10 months with

moderate reduction of insulin requirement (Ludwig et al., 2013).

Although remarkable progress has been made in autologous and

allogeneic cell transplantation without immunosuppression (Cal-

afiore et al., 1998; Lanza et al., 1999; Siebers et al., 1997; Weber et al.,

1995), overcoming immunologic rejection of xenogeneic cells still

remains as a great obstacle (Lacy et al., 1991; Lanza et al., 1995b,

1997; Marchetti et al., 1996) due to the mechanical rupture of the

membranes, biochemical instability, islet cell heterogeneity, and the

broad distribution of pore sizes in the encapsulation materials

(Colton and Avgoustiniatos, 1991; Kajita and Hugli, 1991; Lanza and

Kuhtreiber, 1999; Soon-Shiong et al., 1991). It is known that cross-

linking macrocapsules does not provide precise control over

molecular weight cutoff, so antibodies and cytokines cannot be

sufficiently excluded in many hydrogel macrocapsules (Cui et al.,

2004; Sakai et al., 2006; Zhang et al., 2008). For example, large PEG

microbeads that were manufactured with poor porosity exhibited

hindered molecular transport (Weber et al., 2007).

These issues have brought interest from scientists and engineers

to apply a more controlled, fabrication technology, associated with

the production of Micro-Electro-Mechanical Systems (MEMS), to

produce biocompatible materials with features in the range of

micro- and nanometers for biomedical applications (Das et al.,

2007; Edell et al., 1992; Kim et al., 2011; Kipke et al., 2003; Kovacs

et al., 1994; Kristensen et al., 2001; Lee et al., 2011; Li et al., 2011) .

Desai and co-workers utilized bulk and surface micro-machining to

produce biocapsules with uniform and well-controlled pore sizes,

channel lengths, and surface properties (Chu et al., 1996; Desai

et al., 1999, 2004; Leoni and Desai, 2004). The nanoporous

biocapsule consisted of two permeable silicon membranes with

specific pore sizes, which can be as small as 7 nm (Fig. 6). They

reported that upon transplantation in peritoneal cavity, encapsu-

lated insulinoma cells reversed diabetes in rats for at least 14 days

using this nanoporous biocapsule (Desai et al., 2004). Capsules

made of 20-nm barriers maintained secretory output whereas 66-

nm capsules led to loss of cell function. They also developed

nanoporous alumina capsules with nominal pore size of 75 nm

where diffusion of glucose was undisturbed but the transport of

immunoglobulin G (IgG) was impeded (La Flamme et al., 2005,

2007). Nanoporous alumina encapsulated MIN6 cells secreted

insulin with dosage-dependent response (La Flamme et al., 2007).

Nanogland, another device produced using MEMS technology,

consists of parallel nanochannels and perpendicular microchannels

to the islet chamber (Fig. 7) (Sabek et al., 2013). The membranes

present a 6 by 6mm surface area with channel size ranges from 3.6

Figure 6. An image of a nanoporous biocapsule (Desai et al., 2004). The nanoporous biocapsule consisted of two nanoporous silicon membranes, gaskets, and protective

screens on both side of the device. The injection ports allow the sampling and replenishing of the islets (a). The dimension of the nanoporous silicon membranes, including the

support ridge, was 6� 8mm. The active membrane area was 3.5� 2mm with a thickness of 5mm (b). Images by courtesy of Dr. Tejal A. Desai.

Figure 7. An image of the Nanogland device (Sabek et al., 2013). The Nanogland

device consisted of two silicon membranes glued together with implantable silicone.

The active membrane area is 6� 6mm. The islet chambers were microfabricated for a

channel size of 20, 40, 60mm and a pore size of 3.6, 5.7, 13, 20, and 40 nm. Image

reproduced with copyright permission.
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to 40 nm for nanochannels and 20–60mm for microchannels. All

membranes have a circular pattern of 161 square islet chambers

(200� 200mm;W�H) separated from each other by 50mmwalls.

Subcutaneous implantation of the Nanogland with human islets in

mice showed survival of implants over 120 days with endothelial cell

infiltration, suggesting potential vascularization of the device

(Sabek et al., 2013). These encouraging results demonstrated the

feasibility of using MEMS technology to precisely control pore

dimension to achieve immunoisolation and sustain cell viability.

In summary, a major advantage of extravascular macro-devices

is the feasibility of replenishing islets without removing the device

in case of experimental analysis or surgical complications. Because

of their large sizes, extravascular macrocapsules face difficulties in

maintaining high permeability to diffusive transport necessary to

support encased islets while ensuring mechanical strength of the

membrane to prevent graft failure. As a result, large volume of

macrocapsules is proposed to support sufficient masses of insulin-

producing islets. This requirement challenges the conventional sites

such as the limited space in renal capsules, and even the relatively

large space in the peritoneal cavity may not satisfy the volume

required for the long-term function of macroencapsulated islets (de

Vos and Marchetti, 2002).

Vascular Perfusion Devices

To circumvent hypoxia and necrosis of cells located at the center of

extravascular devices (Chaikof, 1999), the development of vascular

perfusion devices struggled to overcome issues with diffusive

transport but achieved limited success (Leoni and Desai, 2004;

Tibell et al., 2001). Islet density of the extravascular macrocapsules

is suggested to be 5-10% of the volume fraction in order to ensure

the adequate exchange of nutrients and waste of the islets, (de Vos

and Marchetti, 2002).

