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There are currently around 200 SARS-CoV-2 candidate vaccines in preclinical and clinical

trials throughout the world. The various candidates employ a range of vaccine strategies

including some novel approaches. Currently, the goal is to prove that they are safe and

immunogenic in humans (phase 1/2 studies) with several now advancing into phase 2

and 3 trials to demonstrate efficacy and gather comprehensive data on safety. It is highly

likely that many vaccines will be shown to stimulate antibody and T cell responses in

healthy individuals and have an acceptable safety profile, but the key will be to confirm

that they protect against COVID-19. There is much hope that SARS-CoV-2 vaccines will

be rolled out to the entire world to contain the pandemic and avert its most damaging

impacts. However, in all likelihood this will initially require a targeted approach toward

key vulnerable groups. Collaborative efforts are underway to ensure manufacturing can

occur at the unprecedented scale and speed required to immunize billions of people.

Ensuring deployment also occurs equitably across the globe will be critical. Careful

evaluation and ongoing surveillance for safety will be required to address theoretical

concerns regarding immune enhancement seen in previous contexts. Herein, we review

the current knowledge about the immune response to this novel virus as it pertains to the

design of effective and safe SARS-CoV-2 vaccines and the range of novel and established

approaches to vaccine development being taken. We provide details of some of the

frontrunner vaccines and discuss potential issues including adverse effects, scale-up

and delivery.
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INTRODUCTION

The recent emergence of severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), the cause of coronavirus disease
(COVID-19), is wreaking havoc due to widespread dissemination
throughout the world. On 11 March 2020, WHO formally
declared that a global pandemic and by the end of August
2020, almost 25 million cases and over 800,000 deaths had
been reported worldwide involving all continents, except
Antarctica (1). Strategies to identify cases and limit spread by
widespread testing and physical distancing have been challenging
to implement, healthcare and public health systems have
been overwhelmed, resulting in continued escalation in many
countries and profound effects on lives and livelihoods. While
the majority of people are either asymptomatic or experience a
mild respiratory infection, ∼20% of cases are more severe and
require hospital admission (2). Reported mortality rates vary by
geographic region, ranging from almost 20% in France to <1%
in many other countries (3). This wide discrepancy suggests
selection bias due to differences in local testing strategies and
capacity, consistent with differences in health system capacity,
population demographics and other health determinants. Certain
groups such as the elderly and those with particular comorbidities
are more likely to die of COVID-19 (3). Healthcare workers in
particular have experienced significant morbidity and mortality
from COVID-19 (4), causing clear psychological impacts and
threatening delivery of healthcare services (5). There is no known
effective treatment for this virus and currently no available
vaccine, with the result being that SARS-CoV-2 continues to
spread throughout the virus naïve population of the world.
The urgent need for effective SARS-CoV-2 vaccines cannot be
overstated. Immunization can not only protect individuals but
also, if provided to enough people in a timely way with (even)

Abbreviations: Abs, antibodies; ACE2, angiotensin-converting enzyme 2; ACT,
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distress syndrome; BARDA, Biomedical Advanced Research and Development

Authority; BCG, bacillus Calmette-Guérin; BMGF, Bill & Melinda Gates

Foundation; CEPI, Coalition for Epidemic Preparedness Innovations; COVID-

19, coronavirus disease of 2019; CP, convalescent plasma; CTL, cytotoxic

T lymphocyte; DAMPs, damage-associated molecular patterns; DC, dendritic
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killer cells; OAS, original antigenic sin; PAMPs, pattern associated molecular

patterns; PRRs, pattern recognition receptors; RBD, receptor binding domain;

RIG-I, retinoic acid-inducible gene 1; RSV, respiratory syncytial virus; SARS, severe

acute respiratory syndrome; SARS-CoV-1, severe acute respiratory syndrome

coronavirus-1; SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; S

glycoprotein, spike glycoprotein; TFH, follicular helper T cell; Th1/2/17, T helper

1/2/17; TLR, Toll-like receptor; TNF, tumor necrosis factor; Tregs, regulatory

T cells; VAERD, vaccine associated enhanced respiratory disease; VE, vaccine

efficacy; VLP, virus like particle; VSV, vesicular stomatitis virus.

partially protective vaccines, induce sufficient herd immunity
to curtail the spread of this virus and reduce morbidity and
mortality across the globe.

The race to develop safe and effective vaccines has seen
SARS-CoV-2 candidate vaccines developed at a scale and pace
never imagined before: currently almost 200 potential vaccines
are in various stages of development (6–8). A range of vaccine
design approaches and platforms have been employed. However,
since >95% of candidate vaccines typically fail it is expected
that the eventual number of successful vaccines may be only
be a handful. They may also become available in different
time frames and suitable for use in different populations.
Most vaccine candidates are currently in preclinical trials, but
a number have entered phase 1 or phase 1/2 studies, with
plans to rapidly scale up to phase 2 and 3. Trials are being
conducted at “pandemic speed” (8) and using novel designs. This
early success has already seen cooperation and collaboration as
well as significant funding across the globe. For example, the
Coalition for Epidemic Preparedness Innovations (CEPI), a not-
for-profit global coalition launched in 2017 to deal with the
worldwide threat of epidemic outbreaks, is playing a pivotal role
in supporting many of the frontrunner vaccines (9).

Herein, we review what is currently known about the immune
response to SARS-CoV-2 and the various vaccine platforms being
used to develop the SARS-CoV-2 vaccines. Understanding the
mechanism of action of the various candidate vaccines is the key
focus of this review. We also discuss potential challenges at the
immunological level, assessment of vaccine safety and scale-up
and delivery.

SARS-CoV-2 STRUCTURE AND FUNCTION

Coronaviruses are enveloped positive-sense single stranded RNA
viruses belonging to the Coronaviridae family. They infect birds
and mammals causing a range of symptoms from respiratory
to gastrointestinal disease (10). A number of relatively common
seasonal coronaviruses are known to infect humans (11),
causing mild respiratory illness (“the common cold”). Two
previous lethal human coronavirus diseases, namely severe acute
respiratory syndrome (SARS caused by SARS-CoV-1) (12) and
Middle East respiratory syndrome (MERS caused by MERS-
CoV) (7) arose in 2002 and 2012, respectively. They have a
high mortality rate of ∼9 and 40%, respectively, but fortunately,
neither reached pandemic levels. SARS-CoV-1 was able to be
contained by public healthmeasures to prevent human-to human
transmission and then disappeared before vaccine development
had progressed significantly.

The genome of SARS-CoV-2 encodes for the structural
proteins spike (S), envelope (E), membrane (M) and
nucleocapsid (N) as well as a number of accessory and
non-structural proteins (Figure 1) (13). The M and N proteins
give the virion its shape, and the S proteins appear as spikes
on the viral surface giving it a solar corona appearance. The S
glycoprotein (spike) exists in trimeric form and is the structure
by which binding to the host cells occurs. The virus receptor,
angiotensin-converting enzyme 2 (ACE2), expressed on the
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FIGURE 1 | Structure of SARS-CoV-2 and key antigenic components.

Illustration of SARS-CoV-2 which is a single stranded RNA virus. The key

antigenic components being targeted in vaccine design are shown on the right,

consisting of the spike (S), envelope (E), membrane (M), and nucleocapsid (N)

proteins. The main emphasis for human vaccines is based on the spike (S)

protein, consisting of an S1 binding region and S2 fusion and cell entry region.

The S1 domain contains the receptor binding domain (RBD) responsible for

binding to the ACE2 receptor on the surface of host cells. Following fusion, the

S protein sheds the S1 region and undergoes a dramatic structural change to

its post-fusional state in order for the virus to enter the host cells.

surface of multiple human cells is engaged via the receptor
binding domain (RBD), which is part of the S1 subunit of the
S glycoprotein (14) (Figure 1). The S2 subunit consists of two
heptad repeat fusion regions, HR1 and HR2, responsible for
membrane fusion and cell entry. The RBD domain can either be
down and buried or rotated up and primed for ACE2 binding
(15). The hidden down state is the predominant state of the
S protein trimer in SARS-CoV-2, and likely a mechanism the
virus uses to hide the entry epitopes and evade the host immune
response (16). Two S trimers can concurrently bind to an ACE2
dimer. Following S protein binding in its prefusion state, the
S1 subunit is cleaved and shed permitting the S2 dramatic
conformational changes which constitute the post-fusion state
required for viral entry (17, 18).

IMMUNE RESPONSE TO SARS-CoV-2

Innate Immunity to COVID-19: Protection
or Hyper-Activation?
SARS-CoV-2 stimulates an innate immune response via pattern
associated molecular patterns (PAMPs) expressed by the virus,
which in the case of SARS-CoV-2 consists of viral RNA
and its intermediates produced during replication (19). These
conserved PAMPs stimulatemultiple immune response pathways
via pattern recognition receptors (PRRs), including sensing by
endosomal Toll-like receptors (TLRs) 3 and 7, cytosolic retinoic
acid-inducible gene 1 (RIG-1) and melanoma differentiation-
associated protein 5 (MDA5). Local tissue damage in the lungs

also releases damage-associated molecular patterns (DAMPS)
further contributing to local inflammation. The resultant
inflammatory response provides immediate antiviral immunity
via activation of antiviral type 1 and 3 interferon (IFN) pathways
leading to an upregulation of inflammatory cytokines such as
interleukin 6 (IL-6) and IL-1β, further recruiting neutrophils,
other innate immune cells and stimulating anti-SARS-CoV-2
adaptive memory T cells and B cells (20) (Figure 2).

There is still much to understand about the immune response
to SARS-CoV-2 and the immunological differences in those with
mild as compared to severe infection. Emerging data suggest
that the innate response to SARS-CoV-2 is aberrant (21, 22).
For example, the early type I and III interferon responses
are relatively suppressed by SARS-CoV-2, an immune evasion
strategy employed by the virus, leading to early failure to control
the virus. Furthermore, uncontrolled local inflammation, or what
has been described as “cytokine storm,” leading to tissue damage
with inflammatory cell infiltration and the acute respiratory
distress syndrome (ARDS) is thought to characterize late stage,
severe manifestations of COVID-19 (23–25). For example,
patients with severe COVID-19 had higher levels of IL-6, IL-2R,
IL-10, and tumor necrosis factor alpha (TNF-α) than those with
moderate disease, the former of which correlated with clinical
severity and death (26, 27). Those COVID-19 patients requiring
ICU admission demonstrated greater plasma levels of IL-2, IL-7,
IL-10, granulocyte colony-stimulating factor (GCSF), interferon-
inducible protein 10 (IP-10), monocyte chemoattractant protein-
1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and
TNF-α than the non-ICU COVID-19 patients, all supporting
enhanced innate immunity in the sicker patients (28). Of
note, the IL-6 levels described in COVID-19 patients are a
log-fold lower than those described in classic cytokine storm
(29). Furthermore, IL-10 is an immunosuppressive cytokine
suggesting dysregulated immune homeostasis rather than pure
inflammation. Upregulated chemoattractant chemokines further
recruit inflammatory cells including neutrophils, macrophages,
natural killer (NK) cells and T cells resulting in further
immunopathology (21) (Figure 2).

