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; Progress and challenges in probing
the hu< man brain
R= ussell A. Poldrack1 & Martha J. Farah2

Pe> rhaps one of the greatest scientific challenges is to understand the human brain. Here we review current methods in
human neuroscience, highlighting the ways that they have been used to study the neural bases of the human mind. We
be? gin with a consideration of different levels of description relevant to human neuroscience, from molecules to
large-scale networks, and then review the methods that probe these levels and the ability of these methods to test
hypotheses about causal mechanisms. Functional MRI is considered in particular detail, as it has been responsible for
much of the recent growth of human neuroscience research.We briefly review its inferential strengths andweaknesses
and present examples of new analytic approaches that allow inferences beyond simple localization of psychological
processes. Finally, we review the prospects for real-world applications and new scientific challenges for human
neuroscience.

T
he way that we conceptualize brain function has always been
constrained by the methods available to study it. Studies of
patients with focal brain lesions in the nineteenth century led

to the view of the brain as a collection of focal centres specialized for
particular cognitive abilties, such as ‘Broca’s area’ for speech production.
The development of neurophysiological recording techniques in the
twentieth century led to Barlow’s ‘neuron doctrine’, according to which
the functions of individual neurons can be extrapolated to explain the
function of the brain as a whole. The cognitive neuroimaging studies of
the 1980s focused on subtractive comparisons between cognitive tasks
meant to isolate specific cognitive operations, and led to a relatively
modular view of brain function as involving localized and separable
regions that implement elementary mental operations.

The methods of contemporary human neuroscience have provided a
muchmore complex and nuanced view of the human brain as a dynamic
network with multiple levels of organization, in which function is char-
acterized by a balance of regional specialization and network integ-
ration. Although current methods are limited in their utility for
studying brain function at fine-grained levels of organization (such as
single neurons or cortical columns), human neuroscience has nonethe-
less made remarkable progress in understanding basic aspects of func-
tional organization, and with this have come a number of applications to
address real-world problems. Our goal here is to review the current state
of human neuroscience, focusing on what kinds of questions can and
cannot be answered using current techniques and how those answers are
relevant to real-world applications.

How can we study the human brain?

Methods for studying human brain function can be organized according
to the kinds of mechanistic insights that each technique provides. As
shown in Table 1 the first characteristic is the level of mechanism cap-
tured by the method. Mechanisms range from the molecular level (neu-
rotransmitters and receptors) to large-scale networks (the dynamic
integration and coordination of different functional areas of the brain).
Although this distinction is related to physical scale, it does not depend
on the method’s spatial resolution per se. For example, positron emis-
sion tomography (PET) using neurotransmitter ligands measures
molecularmechanisms, even though its spatial resolution is on the order

of one centimetre. The second characteristic is the ability of eachmethod
to elucidate the mechanistic role of an observed brain molecule, cell,
region or network in a mental function of interest. By mechanism we
mean the causal chain of events that result in the realization of a func-
tion. To fully understand human brain function is to know the causal
chains of events at the molecular, cellular, population, and network
levels that give rise to psychological function. For this reason, the power
to identify causal relationships is a crucial dimension of difference
among methods.
Some methods used in the study of human brain function provide

relatively little insight into causal mechanisms. This includes methods
that exploit naturally occurring variation by observing the strength of
association between individual differences in brain function and beha-
viour. Analysis of relationships between behavioural traits, genes, brain
structure, and brain function exemplify this approach (see Box 1 for a
discussion of genomic approaches). For many important psychological
phenomena, from effects of life history to personality traits, we are limited
to observational methods. For example, individual differences in the per-
sonality trait of impulsiveness have been associated with differences in
striatal dopamine release1, fMRI activation2, and cortical grey matter
volume3. Observed associations between neural and psychological traits
do not necessarily imply a causal relationship, as these associations could
result from an unmeasured third variable that independently influences
the two measures. Nevertheless, such associations provide a valuable
starting point for theorizing about the neural mechanisms of human
psychology, and their evidentiary value can be strengthened bymeasuring
possible confounds to rule them in or out.
Although functional neuroimaging, electroencelphalography/mag-

netoencelphalography (EEG/MEG) and single-cell recordings are some-
times criticized as being purely correlative and therefore uninformative
about mechanism, that criticism is only partly accurate. When psycho-
logical processes are experimentallymanipulated by presenting a certain
kind of stimulus and/or engaging the subject in a task, we can infer
that any reliably elicited brain activity was caused by performing these
psychological functions. We cannot, however, infer with confidence
that the observed brain activity is causally responsible for the psycho-
logical process under study. Despite this limitation (which is shared by
neuronal recordings in non-human animals), neuroimaging studies
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in which psychological processes are manipulated comprise the
majority of current human neuroscience research, and have advanced
our understanding of human brain function, as we will discuss in more
detail below.