It is well-recognized that delay of insulin secretion in response

to glucose (>20 min) has been a common problem encountered

in the early extravascular hollow-fiber systems (Orsetti et al., 1981;

Sparks et al., 1982). One of the crucial tasks is to minimize the

volume of islet encapsulating compartment to reduce the lag in

insulin release (Sparks et al., 1982). To satisfy this requirement,

thinner and longer hollow fibers are needed to accommodate a

large number of cells to maintain normoglycemia in the body.

However, thin fibers are prone to rupture under physical stress

and demand enormous area for implantation, making implanta-

tion of these types of fibers impractical. The delay in glucose-

insulin response further prompted scientists to design vascular

perfusion devices directly connected with blood circulation

(Fig. 1b) relying on convective movements of glucose and

insulin carried by ultrafiltration, instead of passive diffusion in the

case of extravascular devices, to provide a faster glucose-insulin

response.

In the 1970s, Chick and co-workers first reported diabetic rats

connected ex vivo to an intravascular hollow fiber device consisting

of neonatal islets (Chick et al., 1977). When implanted ex vivo as

arteriovenous (AV) shunts, the plasma glucose decreased to normal

range (100–130mg/100mL). This approach provides the encapsu-

lated islets in close contact with the blood circulation. It also allows

fast exchange of glucose and insulin to correct blood glucose levels

in almost real time. Similar studies using this approach ex vivo or in

vivo also restored short-term normoglycemia in chemically or

surgically induced diabetic animals (Colton and Avgoustiniatos,

1991; Lanza et al., 1992b). In contrast to a pure diffusion process

under extravascular conditions, this device utilized the physiologi-

cal pressure difference between the artery and vein to reduce the

overall insulin response time. The unidirectional blood flow causes

the pressure of the first part of the lumen to be greater than the

pressure in the periphery of the islet compartment, and therefore,

ultrafiltrate crosses from the bloodstream to the islet graft. Because

the hydrostatic pressure drops as a function of flow distance within

the lumen, hydrostatic pressure becomes lower in the second half of

the fiber, which creates an equal, reverse flux where ultrafiltrate

moves from the islet compartment to the bloodstream. The

resulting effect is that the ultrafiltrate in the shell compartment first

stimulates islets to release insulin in response to glucose challenge,

and then carries insulin back to the bloodstream. Specifically,

vascular perfusion devices are developed as shunts that connect to

the systemic circulation and allow blood perfusion through the

devices. Despite the promise and potential of vascular perfusion

devices, anticoagulant requirements have limited the utility of this

approach, especially for pediatric patients.

First demonstration of the long-term use of a bioartificial

pancreas in a large animal using a vascular perfusion device was

demonstrated in the 1990s (Maki et al., 1991a, b, 1993, 1996b).

Maki and co-workers developed a hybrid pancreas device, which

contains an acrylic housing with islets separated from the common

iliac artery and vein in dogs through the semipermeable membrane

(80kDa) (Fig. 8). They showed that allogeneic islets could control

diabetes induced by total pancreatectomy for up to 1 year with zero

or minimal exogenous insulin in dogs (Maki et al., 1991a,b, 1993).

Devices retrieved from two recipient dogs showed a 50–70%

viability of islets after 1 year. They also observed that insulin

requirements were greatly reduced by 50% in the allogeneic and

xenogeneic recipients after 284 days and 106 days, respectively

(Monaco et al., 1991). No gross fibrosis observed throughout the

membrane, except for thin layers of fibrin-like material adhered to

the luminal surface of the membrane. Importantly, clotting

occurred at either the anastomosis sites or the junction of the

PTFE graft and tubular acrylic copolymer membrane. These

findings were considered to be remarkable because of the difficulty

in maintaining the patency of vascular device in dogs (McMillan,

1992). However, vascular perfusion devices have been perceived to

be risky as demonstrated that hybrid pancreas device failed

immediately in 3 dogs due to excessive clotting and thrombosis,

collapse of membrane and vascular connection, and loss of islet

function related to device patency in this study. Additional

modifications to devices such as increasing the length of

semipermeable membrane coil and the size of acrylic housing to

accommodate more islets showed improvement in glycemic control

and reduced insulin requirements for up to 9 months in

pancreatectomized diabetic dogs without immunosuppression

(Maki et al., 1996a). Specifically, nine out of 17 dogs had a marked

reduction in exogenous insulin requirements by porcine islet

xenograft. Monaco and co-workers found out that only 4–16 IU

insulin per day was needed for 57–366 days in half of the

pancreatectomized dogs that received between 114,000–341,000 IEQ.
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These studies demonstrated the feasibility and clinical

applicability of the intravascular hybrid artificial pancreas; however,

it did not move to the clinical stage due to potential risks associated

with thrombosis and hemorrhage. Other blood contacting devices

such as the polyacrylonitrile and polyvinylchloride copolymer

(PAN-PVC) ultrafiltration capillary design, a hollow-fiber shaped

tube with islets at the outside of the artificial capillaries, also failed

due to excess clotting of the blood in the lumen of those small

diameter artificial capillaries, in spite of anticoagulant medication

in massive doses (Colton, 1995). As a summary, the advantages of

vascular perfusion devices include the high oxygen tension of the

arterial blood exposed to islets. The disadvantages of this type of

system are risks associated with the surgery required for creating

AVor AA shunts, vascular thrombosis, and potential risks in cardiac

stress and diversion of large volume of blood from the distal

extremity.

