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ABSTRACT
◥

There is a need for new approaches and endpoints in oncology

drug development, particularly with the advent of immunothera-

pies and the multiple drug combinations under investigation.

Tumor dynamics modeling, a key component to oncology “mod-

el-informed drug development,” has shown a growing number of

applications and a broader adoption by drug developers and

regulatory agencies in the past years to support drug development

and approval in a variety of ways. Tumor dynamics modeling is also

being investigated in personalized cancer therapy approaches.

These models and applications are reviewed and discussed, as well

as the limitations and issues open for further investigations. A close

collaboration between stakeholders like clinical investigators, sta-

tisticians, and pharmacometricians is warranted to advance clinical

cancer therapeutics.

Introduction
Model-based analysis is an established field supporting discovery,

development, and optimal use of drugs by quantitatively integrating

multiple data sources and predicting the outcomes of various “what if”

scenarios at the basic research, clinical trials, and real-world patient

levels.

In oncology, tumor dynamics is the primary earlymarker of efficacy.

Anticancer treatments work through decreasing tumor burden over

time (tumor dynamics) whether by shrinking the tumor, slowing

growth, or both resulting in an improvement of patient's symptoms

and prolongation of overall survival (OS). Classical endpoints in

oncology clinical trials summarize longitudinal tumor data (by both

categorizing and integrating over time) into a single outcome measure

(responder/nonresponder) using criteria like RECIST (1). Derived

endpoints: objective response rate (ORR), progression-free survival

(PFS) are used to support early decisions and design of late-stage

clinical trials. However, this approach has long been challenged (2), far

too many phase III trials fail to achieve their endpoint (3) and an

increased scrutiny needs to be given to how go/no-go decisions are

made. There is a need for new approaches and endpoints in oncology

drug development (4), particularly with the advent of immunothera-

pies, to capture the unique patterns of tumor responses to these

treatments that exert effects via immune modulation. Multiple ver-

sions of the RECIST criteria have been proposed (e.g., iRECIST; ref. 5

and imRECIST; ref. 6) and tumor dynamic models could be more

informative by considering time dependencies in the continuous data.

The pioneer of modern pharmacometrics, Prof. L.B. Sheiner envi-

sioned the drug development process as a series of learn-confirm cycles

with model-based analyses and simulations at the core of the learning

process (7). Sheiner's vision led to the concept ofmodel-informed drug

development (MIDD) that is being evaluated and promoted by

regulatory agencies, pharmaceutical industry, academic scientists, and

clinicians. MIDD is a key element of the “new product development

toolkit” suggested by the FDA in its Critical Path Initiative (8) and

recently as part of PDUFA VI (9, 10). The FDA jointly with the

International Society of Pharmacometrics held the first PDUFA VI

public workshop on MIDD for Oncology Products in 2018 (11). A

similar momentum is seen in Europe under the auspices of the

European Medicines Agency, which classified model-based

approaches according to their impact on regulatory decisions (low,

medium, and high; refs. 12, 13). The American Society of Clinical

Pharmacology and Therapeutics highlighted quantitative pharmacol-

ogy applications in translational medicine, drug development, and

therapeutic use (14).

The goal of this article is to introduce tumor dynamics modeling

approaches and illustrate and discuss their impact inMIDDwith focus

on clinical development, regulatory review, and personalized therapy.

Measures of tumor burden

One of the challenges in connecting tumor dynamics to outcomes is

the limited ability to efficiently quantify the tumor abundance from

clinical imaging. Tumor burden is typically assessed by the sum of the

longest diameters of target lesions (SLD; ref. 1). These assessments also

account for nontarget lesions or new lesions in the definition of disease

progression to provide estimates of degrees of treatment response (1).

Target lesions are valuable, provided they represent a meaningful

fraction of the tumor burden and the breadth of the biology of

metastases. Other criteria are available for specific tumor types based

on the sum of the product of the diameters and FDG-PET in

lymphomas (15) or in brain tumor (16).