More decisive evidence concerning causal necessity can be obtained
by manipulating the brain itself to assess the resulting effect on the
psychological process in question. Naturally occurring or surgical
lesions, which provided the basis for most of what we knew about
human brain function before the advent of neuroimaging, are still of
great interest because they provide insight into the causal necessity of
specific brain regions or connections. More recently developed methods
of brain stimulation allow for reversible inhibition or excitation of a
brain area, thereby expanding our ability to test the causal role of brain
regions in the mechanisms of human thought and action. Deep brain
stimulation (DBS) provides the most precise method for targeted stimu-
lation by using surgically implanted electrodes, but is limited to situa-
tions where patients are undergoing implantation for medical reasons.
Use of non-invasive brain stimulation for research purposes has grown
rapidly in recent decades, starting with transcranial magnetic stimu-
lation (TMS), in which pulsed magnetic fields induce currents in the
brain. Various forms of transcranial electric stimulation (TES), in which
current is delivered using external electrodes, have also been used, of
which the most common variant is transcranial direct current stimu-
lation (tDCS). Unlike DBS, non-invasive brain stimulation generally
affects larger and more superficial areas of the brain, but researchers
are seeking to improve spatial resolution with new magnetic coil shapes
for TMS and new electrode configurations for tDCS. Focused ultra-
sound is also being explored as a means to stimulate more precisely
delimited brain regions4. Pharmacological agonists and antagonists of
particular neurotransmitter systems can be used to experimentally
manipulate the human brain at the molecular level, although with
imperfect specificity5. By combining each of these manipulations of
brain function with functional brain imaging, one can leverage the cau-
sal information obtained through pharmacological challenges or brain
stimulation. For example, the causal role of activity in specific brain
regions, identified using fMRI, for a particular function has been tested
by brain stimulation, using both direct cortical stimulation (for example,
ref. 6) and TMS7.

New capabilities of fMRI

Because fMRI has become the main method for the study of human
brain function, our review focuses on thismethod and newways of using
it. In the last two decades, fMRI has developed from a newly developed
technique for revealing neuronal activity to being the workhorsemethod
of cognitive neuroscience (see the recent special issue ofNeuroimage on
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Table 1 | An overview of the levels of analysis and levels of causal inference afforded by different human neuroscience methods

Level of mechanism

Molecules Cells Populations NETWORKS

Strength of causal
evidence

Purely observational
(associations do not

necessarily imply causal
relations between mind
and brain)

Genetic associations with
behaviour, brain function or

brain structure

Structural morphometry
correlated with psychological

traits

N Resting functional

connectivity (fMRI,
EEG/MEG) or structural
connectivity (sMRI, DTI)

correlated with
psychological traits

Postmortem studies of gene

expression

Correlations ofMRI spectroscopy
or PET ligand imaging with

psychological traits

Manipulate psychological
process and observe brain
(neural measures may be

epiphenomenal)

Task modulation studies using
PET with neurotransmitter
ligands or MRI spectroscopy

Intracerebral
recording in
surgical patients

Task activation studies
(PET, fMRI, EEG/MEG)

N Task-based functional

connectivity (fMRI,

EEG/MEG)Representational analysis
(fMRI, EEG/MEG)

Computational neuroimaging
(fMRI, EEG/MEG)

Manipulate brain and
observe psychological

results (demonstrates
causal effect of neural

system in behaviour)

Pharmacological manipulation
(including hormones)

Direct brain
stimulation in

surgical patients

Focal cortical lesions N Disconnection/white

matter lesionsTranscranial magnetic
stimulation

Transcranial electrical stimulation

Cortical surface electrode

stimulation in surgical patients

DTI, diffusion tensor imaging; EEG/MEG, electroencephalography/magnetoencephalography; fMRI, functional MRI; MRI, magnetic resonance imaging; PET, positron emission tomography; sMRI, structural MRI.

BOX 1

Challenges of merging
neuroimaging and genomics

Thesubstantial heritability ofmanypsychological functionshasdriven

great interest in finding genetic underpinnings of individual

differences in neural function. Twin and family studies have

demonstrated significant heritability for both task-related BOLD

responses91 and resting-state functional connectivity92 in fMRI. In the

pastdecade, a largenumberof studieshavealso reportedassociations

between BOLD signals and common variants in candidate genes.

Unfortunately, this approach has generally been unsuccessful in

identifying genetic associations that are replicated in genome-wide

association studies (GWAS). For example, a striking finding from the

first well-powered GWAS of genetic variants associated with brain

volumewas that noneof theassociationspreviously identified through

candidate gene studies were replicated at the genome-wide level88.