Induction of SARS-CoV-2 Specific
Neutralizing Antibodies
Antibodies (Abs) produced by activated B cells play a key
role in anti-viral immunity via several mechanisms including
viral neutralization, antibody-dependent cellular cytotoxicity
(ADCC), antibody-dependent cellular phagocytosis (ADCP),
and antibody-dependent complement activation (ADCA)
(Figure 3). It is thought that generation of high levels of
neutralizing antibodies (nAbs) against SARS-CoV-2 are required
for a successful human vaccine (18). However, some patients
recover without producing high levels of nAbs and those
with severe disease may experience an early rise in nAbs (30).
Nevertheless, most vaccine efforts are focused on the induction
of nAbs to the S protein in order to block attachment of RBD to
the ACE2 receptor on host cells (31). As mentioned before, this
domain is hidden in the S protein’s prefusion state, presenting
challenges to the success of RBD-based vaccines (16). For this
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FIGURE 2 | Key components of the innate immune response to SARS-CoV-2. Antigen presenting cells (APCs), such as monocytes, macrophages, and dendritic cells

(DCs), recognize pattern associated molecular patterns (PAMPs) expressed by SARS-CoV-2 via their pattern recognition receptors (PRRs), such as toll-like receptor

(TLR) 3 and 7. This activates intracellular signaling pathways leading to the expression of type 1 and 3 interferons (IFNs), which in turn activate innate immune cells to

produce pro-inflammatory cytokines and chemokines. This leads to an influx and activation of neutrophils, further APCs and other innate immune cells, such as natural

killer (NK) cells.

reason, some groups have focused on eliciting nAbs to the
less immunogenic S2 subunit of the spike protein (16) and
SARS-CoV-2 vaccines based on other antigens, including the N
protein, are also being developed.

A recent report from the US describes outcomes among
35,322 COVID-19 patients, many of whom had critical illness,
transfused with the plasma from people who have recovered
from COVID-19 (convalescent plasma [CP]) (32). Early CP
infusion within 3 days of illness had a lower 7-day mortality
than those treated after 4 or more days (8.7% vs. 11.9%). In
this uncontrolled study, those who received higher levels of IgG
Abs in the transfused plasma had a better mortality outcome.
These data, alongside results from another uncontrolled study
showing recovery in severely unwell COVID-19 patients treated
with CP, lends support to the notion that naturally acquired
Abs can be protective (33). However, other plasma factors such
as cytokines, defensins and other non-specific Abs may also
play a protective role in these studies (34). SARS-CoV-2-specific
nAbs recovered from infected humans also protected Syrian
hamsters and rhesus macaques in challenge studies (35, 36).
Ideally, a SARS-CoV-2 vaccine would induce long-lasting Abs,
but it is not yet known how long specific Abs persist in SARS-
CoV-2 infected individuals or how long they would persist
after vaccination. Indeed, several recent studies indicate rapid
waning of SARS-CoV-2 nAbs in some individuals following
natural infection, although others maintained high levels to
60–94 days (37, 38), raising concerns about the persistence of
nAbs post-immunization; whether nAbs plateau or continue to
decline over time is yet to be determined. By contrast, nAbs

to SARS and MERS have been detected up to 2–3 years after
infection in human survivors (39) and a recent study reports
nAbs 17 years after SARS infection, suggesting that long-lasting
coronavirus-specific nAbs can be induced in some instances (40)
so hopefully Ab mediated immunity to SARS-CoV-2 will be
equally long-lasting. Importantly, class-switched IgG memory
B cells to S and RBD have been demonstrated in COVID-19
patients confirming the generation of B cell memory which
can provide a rapid recall response on subsequent SARS-CoV-
2 exposure (41). Furthermore, we do not yet know what level
of nAbs are required for protection (42). The standardization
of a range of assays to support vaccine studies, such as viral
neutralization assays, to enable comparison of different vaccine
candidates in different populations will be key to facilitating
vaccine development, an issue which represents a current focus
of the WHO (43).

T Cell Adaptive Immunity: Protection,
Immune Suppression or Disease
Enhancement?
Processing and presentation of SARS-CoV-2 epitopes by antigen
presenting cells (APCs) via human leukocyte antigen (HLA) class
I leads to activation of naïve CD8+ T cells which differentiate
into cytolytic effectors (cytotoxic T lymphocytes [CTL]) that
kill virus-infected cells. Activation of T helper 1 (Th1) CD4+

T cells via viral peptides presented on HLA class II alleles
further enhances the CD8+ T cell response, while HLA class
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FIGURE 3 | Key components of the adaptive immune response to SARS-CoV-2. The adaptive immune response is activated following viral uptake and antigen

processing by a range of APCs. The APCs present viral antigen to B cells which then differentiate into antibody producing plasma cells. The neutralizing antibodies

(nAbs) then bind to key viral proteins, such as the spike protein, and neutralize their activity. Other Ab-mediated antiviral functions include antibody dependent cellular

cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP), and antibody dependent complement activation (ADCA). Cytotoxic CD8+ T cells kill virally

infected cells via the production of granzymes and perforin and the expression of Fas ligand (FasL), all of which mediate cellular apoptosis. A series of CD4+ T cell

populations are involved in the adaptive cellular response to SARS-CoV-2. Follicular helper T cells (TFH) and Th2 CD4+ T cells both provide help for B cell antibody

production. Th1 and Th17 CD4+ T cells are also thought to play a role in the inflammatory response and viral killing. CD4+ regulatory T cells have been implicated with

an immunoregulatory role in SARS-CoV-2 infection via the production of anti-inflammatory cytokines and contact-mediated cellular suppression. Whether CD8+ Tregs

and Bregs play a role is not currently known.

II-restricted follicular helper (TFH) and Th2 cells enhance virus-
specific antibody production (Figure 3). Effective viral clearance
therefore requires a combination of CD8+ CTL and CD4+ T
cell mediated enhancement of B cell and CD8+ T cell responses
(20). Pro-inflammatory Th17 also play a role as evidenced by

their high frequency in lung biopsy specimens of COVID-19
patients (44) (Figure 3). Severe viral disease, associated with
an over exuberant T cell response, leads to local inflammation
and toxicity, thus activation of immune modulatory factors or
checkpoints is crucial in limiting the damage. Indeed, regulatory
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T cells (Tregs) play a key role in the control of inflammation
and immunopathology in other coronavirus infections (45), but
this has yet to be investigated for SARS-CoV-2 (Figure 3). Most
activated T cells subsequently apoptose and die, but some persist
and provide long-term virus-specific T cell immunity. Natural
infection with SARS-CoV-1 induced long-lasting memory T cells
up to 6 years after infection (46) and memory T cells persisted
to 2 years after MERS infection (47), supporting the potential
for long-term persistence in SARS-CoV-2 infection. These should
provide protective immunity on subsequent exposure to the
pathogen, the ultimate goal of an effective vaccine.

Severe COVID-19 patients exhibit immunological features
associated with T cell anergy or exhaustion. For example,
the lungs of severe COVID-19 patients contain high levels
of CD8+ T cells expressing classic markers and genes of
exhaustion (29), while patients who have recovered from
moderate or severe COVID-19 seem to have robust memory
T cell formation (48). These infiltrating cells also express high
levels of markers of activation and cytotoxicity. Other studies
have similarly demonstrated that more activated and, in some
cases, more exhausted T cells develop in symptomatic COVID-
19 patients compared to levels during the prodromal stage
(49). Those who experience mild-moderate disease maintain
their lymphocyte counts and have more polyfunctional T cells;
while studies in those with severe disease are contradicting,
reporting both lower and higher CD8+ T cell cytotoxicity
(49). Severe disease is associated with profound lymphopaenia
lending support to the theory that the disease also causes
immunosuppression, although lymphocyte trafficking to the
site of infection may also be responsible (49). A biphasic
T cell response has therefore been proposed, characterized
by an early CD8+ cytotoxic T cell response to control the
virus followed by T cell exhaustion and depletion as a result
of viral persistence over many weeks in some patients. This
model could account for poorer outcomes in the elderly who
have diminished T cell repertoires and better outcomes in
children who have a diverse and abundant naïve T cell pool
(29). Nevertheless, the likely early protective role for CD4+

and CD8+ T cells in SARS-CoV-2 clearance suggests that
their induction should be exploited in SARS-CoV-2 vaccine
development strategies.

KNOWLEDGE FROM SARS AND MERS
VACCINE DEVELOPMENT

No vaccine is licensed or available for SARS or MERS,
however, considerable preclinical development studies have been
performed. A range of vaccine development approaches were
explored, including live attenuated vaccines and inactivated
vaccines (such as inactivated whole virus), soluble protein
vaccines, viral vectors, nanoparticles, and DNA vaccines; most
of these platforms are also being utilized for SARS-CoV-2, as
discussed below (50, 51). Most of the SARS and MERS subunit
candidate vaccines have targeted the S glycoprotein and been
examined in studies conducted in animal models, although N,
M, and E protein-based vaccines have also been tested (20).

However, the fact that animal models, including mice and non-
human primates, display only limited clinical manifestations of
SARS and MERS, that it is not usually lethal, severely limit the
translation of results into humans. To overcome this, animal
adapted strains and transgenic animal models of severe disease
have been developed (20, 52).

In virus challenge studies in animals, high titers of nAbs to
both SARS-CoV-1 and MERS virus correlated with protection
(51, 53). Relatively few studies have investigated the protective
role of T cells, and while some correlate CD4+ and CD8+

T cell responses with protection, adoptive transfer and T
cell depletion assays in mice suggest they are not necessary
for protection in mice immunized with a DNA-based SARS
vaccine (54). Furthermore, vaccination of mice with SARS
and MERS candidate vaccines has been shown to result in
Th2 lung pathology with eosinophilic infiltration following
wild-type virus challenge (54–57). This immunopathological
effect has been associated with whole virus vaccines with and
without adjuvant and linked with responses to the N protein
in particular; S protein-based vaccines may have a lesser effect.
An N protein-based DNA SARS vaccine also elicited a delayed
type hypersensitivity reaction in mice, further cautioning against
using this protein for SARS-CoV-2 vaccines (57). Furthermore,
S-based vaccines appear more immunogenic and protective in
these studies and the duration of protection has been shown in
challenge studies to last 3–12 months in mice immunized with a
vesicular stomatitis virus (VSV)-based SARS vaccine and animals
immunized with DNA and/or protein-based MERS vaccines
(23, 58). Of note, in the former study, protection against viral
challenge was complete in younger mice but limited in senescent
mice, highlighting potential issues with successful vaccination in
older individuals (59).

The only SARS vaccines to reach human phase 1 clinical
trials were based on inactivated virus, soluble S glycoprotein and
DNA approaches (52). MERS vaccines tested in human phase
1 clinical trials include a DNA-based vaccine alone (60); DNA
in combination with adenovirus or modified vaccinia Ankara
(MVA) viral vectors as a prime-boost strategy (52, 61); and a
chimp adenovirus vaccine (62). Efficacy against disease has not
been tested in humans since it has not been deemed ethical to
perform challenge studies with lethal viruses for which there is
no effective treatment.

VIRAL SEQUENCING AND
IMMUNOINFORMATICS TO INFORM
RATIONAL VACCINE DESIGN

The first SARS-CoV-2 genome was isolated from patients
with pneumonia from Wuhan, China in early 2020 and
identified as a novel human coronavirus (63, 64). Since that
time, multiple viruses have been isolated and sequenced from
patients throughout the world providing an understanding
of the evolutionary capacity and diversity of this pathogen
(63). Structural genomics and molecular interaction analysis
(interactomics) can be used to rapidly identify putative
functional sites, facilitating rational vaccine design by identifying
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potential B and T cell epitope regions of key viral proteins
(65). Several groups have used computational programs and
immunoinformatics to predict CD4+ and CD8+ T cell and B cell
epitopes across multiple SARS-CoV-2 antigens from pathogen
sequence data to design novel SARS-CoV-2 vaccines (66, 67).
The genetic diversity and stability of these regions over time
can then be characterized, and cross-reactivity predicted and
examined to ensure a vaccine provides cross-strain immunity.
The S gene of human coronaviruses is well-known to undergo
genetic drift which could compromise SARS-CoV-2 vaccines
based on this region (68, 69). Reassuringly, comparisons between
the sequences of known SARS-CoV-1 B and T cell epitopes from
the N and S proteins have been shown that some of the epitopes
map identically to proteins from SARS-CoV-2 (70). Importantly,
these epitopes showed no mutations among 120 available SARS-
CoV-2 sequences suggesting that they reside in stable parts of the
S protein. The T cell epitopes also covered a broad range of HLA
alleles and could therefore be future targets for vaccine design.