Another approach consists in analyzing CT scans to derive serial

volumetric measurements of measurable lesions instead of the sim-

plified estimate of the longest diameters (17). Volumetric assessments

are expected to outperform unidimensional measurements from

RECIST as they are more sensitive to changes in dynamics. Moving
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forward quantitative image–based radiomics features may be inte-

grated to improve predictivity of the models (18).

Markers to specific tumors like the prostate cancer antigen, the

M-protein, or CA-125 are well accepted surrogates of total tumor

burden for dynamics modeling (19, 20, 21).

Finally, plasma cell–freeDNA (22) and circulating tumorDNA (23)

dynamic data might offer new insights in the time course of response

and resistance development with the appearance of mutant clones.

Tumor dynamic models

The structure of tumor dynamic models depend on available data

(the more data, the more complex or mechanistic the model can be)

and on the goal of themodel (according to the parsimony principle, the

model should be as complex as needed but not more). A number of

recent reviews are available (24–28).

The simplest mathematical functions that can be used to fit tumor

dynamics data typically account for tumor regression and tumor

regrowth with exponential or linear functions (19, 29). Models can

incorporate mechanistic complexities like loss of effect (resistance)

with time when tumor regrowth is observed during treatment (30, 31),

delay in regression (32), fraction of sensitive/resistant cells (33–35). As

published, these models do not explicitly account for dose or exposure

intensity. They can be used to predict OS under the same treatment

conditions as studied but these models cannot be used to predict

outcome for unstudied dose or schedules.

Exposure driven models incorporate the effect of varying dose or

systemic exposure over time onmodel parameters for example, cell kill

(tumor regression; ref. 36), tumor growth (37), or on specific tumor

components like proliferative tumor tissue compartment (38). Com-

bination treatments can be handled (39) although estimation of the

contribution of each component in the combination can be challeng-

ing if appropriate data are not available (e.g., single-agent data for the

different drugs being combined; ref. 37). These models incorporate

disease-specific parameters (e.g., tumor growth rate, TGR) and treat-

ment-specific one (e.g., exposure-driven cell kill) and thereforemay be

leveraged to predict outcome in unstudied conditions (36). An exam-

ple of such model is illustrated in Fig. 1.

Other posttreatment dynamics responses can also be integrated

like tumor marker (40) mechanism of action (MOA)-related

biomarkers that could be linked to tumor dynamics, such as

soluble VEGFR (VEGFR-2 or VEGFR-3) for VEGFR inhibitors

sunitinib or axitinib (41–43) or IL18 for the checkpoint inhibitor

atezolizumab (44).

Models linking tumor dynamics to outcome

Model based estimates of early tumor growth inhibition (TGI)

metrics or model-predicted time course of tumor dynamics have

been shown to predict OS, the outcome of primary interest, and the

primary endpoint in most of the late-stage (phase III) studies. TGI

metrics such as change in tumor size from baseline [tumor size ratio

(TSR)] at an early timepoint (e.g., week 6 or 8 depending on the

treatment cycle), time to tumor (re)growth (TTG), TGR (see Fig. 1),

or CA-125 elimination rate (KELIM) have been used in a variety of

tumor types and treatments with various MOA (21, 24–26). The

time that tumor size reaches 120% of baseline has also been recently

proposed as a measure of treatment benefit that avoids paradoxical

effects seen with RECIST time to disease progression (45). Tumor

dynamics is taken as a biomarker of drug effect; the TGI-OS link is

assumed to be disease-specific but treatment independent. The

treatment effect is seen on tumor dynamics, however, the optimum

TGI metric (early TSR, TTG, TGR etc.) might depend on the MOA,

for example, when progression is merely stabilized as opposed to

tumor burden actively reduced, as well as of the disease, for

example, indolent disease. The most robust way to show that a

given TGI metric captures OS benefit independent of treatment is to

show that the TGI-OS model is able to simulate OS hazard ratio
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Figure 1.