Similarly, candidate geneassociationswith cognitive function (suchas

the association between polymorphisms in the COMT gene and

working memory) and brain activation have generally not been

confirmed inmeta-analyses, andare subject to a substantial degree of

publication bias93,94. Like for many other areas of genetics, this

suggests that genome-wide approaches are the most likely to lead to

reliable identification of common variants related to brain structure

and function. However, GWAS approaches require large samples (in

the tens of thousands) which are very difficult to amass for task-based

fMRI studies; for that reason, GWAS-based approaches to probing the

human brain will likely be limited to resting-state fMRI and structural

MRI. Other strategies, such as targeted studies investigating rare

variants of large effect identified using genome sequencing or studies

usinggeneexpression inperipheral tissuesmayhavegreater utility for

genetic studies of task-based fMRI. Task-based fMRImay also be used

to further investigate candidate variants identified on the basis of

GWAS studies of psychiatric disorders or population variability.
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the first twenty years of fMRI8). Much has been learned about the
biological mechanisms underlying blood oxygen level dependent
(BOLD) signals9,10, but still much remains to be understood, such as
the roles of specific glial and neuronal cell types in the coupling of
neuronal activity to blood flow (for example, refs 11, 12). This limited
physiological understanding poses problems for the interpretion of
fMRI data. In particular, although fMRI signals often correlate strongly
with both action potentials (‘spikes’) and local field potentials, they are
largely reflective of post-synaptic processes, and in some cases they can
be dissociated from spiking altogether13. The relative sensitivity of fMRI
to post-synaptic processes as opposed to spiking has been seen as a
drawback by some who view spikes as the essence of brain function,
but it is worth noting that this discovery has actually rekindled interest
in the analysis of local field potentials in electrophysiology (where these
signals have long been discarded) (for example, ref. 14), and suggests
that fMRI may sometimes be sensitive to subthreshold signals that
would be missed by analysis of spikes only. Uncertainties in relating
fMRI to psychological, as well as physiological, processes have also been
debated, and progress has been made on this front too. From experi-
mental approaches such as adaptation paradigms for probing represen-
tations to analyses of functional connectivity, fMRI is routinely used to
answer questions about mind–brain relationships that go far beyond
localization15. Here we discuss three examples of new approaches to
understanding human brain function with fMRI that address questions
of representation, computational processes and network interactions
across the brain.

Representational analyses

Early work in neuroimaging focused largely on ‘brain mapping’—
identifying regions based on the mental processes that cause them to
be activated. This approach has provided a large body of reliable asso-
ciations between function and structure, but has not been particularly
successful in providing new insights into how psychological functions
are implemented16. However, two relatively recent approaches, known
as multi-voxel pattern analysis (MVPA)17 and representational similar-
ity analysis (RSA)18, can more directly relate psychological contents to
brain function (Fig. 1). MVPA involves the use of methods from the
field of machine learning to decode or predict psychological states
from patterns of brain activation across voxels (hence the term ‘brain-
reading’). Since its introduction more than a decade ago, MVPA
has been used in a number of domains to demonstrate the predictive
ability of fMRI activation patterns. Perhaps the most impressive are
demonstrations of the ability to successful reconstruct visual scenes19

and faces20 from BOLD activity patterns; similar advances have been
made for higher cognitive functions such as word meaning21. These
studies go beyond simply differentiating between experimental condi-
tions, as they show how the underlying representational spaces relate to
brain activity; for example, Huth and colleagues22 developed a model
that estimated the response at each location on the cortical surface to a
large number of visual and semantic features present in natural movies
(Fig. 2). MVPA approaches have also provided new insights into the
neural organization of cognitive functions. For example, MVPA has
informed our understanding of the mechanisms of visual attention, by
showing that attention changes both the representation of stimuli
across regions of visual cortex as well as the mutual information
between regions23. In the domain of memory, MVPA has been used
to show that competition between memory representations in working
memory leads to poorer subsequent memory for those items, dem-
onstrating a nonmonotonic relationship between competition and sub-
sequent memory24.

Whereas MVPA is generally used to decode individual psycho-
logical states, RSA instead asks how the patterns of brain activity
evoked by different stimuli are related to one another, and thus
provides the means to directly address questions of how mental repre-
sentations are implemented in the brain. RSA has enabled the demon-
stration of direct isomorphisms between psychological representations

of stimuli (such as the similarity or typicality of objects) and the
neural patterns associated with those stimuli25,26. Because psycho-
logical theories often make predictions regarding the similarity of
different stimuli, RSA has also enabled the direct testing of theories,
such as theories about how categories are represented27 and theories of
how repeated experiences lead to enhanced learning28. RSA can be
applied to any kind of multidimensional data, and this has enabled
the demonstration of systematic mappings of visual object representa-
tions between humans (using fMRI) and non-human primates (using
electrophysiological recordings)29—an example that highlights how
human neuroscience can also help to establish more direct parallels
with findings in non-human models, allowing insights to filter in
both directions.
Although much MVPA and RSA work (as depicted in Fig. 1) has

focused on the representations found in localized brain regions, these
methods are equally useful for assessing representations that are spread
across the brain. For example, recent work has shown that mental states
such as physical pain can be decoded by analysis of patterns of activation
across brain regions30.
The legitimate enthusiasm about these methods is tempered by lin-

gering questions regarding the interpretation of multivariate ana-
lyses31,32. In addition, recent work combining electrophysiology and
fMRI in non-human primates has demonstrated that the sensitivity of
MVPA is limited by the spatial characteristics of the neuronal represen-
tations that code for particular features, such that some kinds of neur-
onal patterns may be more difficult to decode using MVPA than
others33. Finally, it is important to stress that, like standard neuroima-
ging approaches, MVPA and RSA approaches do not inform about
causal mechanisms.

Robin
Parrot
Chair
Sofa

Voxels

Correlation matrix

Is there a difference  
in activity between groups 

at each voxel?
Can we distinguish items 

from each group?

How similar are patterns  

for each item?

Robin

Parrot

Chair

Sofa

+

–

Standard

fMRI analysis

ChairRobin

Parrot
Sofa

MVPA RSA

Figure 1 | Different approaches to the analysis of fMRI data. This example
depicts data from a study in which four different stimuli were presented
(two birds and two items of furniture) and response measured for each item
across nine voxels; intensity of activity is depicted from blue (negative) to red
(positive). The standard univariate fMRI analysis approach would examine
the difference at each voxel between the averages of the two categories. Multi-
voxel pattern analysis (MVPA) examines the multidimensional relationship
between patterns of activity, in this case projecting the nine-dimensional space
of voxel patterns (the voxel vector) into a two-dimensional space and
identifying a boundary that separates items from the two classes. Representa-
tional similarity analysis (RSA) examines the correlations between activity
patterns for each item, in this case showing that items within category show a
high correlation (red), whereas the correlation of items between categories is
low (blue).