Challenges to Successful Macroencapsulation

Cell Source

The clinical application of encapsulated islets requires an

inexhaustible source of cells or tissues capable of delivering

therapeutic agents in response to physiological changes. Insufficient

number of human donors and long-term immunosuppression are

the major motives for scientists to focus on alternative sources of

insulin-producing cells for future transplants. New advances in the

field of stem cell differentiation and regeneration therapy suggest

use of xenogenic islets, immortalized b cell lines (Narushima et al.,

2005), embryonic stem cells (ESC), adult stem cells (ASC), and

progenitor cells that reside in the pancreas for generating insulin-

producing cells. Cells from allogenic or xenogenic sources will

require protection from the host immune system, and thus, efforts

directed toward an encapsulation method will prove highly valuable

as various cell sources gain significance in clinical relevance.

Another feature of encapsulation is the improved safety of cell-

based therapies since cells can be readily retrieved and separated

from patients in the case of malignancy.

Xenogenic porcine islets. Using islets from non-human sources for

transplantation has been explored to supplement the insufficient

supply of donor tissue. The porcine islet is the most popular animal

candidate because porcine insulin differs from human insulin by

one amino acid, a higher islet yield per animal, and hypoxia

tolerance observed in different age groups of pig islets with neonatal

porcine islets being the most resilient (Emamaullee et al., 2006). If

not immune-protected, porcine islets in non-immunosuppressed

nonhuman primates can be rejected by both humoral and cellular

immune reactions (Cantarovich et al., 2002; Kirchhof et al., 2004;

Soderlund et al., 1999). After a 72 hour transplant of fetal pig islets

under the kidney capsule of primates, a large number of

macrophages and T cells were observed at the periphery of and

within transplanted islets (Soderlund et al., 1999). Infiltration of

neutrophils caused tissue damage by releasing enzymes and

producing chemokines that directed T cells and dendritic cells

(Soderlund et al., 1999).

In addition, the risks associated with porcine tissues include

endogenous virus transfer from porcine cells to human. These may

impede the use of this porcine islets in clinical applications.

However, a prospective pig-to-primate islet xenotransplantation

study consisting of gene expression and serology for potentially

xenotic viruses such as porcine cytomegalovirus (PCMV), porcine

endogenous retrovirus (PERV), porice lymphotropic herpesvirus

(PLHV) and porcine circovirus (PCV) showed no evidence of pig

virus transmission to primate recipients (Garkavenko et al., 2008).

Embryonic Stem Cells (ESCs). Stem cells have the ability to self-

regenerate and differentiate into specialized cell types under

appropriate external niche and signaling cues (Smith, 2006). They

have the potential to provide a sufficient supply of insulin-

producing source (Street et al., 2004). ESCs derived from the inner

cell mass of pre-implantation blastocysts are self-renewing and

have the intrinsic capacity to generate all types of differentiated cells

(Weissman, 2000). Due to the pluripotent nature in ESCs, several

groups have attempted to direct differentiation of ESC into

functional b cells (Baetge, 2008; Best et al., 2008; D’Amour et al.,

2006; Kelly et al., 2011; Kroon et al., 2008). Insulin-expressing cells

were initially produced frommurine (Soria et al., 2000) and human

(Assady et al., 2001) ESCs through the formation of an embryoid

body, but this method was insufficient to generate a large amount of

insulin-positive cell formation (Soria et al., 2000). It is now

understood thatb cells are derived from controlled formation of the

definitive endoderm (D’Amour et al., 2006) followed by a sequential

Figure 8. An image of the hybrid artificial pancreas device (Monaco et al., 1991).

The device consisted of a coiled, hollow fiber membrane on top of a disk-shaped, islet

compartment. Two seeding ports allowed direct injection of islets into the

compartment. The hollow fiber was connected to vascular graft. The membrane

has a normial molecular weight cutoff of 50 kDa, an internal diameter of 5–6mm, and a

wall thickness of 120–140 nm. Image reproduced with copyright permission.
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and transient activation of specific transcription factors like Pdx1,

NeuroD/Beta 2, Isl1, Nkx6.1, Nkx2.2, Mafa, Pax4, and Pax6 (Kroon

et al., 2008). However, these derived cells were not very responsive

to glucose in vitro, but they could mature and restore euglycemia

after being transplanted into diabetic animals (Assady et al., 2001;

Baetge, 2008; Best et al., 2008; D’Amour et al., 2006; Kelly et al.,

2011; Kroon et al., 2008; Soria et al., 2000).

In addition to the need for stem-cell differentiation into insulin-

producing cells, the ability of insulin-producing cells to replicate is

also very important as observed during human normal growth

(Matveyenko et al., 2008), pregnancy (Sorenson and Brelje, 1997;

van Assche et al., 1978), and obesity (de Koning et al., 1993). High-

throughput screens of chemical libraries could potentially identify

small molecules that can stimulate the propagation of such cells in

vitro or in vivo (Bonner-Weir et al., 2000; Chen et al., 2009).