Tumor dynamic model structure and representative plot. A, Compartmental representation of the model. Kgrow, TGRconstant; exposure, drug exposure metric;

K, drug exposure elimination rate constant; Kkill, tumor kill rate constant; l, drug resistance parameter that explain on-treatment reduction of drug effect over time.

B,Model-predicted tumor SLD (orange curve) and drug effect (blue curve) time courses for a once every 3week drug treatment. TSR, tumor size ratio from baseline,

typically assessed after 1 or 2 treatment cycles (6–8 weeks).TSR, TTG, Kgrow, and tumor SLD time course are metrics that can be assessed as predictors for survival

(adapted from ref. 25). Figure reprinted with permission from Bender and colleagues (Population pharmacokinetic-pharmacodynamic modelling in oncology: a tool

for predicting clinical response, Br J Clin Pharmacol 2015; copyright John Wiley and Sons).
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(HR) in a randomized study, while treatment effect is not in the

model (e.g., ref. 30). For example, differences in TGR predicted the

OS benefit (i.e., HR) of atezolizumab compared with docetaxel in

previously treated non–small cell lung cancer (NSCLC) while there

was no difference in RECIST endpoints (ORR and PFS) or in TSR or

TTG (46). Treatment independence is indeed difficult to assess and

requires external validations to show that a model developed with

data from a treatment is able to predict the outcome for other

treatments, ideally with different MOAs. Evidence of treatment

independence of TGI-OS models was first provided by Wang and

colleagues (29), where a common model was able to predict OS HRs

versus control based on week 6 TSR for a variety of approved

treatments in NSCLC. Recently, a model, based on nivolumab data

in advanced melanoma, predicted OS distributions for ipilimumab-

treated patients (47). This point is key to support a wider imple-

mentation of this approach and use of an established TGI-OS model

to predict outcome of a novel investigational therapy. More recent-

ly, the model-predicted time course of tumor dynamics has been

used to drive the hazard of death and predict OS (32, 41, 43, 48, 49)

in two-stage or joint models.

Figure 2 (adapted from ref. 50) highlights how early treatment-

specific tumor dynamics data can be leveraged to predict late OS

outcome using disease-specific (historic or public domain) TGI-OS

models.

A limited number of investigations compared SLD with volu-

metric-based tumor dynamics predictions of OS. Schindler and

colleagues (51) found that volumetric time course was the best

predictor of OS in imatinib-treated patients with gastrointestinal

stromal tumors, while SLD and volumetric assessments-based

estimates of TTG had similar performance in predicting OS HR

in patients with colorectal cancer treated with chemotherapy–

aflibercept combination (52).

Clinical Development and Regulatory
Decisions

There is a variety of ways in which tumor dynamics modeling

and model-based TGI metrics can inform seamless clinical devel-

opment strategies and decisions ranging from simple tumor

dynamic comparisons to clinical trial simulations. The impact

examples summarized in Table 1 illustrate case studies from early

first-in-human to regulatory decisions and postapproval changes

in labels.

Figure 3 illustrates the link between effect size on TGR (% decrease

from control) based on tumor dynamic data and effect size on OS (HR

vs. control) simulated using a TGI-OS model based on historic

data (58) for a hypothetical investigational combination versus sin-

gle-agent control. Such simulations support the use of TGR as an

exploratory endpoint in early proof-of-concept (POC) or phase II

studies. A POC studymay be designed to demonstrate (or rule out) the

effect on TGR that would meet the desired target profile of the

investigational treatment (HR compared with control) providing an

alternative to ORR or PFS-based designs. A similar approach has

recently been described on the basis of CA-125 KELIM estimate in

first-line ovarian cancer (21).