REVIEW RESEARCH

0 0 M O N T H 2 0 1 5 | V O L 0 0 0 | N A T U R E | 3



Integrating fMRI and computational modelling

Computational models play a central role in our understanding of both
cognitive and brain functions and, increasingly, of the relationship
between the two. By making assumptions explicit, computational mod-
els enable more direct testing of theories, as well as providing the means
to link computations at the neuronal level with higher-order functions.
An example of an area in which substantial progress has been made
using this approach is reinforcement learning, in which an animal
selects actions and learns from the rewards gained from those actions.
Computational models of reinforcement learning (RL) have long played
a central role in artificial intelligence and psychology, and the discovery
by Schultz and colleagues34 that dopamine neurons appear to signal one
of the important quantities in these models (reward prediction error)
has brought thesemodels to the forefront of the neuroscience of decision
making. For example, a set of publications in 2003 applied RLmodels to
neuroimaging data and thereby identified correlates of reward predic-
tion error signals in dopaminergic target regions such as the ventral
striatum35,36. Subsequent neuroimaging work has established that there

are multiple RL signals in the brain, some reflecting the simple asso-
ciation between actions and values (known as ‘model-free’ RL) and
others reflecting more complex contextual and hierarchical learning
processes (known as ‘model-based’ RL)37,38. Similarly, in the study of
memory, progress has been made in the mapping of medial temporal
lobe subregions to specific computational operations such as pattern
completion and pattern separation (for example, ref. 39). In each of
these domains, the computational interpretation of neuroimaging sig-
nals has been greatly enhanced by parallel studies in non-human ani-
mals, allowing imaging signals to be linked more directly to direct
measures of neuronal activity.

Functional connectivity analysis and resting-state fMRI

Perhaps the most revolutionary development to arise from human
neuroimaging research is the realization that the resting brain is far
from quiescent, and that important insights into brain function can be
gained from studying the correlated fluctuations of signals across the
brain at rest. Much of the research into the resting state has focused on
a set of regions (including anterior and posterior midline regions,
lateral temporoparietal cortex, and the medial temporal lobe, known
as the ‘default mode’ network40) that are consistently less active during
performance of difficult tasks41, and are functionally connected in the
resting state42. Similar patterns of resting connectivity have been
observed in non-human primates43 and awake rodents44, suggesting
that they reflect fundamental principles of mammalian brain organ-
ization. There is also growing evidence that these networks may be
important in brain disorders. For example, the posterior portion of the
default mode network appears to play a critical role in the memory
deficits observed in Alzheimer’s disease, showing a convergence
of amyloid deposition, structural atrophy, and decreased metabolic
activity45.

Data collected in the resting state can provide insights into the
broader functional organization of the brain as well. In particular, the
organization of resting state signals bears a close relation to the organ-
ization of brain activity evoked by mental tasks. For example, Smith
et al.46 used independent component analysis to identify spatially inde-
pendent sets of voxels from resting-state fMRI data and from task-based
data (obtained from the Brainmapmeta-analytic database), and demon-
strated that the components extracted from resting-state fMRI showed a
high degree of concordance with those extracted from task-based data.
The overlap between resting-state and task-based functional organiza-
tion can also be seen within individuals; for example, the longitudinal
examination of a single individual revealed reliable spatial parcellation
of activity in the cerebral cortex (using resting fMRI data) that mapped
systematically to the activation patterns observed across a large number
of task measurements47.

Despite the substantial excitement around resting-state fMRI find-
ings, numerous concerns have been raised about their interpretation.
In particular, there are lingering questions regarding the ways in
which artefacts related to head motion and physiological fluctuations
may influence estimates of resting state connectivity, and whether
common data analytic methods may induce systematic artefacts48,49.
In addition, potential confounds such as light sleep50 may drive dif-
ferences in resting state signals. The unconstrained nature of resting-
state fMRI is a double-edged sword; it is potentially very useful for the
study of clinical groups for whom task performance may be difficult,
but at the same time, it is not possible to determine whether group
differences reflect fundamental differences in functional connectivity
or relative differences in the ongoing mental content of different
groups during rest (see ref. 51).

Applications of human neuroscience

With the development of new methods have come attempts to apply
them to real-world problems, in both medical and non-medical con-
texts. (See Box 2 for a discussion of the ethical, legal, and societal issues
raised by these applications.)
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Figure 2 | Amapping of high-dimensional semantic space onto the cortical
surface. Here, voxel patterns for 1,705 different action and object categories,
based on brain activity obtained during viewing of naturalmovies22 aremapped
onto the cortical surface image generated using online browser at (http://
gallantlab.org/semanticmovies/). a, Mapping of semantic categories to each
point on the surface; the colours on the surface map to the semantic map in
panel b. b, A depiction of the semantic space for a specific surface point in the
extrastriate body area (EBA). Data from ref. 22.
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Brain disorders

Themethods of human neuroscience hold particular promise for under-
standing and treating psychiatric disorders, because these disorders do
not have clear analogues in non-human animals, and animal models
currently used for preclinical screening of potential therapies are
increasingly regarded as being inadequate52. In the absence of valid
animal models, it becomes all the more crucial to apply new methods
for understanding human brain function and dysfunction. The goal of
improving the treatment of neuropsychiatric disorders is made even
more challenging because of our current diagnostic system. Although
depression, schizophrenia, autism and other serious psychiatric disor-
ders have long been considered disorders of the brain, they are still
diagnosed exclusively by behavioural signs and symptoms. These dia-
gnostic criteria do not seem to have clear relations to the biological
processes that would be targeted by new medical treatments.