One issue with this approach is that the epitopes will be
specific for human HLA alleles, making it difficult to test them
for protective efficacy in animal models. One way to overcome
this problem is to use humanized mouse models which have
functional human immune systems (71), bearing in mind that
mice can also be modified to express the ACE2 receptor (72).
Also, there are often animal homologs of human CD4 and CD8T
cell epitopes so it may still be possible to screen for efficacy.
However, it should be borne in mind that due to the urgent need
to develop an effective SARS-CoV-2 vaccine, animal challenge
data are not a mandatory pre-requisite to progression to clinical
trials; nevertheless, ideally these should be conducted as part of
the vaccine development strategy. The recent development of
a laboratory-adapted SARS-CoV-2 strain that is pathogenic in
mice, provides an ideal animal challenge model for testing the
efficacy of SARS-CoV-2 candidate vaccines in mice (73).

DIFFERENT VACCINE APPROACHES
USED IN COVID-19 VACCINE
DEVELOPMENT

Vaccine technology has been advancing rapidly and there is a
plethora of approaches to constructing SARS-CoV-2 vaccines.
These range from the original technique employed centuries ago
in the smallpox vaccine development of using modified or killed
whole organism, to protein and peptide-based vaccines, nucleic
acid DNA and RNA vaccines and nanoparticle constructs. Each
approach has unique advantages and disadvantages including
varying time to development and scalability, cost, stability, as well
as anticipated safety and immunogenicity profiles; all approaches
are represented among preclinical and clinical trials (58–60)
(Figure 4).

The Need for Vaccine Adjuvants
Some vaccine candidates, particularly protein-based vaccines,
require an adjuvant to boost their immunogenicity (74). To date,
very few adjuvants have been licensed for human use since the
original adoption of aluminum salts (alum) from the early 1920s,

which bias immunity toward a Th2 response (75). Several of the
newer adjuvants consist of Toll-like receptor agonists to stimulate
innate immunity combined with alum, such as AS04 which
is based on the TLR4 ligand monophosphoryl lipid A (MPL).
Oil-in-water emulsion adjuvants including MF59 and AS03 are
stronger adjuvants than alum and have been adopted in several
licensed influenza vaccines. The adjuvant AS01, present in the
malaria vaccine RTS,S, combines MPL and a saponin QS-21 (75).
A wide variety of adjuvant approaches are being taken with the
various SARS-CoV-2 vaccines in development, including those
mentioned above, some of which are described in the relevant
sections below (76).

Different Routes of Vaccination
Many vaccines are given via the intramuscular route, including
the majority of the current COVID-19 vaccines in development
(Table 1). However, since SARS-CoV-2 causes infection via the
respiratory tract, a vaccine targeting the mucosal immune system
might be preferable (77). Mucosal vaccines have the advantage of
being needle-free and thus practical for mass-administration, but
immune tolerance induction can be an issue. The formulation,
including the use of mucosal adjuvants, is therefore important to
ensure stimulation of adequate local and systemic immunity (78).

Several groups have developed mucosal SARS-CoV-2
vaccines. A deoptimized live attenuated whole virus vaccine is
being developed for intranasal (i.n.) administration, and several
adenovirus-based vaccines will also be administered via the i.n.
route (Table 1). An oral probiotic pill-based SARS-CoV-2 DNA
vaccine (bacTRL) is also planned for clinical trials (Table 1).
The sublingual route is also considered an attractive route for
inducing mucosal immunity (77). An alternative approach is to
combine parenteral vaccines with adjuvants such as retinoic acid
and CAF01 which are known to induce protective IgA mucosal
responses (79, 80).

Researchers are also investigating self-administered
mechanisms for SARS-CoV-2 vaccines to overcome the need
for a healthcare worker to administer the vaccine. For example,
InovioTM have developed a novel hand-held CELLECTRA R©

2000 intradermal delivery device which uses a brief electrical
pulse to reversibly open skin cell pores to allow the entry of
their INO-4800 DNA plasmid vaccine (81) (Table 1). The
University of Pittsburgh School of Medicine has developed an
intradermal microneedle patch that can deliver SARS-CoV-2
protein antigens, either S or RBD (PittCoVacc), through the skin
which will enter human trials soon (82) (Table 1). This approach
delivers antigen and danger signals to the high-density dermal
APCs stimulating a highly effective immune response, even in
the absence of adjuvant. It requires only low doses of antigen
thus reducing production costs. Indeed, this method induced
more potent S1-specific nAbs in mice than the traditional
needle injections, with or without the inclusion of TLR ligand
sequences (83).

Live Attenuated Vaccines
The development of live attenuated vaccines requires the
organism to be modified via passage multiple times under unique
conditions in the laboratory until it loses enough key virulent
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FIGURE 4 | Vaccine platforms being employed for SARS-CoV-2 vaccine design. This figure illustrates the different vaccine approaches being taken for the design of

human SARS-CoV-2 vaccines. Whole virus vaccines include both attenuated and inactivated forms of the virus and subunits of inactivated virus can also be used.

Protein and peptide subunit vaccines are usually combined with an adjuvant in order to enhance immunogenicity. The main emphasis in SARS-CoV-2 vaccine

development has been on using the whole spike protein in its trimeric form or components of it, such as the RBD region. Multiple non-replicating viral vector vaccines

have been developed, particularly focused on adenovirus; while there has been less emphasis on the replicating viral vector constructs. Nucleic acid-based

approaches include DNA and mRNA vaccines, often packaged into nanocarriers such as virus-like particles (VLPs) and lipid nanoparticles (LNPs). Nanoparticle and

VLP vaccines can also have antigen attached to their surface or combined in their core. The immune cell therapy approach uses genetically modified

SARS-CoV-2-specific cytotoxic T cells and dendritic cells expressing viral antigens to protect against SARS-CoV-2 infection. Each of these vaccine approaches has

benefits and disadvantages in terms of cost and ease of production, safety profile and immunogenicity, and it remains to be seen which of the many candidates in

development protect against COVID-19.

factors so as to not cause disease, but retains its ability to
replicate in the vaccine recipient, and stimulate a robust immune
response that protects against infection (84–86). These vaccines
tend to be highly immunogenic, do not require an adjuvant
and provide long-lasting immunity. However, they are usually
contraindicated in those immunocompromised or pregnant.

It is difficult to develop a live attenuated SARS-CoV-2
vaccine quickly because of the time and knowledge required
to ensure that it is suitably attenuated and all virulence factors
removed. Reverse genetics can be employed for the rational
design of the ideal attenuated SARS-CoV-2 vaccine virus, for
example by determining key virulence factors, as has been
done for other coronaviruses (87). Long-term maintenance of
consistent live vaccine stocks is also problematic (85, 86). Despite
the challenges, three codon-pair deoptimized live attenuated
vaccines are currently undergoing pre-clinical testing, but none
have yet progressed to clinical trials (7) (Table 1). These three
candidates are being developed by Codegenix/Serum Institute

of India, Indian Immunologicals Ltd/Griffith University and
Mehment Ali Aydinlar University in Turkey, respectively (7).
This approach relies on using a single virus strain which may
not cross-protect against other strains, particularly as the virus
continues to spread worldwide and mutates as selection pressure
increases once immunity becomes more widespread.

Inactivated Virus (Whole and Subunit)
Vaccines
Inactivated vaccines are produced by growing the virus and then
killing or “deactivating” it so that it can no longer replicate.
The whole virus can be used, although alternative approaches
include splitting the virus with a detergent to disrupt it or
purifying antigenic components to create a subunit vaccine (88).
These vaccines are safer than live-attenuated vaccines but less
immunogenic and often require an adjuvant. There are currently
four inactivated vaccines in human clinical trials and a further
nine in the preclinical stages of development (Tables 1, 2). An
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TABLE 1 | Vaccines approaches being taken and the number of candidate vaccines in clinical and pre-clinical trials (20 August 2020).

Vaccine platform Construct details Number in pre-clinical

trials

Number in

clinical trials

Live attenuated virus Codon-pair deoptimized live attenuated vaccines 3 0

Inactivated whole virus Some combined with alum or CpG 1018 adjuvant 9 5

Protein/peptide subunit Recombinant whole S protein, RBD or S1; 1 molecular clamp stabilized; 1 based

on N protein; nanoparticle/VLP; peptides in LNP; 1 li-key peptide-based;

OMV-based

With or without adjuvant and/or fused with Fc subunit of IgG

Most intramuscular delivery; 1 microneedle array, 1 oral construct

50 8

Non-replicating viral vectors Chimp adenovirus 1; human adenovirus (Ad5, Ad 26); adeno-associated virus

(AAV); influenza virus (H1N1); modified vaccinia Ankara (MVA); parainfluenza virus 5

(PIV5); rabies virus; Sendai virus

With or without adjuvant

Most intramuscular delivery; 1 subcutaneous and several oral constructs

19 5

Replicating viral vectors Avian paramyxovirus; horsepox; influenza; measles; Newcastle disease virus

(NDV); vesicular stomatitis virus (VSV); Yellow fever virus (YF17D)

Most intramuscular delivery; 2 intranasal

17 1

DNA DNA plasmid vaccines; mostly S protein or RBD-based, but 2 also with N protein

With or without adjuvant

Most intramuscular delivery; some with electroporation/needle free delivery; 1 oral

vaccine (bacTRL-Spike)

12 4

RNA LNP-encapsulated encoding spike protein or RBD; self-amplifying

Most intramuscular delivery; 1 intranasal

16 6

Virus like particle (VLP) Whole virus, protein and peptides inside or on surface; lentivirus, baculovirus,

HIV-based vehicles

Some with adjuvants

12 1

Adapted from WHO Draft Landscape of COVID-19 Vaccines [ref].

alum adjuvanted purified formaldehyde inactivated whole virus
vaccine developed by Sinovac Biotech., called PiCoVacc, has
been shown to be immunogenic in mice, rats and non-human
primates (96). It induced nAbs to both vaccine and non-vaccine
strains and provided partial or complete protection of macaques
in challenge studies and has now entered human clinical
trials in China (Table 2). The China National Pharmaceutical
Group (Sinopharm) have also developed inactivated whole virus
vaccines with the Wuhan Institute of Biological Products and
Beijing Institute of Biological Products which are currently in
phase 3 clinical trials. The Wuhan vaccine has been shown to be
safe and immunogenic in a randomized, double-blind, placebo-
controlled phase 1/2 trial, which recently reported interim results
(89). The phase 1 study tested three doses of 3 different vaccine
concentrations (2.5, 5, and 10 µg per dose) of their alum
adjuvanted vaccine vs. alum adjuvant alone placebo in 96 healthy
adults; and the phase 2 tested two doses of 5 µg vs. alum alone
in 224 18–59 year old healthy adults. Reasonable geometric
mean anti-SARS-CoV-2 nAb titers (206–316) in 50% plaque
reduction neutralization assays were induced at 14 days post-
immunization. The vaccine did not appear to cause changes in
serum innate (IL-1β, IL-6, IL-8, TNF-β), Th1 [IL-2, IL-12(p70),
IFN-γ, TNF-α], Th2 (IL-4, IL-5, IL-10), or Th17 (IL-17, IL-
21) cytokines, although formal statistical analysis of these data
has not been reported. The safety data (Table 5) are discussed
in section Comparative Safety and Tolerability Results for
Current SARS-CoV-2 Vaccine Candidates in Clinical Trials. The
Beijing inactivated vaccine candidate (BBIP-CorV) has published

pre-clinical data confirming induction of high levels of nAbs
in several animal models and protection against intra-tracheal
SARS-CoV-2 challenge in rhesus macaques after 2 doses of
vaccine (97). The Institute of Medical Biology/Chinese Academy
of Medical Science has also developed an inactivated whole
virus construct that is in a phase 1/2 trial; and Bharat Biotech
International Ltd also has one in a phase 1/2 trial (Table 2).