Personalized Therapy
Patient-specific mathematical models of glioma growth and inva-

sion have been used to connect changes in tumor dynamics, treatment

response, and outcomes (38, 68). Simulations of the models can be

used as a virtual control of predicted growth, without treatment orwith

treatments for which models exist. Using this virtual control as a

baseline against which to assess treatment response provides a dynam-

ic measure of treatment response, referred to as “days gained” (69, 70).

This novel response metric has been used to identify treatment

response that predicts OS even when standard response criteria failed

to correlate with outcomes.

Characterizing the association between tumor dynamics and sur-

vival can also be relevant to improve patient-level follow-up.While the

use of a multivariate model to predict an outcome is not a novel

concept and typically relies on patient's baseline characteristics, pre-

dictions can be improved upon by incorporating on-treatment

response data from the individual patient. The knowledge of param-

eter distributions in a historic patient population can be used as “prior

information” in a Bayesian setting to improve the prediction of a new

individual and to allow identifying early the risk of progression. This

prediction can be updated during follow-up when more data become

available in an approach, often referred to as “dynamic predictions.”

Several methodologic approaches exist for dynamic predictions such

as joint models that have been extensively explored in the statistical

literature (71). Desm�ee and colleagues (48, 72) implemented this

concept in the context of tumor dynamic models. This approach was

also used in the context of immunotherapy with atezolizumab in

metastatic urothelial cancer (49). First, the association between tumor

size and OS was characterized in a model developed on data from a

phase II clinical trial. Both TTG and the instantaneous change in

tumor size were the best on-treatment predictors of survival. Using a

phase III study validation dataset, ROC analysis determined that the

model predicted individual survival probability using 3- or 6-month

tumor size follow-up better than a model using only information

available at treatment initiation. Including tumor size kinetics in a

relevant statistical framework improves the prediction of survival

probability during immunotherapy treatment, and may be useful to

identify most-at-risk patients in “real-time” allowing the use of

patient-level data as it accumulates. An online calculator has recently

been proposed to support treatment decisions based on CA-125

kinetics to early identify patients with unfavorable KELIM during

first-line platinum-based ovarian cancer chemotherapy (21).

Early data Late outcome

OS
Tumor

dynamics
ExposureDose

Treatment specific Disease specific

Figure 2.

Tumor growth inhibition as a biomarker to predict OS in oncology

(adapted from ref. 50). Early data: tumor dynamic data in phase I, II,

interim phase III studies (e.g., at time of PFS readout) but also patient's

follow-up at the point of care. Late outcome: OS. Figure reprinted with

permission from Bruno and colleagues (Model-based drug development

in oncology: what's next?, Clin Pharmacol Ther 2013; copyright John

Wiley and Sons).
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Table 1. Summary of case studies with tumor dynamic modeling to inform drug development.

Question Data Process Findings Use References

Early selection of

combinations.

PI3Ka/TORC1/2 inhibitors

(TAK-117/TAK-228), single

agents, and combination:

preclinical efficacy, clinical

safety.

Response surface of growth

inhibition translated to clinical.

Maximum tolerated exposure

curve.

No predicted antitumor effect benefit

of the combination once the clinical

toxicity interaction between the

agents was accounted for. In

randomized study NCT02724020

in patients with mRCC, TAK-117/

TAK-228 combination did not

demonstrate improved efficacy

versus TAK-228 single agent or

everolimus (54).

R 53

Axitinib–avelumab

combination in mRCC.

phase Ib study (N ¼ 53).

Historic sunitinib data.

Estimates of cell kill rate andweek 8

TSR.

Combination better than sunitinib

single agent. Supported go

decision. Confirmed in phase

III (56).

R 55

TGI metrics as

exploratory

endpoints in early

POC or phase II

studies.

Phase II or phase III studies

with a variety of treatments

in patients with RCC.

Week 8 TSR-OS model. Simulation

of OS HR vs. effect size on week 8

TSR for an investigational

treatment vs. sunitinib.

Quantitative estimates of week 8 TSR

effect required to meet target

product profile OS HR (e.g., 20%

week 8 TSR difference from

sunitinib for a 0.80 OS HR).