In response to this problem, an alternative way of systematizing psy-
chiatric disorders has been developed—the NIMH Research Domain

Criteria (RDoC)53—that describes disorders according to impairments
in specific functional systems of the brain (such as fear or reward learn-
ing) and at different levels of mechanism of the kind represented in
Table 1 (for example, molecules or circuits). RDoC characterizations
cut across traditional diagnostic categories and are intended to capture
the underlying pathophysiology more accurately. Given the multiple
levels of mechanism captured by the RDoC, the system encourages
research with a broad array of methods to identify potentially targetable
dysfunctions.

The application of several human neuroscience methods has led to
the development of targeted treatments, for example, in the field of
depression. Functional imaging studies have highlighted the role of
the subgenual anterior cingulate cortex in a network of regions involved
in mood, leading Mayberg and colleagues to use deep brain stimulation
in this area to regulate mood in depressed patients54. Lateral prefrontal
regions, implicated through imaging studies in depression, have been
targeted with non-invasive brain stimulation, including the FDA-
approved use of TMS for treatment-resistant depression. Functional
neuroimaging can itself be used as a treatment, by providing patients
with a real-time measure of regional brain activity to use as a biofeed-
back signal. This approach is being tested for the treatment of chronic
pain, depression and addiction55. In contrast, neuroimaging has not so
far been very successful in aiding differential diagnosis of disorders in
terms of current diagnostic categories. A recent large meta-analysis
identified a set of regions in which structural abnormalities were con-
sistently associated with psychiatric disorders, but found very little spe-
cificity for individual disorders56, consistent with the notion that current
diagnostic distinctions are not biologically realistic categories.

Another approach to the discovery of therapeutic targets is the use of
genetic association studies to identify sets of genes that are associated
with a disorder and that together may indicate particular molecular
pathways underlying the disorder. Although the numbers of subjects
needed to establish reliable genetic associations is daunting, progress has
been made through large international collaborations. For example,
Psychiatric Genomics Consortium has to date identified more than
100 common genetic variants reliably implicated in schizophrenia57.
Imaging can also be used to develop endophenotypes (or intermediate
phenotypes) that may bear a closer relation to the effect of a gene variant
than does disease diagnosis, as well as to mitigate the problem of het-
erogeneity within conventional diagnostic categories (see Box 1).

It may be less surprising that the methods developed for human
neuroscience research have been applied in the diagnosis and treatment
of neurological diseases, but at least two recent developments deserve
mention here. Studies of Alzheimer’s disease at mechanistic levels from
molecules to systems have improved diagnostic accuracy and have
enabled a degree of prediction before clinical signs of the disease58.
Molecular biomarkers from blood and CSF, and patterns of brain activ-
ity and structure have revolutionized clinical research in this area by
facilitating trials of preventive treatment and by providing intermediate
phenotypes as early gauges of effectiveness. Disorders of consciousness
following severe brain damage are another area of clinical neuroscience
for which neuroimaging shows promise. Some patients who have been
diagnosed as being in the vegetative state can follow commands to
imagine actions that activate specific areas of the brain in much the
same way as healthy control subjects do, and can even use these ima-
gined actions to answer questions (for example, “Do you have any
brothers? If yes, imagine playing tennis, if no, imagine walking through
your house.”)59. Thus, neuroimaging offers new insights into the assess-
ment of consciousness, as well as the distinct problem of prognosis, in
severely brain-damaged patients.

Predicting behaviour

The ability to predict future behaviour is of value in almost every sphere
of human activity. Although it has often been said that “the best pre-
dictor of future behaviour is past behaviour,” in some cases brain
imaging can improve our ability to predict future behaviour, over and

BOX 2

Ethical, legal and societal impact of
human neuroscience

As themethods of humanneuroscience findbroader application, they

affect human life in new ways. The field of ‘neuroethics’ is concerned

with ethical, legal and societal issues raised by these new

applications95.

Two kinds of problems have emerged from the increasing ability of

brain imaging to reveal aspects of individual psychology: problems

that arise from the current and imminent capabilities of these

methods, and problems that arise from their lack of claimed

capabilities. To the extent that imaging canpredict important personal

characteristics such as health status, academic achievement, and

criminal behaviour, its use must be managed with care to protect

privacy and avoid discrimination96. To the extent that imaging cannot

providehelpwithhigh-stakeproblems, thepublic shouldbeprotected

from claims that it can. For example, a seemingly ‘scientific’ method

for detecting lies or diagnosing psychiatric disorders66,97 has a strong

appeal to the general publicwho cannot be expected to appreciate the

gap between what is claimed and what is established fact.