Protein and Peptide Vaccines
Rather than using the whole or a split fragment of the virus
as the vaccine, antigenic proteins (or peptides) of the virus can
be generated using recombinant technology in the laboratory
instead (98). This is the most popular approach in the SARS-
CoV-2 vaccine development field, with 50 protein/peptide
constructs in preclinical trials and 8 that have entered clinical
trials (Table 1). They are relatively simple vaccines to make and
thus cheap to produce. A major advantage over whole virus
vaccines is their relative safety since unnecessary reactogenic
components such as lipopolysaccharides and toxins can be
excluded. However, protein/peptide vaccines often require
adjuvants and multiple doses in order to stimulate an adequate
immune response. Peptide vaccines usually consist of 15–30
amino acid B cell and T cell epitope regions of key antigens
allowing for a precise and targeted immune response. Peptide-
based vaccines have been developed as candidates against several
viral pathogens, but few have been licensed except for use in
veterinary practice (99). This is in part due to their inherent
limitations including a narrow breadth of immune response,
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TABLE 2 | Candidate SARS-CoV-2 vaccines currently in clinical trials.

Vaccine platform Construct details Route Doses Developer/Manufacturer Clinical trial registration and

stage

Age Gp

(years)

Inactivated whole

virus

Formaldehyde inactivated with

alum (PiCoVacc)

Inactivated SARS-CoV-2 with

alum

Inactivated SARS-CoV-2 with

alum (BBIP-CorV)

Inactivated SARS-CoV-2

Whole virion

inactivated (BBV152)

i.m.

i.m.

i.m.

i.m.

i.m.

2

2

2

2

2

Sinovac Biotech

Wuhan Institute of Biological

Products/Sinopharm

Beijing Institute of Biological

Products/Sinopharm

Inst of Medical Biol/Chinese Acad

Med Sci

Bharat Biotech International Ltd

Phase 1/2 NCT04383574

Phase 1/2 NCT04352608

Phase 3 NCT04456595

Phase 1/2 ChiCTR2000031809 (89)

Phase 3 ChiCTR2000034780

Phase 1/2 ChiCTR2000032459

Phase 3 ChiCTR2000034780

Phase 1 NCT04412538

Phase 1/2 NCT04470609

Phase 1/2 NCT04471519

≥60

18–59

≥18

≥6

≥18

≥6

≥18

18–59

≥60

12–65

Protein/peptide

subunit

Adjuvanted recombinant RBD

dimer S protein

Full length S trimer

(NVX-CoV2373) plus Matrix MTM

adjuvant

RBD protein-based

S protein Trimer-Tag©

platform +

ASO2 adjuvant

(SCB-2019)

Recombinant spike protein with

AdvaxTM adjuvant

Molecular clamp stabilized S

protein with MF59 adjuvant

S-2P protein + CpG 1018

RBD protein subunit vaccine

with adjuvant

i.m.

i.m.

i.m.

i.m.

i.m.

i.m.

i.m.

i.m.

2 or 3

2

2

2

1

2

2

2

Anhui Zhifei Longcom

Biopharmaceutical/Inst of Microbiol,

Chinese Acad Sci

Novavax

Kentucky Bioprocessing, Inc.

Clover Biopharmaceuticals

Inc./GSK/Dynavax

Vaxine Pty Ltd/Medytox

Univ of Queensland/CSL/Seqiris

Medigen Vaccine Biologics

Corporation/NIAID/Dynavax

Instituto Finlay de Vacunas, Cuba

Phase 1 NCT0445194

Phase 2 NCT04466085

Phase 1/2 NCT04368988 (90)

Phase 1/2 NCT04473690

Phase 1 NCT04405908

Phase 1 NCT04453852

Phase 1 ACTRN12620000674932p

Phase 1 NCT04487210

Phase 1/2 IFV/COR/04

18–59

18–59

18–59

18–70

18–75

18–65

18–55

20–50

19–80

Non-replicating viral

vectors

Chimp adenovirus (ChAdOx1

nCoV-19) S protein (now called

AZD1222)

Adenovirus type 5S protein

(Ad5-nCoV)

Adenovirus 26 (Ad26.COV2.S)

Adenovirus 5 and 26S protein

(Gam-COVID-Vac)

Replication defective Simian

Adenovirus (GRAd) encoding S

i.m.

i.m.

i.m.

i.m.

i.m.

1

1

2

1

1

University of Oxford/Astra Zeneca

CanSino Biological Inc./Beijing

Institute of Biotechnology

Janssen Pharmaceutical

Gamaleya Research Inst.

ReiThera/LEUKOCARE/Univercells

Phase 1/2 NCT04324606 (91)

Phase 2 EUCTR 2020-001228-32

Phase 3 ISRCTN89951424

Phase 1 NCT04313127 (92)

Phase 2 NCT04341389 (93)

Phase 1/2 NCT04398147

Phase 1/2 NCT04436276

Phase 3 NCT04505722

Phase 1 NCT04436471

Phase 1 NCT04437875

Phase 1 EUCTR2020-002835-31

18–65

2–11, ≥18

18–55

18–60

≥18

18–84

18–55, ≥65

≥18

18–60

18–60

N/A

Replicating viral

vectors

Measles virus vector-based

(TMV-083)

i.m. 1 or 2 Institute Pasteur/Themis/Univ. of

Pittsburg CVR/Merck Sharp &

Dohme

Phase 1 NCT04497298 18–55

DNA DNA plasmid vaccine S protein

(INO-4800) CELLECTRA®

electroporation device

DNA plasmid vaccine

DNA plasmid vaccine plus

adjuvant (AG0301-COVID19)

DNA vaccine (GX-19)

i.d.

i.d.

i.m.

i.m.

2

3

2

2

Inovio Pharmaceuticals/International

Vaccine Institute

Cadila Healthcare Limited

Osaka University/AnGes/Takara Bio

Genexine Consortium

Phase 1/2 NCT04336410

Phase 1/2 NCT04447781

Phase 1/2 CTRI/2020/07/026352

Phase 1/2 NCT04463472

Phase 1/2 NCT04445389

≥18

19–64

18–55

20-65

18–50

RNA LNP-encapsulated mRNA

encoding stabilized S protein

(mRNA-1273)

LNP-encapsulated mRNA

encoding trimerized RBD protein

(BNT162)

LNP-encapsulated mRNA

(CVnCoV)

LNP-encapsulated

self-amplifying S protein mRNA

(LNP-nCoVsaRNA)

i.m.

i.m.

i.m.

i.m.

2

2

2

2

Moderna/NIAID

BioNTech/Fosun Pharma/Pfizer

CureVac

Imperial College London

Phase 1 NCT04283461 (94)

Phase 2 NCT04405076

Phase 3 NCT04470427

Phase 1/2 NCT04368728 (95)

Phase 1/2 NCT04380701

Phase 3 NCT04368728

Phase 1 NCT04449276

Phase 1 ISRCTN17072692

18–99

≥18

≥18

≥18

18–55

18–85

18–60

18–75

(Continued)
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TABLE 2 | Continued

Vaccine platform Construct details Route Doses Developer/Manufacturer Clinical trial registration and

stage

Age Gp

(years)

mRNA

mRNA (ARCT-021)

i.m.

i.m.

2

2

People’s Liberation Army (PLA)

Academy of Military

Sciences/Walvax Biotech.

Arcturus/Duke-NUS

Phase 1 ChiCTR2000034112

Phase 1/2 NCT04480957

≥18

21–80

VLP Plant derived VLP adjuvanted

with AS03 or CpG 1018

i.m. 2 Medicago Inc. Phase 1 NCT04450004 18–55

Immune cell therapy DCs (LV-SMENP-DC) and

Ag-specific CTL

Artificial APCs

Autologous DCs (AV-COVID-19)

+/– GMCSF

s.c.

i.v.

s.c.

s.c.

Shenzhen Geno-immune Medical

Institute

Shenzhen Geno-immune Medical

Institute

Aivita Biomed Inc.

Phase 1/2 NCT04276896

(in COVID-19 patients)

Phase 1 NCT04299724

(in COVID-19 patients)

Phase 1/2 NCT04386252

6m-80

6m-80

≥18

Passive immunization Convalescent plasma treatment

Heat inactivated pooled plasma

pill (V-SARS)

i.v.

p.o.

Hilton Pharma

Immunitor LLC

NCT04352751 (Phase not

applicable)

Phase 1/2 NCT04380532

18–55

18–65

CTL, cytotoxic T lymphocyte; DC, dendritic cell; GMCSF, granulocyte-macrophage colony stimulation factor; LNP, lipid nanoparticle; NP, nanoparticle; S, spike; VLP, virus-like particle.

potential for incorrect confirmation for epitope recognition,
lack of B cell receptor cross-linking for B cell epitopes, HLA
restriction for T cell recognition, failure to induce cross-reactive
immunity against different viral strains and failure to elicit long-
lasting immunity. The use of whole proteins in vaccines broadens
their immunogenic potential, however the protein can also lose
its native structure and thereby lose immunogenicity. In addition,
as knowledge of the immune response to SARS-CoV-2 is still in
its early stages, so too is the understanding of precisely what may
be the most conformationally optimal, immunogenic and safe
protein or peptide to utilize; this will be discovered as vaccine
candidates using this approach are examined in clinical trials.

Focus on SARS-CoV-2 Spike Protein
The majority of SARS-CoV-2 candidate vaccines in development
are based on the S protein or its RBD region (Figure 1) (100).
Indeed, five of the current protein/peptide vaccine candidates in
clinical trials target the full S protein and the other two target
RBD only (Table 2).

Some novel technologies have been employed to overcome
the issue of the S glycoprotein losing its immunogenic
conformational form. The University of Queensland has
developed a molecular clamp technique that uses proteins to
stabilize the S protein in its coiled shape. This seeks to ensure
that functional nAbs are produced that will tightly bind to virus
in its native form and thus prevent cell entry (101) (Table 2).
Other groups have focused on using powerful adjuvants to
ensure immunogenicity, for example Novavax’s recombinant
S protein SARS-CoV-2 nanoparticle vaccine, NVX-CoV2373,
combined with an adjuvant called Matrix-M1TM. This is a
saponin-based adjuvant that enhances APC recruitment and
action and stimulates high levels of nAbs and cell-mediated
immune responses (102). The S protein in NVX-CoV2373 is
present its native trimeric form and has been shown to stimulate
high levels of nAbs in mice and baboons in preclinical studies.