R 57

Phase IIb and III trials in

mCRPC from the Project

Data Sphere.

Estimates of regression and growth

rates. Correlation with OS.

Resampling of data to mimic

small size studies.

Differences in growth rate explain OS

benefit. Small study size (<50

patients) achieved >80% power to

detect a difference in median

growth rate (treatment benefit).

R 35

Phase II and III trials of

atezolizumab single agent

in NSCLC.

Growth rate-OS model. Simulation

of OS HR vs. effect size on growth

rate for investigational

combinations with atezolizumab.

Quantitative estimates of effect on

growth required to meet target

product profile OS HR: (e.g., 35%

decrease in growth rate for a 0.75

OS HR).

R 58

Phase III studies with various

treatment in ovarian

cancer.

CA-125 KELIM-based TGI-OSmodel.

KELIM ratio correlates with PFS

and OS HR.

A 59% increase in KELIM would be

required to obtain a 50%OS benefit

with the addition of a new drug.

R 21

Phase III clinical trial

simulation and

design.

Phase II capecitabine and

phase III 5-FU control arm in

CRC.

Exposure-driven TGI and week 6

TSR-OS models.

Successful simulation of OS

distributions in an independent

phase III of capecitabine vs. 5-FU.

R 36

Phase II motesanib data in

NSCLC.

Estimated week 8 TSR. Simulated

ongoing phase III of motesanib þ

chemotherapy using a public-

domain week 8 TSR-OS

model (29).

Successfully simulated the phase III

study HR based on phase II data.

R 59

Phase II and III studies of

atezolizumab vs. docetaxel

in NSCLC.

Growth rate–based TGI-OS model.

Difference in growth rate explains

OS benefit. Phase III study

simulations.

Phase III outcome (OS HR) simulated

conditional on tumor dynamic

40weeks after first patient in based

on the phase II TGI-OS model.

R 46

Phase I/II durvalumab data in

metastatic urothelial

carcinoma.

Covariate effects on TGI and tumor

dynamic-OS models. Dropout

model.

Simulated tumor response and OS in

covariate subgroups (by, e.g.,

tumor burden, liver metastasis, and

PD-L1 expression) to inform patient

selection, enrichment strategies to

optimize trial designs.

R 32

Dose rationale Pembrolizumab phase I and III

data in melanoma.

Exposure-tumor dynamic modeling

and simulations.

Maximal response for pembrolizumab

achieved at 2 mg/kg Q3W.

Supported approval of 2 mg/kg in

patients with ipilimumab na€�ve

melanoma while the 2 mg/kg dose

was investigated in a ipilimumab

refractory melanoma patient

population.

R 34

Pembrolizumab phase I data

in NSCLC.

Exposure-tumor dynamic-safety

modeling and simulations.

Maximal response for pembrolizumab

achieved at 2 mg/kg Q3W.

Supported approval of 2 mg/kg

further confirmed in phase III (61).

R 60

(Continued on the following page)
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Discussion
Tumor dynamics modeling is a key component to oncology MIDD

and has shown a growing number of applications and a broader

adoption in the past years to support drug development in a variety

of ways. Nevertheless the approach is still in the early days and there is

room formore systematic prospective implementation to impact study

design (phase II and III) and key decisions (end of phase II or interim

phase III before OS is mature at time of PFS read-out) to achieve a

Table 1. Summary of case studies with tumor dynamic modeling to inform drug development. (Cont'd )

Question Data Process Findings Use References

Regulatory decisions Lenvatinib-everolimus

combination phase III data

in mRCC.

The approved daily dose of 18 mg

lenvatinib resulted in high rate of

dose modifications due to drug

toxicity. Simulated alternative

dosing regimen with an

exposure-tumor dynamics

model.

14 mg lenvatinib with option of up-

titration capable of preserving

efficacy (overlapping tumor

dynamics) compared with the

approved dose, while safety profile

could be improved. Confirmatory

postmarketing trial ongoing.