New ways of changing brain function pharmaceutically, and with

electromagnetic stimulation, also raise new ethical issues. Of course,

humanity has long manipulated brain function to modify mental

states using substances such as alcohol and caffeine. However,

psychopharmacology has broadly penetrated our everyday lives and

the scope of psychiatric diagnoses and treatment has expanded—a

societal shift that some find troubling98. Furthermore, many now use

psychoactive drugs purely for enhancement of healthy brain function

rather than to treat a medical condition99. Aside from issues of safety

and efficacy, brain enhancement raises issues of fairness (is it akin to

doping in sports?), justice (will the ability to access enhancements

widen the already existing gaps between haves and have-nots?) and

social standards (will unenhanced job performance become sub-

standard?).

Non-invasive brain stimulation is the newest method for brain

enhancement. Simple transcranial electrical stimulation (tDCS)

devices are available to consumers at relatively lowcost and regulation

is minimal100. Given the public interest in this method and the

rudimentary state of knowledge about its effects, it is crucial that the

safety and efficiacy of these methods are established. The efficacy of

cognitive enhancement with tDCS is hotly debated101 and whether

long-term use of tDCS is safe has yet to be studied. In addition,

neuroethical issuesof fairness, justiceandsocial standardsmentioned

above also apply to enhancement of brain function by brain

stimulation.
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above what we can dowith behavioural history.Marketing professionals
were among the first to attempt to predict behaviour using brain
imaging. Recognizing the limitations of focus groups and other tra-
ditional methods to discern what consumers want, they have used func-
tional neuroimaging to predict the effects of different advertising
campaigns, packaging, and other factors on consumer behaviour, based
on the premise that activity in the brain’s reward or motivation centres
may be a more direct measurement of wanting than are verbal self-
reports60. Although most of this work is conducted by and for corpora-
tions aiming to improve sales rather than share scientific knowledge,
published academic studies have begun to lend some credence to the
potential of neuromarketing. For example, when teenage subjects were
scanned while listening to unfamiliar songs, the reward system activity
evoked by the songs, but not the subjects’ ratings of their likeability, was
predictive of sales of the songs over the subsequent three years61.

Prediction is also important outside of business. Falk and colleagues
have adapted neuromarketing methods for the purpose of creating
more effective public service announcements. They showed that brain
responses (but not ratings) to an anti-smoking advertisement were
predictive of subsequent call volume to an anti-smoking hotline62.
Gabrieli et al.63 recently summarized evidence concerning neuroima-
ging-based prediction in domains ranging from healthful eating to
criminal recidivism, including numerous examples of prediction of
educational outcomes. Indeed, neuroimaging can predict future aca-
demic skills over and above traditional behavioural predictors, thus
enabling earlier and more appropriate interventions to address indi-
vidual children’s reading and math difficulties. These authors also
pointed out a number of methodological challenges in neuroima-
ging-based prediction of behaviour, including the need to develop
and test predictions with different samples, to avoid the ‘optimism
bias’ that occurs when predictions are tested in the same population
from which they were generated.

Human neuroscience in the courtroom

In recent years the methods of human neuroscience have found their
way into the courtroom. Perhaps the most obvious, but also the most
misunderstood, role for neuroscience is in helping to determine criminal
responsibility. Proving that a criminal act may have had a neural cause is
not in itself exculpatory, as every human act is caused by the brain64.
However, to the extent that neuroscience can provide evidence ofmental
dysfunction (for example, a tumour in the frontal cortex that may have
impaired the ability to control behaviour), immaturity or other psycho-
logical grounds for reduced criminal responsibility, it is potentially rel-
evant and has been used. For example, the Supreme Court explicitly
cited neuroscience evidence in its decision in Graham v. Florida to
abolish life in prison without parole for juveniles who commit non-
homicidal offences. It is more difficult to make legal arguments for
applying neuroimaging evidence to individual cases because most find-
ings from neuroimaging research are generalizations based on groups of
people and may therefore not allow reliable inferences regarding indi-
viduals65. Nevertheless, neuroimaging scans from defendants are some-
times presented in the sentencing phase of criminal trials as grounds for
mitigation of the sentence, as weaker evidentiary standards apply in the
sentencing phase.

Neuroimaging can be applied in ways other than determining degree
of responsibility. Lie detection is one example that has been pursued in
legal contexts, although it has not so far been admitted into US courts
and has yet to demonstrate validity, reliability or resistance to counter-
measures outside of the laboratory66. Another application concerns
pain: brain-based biomarkers for pain would help discriminate real
suffering frommalingering—a pivotal issue inmany lawsuits—and have
been admitted as evidence in at least one US case67.

Challenges and future directions for neuroimaging

The field of neuroimaging is growing rapidly, and there are a number of
exciting new directions on the horizon.