Primary phase 1 clinical trial results have just been reported
from a randomized, observer-blind, placebo-controlled trial of
NVX-CoV2373 conducted in 131 healthy adults (90) (Table 2).
Safety and immunogenicity were assessed for 2 doses of vaccine
(5 and 25 µg) with (n = 106) or without (n = 25) the
Matrix-M1TM adjuvant (a 50 µg dose). A strong correlation
was observed between nAb titers and anti-spike IgG to S
protein with the adjuvanted, but not the unadjuvanted, vaccine.
Levels were comparable to those in convalescent sera (r =

0.958). Both 5 and 25 µg adjuvanted doses elicited responses
of similar magnitude and every participant seroconverted by
both assays. T cell responses measured in 16 participants
showed that NVX-CoV2373/Matrix-M1 induces antigen-specific
polyfunctional CD4+ T cell responses (IFN-γ, IL-2, and TNF-
α) in response to spike protein stimulation; there was a strong
bias toward this Th1 phenotype. The safety data are discussed in
section Comparative Safety and Tolerability Results for Current
SARS-CoV-2 Vaccine Candidates in Clinical Trials and this
vaccine is now progressing to phase 2 trials.

Clover Biopharmaceuticals’s protein Trimer Tag© vaccine
is combined with AS02 adjuvant; the UQ vaccine uses
MF59 adjuvant; the Vaxine Pty Ltd. S protein vaccine has
a special AdvaxTM adjuvant; and the Medigen S based
construct is combined with the adjuvant CpG (Table 2).
Generex Biotechnology, in partnership with Epivax, have
developed a SARS-CoV-2 vaccine (EPV-Cov19) based on li-Key
technology with undisclosed SARS-CoV-2 peptides (103). This
uses synthetic peptides chemically linked to the 4-amino acid
Ii-Key to ensure robust immune activation of Th1 and Th2
CD4+ T cells in particular, which in turn facilitate antibody
production (104, 105).

Viral Vector Vaccines
Multiple viral vectors have been used for vaccine delivery due to
their ability to infect cells and deliver the gene product encoding
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TABLE 3 | Clinical trials of BCG and MMR immunization for protection against COVID-19 (from clinicaltrials.gov).

Vaccine Target population Age (yrs) N Primary endpoint Sponsor Country Clinical trial

identifier

BCG Healthy HCWs in ED, ICU,

isolation ward

≥18 900 Incidence of COVID-19

cases

Ain Shams University Egypt NCT04350931

BCG COVID-19 patients TST+

and TST- Case-Control

12–80 100 Pneumonia severity,

need for ICU admission

in TST+ and TST-

patients

Assiut University Egypt NCT04347876

BCG COVID-19 patients ≥18 1,000 COVID-19 progression,

elimination,

seroconversion

University of

Campinas

Brazil NCT04369794

BCG COVID+ patients or

COVID- patients who have

been in contact with

COVID-19

18–80 400 Differences in

epidemiological

characteristics

Direction des Soins de

Santé de Base

Tunisia NCT04384614

BCG Healthy HCWs treating

COVID-19 patients

18–100 1,500 HCW absenteeism Bandim Health Project Denmark NCT04373291

BCG Healthcare workers ≥18 1,500 HCW absenteeism UMC Utrecht Netherlands NCT04328441

BCG Healthy HCWs in contact

with COVID-19 patients

≥18 500 Incidence hospitalized

due to COVID-19

TASK Applied Science South

Africa

NCT04379336

BCG Healthy HCWs treating

COVID-19 patients

18–65 1,000 Incidence of COVID-19

cases

University of Antioquia Columbia NCT04362124

BCG Healthy HCWs (BRACE

Trial)

≥18 10,078 COVID-19 disease

incidence and severe

COVID-19 incidence

Murdoch Children’s

Research Unit

Australia NCT04327206

BCG Healthy HCWs in direct

contact with COVID-19

patients (≥25 h/wk)

18–75 1,800 Incidence of COVID-19

infection

Texas A&M University USA NCT04348370

BCG Healthy HCWs in contact

with COVID-19 patients

≥18 1,120 Incidence of COVID-19

infection

Assistance

Publique—Hôpitaux

de Paris

France NCT04384549

MMR Healthy HCWs during

COVID-19 outbreak

18–50 200 Incidence of COVID-19

disease

Kasr El Aini Hospital Egypt NCT04357028

BCG, bacillus Calmette-Guérin vaccine; MMR, measles-mumps-rubella vaccine; HCW, healthcare worker; TST, tuberculin skin test.

antigenic proteins for production inside the host cell following
administration, usually via the intramuscular (i.m.) route (106).
Vector viruses are usually genetically modified to reduce their
virulence and render them replication defective. Adenoviruses
and poxviruses are the most widely used non-replicating viral
vectors, but many other viruses can also be adapted for vaccine
delivery. Replicating viral vectors, such as measles virus and
vesicular stomatitis virus (VSV), can also be used for SARS-
CoV-2 vaccine design; they mimic natural infection, rendering
them self-adjuvanting and therefore more potent, and can be
used in lower doses (107). While subunit vaccines are more
focused on induction of humoral immunity, viral vector vaccines
are able to induce robust cell mediated immunity (CMI) in
addition to Abs and have been shown in animal models to
protect against challenge with pathogenic coronaviruses (51). A
modified vaccinia Ankara (MVA) vector expressing aMERS-CoV
recombinant protein induced T cell responses and nAbs in mice,
while a rabies virus-based SARS-CoV-1 vaccine protected mice
against SARS-CoV-1 challenge (13).

Non-replicating Viral Vector SARS-CoV-2 Vaccines
Human adenoviruses are the most common non-replicating
viral vectors being used for SARS-CoV-2 vaccine development;

constituting 3 of the 5 in clinical trials and 7 of the 19 in
preclinical development (Table 1). The three in clinical trials
include CanSino’s Ad5-nCoV, Janssen’s Ad26COVS1 (108) and
Gamelaya’s Ad26-based Gam-COVID-Vac Lyo vaccine (Table 2).
All three encode the S protein. While adenovirus vectors are
well-tolerated and highly immunogenic in most people, pre-
existing immunity to the viral vector can hamper the induction of
immunity, particularly after repeated doses. Animal adenoviruses
can be used as vectors instead of human ones to overcome this
problem, which is the approach used for the Oxford University
chimpanzee adenovirus-based candidate SARS-CoV-2 vaccine
ChAdOx1 nCoV-19 (also called AZD1222) and the simian
adenovirus-based ReiThera vaccine GRAd, both of which are in
clinical trials (Table 2). Anti-vector immunity can still develop
after the first dose of vaccine even if a simian adenovirus vector
is used. Despite the concern about anti-vector immunity, 4 of
the 5 adenovirus-based SARS-CoV-2 vaccines in clinical trials are
planned to be given as a single dose, whereas almost all the other
vaccines in clinical trials require at least 2 doses (Table 2).

Phase 1 and 2 trials have now been completed and published
for the Cansino (Ad5-nCoV) and Oxford (ChAdOx1 nCoV-19),
the safety aspects of which will be discussed later in this article.
The Ad5-nCoV randomized, double-blind, placebo-controlled
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phase 2 trial results involving 603 volunteers ≥18 years of age
showed >95% seroconversion by RBD-ELISA, but only 59%
seroconversion of nAb responses in the higher dose group and
47% in the lower dose group after a single immunization (93).
Fifty two percent of volunteers had pre-existing anti-Ad5 nAbs,
and those with higher anti-Ad5 immunity had approximately
half the RBD-specific ELISA and SARS-CoV-2 nAbs as compared
to those with low pre-existing anti-vector immunity, supporting
interference with vaccine immunogenicity. Preliminary findings
from a phase 1/2, single-blind, randomized controlled ChAdOx1
nCoV-19 vaccine trial conducted in 1,077 healthy volunteers
aged 18–55 years induced nAbs in 91% of participants after
a single dose of vaccine, rising to 100% after a booster
dose (91). Neutralization titers were comparable to those
observed in convalescent plasma from people who had recovered
from COVID-19.

Both vaccine constructs elicited T cell responses which peaked
at 14 days post-immunization, as determined by interferon-
gamma (IFN-γ) enzyme linked immunospot (ELISpot) assay
(91, 92). Day 14 responses appeared higher with ChAdOx1
nCoV-19 (median 856 per million peripheral bloodmononuclear
cells [PBMC]) as compared to the highest dose used of Ad5-
nCoV (mean 580 per million PBMC) in the phase 1 trial
(92); Ad5-nCoV elicited a median of 100–110 SFU/million
PBMC at day 28 in the phase 2 trial (93). Intracellular staining
confirmed production of IFN-γ, tumor necrosis factor (TNF) and
interleukin-2 (IL-2) by both CD4+ and CD8+ T cells following
Ad5-nCoV immunization, with more cytokine detected in CD4+

T cells as compared to CD8+ T cells (92).

Replicating Viral Vector SARS-CoV-2 Vaccines
Institute Pasteur replicating viral vector vaccine candidate TMV-
083, based on measles virus, is the only viral vector vaccine that
has entered phase 1 clinical trials to date (Table 2), but there are
17 more at the pre-clinical stage of development. These include
5 each based on influenza virus or VSV, 3 more measles virus-
based candidates, and 1 each based on avian paramyxovirus,
horsepox (called TNX-1800), Newcastle disease virus, and yellow
fever virus (Table 1). The majority target the S protein or RBD,
although one measles virus-based candidate also targets the N
protein. Two of the influenza-based candidates are designed
for intranasal administration. A live attenuated yellow fever
vector-based vaccine (YFS0) expressing the prefusion form of
the S protein recently showed that a single dose protected most
hamsters in a SARS-CoV-2 challenge model (109).

Nucleic Acid-Based Vaccines (DNA or
mRNA)
Nucleic acid-based vaccines (DNA or mRNA) offer a cost-
efficient and scalable approach to SARS-CoV-2 vaccine
development (110). The major nucleic acid-based approaches
are described below.

DNA Vaccines
DNA-based vaccines are stable and safe to handle. However,
while there are multiple DNA vaccine constructs targeting
numerous viral infections in animal and human studies, to

date none have been licensed for human use. Naked DNA can
be injected and taken up by APC or APC can be directly
transfected with plasmid DNA encoding the target antigen.
Subsequent expression and presentation of the target antigen
leads to the induction of antigen-specific CD4+ and CD8+ T
cells and antibody production. However, DNA vaccines tend
to be poorly immunogenic, necessitating various strategies to
improve immunogenicity such as the use of viral promotors,
immunostimulatory sequences and adjuvants. Nanocarriers such
a virus like particles (VLPs) can also be used to improve DNA
delivery, avoid its degradation and be immunostimulatory. There
are safety concerns about potential integration into the host DNA
causing dysregulated gene expression although the risk of this is
thought to be very low.

A series of animal studies with SARS-CoV-1 nucleic acid-
based vaccines have shown induction of nAbs and cellular
immunity, with partial protection against turkey CoV challenge
(13) and vaccine-induced Ab-mediated protection to the S
protein in mice (51). Twelve DNA-based SARS-CoV-2 vaccines
are currently in preclinical development and 4more have entered
phase 1/2 clinical trials (Table 1). Two DNA-based candidates
in clinical trials are administered i.m., whereas the other 2 are
administered via the intradermal (i.d.) route (Table 2). Inovio
Pharmaceuticals is testing their CELLECTRA R© electroporation
i.d. delivery device to administer their S protein-based DNA
plasmid vaccine INO-4800 which induces nAbs and T cells in
mice and guinea pigs (111) (Table 2). An alternative approach
currently in pre-clinical trials is being taken by Symvivo with
their DNA B. longum vaccine bacTRL which is administered as
an oral pill (112).