Despite the versatility of ESCs, ethical concerns and possible

teratoma formation limit the usage of ESCs (Ensenat-Waser et al.,

2006; Fujikawa et al., 2005). To address the ethical concerns with

ESCs, induced pluripotent stem cells (iPS) were generated by

reprogramming adult somatic cells after ectopic expression of stem

cell transcription factors Oct4, Sox3, c-myc and Klf4 (Takahashi and

Yamanaka, 2006; Wernig et al., 2007; Yamanaka, 2007; Yu et al.,

2007). The initial mouse and human fibroblast reprogramming has

now extended to other somatic cells including stomach (Aoi et al.,

2008) and pancreatic epithelium (Stadtfeld et al., 2008).

Furthermore, mature exocrine pancreas was transformed into

functional b cells through expression of endocrine transcription

factors (Ngn 3, Pdx1, and Mafa) (Zhou et al., 2008). Although the

transformed cells secreted insulin and relieved diabetes in animals,

an underlying mechanism study showed that the cells lacked

glucose-sensitive insulin secretion and critical aspects of the b cell

phenotype (Akinci et al., 2012). In addition, transplantation of

undifferentiated iPS containing derived insulin-producing cells

could also result in teratoma formation.

In 2014, ViaCyte launched a Phase I/II clinical trial using a pouch

approach with human embryonic stem cell-derived, encapsulated

cell replacement therapy (Agulnick et al., 2015; Kroon et al., 2008).

It is known that insulin producing cells previously generated from

human stem cells lack many functional characteristics of beta cells.

In the same year, The Kieffer group published a seven-stage

protocol that described embryonic stem cell-derived insulin-

producing cells not only responded to glucose challenge in vitro, but

also reversed diabetes in mice within 40 days, roughly four times

faster than pancreatic progenitors (Rezania et al., 2014). The Melton

group also reported a human stem cell differentiation protocol that

could generate glucose-responsive beta-cells to treat hyperglycemia

in diabetic mice (Pagliuca et al., 2014). The Hebrok group used a

pancreatic differentiation protocol that enables temporal activation

of endocrine differentiation in the progenitor cells to produce

glucose-responsive beta-like cells, which reduced blood glucose

levels in diabetic mice after short-term transplantation (Russ et al.,

2015). Successful differentiation of stem cells into functional

insulin-producing cells has significant clinical relevance and could

potentially solve the shortage of donor tissues. However, safety

issues such as the propensity of cells to form tumors have to be

addressed before using ESCs and iPS in the clinical setting. Again,

encapsulation could accelerate the acceptance of cell-based

therapies because devices can be readily removed without spreading

of tumors to the host.

Adult stem cells (ASCs). ASCs are multipotent cells that are capable
of self-renewal but limited in their pluripotent potential. ASCs can

be differentiated to specialized cell types under appropriate

signaling cues and microenvironment (Barry and Murphy, 2004;

Zhao et al., 2002). The relative ease of isolation and expansion of

ASCs makes them a potential cell based therapy for T1D treatment.

The ability to control growth and differentiation of pancreatic

stem cells provides an attractive islet source for b cell

reconstitution. Human ductal structures of the adult pancreas

contain stem cells that differentiate into islets of Langerhans.

Propagation and differentiation of these islet-like cells demon-

strated insulin production in vitro to normalize blood glucose levels

for more than 3 months in non-obese diabetic mice (Ramiya et al.,

2000). Nestin positive derived islet cell clusters expressed pancreatic

endocrine markers like Glut2, glucagon, Pdx1, and exocrine genes

(Zulewski et al., 2001). Exocrine pancreatic tissue (Baeyens et al.,

2005) and neurogenin 3 (ngn 3) positive cells (Gu et al., 2002) could

also be used as an alternative source to b cells. However, the harvest

procedure of pancreatic stem cells from the pancreas is very

invasive. The number of isolated precursor cells is few and

heterogeneously distributed in the body, thus, restricting the actual

application in the clinical setting.

There have been controversies regarding the origin of neonatal b

cells during the normal pancreatic tissue maintenance, the role of

the regenerating cells after injury, and the signaling mechanism by

which they regenerate (Kushner et al., 2010; Szabat et al., 2012). It is

known that the adult pancreas has a capacity to respond to changing

physiological needs. Lineage tracing experiments after partial

pancreatectomy suggested that the majority of new b cells is from

the proliferation of pre-existing b cells rather than stem cell

differentiation (Dor et al., 2004; Georgia and Bhushan, 2004).

However, other evidence demonstrated that stem cells or progenitor

cells expressing markers cytokeratin-19 (CK) give rise to new b

cells after 90% pancreatectomy or treatment with streptozotocin

(Bonner-Weir et al., 1993; Gao et al., 2003; Wang et al., 1995).