P 62

Postapproval

optimization of

dosing scheduling to

update drug label.

Checkpoint inhibitors phase I,

II, and III data in a range of

tumor types.

PK and exposure-tumor dynamics

modeling and simulations and

“exposure-matching”

approaches.

Supported label extensions for the

use of flat dosing (nivolumab and

pembrolizumab) or extensions of

dosing interval (Q2W to Q4W for

nivolumab, Q3W to Q2W or Q4W

for atezolizumab, andQ3W toQ6W

for pembrolizumab).

P 63–66

Vismodegib phase II and III

data in locally advanced or

metastatic basal cell

carcinoma.

High incidence of dose interruptions

due to adverse events. PK and

exposure-tumor dynamics

modeling and simulations.

Simulations showed that up to

8-week vismodegib dosing

interruptions would preserve

efficacy. The "Dosage and

Administration" section of

vismodegib label (USPI) was

modified accordingly.

P 67

Abbreviations: 5-FU, 5-fluorouracil; mRCC, metastatic renal cell carcinoma; P, prospectively applied to inform decisions; PK, pharmacokinetic; Q2W, every 2 weeks;

Q3W, every 3 weeks; Q4W, every 4 weeks; Q6W, every 6 weeks; R, retrospective analysis to support future use of model-basedmethods; RCC, renal cell carcinoma.
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Figure 3.

Simulations of typical tumor dynamic profiles following single agent (parameters from ref. 46) or combination with a hypothetical agent that would reduce growth

rate by 20%–40% (left) and of the associated expected OS HR in randomized studies of the combination versus single agent as a virtual control (5,000 patients per

arm replicated 500 times simulated with the TGI-OS model; ref. 58; right).
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transformative impact in drug development. This would entail

extensive cross-molecule and cross-institution (academia/industry/

regulatory) validation of the approach, similar to what has been done

in other therapeutic areas (see ref. 73), to build confidence in using

tumor dynamic metrics as coprimary or secondary endpoints and

possibly as confirmatory evidence for early registration. The combi-

nation of virtual controls and simulations (such as in Fig. 3) provides

quantitative estimates of expected effect size that can complement

usual power calculations, often based on wishful thinking, to estimate

the probability of success of late-stage clinical trials. The newly

implemented Pilot Meeting Program for MIDD by FDA (74) should

be leveraged to achieve this goal.

Limitations of tumor dynamics modeling need be mentioned and

are the subject of active research. The tumor dynamicmodels developed

so far have generally ignored complexities or specific data issues and

there are a number of open questions to be addressed moving forward:

* Reproducibility and precision (or lack thereof) of tumor size

measurements may be have an impact on TGI metrics

estimates (75). In that respect, tumor markers, as laboratory

measurements when available, have better reproducibility and

precision.
* In typical clinical trials, only one pretreatment scan (baseline) is

available. This precludes any assessment of change in

posttreatment growth rate (such as hyper-progression; ref. 76).

Comparison of pre- and on-treatment dynamicsmay allow amore

powerful assessment of treatment effect in small cohorts in early

exploratory studies of new investigational treatments in patient-

level paired comparisons as described in another setting

(untreated virtual controls; ref. 69). Similarly the first scan is

typically obtained at the end of cycle 2 (6 or 8 weeks), earlier as well

as more dense assessments would definitely help modeling the

dynamics. In that respect tumor markers' marker data may be

easier to obtain. Optimized sampling designs may be feasible in

small exploratory POC studies.
* Clinical trial patients may not have any post-baseline tumor