Messenger RNA-Based Vaccines
Messenger RNA (mRNA) vaccines consist of an RNA strand that
codes for a target antigen (113, 114). The two main types are
those packaged and delivered in non-replicating form or those
packaged with other RNA as an in vivo replicating vaccine. They
offer a promising alternative to conventional vaccine approaches
due to their high potency, capacity for rapid development and
potential for low-cost manufacture, which could prove crucial
for global accessibility for a COVID19 pandemic vaccine. They
also have a good safety profile, since they are not made with
pathogen and do not integrate into host DNA. Several challenges
encountered by mRNA vaccines include the need for packaging,
for example into particles or liposomes, as naked RNA is
otherwise rapidly broken down and the need for freezing or
refrigeration for wide scale delivery.

There are currently 16 RNA-based vaccines in pre-clinical
trials and 6 have entered clinical trials (Table 1). The clinical
trial candidates include two lipid nanoparticle encapsulated
RNA SARS-CoV-2 vaccines that have already progressed to
phase 3 trials (Table 2). Moderna/NIAID have published
preliminary results from their phase 1 dose-ranging, safety and
immunogenicity trial of 2 doses of mRNA-1273 encoding the S
protein conducted in 45 healthy adults aged 18–55 years (94). The
S protein in mRNA-1273 is stabilized in its prefusion state by 2
proline substitutions in the S2 subunit; and the lipid nanoparticle
coat consists of 4 lipids. All participants developed RBD Abs by
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ELISA and SARS-CoV-2-specific nAbs by neutralization assay
after 2 doses in the upper range of those who have recovered from
COVID-19 (convalescent serum). T cell responses measured
by intracellular staining for Th1 (TNF, IL-2, IFN-γ) and Th2
(IL-4, IL-13) cytokines following stimulation with an S protein
peptide pool showed a Th1 cytokine bias and low-level CD8T cell
responses. An interim report from the Phase 1/2 dose-ranging
study of 2 doses of BioNTech’smRNA S protein vaccine candidate
BNT162 administered to adults aged 18–55 years elicited RBD-
binding IgG and SARS-CoV-2 nAbs in the order of 1.8–2.8-
fold that of convalescent human plasma. T cell responses were
not reported in this paper. This vaccine encodes trimerized
RBD which is modified by adding a “foldon” trimerization
domain to increase immunogenicity (114). Both mRNA-1273
and BNT162 are now in phase 3 clinical trials in adults≥18 years
(Table 2). The safety data for both will be reviewed in a later
safety section.

The remaining RNA-based candidates in clinical trials
include three in phase 1 and one in phase 1/2 (Table 2).
The Imperial College London LNP-encapsulated RNA vaccine
consists of an S protein-based self-amplifying RNA construct
(LNP-nCoVsaRNA); designed because saRNA vaccines induce
a more stable DNA product and are more immunogenic than
conventional nucleic acid vaccines (115) (Table 1).

Nanocarriers and Virus-Like Particle
Vaccines
Nanoparticle-based vaccine approaches have received increasing
interest in recent years due to their good safety profile and
high immunogenic potential, with an ability to efficiently target
dendritic cells (DCs) for processing and presentation, providing
a clear advantage over less immunogenic DNA and RNA vaccines
(116). Materials used to construct nanoparticle vaccines include
self-assembling viruses (virus like particles [VLPs]), lipids (as
liposomes), proteins, metals (e.g., gold) and polymers which also
act as their own adjuvant (117).

Many nanoparticles are highly stable and less prone to
degradation than other constructs such as “naked” protein,
peptide, DNA and RNA vaccines (116, 118). Selected antigens,
which may be proteins or nucleic acid, can either be attached to
the surface of the nanoparticles or combined in the particle core.
They can be synthesized in a variety of shapes and sizes to induce
robust innate as well as adaptive immunity. Other modifications
include altering the nanoparticle surface to target certain cells or
enhance immunogenicity and packaging with TLR ligands and
other immune modulators.

One of the most popular approaches for viral vaccine
development is engineering VLPs consisting of self-assembled
viral membrane in a monomeric complex which display the
viral epitopes but lack multiple key viral components, ensuring
they have no replication capacity (119). The widely used human
papillomavirus (HPV) vaccines are an example of this approach.
A nanoparticle polypeptide vaccine displaying SARS-specific B
cell epitope repeats from the C terminal heptad repeat region of
the S protein in its native coiled formation was shown to elicit
nAbs in mice (120).

A number of the protein and nucleic acid-based SARS-
CoV-2 vaccine candidates use nanocarriers to package the
vaccine product to improve stability and ensure efficient antigen
processing (118). As mentioned above, Novavax’s full length S
protein construct NVX-CoV2373 is a nanoparticle vaccine and
the majority of mRNA-based SARS-CoV-2 vaccines are packaged
LNPs, including mRNA-1273 and BNT162. There are 12 SARS-
CoV-2 VLP vaccines in preclinical development and just one in
a phase 1 clinical trial (Table 1). The latter vaccine developed
by Mendicago Inc. consists of plant-derived recombinant VLPs
made by transfecting viral genes into the cell nuclei of leaves
permitting transient expression of viral proteins which form into
VLPs which are extracted and purified for clinical use (121)
(Table 2).

Immune Cell Therapy
SARS-CoV-2 vaccine approaches based on CAR-T cell concepts
are also being tested in clinical trials. The Shenzhen Geno-
immune Medical Institute in China is using a lentiviral vector
system to create viral minigenes which express viral proteins
(S, M, E and N proteins) and immune modulatory genes (P
polyprotein protease) to modify dendritic cells (DCs). The
LV-DC presenting SARS-CoV-2 specific antigens will activate
cytotoxic T cells. Novel DC (LV-SMENP DC) and antigen-
specific cytotoxic T cell vaccines are currently being tested by s.c.
injection or i.v. infusion in a phase 1/2 multicenter therapeutic
clinical trial in participants ranging from 6 months to 80 years
of age (122) (Table 2). The same company has also developed
artificial DCs expressing SARS-CoV-2 mini-genes for various
viral proteins which are being tested in a phase 1 clinical trial as
a s.c. injection in SARS-CoV-2 infected individuals in the same
age range (Table 2). Autologous DCs expressing SARS-CoV-2
antigens have also been developed by Aivita Biomed Inc. in USA
and are being tested as a s.c. administered vaccine in phase 1
clinical trials in healthy adults >18 years of age (123) (Table 2).
Whilst not suitable for large-scale delivery and use, immune cell
therapy might be used in the context of pre-emptive therapy in
high-risk patients such as the elderly and immunocompromised.

REPURPOSING OLD VACCINES TO
PROVIDE NON-TARGETED ANTIVIRAL
IMMUNITY

There is increasing evidence that immunization with live
vaccines can improve survival against non-vaccine targeted
infections, a phenomenon termed “non-specific,” “off-target,”
or “heterologous” effects of vaccines (124, 125). Some of
the best evidence comes from studies of immunization with
the tuberculosis vaccine bacillus Calmette-Guérin (BCG); for
example, BCG has been shown in three randomized trials to
markedly reduce all-cause mortality in low birthweight neonates
(126). BCG causes epigenetic modification of innate immune
cells (monocytes and natural killer (NK) cells) thereby enhancing
innate responses in a process called innate immune training
(127, 128). Experiments in both murine models and humans
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have further shown that BCG protects against certain viral
pathogens (129).

Reports that people living in countries where childhood
BCG is routinely given have lower COVID-19 mortality have
been posited as further evidence for protective effects of BCG
(130). However, these observations are fraught with confounders,
including difficulty ascertaining COVID-19 infection rates in
these countries, the time the virus first entered the country and
differences in national control strategies (131). Furthermore,
other studies contradict these findings, such as a geographic
regression discontinuity analysis along the East and West
German border showing that the COVID-19 infection rates do
not vary according to the BCG vaccination strategies employed
during the cold war (132); and a study from Israel showing that
SARS-CoV-2 infection rates in adults did not differ by BCG at
birth status (133).

Even if childhood BCG immunization does not protect against
COVID-19, a BCG dose as an adult may provide some short-term
protection. Indeed, it has been widely postulated that the non-
specific beneficial effects of BCG might protect against COVID-
19, resulting in an explosion of interest in this vaccine as a
protective strategy in recent months (134, 135). This has led to
a number of clinical trials being established in North and South
America, Australasia, Africa and Europe, all testing the ability of
BCG vaccine to protect against SARS-CoV-2 infection, mostly
in high-risk exposed healthcare workers (136) (Table 2). These
trials collectively aim to recruit >20,000 participants, with the
largest trial of 10,078 healthcare workers currently recruiting
across multiple sites in Australia and Europe.

Non-specific protective effects of live vaccines have also been
postulated for oral polio vaccine (OPV) (137) and measles
vaccine (138). As a result, a study of the protective effects of
OPV against COVID-19 is due to commence in USA in June
(139), and a clinical trial of measles-mumps-rubella (MMR)
immunization and COVID-19 protection is being conducted in
Egypt (Table 3).

A consistent feature of the off-target effects of live vaccines has
been their sex-differential nature; females often showing greater
susceptibility to these immunomodulatory effects (124, 125, 140–
142). Indeed, sex differences in targeted vaccine immunogenicity
and adverse events have also been widely described (141, 142).
This raises the possibility that any off-target protective effect
of live vaccines may differ between the sexes and that the
SARS-CoV-2 vaccine candidates may show sex differences in
immunogenicity and reactogenicity.

It is possible, but uncertain, that strategies to use these already
licensed vaccines may provide a modest level of protection
against COVID-19, including those at highest risk, such as
healthcare workers. It is important to recognize, however,
that data from these studies will still need to accrue whilst
we are waiting for SARS-CoV-2 targeted vaccines to come
through the pipeline. Given the unprecedented speed at which
targeted vaccines are being developed, this approach may
not be necessary or required; furthermore, these existing live
vaccines are not currently recommended for this indication,
so should only be utilized in this context in the setting of a
clinical trial.

TABLE 4 | Some of the key challenges to successful SARS-CoV-2 vaccine

development.

Challenges to SARS-CoV-2 Vaccine Development

Induction of only modest protection

Aberrant Ab responses: OAS and ADE

Aberrant T cell responses: VAERD, Th2 skewing, OAS

Vaccine AEs, SAEs, AESI

Determining efficacy in humans

Lack of standardized assays for measuring Abs and CMI

High development costs

Logistics of mass production

World-wide delivery and vaccine program implementation

Affordability for poorer nations

Long-term sustainability if regular doses needed

ADE, antibody dependent enhancement; AE, adverse event; AESI, adverse event of

special interest; OAS, original antigenic sin; SAE, serious adverse event; VAERD, vaccine

associated enhanced respiratory disease.

POTENTIAL CHALLENGES IN SARS-CoV-2
VACCINE DEVELOPMENT

Even if an efficacious vaccine is developed there are a number
of immunological challenges that need to be considered.
Furthermore, there is the enormous challenge ofmass production
and rapid and equitable delivery (Table 4).

Potential for Modest Vaccine Protection
It is extremely unlikely that any of the SARS-CoV-2 vaccines will
be 100% effective; while they may not prevent becoming infected,
it is hoped that they will prevent progression to severe disease.
Indeed, the seasonal influenza vaccine is generally about 50%
protective against infection but does decrease disease severity and
hospitalization rates (143). A recent study in which macaques
were vaccinated with the Oxford University and AstraZeneca
adenovirus vaccine, ChAdOx1 nCoV-19, found that the primates
were protected from SARS-CoV-2-induced pneumonia (144).
However, the macaques still had high levels of virus replicating
in their upper respiratory tract. It is hoped that even if the
vaccines do not prevent infection in the upper airways, they
may reduce viral load and disease severity and in turn, the
amount of virus a vaccinated person transmits to others. Even
a modestly efficacious SARS-CoV-2 vaccine could mitigate the
severity of this pandemic and be highly beneficial in a world
struggling to contain this novel virus and its devastating social
and economic effects.