Despite the recent debates, there is little doubt that both replication

and neogenesis (the differentiation of new islet cells form

progenitors or stem cells) pathways play an important role in

maintaining an adequate b cell mass after birth. However, the

degree of replication ofb cells or differentiation of progenitors/stem

cells in a particular model system depends on the species (e.g.

human vs. mice, transgenic vs non-transgenic animals), the

pathophysiological conditions, and the physiological states

(Bonner-Weir et al., 2010).

Biomaterials

To date, a variety of polymeric and inorganic materials have been

utilized to create the semipermeable membranes with immuno-

protective barriers characteristics. The materials required for

encapsulation must demonstrate adequate permselectivity—high

selectivity excludes immune components and high permeability

supports the metabolic needs of encapsulated cells. Some of the

commonly used biomaterials for macroencapsulation are alginate
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(Lamb et al., 2011; Lanza et al., 1995a, 1996a,b; Storrs et al., 2001),

agarose (Iwata et al., 1992; Jain et al., 1999; Luan and Iwata, 2012),

nitro-cellulose acetate (Algire, 1943), 2-hydroxy-ethyl methacrylate

(HEMA) (Klomp et al., 1979; Sefton, 1993), acrylonitrile and

sodium-methallylsulfonate (Kessler et al., 1991), and PTFE

(Agulnick et al., 2015; Brauker et al., 1995; Lee et al., 2009a;

Trivedi et al., 2000). Unlike materials used for microencapsulation,

polymers for macroencapsulation are mechanically more stable

with thicker capsule walls. However, thicker walls can actually

impair diffusion across the membrane, threatening the viability of

transplant tissue. Many techniques have been used to improve the

survival rate of macroencapsulated islets such as smoothened

capsule surface and hydrophilic materials with low interfacial

energy to reduce protein adsorption, cell adhesion and fibrosis

(Narang and Mahato, 2006; Zhang et al., 2008).

Alginate. Alginate is a polysaccharide whose biocompatibility and
gelling properties make it the most popular choice for

encapsulation. The final gelled polymers form many non-uniform

alginate strands that serve as a barrier to the movement of

molecules passing from the outside of the capsule to the tissue

within or vice versa (de Vos et al., 2009). These non-uniform

alginate strands create a wide distribution of pore sizes, which can

greatly affect the diffusion of molecules. Therefore, rigorous

purification of the naturally occurring compound is required.

Otherwise, inadequate alginate purification can cause increased

alginate immunogenicity and splenocyte proliferation, and

decreased encapsulated islet viability (De Vos et al., 1997). Highly

purified alginate does not interfere with islet function and shows

good stability (de Vos et al., 2002). Moreover, various biomaterials

such as polyethylene glycol (PEG) and poly-L-lysine (PLL)

have been used to improve the permeability and selectivity of

alginate with reduced plasma absorption. Cui et al. demonstrated

that grafting PEG chains onto alginate capsules increased in vivo

viability of islet cells (Cui et al., 2004). The Stabler group

further improved the cross-linking process of alginate/PEG by

Staudinger ligation (Hall et al., 2011). Goosen et al. reported

alginate/PLL/alginate capsules blocked diffusion of serum

immunoglobulin, albumin, and hemoglobin (Goosen et al.,

1985). The Anderson group showed that larger alginate capsules

of 1.5-mm in size restored blood-glucose control for up to 180 days

in diabetic C57BL/6 mice, which was five times longer than the

conventionally sized 0.5-mm alginate capsules (Veiseh et al.,

2015). They reported that alternating the spherical dimension of

implanted devices can significantly improve the device biocom-

patibility in vivo.

Agarose. Agarose is a thermo-sensitive, linear polymer made of

repeating monomeric unit of agarobiose. The gelling temperature of

agarose used in encapsulation is 15–30�C, but it is dependent on the

concentration of agarose used. Often, droplet extrusion followed by

hardening with reduction in temperature is used to create an

encapsulation capsule. Agarose has been shown to be biocompatible

and prevent extrusion of cells (Wong and Chang, 1991). Selectivity

increases as the concentration of agarose rises (Iwata et al., 1994).

Although it has not been studied intensively as alginate, agarose-

macroencapsulated porcine islets remained viable and functional

for almost 200 days after intraperitoneal transplantation in rat

recipients (Jain et al., 1995, 1999).

PTFE. PTFE is a fluorocarbon-based polymer which is very stable
both thermally and chemically. This polymer is hydrophobic,

biologically inert, and non-biodegradable which gained popularity

as a vascular graft material in the expanded form (ePTFE), due to

greater porosity, better tissue adhesion, and improved pliability

(Berardinelli, 2006; Elliott et al., 1977). Microporosity of this

material can be controlled through processing techniques including

mixing resin with a solvent binder, cold extrusion of a billet, and

mechanical expansion and stretching followed by sintering (Snyder,

1982). A notable example of using this material to encapsulate cells

is the Baxter TheraCyte System, which was also an expanded PTFE

structure that enhanced blood vessel formation with 5 days of

implantation (Brauker et al., 1995) and prevented allograft rejection

in non-immunized recipients for 6 months (Kumagai-Braesch et al.,

2013) and xenograft rejection for up to 8 weeks in a porcine-to-

cynomolgus monkey model (Elliott et al., 2005).