New technologies for imaging and manipulating the
human brain

Rapid advances in non-human neuroscience have been driven by the
development of technologies that measure and manipulate brain func-
tion with increasing precision. Human neuroscience has lagged in this
respect, in part because of the ethical challenges associated with direct
manipulation and neuronal recording of the human brain. However, in
response to the urgent need for better treatments for psychiatric dis-
orders, research is underway with the aim to design implantable systems
for sensing and modulating human brain networks68. The development
of optogenetic and ‘opto-fMRI’ approaches in non-human primates69

suggests that these methods may one day become feasible for use in
human studies, and it is likely that electrical brain stimulation will be
supplemented in the near future with optogenetic approaches. Although
such invasive techniques will likely only be used in rare clinical cases
(that is, patients are undergoing implantation for medical reasons),
they have the potential to provide much greater specificity in circuit
mapping.
fMRI will probably remain the principal neuroimaging method in

humans in the foreseeable future. However, the ongoing BRAIN initiat-
ive in the United States70 is providing substantial funding to develop
entirely new techniques for imaging of brain function, and a significant
proportion of this funding will go specifically towards the development
of new methods for imaging the human brain. In addition, new devel-
opments in MRI have greatly increased the utility of standard MRI
systems. For example, multiband imaging techniques71 have enabled a
several-fold increase in the temporal resolution of fMRI acquisitions,
and higher MRI field strengths (7 tesla and higher) hold promise
to enable improvements in spatial resolution as well (for example,
ref. 72). There is thus great reason to be optimistic that methodological
limits will continue to be pushed in the future.
Additional insight into human brain function will likely come from

the study of postmortem human brains, which has long been a staple
method for the characterization of anatomical structure and study of
brain disorders. New techniques have enhanced the ability to visualize
the structure of human brain tissue (Fig. 3). For example, optical coher-
ence tomography has been used to image ex vivo human cortical tissue,
providing high-resolution imaging of cytoarchitecture with less distor-
tion than standard microscopy techniques73. The first whole-brain atlas
of genome-wide gene expression in postmortem human brains74 has
provided an important resource for understanding how gene expression
relates to brain function; for example, the maps from this project have

Nature nature15692.3d 25/9/15 11:19:19

a b

Figure 3 | New methods for characterizing the postmortem human brain.
a, A map of expression of the serotonin receptor 3B displayed on the
reconstructed cortical surface in one individual from the Allen Brain Atlas
Human Brain data set (generated using data from http://human.brain-
map.org/). b, Optical coherence tomography imaging of the human brain
(2.9 in-plane resolution). Large panel presents an average intensity projection
in depth over 300; inset zooms are maximum intensity projections over 300,
showing fibres in the white matter (pink inset), fibres arcing through the
subcortical junction to insert into the cortex (cyan inset), and neurons in the
cortex (bright spots in the green inset). Image courtesy of Bruce Fischl, Caroline
Magnain and David Boas, Massachusetts General Hospital.
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been used to identify expression differences across different resting-state
networks75. Continued development of such resources will be essential
for progress in understanding the genetic architecture of brain function
and their relation to mental health disorders.

Connectomics

The Human Connectome Project76 is nearing completion, and has
already provided a rich database for the modelling of functional and
anatomical connectivity of the human brain. However, fundamental
challenges remain. For example, diffusion MRI provides the means to
track white matter pathways (Fig. 4) and has been used to identify white

matter connectivity disruptions associated with cognitive disorders such
as dyslexia77; however, diffusion imaging has inherent biases that limit
its ability to accurately track connections across the entire brain78,79. The
last decade has seen a proliferation of approaches to model functional
connectivity on the basis of functionalMRI data, though the dust has yet
to settle regarding which methods are most effective (for example,
ref. 80). To determine this, the analysis methods must be validated,
which is challenging to do in humans but may be achieved using direct
measurements of functional connectivity from invasive human
approaches and non-human animals to validate the neuroimaging
results. There is increasing evidence that at least in non-human primates
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Figure 4 | A ‘connectogram’90 for an example healthy adult female subject.
The outermost ring shows the various brain regions arranged by lobe (fr,
frontal; ins, insula; lim, limbic; tem, temporal; par, parietal; occ, occipital; nc,
non-cortical; bs, brain stem; CeB, cerebellum) and further ordered anterior
(top) to posterior (bottom). The colour map of each region is lobe-specific and
maps to the colour of each regional parcellation as determinedusing FreeSurfer.

The set of five rings (from the outside inward) reflect greymatter volume, area,
thickness, curvature, and connectivity density. The lines inside of the circle
represent the computed degrees of connectivity between segmented brain
regions using diffusion tractography, with colour representing the relative
fractional anisotropy of the connection (from blue to red). Image courtesy of
Jack Van Horn, University of Southern California.
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functional connectivity reflects anatomical connectivity as measured
using either diffusionMRI81 or anatomical tract-tracing82; but it remains
an important challenge to establish the ways in which functional and
diffusion connectivity measures converge or diverge.

Reproducibility of neuroimaging research

Large-scale meta-analyses have made it clear that neuroimaging results
can be highly convergent across studies, to the degree that cognitive
processes can be accurately inferred from individual subject data using
decoders trained on meta-analytic data based on reported activation
coordinates83. However, the last few years have also seen increasing con-
cern regarding the reproducibility of research findings in neuroscience,
paralleling more general concerns about reproducibility of scientific
results84. These issues are particularly acute for neuroimaging given the
high dimensionality of the data, relatively low statistical power of many
studies85, high degree of analytic flexibility in data analysis procedures86,
and potential for questionable research practices such as circular
analysis procedures87. The field of neuroimaging has been at the forefront
of a number of developments that aim to improve reproducibility and the
sharing of data are increasingly being embraced. The Alzheimer’s Disease
Neuroimaging Initiative (ADNI), International Neuroimaging Data
Sharing Initiative (INDI), ENIGMA, and the Human Connectome
Project together have shared thousands of neuroimaging data sets and
this has enabled a number of novel discoveries. For example, data sharing
by the ENIGMA consortium has enabled the first well-powered genome-
wide association study of brain volume88, identifying replicated associa-
tions between brain volume and several common genetic variants. In
addition, nearly all of the main software packages for neuroimaging data
analysis are free and open source, providing transparency and repro-
ducibility in data analysis across groups, and the publication of fully
reproducible analysis workflows has begun (for example, ref. 89). The
increasing use of machine learning methods, with their focus on out-of-
sample generalization rather than statistical significance, is also leading to
a greater emphasis on achieving reproducibility.