Most vaccines are tested in healthy young adult males and
non-pregnant women and, if safe, they are then tested in
healthy children prior to licensure. This therefore raises the
issue that any vaccines may initially have less empiric data
available on use in certain key vulnerable populations such as the
elderly, immunocompromised groups and pregnant women. It is
plausible that vaccines may be considerably less immunogenic in
older and frail elderly who experience the most severe outcomes
from COVID-19, hence the importance of adjuvants in many
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of the vaccine candidates, both for dose sparing and enhancing
immunogenicity (145). Efficacy in this population is also likely
to vary by the type of vaccine construct and adjuvant used.
This has been seen for other diseases such as influenza, where
the adjuvanted and high dose vaccines are more immunogenic
than the standard inactivated vaccines in the elderly (146, 147).
Similarly, for herpes zoster, the efficacy of the live-attenuated
vaccine in the elderly is approximately 60% compared with>90%
for a subunit adjuvanted vaccine (glycoprotein E and liposome-
based AS01B adjuvant) (148). Thus, ensuring studies can be
conducted in these priority target groups, either pre- or early-
post deployment, will be critical and special formulations may be
required to ensure adequate immunogenicity.

Cross-Reactive Coronaviruses Antibodies,
Original Antigenic Sin and Antibody
Dependent Enhancement (ADE) of
Immunity
Throughout life, humans are repeatedly exposed to the endemic
human seasonal coronaviruses and develop human CoV (hCoV)
antibody repertoires that can potentially cross-react with SARS-
CoV-2-specific antigens (149). This early immune imprinting
leads to preferential expansion of cross-reactive Abs when a
related antigen is encountered, in this case SARS-CoV-2 (150).
This long-recognized process is called original antigenic sin
(OAS) (151) and is known to occur with several common viruses,
such as influenza and respiratory syncytial virus (152, 153). OAS
can either lead to a less effective immune response or cause
enhanced immunity and immunopathology (149, 150, 154). OAS
is one of the mechanisms responsible for the phenomenon of
antibody dependent enhancement (ADE) of immunity which
is thought to occur in COVID-19, whereby non-neutralizing
cross-reactive Abs against other coronaviruses enhance host
cell entry and viral infectivity and worsen disease severity
(150, 154, 155). This was seen to occur in cats vaccinated
against feline infectious peritonitis coronavirus (156–158) and
certain SARS and MERS vaccine platforms also appear to have
shown worsened immunopathology in animal challenge studies
compared with placebo (159).

Recently, it was shown in vitro using human cells that
nAbs to coronavirus S protein can also trigger ADE by
causing a conformational change of the S protein (160).
Antigen-experienced older individuals are more susceptible
to the phenomenon of ADE, while less antigen-experienced
younger individuals mount more targeted antibody responses
to viral neoantigens. This may in part account for the greater
immunopathology of COVID-19 in older individuals. Indeed,
it has been shown recently that COVID-19-naïve children and
elderly have quite different cross-reactive SARS-CoV-2-specific
antibody signatures, which would play differing roles upon
challenge with the wild-type virus (161).

Theoretically, a SARS-CoV-2 vaccine could skew the immune
system toward production of less effective or even harmful
cross-reactive hCoV Abs via these processes of OAS and ADE,
rather than induce highly-targeted SARS-CoV-2-specific Abs
as intended (162). Indeed, anti-spike Abs taken from critically

unwell COVID-19 patients with severe lung injury skewed
macrophages in vitro into a pro-inflammatory phenotype,
implicating the Abs in driving the surge in lung-resident pro-
inflammatory macrophages and subsequent pro-inflammatory
cytokine release in the lungs (163). The authors attribute an
aberrant IgG glycosylation pattern in severe COVID-19 patients
with their more pro-inflammatory properties so hopefully the
IgGs induced by vaccination will not have this problem. Indeed,
none of the current SARS-CoV-2 vaccines in human clinical
trials have reportedly caused ADE to date, although the number
of human subjects studied to date is still relatively small.
Since animal challenge data are not required to progress to
clinical SARS-CoV-2 vaccine trials, the opportunity to screen for
potential adverse events including ADE at the pre-clinical stage
of development may be missed. Having said that, many of the
SARS-CoV-2 vaccine candidates have undergone considerable
pre-clinical testing, including challenge studies. There was no
evidence of ADE in pre-clinical SARS-CoV-2 challenge studies
in rhesus macaques following immunization with 1 dose of
ChAdOx1 nCoV-19 (144) or 2 doses of the inactivated whole
virus vaccine candidate BBIBP-CorV (97), both of which were
protective in these studies. It is postulated that basing the vaccine
on the S1 RBD terminal subunit of the S glycoprotein should
overcome this problem by inducing nAbs only, although this has
not been proven and, notably, only a few vaccine candidates have
taken this approach. Furthermore, the in vitro conformational
changes causing ADE described above occur in the RBD domain,
so this approach may not be successful.

Aberrant T Cell Responses
Aberrant manifestations of T cell responses were observed in
the 1960s for other viral vaccine candidates, such as inactivated
vaccines against measles and respiratory syncytial virus (RSV),
resulting in vaccine associated enhanced respiratory disease
(VAERD) upon subsequent wild-type pathogen exposure
(164, 165). A major driver of this was accentuation of
Th2 cytokines, with resultant allergic (eosinophilic) and
airway hyperesponsiveness. This was compounded by another
mechanism related to the conformation of the vaccine antigen,
resulting in the generation of excessive non-neutralizing Ab.
Having a high amount of binding, but not neutralizing, Ab
caused immune complex deposition and complement activation
with local inflammation in the presence of a high viral load. It
will therefore be important for vaccine candidates to mitigate
the risk of VAERD by considering the T cell profile induced
by vaccination, avoiding Th2 biased CD4+ T cell immunity
and biasing toward CD8+ cytotoxic T cell responses. The
alum adjuvanted inactivated vaccine candidate PiCoVacc could
theoretically drive a Th2 skewed immune response. While this
was not observed in macaque studies when analyzing Th1 and
Th2 cytokine profiles, it is not clear from the paper what samples
were used to measure these cytokines, clarification of which
will be crucial in vaccine safety assessment (96). Many of the
other vaccine constructs favor Th1 immunity, as demonstrated
in the published human trial results for several of the viral
vector (91–93) and mRNA vaccines (94) and the Novavax
nanoparticle Matrix M adjuvant vaccine (90). Original antigenic
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sin also applies to T cell responses and therefore pre-existing
CoV-specific T cell memory may be enhanced by immunization
with a SARS-CoV-2 vaccine leading to either suboptimal T cell
responses or immunopathology (151, 166).

Vaccine Safety Assessment
Vaccine Safety Monitoring Pre and Post-deployment
Vaccine safety assessment is integrated into all stages of
the clinical development pipeline for candidate vaccines and
continues once vaccines are deployed into the population.
Randomized controlled clinical trials examine safety, as well
as immunogenicity and efficacy. Decisions on the participant
numbers to be included in phase 3 studies will likely be
powered on efficacy endpoints, but these studies also need to
be of sufficient size and planned duration to ensure comparison
of injection site, systemic and unanticipated or “unsolicited”
adverse events between groups. Comprehensive safety studies
are particularly critical because some candidate vaccines use
platform technologies that have not been examined extensively
in human subjects to date, including some of the viral
vectors, mRNA and nanoparticle constructs, and because of
the potential for enhanced disease and adverse events related
to aberrant immune responses to be seen upon infection
pre- and post-licensure. A list of adverse events of special
interest (known as AESI) across all body systems, including
immunological, cardiovascular, neurological, musculoskeletal
and dermatological manifestations, have been agreed by the
Brighton Collaboration in conjunction with CEPI and the WHO
with input from regulatory agencies and other experts, as
have the associated case definitions and surveillance strategies
(167, 168). Listed conditions include anaphylaxis, vasculitides,
myocarditis, generalized convulsions and meningoencephalitis,
among many others. Comprehensive data on safety are essential
to ensure that the benefit:risk ratio of vaccination is favorable,
to support decision-making by policy makers on wide-scale
program implementation among healthy people, and to ensure
that individuals are sufficiently confident to accept vaccination.
Some of these AESI will require post marketing (phase 4)
studies but are also undergoing evaluation in some of the pre-
clinical and early phase evaluations, particularly the larger phase
3 studies.

Comparative Safety and Tolerability Results for

Current SARS-CoV-2 Vaccine Candidates in Clinical

Trials
Interim phase 1/2 safety results have recently been published
for two leading adenovirus-based vaccines, ChAdOx1 nCoV-
19 (91) and Ad5-nCoV (92, 93); two mRNA based vaccine
candidates, mRNA-1273 (94) and BNT162 (95); an aluminum
adjuvanted inactivated whole virus vaccine (89); and an
adjuvanted recombinant protein nanoparticle vaccine, NVX-
CoV2373/Matrix-M1 (90). All candidates exhibited acceptable
safety profiles, and while local and systemic reactogenicity was
common for the mRNA, adenovirus and adjuvanted protein
nanoparticle constructs, the inactivated whole virus vaccine was
considerably less reactogenic (Table 5). Reactions were generally
mild to moderate and resolved within days. Importantly, there

were no serious adverse events reported for any of these
vaccine candidates.

Pain at the injection site was a particularly common
feature with the mRNA vaccines (approaching 100% in some
groups), and while it was the commonest reaction to the
inactivated vaccine, it was still lower for this candidate than
for the other vaccines (Table 5). Headache, myalgia and
fatigue were the other most commonly reported symptoms for
the mRNA, adenovirus and adjuvanted protein nanoparticle
candidate vaccines (Table 5). Documented fever was relatively
common for mRNA and adenovirus candidates but ≤5%
for the inactivated virus and adjuvanted protein nanoparticle
candidates (Table 5). The ChAdOx1 nCoV-19 trial underwent
a protocol amendment during the trial allowing several sites
to administer paracetamol prior to vaccination and 6 hourly
for 24 h. This slightly reduced reports of pain, feeling feverish,
chills, mylagia, headache and malaise but had no effect on
confirmed fever. Pre-existing adenovirus 5 immunity, increased
age and male sex were all associated with decreased fever
following immunization with Ad5-nCoV (93). In terms of
blood parameters, immunization with ChAdOx1 nCoV-19
was associated with transient neutropaenia and BNT162b1
with lymphopaenia.

In the Ad5-nCoV phase 1 and 2 trials reactogenicity was
dose-dependent for pain, headache and fever; while it was dose-
dependent for almost all parameters for the mRNA vaccines
(Table 5). As a result of the high reactogenicity after a single
dose of BNT162b1, it was decided not to give a second dose.
Interestingly, the ten participants given a booster dose of the
ChAdOx1 nCoV-19 vaccine had less reactogenicity after the
second dose. The opposite was found for the BNT-162b1 mRNA
andNVX-CoV2373/Matrix-M1vaccines for which reactogenicity
was greater after the second dose (90, 95).

These favorable safety results (alongside the good
immunogenicity reported earlier in this article) have allowed the
progression of the adenovirus and mRNA candidate vaccines to
phase 3 clinical trials.