Immune Response

The principle of immunoisolation is based on physical separation of

graft cells from the host immune system to prevent direct cell-to-cell

contact, thereby circumventing the direct antigen pathway that

causes activation of cytotoxic CD8þ T cells by donor major

histocompatibility complex (MHC)-peptide complexes expressed

on the surface of antigen presenting cells (Gill, 1999; Gray, 1997).

Allograft rejection is primarily mediated by such aforementioned

process through cellular immunity. To prevent the macrophage and

T cell reaction to allografts, allotransplantation of islets with

testicular Sertoli cells or genetically engineered cells induced with

Fas ligand (FasL) have been shown to protect islets (Calafiore et al.,

2001; Korbutt et al., 1997; Lau et al., 1996). Antigens shredded from

encapsulated cells could also trigger T cell activation resulting in a

series of cytotoxic granules and cytokine release. Therefore, it is

important to consider using size exclusion to prevent graft rejection.

For example, TheraCyte device with 0.4mm in pore size protected

against allograft rejection in non-immunized recipients for

6 months (Kumagai-Braesch et al., 2013). TheraCyte device also

provided effective immunoisolation that allowed neonatal porcine

islets to survive in cynomolgus monkeys for up to 8 weeks (Elliott

et al., 2005). The pore size of this membrane is insufficient for long-

term xenograft protection.

Rejection of non-vascularized xenografts includes both the

humoral immunity (involving IgG and IgM antibodies and

complement) and cellular immunity (involving T-cells and

macrophages, cytokines, free radicals, and NO) (Duvivier-Kali

et al., 2004; Mikos et al., 1998; Rokstad et al., 2001; Siebers et al.,

1999; Weber et al., 1999). For the humoral immune system,

complement reaction is initiated either by the classic pathway that

involves binding of the complement component C1q to an IgM or

IgG molecule, or by the alternate pathway which involves C3 (Iwata

et al., 1999). The final result of the cascade of events is the lysis of

cells. In the cellular immunity system, host antigen presenting cells

display peptides from donor proteins to engage CD4þ helper T cells

which develop into Th2 cells. These cells produce cytokines that
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stimulate the maturation of B cells into plasma cells, which secrete

xenoantigen-specific antibodies (Gill, 1999; Gray, 1997). CD4þ T

cells also induce production of additional cytokines (IFN-g, IL-2,

IL-5) and pro-inflammatory molecules by macrophages (TNF-a,

IL-1b, histamine), which can be highly destructive to encapsulated

cells through oxidative and endoplasmic reticulum stress pathways

(Barshes et al., 2005; Cnop et al., 2005; Montolio et al., 2007;

Rabinovitch and Suarez-Pinzon, 1998). Effects of the indirect

antigen pathway with humoral and cellular responses on the

transport characteristics of immunobarriers have been discussed in

many studies (Colton, 1995; Colton and Avgoustiniatos, 1991).

Complement reaction can be prevented by using a membrane with a

maximum effective pore diameter of 30 nm to hinder passage of

complement and antibodies to islets (Colton, 1995), or using

molecules that inhibit a step in the formation of the membrane

attack complex on encapsulated tissue (Iwata et al., 1999; White and

Yannoutsos, 1996). However, the physical nature of immunocellular

components presents an enormous challenge to the size-selective

based immunoisolation techniques, as shown by dimensions of

glucose, insulin and other inflammatory mediators in Table II.

While some immunoisolation membranes have managed to protect

cells from IL-1b and/or TNF-a (de Haan et al., 2003; Kulseng et al.,

1997), blockade of free radical diffusion is very unlikely as

demonstrated by Wiegand et al. (Wiegand et al., 1993) and Chae at

al. (Chae et al., 2004) that, despite its short half-life, nitric oxide

(NO) can still destroy encapsulated islets. This observation was also

supported by a mathematical model of free radical diffusion

through a spherical matrix containing pancreatic islets (Kavdia and

Lewis, 2002). New paradigms in the development of immunoiso-

lation barriers must be explored in the case of indirect antigen

presentation for the use of xenografts. As ESC-based cell therapies

develop, immunoprotection of xenogeneic cells may not be as

critical. Alloprotection may offer sufficient immunoisolation and

improved nutrient transport given the pore size used for this type of

immunoisolation.

Inflammatory Response

Acute Response

Non-specific inflammatory responses occur at the transplant site

immediately after implantation of immunoisolated or naked islets,

mediated by activated macrophages that produce cytokines, free

radicals, and NO to damage islet cells. The inflammatory milleu is

very metabolically active, and therefore, oxygen is rapidly

consumed, which further reduces the amount of oxygen available

to islets, resulting in hypoxia and death. Not surprisingly, reduction

of these effects and prolonged engraftment of both encapsulated

and non-encapsulated cells were observed following macrophage

depletion (Bottino et al., 1998).

Foreign Body Response

Foreign body response to implanted biomaterials can be described

as initial recruitment of neutrophils and macrophages by non-

specific adsorption of proteins on the material surface, which leads

to subsequent attachment and overgrowth of the device by

macrophages, foreign body giant cells, and fibroblasts (Anderson,

1988). The severity of foreign body responses to immunoisolation

devices depends on transplantation site and material properties,

such as surface charge and chemistry, porosity, roughness, and

implant size (Babensee et al., 1998). Capsular overgrowth of the

implanted devices inhibits nutrient transport to the islets and cause

hypoxia and necrosis that lead to islet destruction and graft failure

(de Vos et al., 2006). The biocompatibility of immunoisolating

materials could be improved by using highly purified materials (De

Vos et al., 1997) or by engendering an alternative foreign body

response as illustrated by the TheraCyte device, which encourages

blood vessel growth at the capsule surface (Brauker et al., 1995).