Outlook

The use of new tools for imaging and manipulating the brain will con-
tinue to advance our understanding of how the human brain gives rise to
thought and action. The combination of myriad methods with different
and complementary strengths and weaknesses will allow neuroscientists
to develop amultilevel understanding of the brain, spanning frommole-
cules to large-scale networks. New analysis methods have advanced
fMRI beyond ‘blobology’ and will provide direct insight into the map-
ping of mental and neural representations, while newer analysis and
acquisition newer methods will offer other novel insights into the rela-
tion of mind and brain. fMRI and other human neuroscience methods
will continue being applied to solve real-world problems, within medi-
cine and beyond. Although some of these applications are currently
premature relative to the demonstrated capabilities of the methods, it
is clear that the new methods of human neuroscience will have much to
offer science and society.
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93. Barnett, J. H., Scoriels, L. &Munafò, M. R.Meta-analysis of the cognitive effects of
the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol.
Psychiatry 64, 137–144 (2008).

94. Nickl-Jockschat, T., Janouschek, H., Eickhoff, S. B. & Eickhoff, C. R. Lack of meta-
analytic evidence for an impact of COMT Val158Met genotype on brain
activation during working memory tasks. Biol. Psychiatry, (2015).

95. Farah, M. J. Neuroethics: the ethical, legal, and societal impact of neuroscience.
Annu. Rev. Psychol. 63, 571–591 (2012).

96. Illes, J. & Racine, E. Imaging or imagining? A neuroethics challenge informed by
genetics. Am. J. Bioeth. 5, 5–18 (2005).

97. Farah, M. J. & Gillihan, S. J. The puzzle of neuroimaging and psychiatric
diagnosis: technology and nosology in an evolving discipline. AJOB Neurosci. 3,
31–41 (2012).

98. Conrad, P. The Medicalization of Society: On the Transformation of Human
Conditions into Treatable Disorders (Johns Hopkins Univ. Press, 2007).

99. Sahakian,B.&Morein-Zamir, S. Professor’s little helper.Nature450,1157–1159
(2007).

100. Fitz, N. S. & Reiner, P. B. The challenge of crafting policy for do-it-yourself brain
stimulation. J. Med. Ethics 41, 410–412 (2015).

101. Horvath, J. C., Forte, J. D. & Carter, O. Quantitative review finds no evidence of
cognitive effects in healthy populations from single-session transcranial direct
current stimulation (tDCS). Brain Stimul. 8, 535–550 (2015).

Acknowledgements Thanks to I. Eisenberg, D. Glahn, R. Raizada, and M. Shine for
comments on an earlier draft of this manuscript, and N. Logothetis for helpful
discussions.

Author Contributions R.P. and M.F. planned and wrote the paper.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Readers are welcome to comment on the online version of the paper. Correspondence
and requests for materials should be addressed to R.P. (poldrack@stanford.edu).

REVIEW RESEARCH

0 0 M O N T H 2 0 1 5 | V O L 0 0 0 | N A T U R E | 9



Author Queries
Journal: Nature
Paper: nature15692
Title: Progress and challenges in probing the human brain

Query
Reference

Query

1 AUTHOR: A PDF proof will be produced on the basis of your corrections to this preproof and will contain the
main-text figures edited by us and the Extended Data items supplied by you (whichmay have been resized
but will not have been edited otherwise by us).

2 When you receive the PDF proof, please check that the display items are as follows (doi:10.1038/nat-
ure15692): Figs 0 (black & white); 1–3 (colour); Tables: 1; Boxes: 2; Extended Data display items: 0.

3 Please check the edits to all main-text figures (and tables, if any) very carefully, and ensure that any error
bars in the figures are defined in the figure legends. If you wish to revise the Extended Data items for
consistency with main-text figures and tables, please copy the style shown in the PDF proof (such as
italicising variables and gene symbols, and using initial capitals for labels) and return the revised Extended
Data items to us along with your proof corrections.

4 N Asingle sentence summarizing your paper (websum), whichwill appear online on the table of contents and
in e-alerts, has been provided below. Please check this sentence for accuracy and appropriate emphasis.

5 Author: first sentence revised slightly. OK?

6 Author: this reference is not cited in the text, please cite or remove

Web
summary

This Review evaluates current techniques used to investigate human brain function, discusses the suc-
cesses and limitations of these techniques to test hypotheses about causalmechanisms, and looks to future
directions and implementation of these techniques in real-world problems.

For Nature office use only:

Layout % Figures/Tables/Boxes % References %

DOI % Error bars % Supp info %

Title % Colour % Acknowledgements %

Authors % Text % Author contribs %

Addresses % Methods % COI %

First para % Received/Accepted % Correspondence %

AOP % Author corrx %

Extended Data % Web summary %

Accession codes link %

Nature nature15692.3d 25/9/15 11:19:23

RESEARCH REVIEW

1 0 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 5