Testing Vaccine Efficacy and Human
SARS-CoV-2 Challenge Trials
Whilst the SARS-CoV-2 vaccine pipeline is progressing at
unprecedented speed, there is a concern that suppression of
viral transmission in many countries will make evaluation of
vaccine efficacy (VE) difficult, as phase 3 studies need sufficient
infection rates to compare disease incidence in vaccinated with
control individuals. Reassuringly, planned studies are currently
expanding to higher burden countries where infrastructure to
conduct complex adaptive clinical trials exists. Nevertheless,
the time needed to accrue sufficient data on efficacy will be a
critical determinant impacting vaccine availability. In the setting
of this uncertainty “human challenge models” for SARS-CoV-2
have been proposed. This methodology involves the intentional
infection of research participants, providing safety data and
pointing to immune correlates of protection. This approach
has recently advanced vaccine development for infections like
Salmonella typhi (typhoid vaccine) and Group A Streptococcus
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TABLE 5 | Summary of phase 1/2 safety reporting results for ChAdOx1 nCoV-19, Ad5-nCoV, mRNA-1273, and BNT-162.

Vaccine and dose Number tested Pain (%) Fatigue (%) Headache (%) Myalgia (%) Fever ≥38◦C (%) Serious adverse event

ChAdOx1 nCoV-19 (phase 1/2) (91)

1 dose 5 × 1010 v.p. (no PCM) 487 67 70 68 60 18 0

1 dose 5 × 1010 v.p. (with PCM) 56 50 71 61 48 16 0

Ad-5 nCoV (phase 1) (92)

1 dose 5 × 1010 v.p. 36 47 47 39 19 42 0

1 dose 1 × 1011 v.p. 36 56 39 31 8 42 0

1 dose 1.5 × 1011 v.p. 36 58 44 47 22 56 0

Ad-5 nCoV (phase 2) (93)

1 dose 5 × 1010 v.p. 129 56 34 28 18 16 0

1 dose 1 × 1011 v.p. 253 57 42 29 15 32 0

mRNA-1273 (phase 1) (94)

2 doses 25 µg 13 77 39 23 23 0 0

2 doses 100 µg 15 100 80 60 53 40 0

2 doses 250 µg 14 100 57 93 86 57 0

BNT162b1 (phase 1) (95)

2 doses 10 µg 12 83 66 83 41 8.3 0

2 doses 30 µg 12 100 83 100 59 75 0

1 dose 100 µg 12 100 84 75 58 50 0

Whole inactivated alum adjuvanted vaccine (phase 1) (89)

3 doses 2.5 µg 24 21 0 0 0 0 0

3 doses 5 µg 24 4 4 0 0 4 0

3 doses 10 µg 24 25 0 0 0 4 0

Whole inactivated alum adjuvanted vaccine (phase 2) (89)

2 doses 5 µg day 0 and 14 84 2 1 1 0 5 0

2 doses 5 µg day 0 and 21 84 14 0 0 0 2 0

NVX-CoV2373/Matrix-M1 (phase 1) (90)

2 doses 5 µg + 50 µg Matrix-M1 25 58 47 47 45 0 0

2 doses 25 µg + 50 µg Matrix-M1 25 62 50 58 55 4 0

2 doses 25 µg no adjuvant 25 8 12 28 9 0 0

Results for the 2 or 3 dose schedules show reported results after the final dose. Values approximated where data presented as figures. PCM, paracetamol; v.p., viral particles.

(169, 170). The difference between these bacterial human
challenge models and SARS-CoV-2 is that these pathogens have
been researched for decades and have an effective antibiotic
“rescue” treatment available. Infecting a human with SARS-
CoV-2 to test vaccine efficacy raises numerous ethical issues
(171), including those around informed consent of the healthy
volunteer, noting that while severe COVID-19 is less common
in young adults, deaths have still occurred in this age group.
Strict infection control and personal protective equipment (PPE)
measures would also be required to limit “third-party” risk to staff
co-ordinating any studies. While it is uncertain if this approach
will be required, the WHO is progressing a framework, including
key criteria, that will be required by ethical review boards in order
to facilitate “human challenge” trials (172). As noted by Stanley
Plotkin, “Extraordinary diseases require extraordinary solutions”
(173).

High Development Costs and Logistics of
Mass-Production
It normally takes decades for a vaccine to be developed and
licensed for use. However, the race is on to develop a SARS-
CoV-2 vaccine for worldwide distribution in an unparalleled
timeframe to vaccinate the world’s population and provide

widespread herd immunity. This is already being facilitated
by rapid progression through the normally slow bureaucratic
regulatory and approval processes and unprecedented worldwide
collaboration between governments, universities, pharmaceutical
companies and philanthropic organizations; such efforts must
continue. In addition, ensuring good public communication
regarding the safety and effectiveness of the vaccine will be
key to gaining public trust and acceptance of a vaccine that
could be seen as rushed. Additionally, having carefully designed
post-marketing (phase 4) surveillance is vital to detect rare or
unexpected safety signals and AESI which may only be detected
once the vaccine is rolled out on a mass scale.

A key player in global access to a SARS-CoV-2 vaccine is the
not-for-profit Coalition for Epidemic Preparedness Innovations
(CEPI) which is working with global health authorities and
vaccine developers worldwide to support SARS-CoV-2 vaccine
development (9, 174). CEPI was founded in 2017 with the
consensus that new and sustainable models of partnership are
needed to respond to worldwide infectious diseases threats.
Founding members include the Bill &Melinda Gates Foundation
(BMGF), Wellcome trust UK, World Economic Forum, India
Department of Biotechnology and the Government of Norway.
CEPI’s goal is not just to advance development, but to also
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advance licensing, manufacturing, delivery and stockpiling of
vaccines once an effective vaccine has been developed (175). It
has raised approximately $1.4 billion for SARS-CoV-2 vaccine
development and initiated a series of partnerships in a bid
to advance frontrunner candidate SARS-CoV-2 vaccines. CEPI
is investing across a range of vaccine technologies including
Novavax’s nanoparticle vaccine (NVX-CoV2373 and Matrix-
MTM), Clover Biopharma’s S-trimer protein-based vaccine (SCB-
2019), University of Queensland’s molecular clamp S protein
vaccine, University of Oxford’s adenovirus vector vaccine
(ChAdOx1 nCoV-19), Inovio’s DNA plasmid vaccine (INO-
4800) and Moderna’s and Curevac’s mRNA vaccines (176). Many
other government and philanthropic organizations are injecting
large sums of money into the effort to develop effective SARS-
CoV-2 vaccines. The European Commission has registered an
impressive $8 billion in donations toward the development
and deployment of vaccines, treatments and diagnostics against
SARS-CoV-2 (177). The US government agency Biomedical
Advanced Research and Development Authority (BARDA) has
pledged almost $500 million to accelerate the development of
Moderna’s mRNA-1273 vaccine, with phase 2 trials expected to
begin soon (178). BARDA has also funded Janssens’s adenovirus
26 (Ad26) i.n. vaccine, Astra Zeneca’s AZD1222 vaccine
(formerly ChAdOx1 nCoV19), Merck and IAVI’s rVSVG-
CoV2 and Sanofi’s recombinant SARS-CoV-2 protein vaccine
and Novavax’s nanoparticle Matrix M adjuvant vaccine (179),
demonstrating the range of vaccine strategies being supported.
Importantly, these phase 2/3 studies are being conducted in
countries with high disease burden (e.g., North and South
America and South Africa), so the vaccine efficacy (VE) and
safety results can be obtained as rapidly as possible whilst meeting
the vaccine regulators’ requirements.

The logistics of scaling up to produce the billions of doses
required to immunize the world’s population is an onerous task.
It is not yet clear how long immunity will last and therefore
whether booster doses or annual immunization will be required.
Furthermore, multiple initial doses may be needed and the
vaccine may have to change as the virus evolves naturally.
BARDA have pledged that they will scale up to 300million annual
SARS-CoV-2 vaccine doses in the US each year under Operation
Warp Speed, while BMGF have recently awarded $5 million to
INOVIO’s DNA based vaccine INO-4800 with the intention of
providing over 1 million doses by the end of 2020. Novavax has
completed phase 1 studies and is progressing rapidly to phase 2
studies, with the aim of producing up to 100 million doses by the
end of 2020 and entering large-scale manufacturing of billions
of doses in 2021 (180). CureVac has a GMP-certified production
facility that can produce 10 million doses of their mRNA vaccine
in a single production run and 300 million doses of AZD1222
(ChAdOx1 nCoV-19) will be available by July 2021 (181).

Target Populations and Worldwide Delivery
Even if sufficient SARS-CoV-2 vaccine doses can be
manufactured, worldwide delivery presents another major
logistic and financial hurdle. Storage requirements will be
enormous and the vaccine may need to be either frozen or
refrigerated, presenting cold-chain issues. The decision about

whether to prepare the vaccine in single-dose or multi-dose
vials will impact manufacturing, storage, delivery and potential
infection risks (182). Infrastructure and manpower will be
required to distribute and administer the vaccine. Equity will
be a major issue since richer countries may procure the vaccine
for their citizens while poorer countries may not be able to
afford it. CEPI is negotiating global access upfront in order to
ensure equitable access, hopefully averting “vaccine nationalism”
(183). In early May, WHO launched the Access to COVID-19
Tools (ACT) Accelerator, which aims to handle the logistics of
vaccine procurement and allocation (184). COVAX, co-led by
CEPI, GAVI and WHO, is the vaccine pillar of ACT charged
with accelerating vaccine development and manufacture and
guaranteeing fair and equitable worldwide access. In an open
letter, more than 140 world leaders have united and called for
a SARS-CoV-2 vaccine to be freely available to all people in all
countries of the world in what they call “The People’s Vaccine,”
which is surely the fairest way to tackle this unprecedented global
pandemic (185). By contrast, pneumococcal conjugate vaccine
which has been available for 20 years, is still not included in
the immunization programs of many countries due to lack of
affordability, many children are left unprotected and about half
a million deaths from pneumococcal disease each year. Initially,
as vaccine production commences, it will not be possible to
deliver a SARS-CoV-2 vaccine to the entire world population
and it is anticipated that key vulnerable populations will need
to be targeted. These would likely include healthcare workers,
the elderly and those with significant risk factors such as those
with co-morbidities or the immunocompromised. It might even
be used as a travel vaccine as borders re-open across the world,
but is unlikely to be incorporated into infant schedules for some
time given the very low risk of severe disease in that age group
and time needed to conduct pediatric studies.

CONCLUDING REMARKS

While the world eagerly awaits effective SARS-CoV-2 vaccines
as the solution to ending this pandemic, it should be borne in
mind that there are many caveats even if robust SARS-CoV-2-
specific nAbs, CD4+ and CD8+ T cell responses can be induced
by vaccination. The number of doses and dosing frequency will
need to be determined, and, particularly if repeated or annual
vaccination is required, the financial burden and logistics of
delivery will have to be supported. A better understanding of
what level of nAbs correlate with protection and development
of standardized viral neutralization along with other assays to
compare vaccine candidates is eagerly awaited. Potential disease
enhancement and other theoretical safety concerns related to
each type of vaccine need to be understood and carefully
monitored for, while potential suboptimal immunity may need
to be overcome. Certain vulnerable populations may respond
poorly to vaccination, or the vaccine may predominantly protect
against severe disease, rather than infection. If T cells prove
critical for protection, it will be necessary to ensure that the
included T cell epitopes are recognized by enough HLA types to
ensure worldwide coverage. Scale-up of production to billions of
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doses and delivery to all regions of the world is a massive logistic
challenge. In the short-term the strategy will likely need to be
targeted vaccination toward those most at risk (e.g., healthcare
workers) with the strategy reviewed as vaccine production
increases. On the positive side, given the multiple candidates
being developed, there is considerable optimism that some of the
vaccines currently in trials will prove effective and be available for
use in 2021 with delivery scaled-up thereafter.
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