Instant Blood-Mediated Inflammation Reaction

In addition to the challenge associated with complex immune

responses aforementioned, vascular perfusion macrocapsules face

another big hurdle because implantation of vascular perfusion

devices injures vessel walls, which, in turn, induces significant

platelet adhesion and activation, and blood coagulation. Instant

blood mediated inflammation reaction (IBMIR) is another

mechanism for acute graft rejection that involves platelet

consumption, complement activation and the initiation of the

coagulation cascade (van der Windt et al., 2007). To prevent acute

rejection as a result of direct contact with the blood, conjugation of

thrombomodulin (Feng et al., 2002; Tseng et al., 2006a; Wilson

et al., 2010) and anti-coagulation agents such as heparin and

warfarin (Edens et al., 1994; Maillet et al., 1988; Tseng et al., 2006b,

Table II. Glucose, insulin and soluble inflammatory mediators expressed

by pancreatic islets.

Molecule

Molecular

weight (Da) Ref.

IgG 150,000 Iizuka et al. (1994)

IL-6 21,500–28,000 Berney et al., (2001); Bottino et al.

(2004)

IL-1b 17,500 Berney et al. (2001); Ehrnfelt et al.

(2004); Johansson et al. (2003);

Matsuda et al. (2005)

TNF-a 17,300 Beutler et al. (1985); Old (1985)

IFN-g 15,500–25,000 Kelker et al. (1984)

Macrophage migration

inhibitory factor

(MIF)

12,000 Johansson et al. (2003)

CXCL9 (MIG) 11,700 Schroppel et al. (2005)

CXCL10 10,000 Schroppel et al. (2005)

IL-8 8,000 Bottino et al. (2004); Johansson et al.

(2003)

CCL5 (RANTES) 8,000 Schroppel et al. (2005)

MIP-1a 7800 Lewis et al. (2005)

MCP-1 6000–7000 Bottino et al. (2004); Chen et al.

(2001); Ehrnfelt et al. (2004);

Johansson et al. (2003); Piemonti

et al. (2002)

CXCL2 (MIP-2a) 6000 Schroppel et al. (2005)

Insulin 5,087 Gutfreund (1948)

Glucose 180 Khanna et al. (2008)

Nitric oxide (NO) 30 Matsuda et al. (2005); Thomas et al.

(2002)
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c; Wang et al., 2013), use of low-molecular weight dextran sulfate

(Goto et al., 2004; van der Windt et al., 2007), and genetic

modifications of islets such as adenoviral transduction of

complement regulatory factors (CD55, CD59) (Schmidt et al.,

2003; van der Windt et al., 2007) have been investigated.

Hypoxia/Implantation Site

Progressive islet graft dysfunction and loss occurs due to many

reasons as summarized in Figure 9: absent re-innervations, chronic

hypoxia due to poor vascularization, premature apoptosis, lack of

regeneration in insulin-producing cells, pro-inflammatory milieu,

coagulation and thrombosis in vascular perfusion devices, and

mechanical failure of the encapsulation membrane. When islets are

transplanted, many of them die in the first few days due to hypoxic

death before vascularization develops (O’Sullivan et al., 2010). Cell

necrosis occurs when islets are placed beyond the diffusion limit of

tissue (>150–200mm away from the nearest blood vessels)

(Thomlinson and Gray, 1955). Vascularization only occurs in 7–10

days after transplant (Johansson et al., 2009; Moya et al., 2010).

This delayed and insufficient vascularization creates low oxygen

tension, resulting in cell death and graft failure (Figliuzzi et al.,

2009). The Sernova and TheraCyte devices have the capability to

pre-vascularize the system prior to cell insertion to overcome the

low oxygen tension.

To avoid hypoxia, vascular perfusion devices can be connected

by vascular anastomoses to the vessels of the host with either AV

or AA connection (Elliott et al., 2005; Sun et al., 1996), where

oxygen and nutrients directly passed to the cells. Numerous

vascular perfusion devices were developed to overcome transport

challenges. Common iliac artery and the common iliac vein are

the popular sites to use (Maki et al., 1991a,b, 1993, 1996b) in

addition to aortic lumen (Prochorov et al., 2004, 2005) in canine

models. vascular perfusion devices were also grafted into the

deep femoral artery or the forearm cubital vein after performing

AV anastomosis in patients (Prochorov et al., 2008). The method

of islet transplantation into the forearm cubital vein with AVA

formation was less traumatic and more physiological such that

patients showed a faster and larger decrease of insulin demand,

and euglycemia was maintained for two years with 14 recipients

(73.7%) (Prochorov et al., 2008).