assessment (5%–30% of intent-to-treat population depending on

the disease) often due to early dropout. The information on tumor

dynamics is consequently limited and resulting inferences could be

biased as these patients likely have more aggressive disease. These

patients need to be accounted for in clinical trial simulations (e.g.,

ref. 29).
* It is not uncommon for tumor metastases in different organs to

behave differently. Within-patient between-lesion variability in

tumor dynamics has only been investigated in a few studies, albeit

using different approaches not necessarily based on tumor

dynamics modeling, with conflicting results. In tumor dynamics

modeling–based investigations, between-lesions variability was

small (or even nonidentifiable) compared with interpatient

variability (31, 51, 52). However, in an investigation using a

nonparametric machine learning–based approach, lesion

dynamics was found to depend on anatomic locations (77). Claret

and colleagues (52) found that although between-lesions

variability was small, TTG of the fastest progressing lesion best

predicted OS. Additional resolution may be obtained by modeling

individual lesions dynamics and the clinical relevance of this

approach needs to be investigated.
* Similarly, the appearance of new lesions as well as nontarget lesion

progressions are generally ignored by tumor dynamics modeling

and the predictivity of themodelsmay be improved if they account

for these competing risk (78). The importance of new lesions

depends on their number, their location, and the rate at which they

are growing. Finally, signs or symptoms of clinical progression

(e.g., weight loss, worsening pain, declining performance status,

and worsening ascites) as longitudinal data may be considered to

increase the predictive power of the OS models.
* The use and benefit of more precise assessment of tumor burden

through volumetric assessments are also being actively

investigated (17). It is expected that a more precise and sensitive

assessment of tumor burden will improve the predictivity of the

models, particularly when small cohorts are considered.
* In clinical studies, OS can be confounded with postprogression

cross-over or use of nonprotocol subsequent therapies. Given that

tumor dynamics is typically observed until progression, tumor

dynamic models have the potential to predict true

(unconfounded) treatment effect for an investigational treatment.

However, TGI-OS models could be biased in situations where OS

is impacted by subsequent therapies. This issue has to bemitigated

on a case by case basis depending on the goal of the modeling and

the available data.
* Models have most of the time been developed using clinical trial

data and there is a need to develop metrics of efficacy that can be

successfully applied to real-world data, such as those provided by

electronic health records (79).

These limitations notwithstanding, tumor dynamic modeling can

be of value to assess the efficacy of new therapeutic modalities like

immunotherapy-based dendritic cell vaccination for neoadjuvant

chemotherapy in early breast cancer (80) or intratumoral treatments.

Assessment of efficacy in terms of individual lesion size reductions is

particularly important for the intratumoral administration of onco-

lytic viruses (81). The changes in lesion size of injected lesions

characterize local efficacy, while the changes in noninjected lesions

(abscopal effect) characterize systemic efficacy (82), and is an impor-

tant determinant of clinical benefit in advancedmalignancies in which

reduction of metastatic, in many cases noninjectable, lesions is key. In

addition, in some clinical scenarios, the injected dose is distributed in

multiple lesions, which should be considered in the assessment of

efficacy and dose–exposure–response analysis.

Applications to personalized therapy based on model-predicted

tumor size trajectories are an emerging application that is still being

investigated. The joint modeling of tumor dynamics and OS is

statistically complex but appealing to perform dynamic predictions

of the risk of death and possibly contribute to personalized therapy. Up

to now, these models have only considered baseline prognostic factors

as covariates. On-treatment patient status (prognostic) is indeed

evolving too (e.g., albumin level, inflammatorymarkers, and cachexia).

Futuremodels will have to integratemultiple dynamicmarkers, as well

as, their interplay to provide individualized predictions of the range of

likely outcomes due to a modification to treatment parameters such as

dose and schedule. Indeed, computer-based optimization of patient

outcome considering both tumor size dynamics and safety may in the

future be used to inform real-time treatment modifications to deliver

the best possible outcomes to patients suffering from cancer.

In conclusion, close collaboration between clinical investigators,

pharmacometricians, and statisticians is warranted “to interconnect

mathematical models of disease and therapy to advance cancer care” to

achieve the full potential of MIDD and model-based personalized

therapy (83).
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