Extravascular macrocapsules require large volumes to accom-

modate sufficient masses of insulin-producing islets, and therefore,

locations with established vascular beds are preferred. Peritoneal

cavity offers less restriction on the volume of encapsulated islets

that can be transplanted, and the procedure can be invasive

compared to subcutaneous implantation (Ryan et al., 2005b;

Shapiro et al., 2006). However, the lack of vascularization and

gravity-induced clumping of islets on the pelvic floor in upright

primates, if not immobilized within macrocapsules, are the main

issues concerning this location (O’Sullivan et al., 2011). Kidney

subcapsular space also offers good vascular network, but the space

is quite limited (Biarnes et al., 2002; Potter et al., 2010).

Subcutaneous tissue such as epididymal fat pad is close to

Figure 9. Possible causes for encapsulation failure.
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vasculature, but a large surface area may be required for

transplantation (Chang, 1964; Chick et al., 1977; Lim and Sun,

1980). Other possible locations include omentum (Browning and

Resnik, 1951; Dufrane et al., 2006), muscle (Berman et al., 2009),

and intraocular sites (Hathout et al., 2003), but vascularization and

space limitation make implantation of extravascular macrocapsules

impractical.

New Solution for Macroencapsulation

There are two major areas to be considered for making the

successful design of next generation of islet macroencapsulation

devices, namely providing effective immunoisolation and present-

ing sufficient mass transfer between the outside environment and

the encased islets. As previously discussed, semipermeable

membranes must exhibit precisely controlled pore size to separate

soluble inflammatory mediators (Table II) that are on a scale of

nanometer in size while exhibiting exceptional uniformity in pore

size distribution to provide suitable immunoisolation. Micro-

fabricated silicon membranes can be used to achieve such level of

high precision control over pore sizes, as illustrated by examples like

nanoporous biocapsule (Desai et al., 1999, 2004; Leoni and Desai,

2004) (Fig. 6) and Nanogland (Sabek et al., 2013) (Fig. 7). The

nanoporous biocapsule and Nanogland were designed with L-

shaped pore paths with perpendicular microchannels and parallel

nanochannels to the membrane surface. This L-shaped design

effectively prevented diffusion of larger immune components, but

hindered diffusion of small molecules due to the indirect, long

diffusion distance. This effect was observed in the Nanogland

device where nanochannels with 3.6 and 5.7 nm pore sizes showed a

reduction in glucose diffusivity by 40% and 25% compared with the

molecule in the bulk medium (Sabek et al., 2013). Besides the long

diffusion distance, solutes also face reduced diffusion as their size

approach the molecular dimension of the pores. Dechadilok and

Deen reviewed hindered transport theory for both diffusive and

convective hindrance factors in which uncharged, spherical

particles travel in the long cylindrical and slit pores of uniform

cross-section (Dechadilok and Deen, 2006). Depending on the

mode of transport, it is crucial to design immunoisolating

membranes with size exclusion properties for the larger immune

components (e.g. cytokines, antibodies) while still permit the

passage of smaller molecules (e.g. glucose, insulin). The surfaces of

silicon membranes can also be selectively grafted with biocompati-

ble polymer thin films to ensure functional performance over

extended time periods, making them suitable for biological

applications (Li et al., 2010; Melvin et al., 2010; Zhu and

Marchant, 2006). Although nano-sized pores are ideal to restrict

the passage of immune components, encased islet functions and

viability could be greatly impacted under the diffusive transport

approach. A faster mass transfer of oxygen and nutrients to the

encapsulated islets is needed given the size constraints on the

pores. To monitor vessel stenosis and prevent thrombosis in

vascular devices, advances including the use of intra-access blood

flow and pressure measurements and duplex ultrasound (Allon,

2007) could further shed light on the optimal vascular perfusion

design (e.g. pressure drop, blood flow path) for macroencapsulation

devices.

Conclusions

To date, the pursuit of bioartificial pancreas devices that restore

glucose homeostasis without the need for immunosuppression still

remains one of the most challenging goals within the field of

regenerative medicine and tissue engineering. With more than

50 years of intensive research directed at developing encapsulation

methods for immunoisolation of transplanted cells, both promise

and inherent challenges, particularly related to macroencapsula-

tion, have been discussed within this review. The progress on

macroencapsulation has been limited due to inefficient mass

transport of oxygen and nutrients under extravascular setting and

problematic blood coagulation and thrombosis under intravascular

environment in large animals. But advances in membrane

development such as use of MEMS technology have the potential

to improve macroencapsulation. In addition to the maintenance of

adequate oxygen and nutrient transport, inflammatory response

also plays a pivotal role in reacting with any implanted cell-material

composite, and therefore, a proper control of membrane transport

properties to prevent host responses is of paramount importance.

Given the promising potential of encapsulation based bioartificial

pancreas, successful devices will depend on merging knowledge

from cell-based therapeutics with advanced engineering ap-

proaches to overcome several major obstacles: first, the develop-

ment of a renewable, alternative insulin-producing cell source to

solve the current donor organ shortage; second, enhanced

biocompatibility and permselectivity of immunobarriers to reduce

deleterious host immune response; and thirdly, improved mass

transport characteristics of existing encapsulation techniques using

advanced engineering approach. Therefore, a synergistic effort

between biological and physical scientists, physician-scientists, and

engineers will be essential for the development of novel life-saving

technologies in the field of T1D research.
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