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Susceptibility to common human diseases is influenced by both genetic and

environmental factors. The explosive growth of genetic data, and the knowl-

edge that it is generating, are transforming our biological understanding of

these diseases. In this review, we describe the technological and analytical

advances that have enabled genome-wide association studies to be successful

in identifying a large number of genetic variants robustly associated with

common disease. We examine the biological insights that these genetic associ-

ations are beginning to produce, from functional mechanisms involving

individual genes to biological pathways linking associated genes, and the

identification of functional annotations, some of which are cell-type-specific,

enriched in disease associations. Although most efforts have focused on iden-

tifying and interpreting genetic variants that are irrefutably associated with

disease, it is increasingly clear that—even at large sample sizes—these rep-

resent only the tip of the iceberg of genetic signal, motivating polygenic

analyses that consider the effects of genetic variants throughout the genome,

including modest effects that are not individually statistically significant. As

data from an increasingly large number of diseases and traits are analysed,

pleiotropic effects (defined as genetic loci affecting multiple phenotypes) can

help integrate our biological understanding. Looking forward, the next gener-

ation of population-scale data resources, linking genomic information with

health outcomes, will lead to another step-change in our ability to understand,

and treat, common diseases.

1. Introduction
Genetics plays a role in susceptibility to all common human diseases and tomany

other complex human traits. The genetic variants an individual inherits are only

part of the story of disease susceptibility—most common diseases are 30–60%

heritable—with lifestyle and dietary factors, and other environmental exposures,

also playing an important role.

The last decade has seen an explosion in our knowledge of genetic variants

associated with common diseases. Critical to this has been the ability to measure

genetic variation at hundreds of thousands of markers across the human genome,

in large numbers of individuals. Genome-wide association studies (GWAS)

exploited these technological developments in large case-control studies, with

unprecedented success.

In this review,we provide the background toGWAS and describe their success

in identifying specific variants associated with disease, in assessing the total con-

tribution of common variants to disease susceptibility, and in revealing often

surprising genetic links between diseases. EachGWAS association potentially pro-

vides novel biological insights into disease pathophysiology, and potentially into

novel therapeutic targets. Understanding of the biology underpinning GWAS

associations has lagged behind their discovery, but even the limited number of

new and in many cases unexpected biological findings that have followed from

GWAS make it clear that the potential benefits are huge.
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Prior to the GWAS era, there were two main approaches to

understanding the genetic basis of common diseases. In spite

of extensive research efforts, neither proved particularly fruitful.

First, linkage studies searched for large disease-predisposing

haplotypes shared among related affected individuals, with lim-

ited success. Linkage analysis is not well powered to identify

common variants of modest effect, thus it did not detect the

findings of subsequent GWAS [1]. Second, candidate-gene

association studies focused on a specific gene or region of the

genome and assessed variation in that gene/region for associ-

ation with disease. While there were some successes, notably in

breast cancer, most studies were based on what we now know

to be poor choices of candidate loci, were underpowered, and/

orwere susceptible to confounding, leading to false-positive find-

ings that failed to replicate [2]. Thus, prior to 2005, common

variants reliably associated with susceptibility to common dis-

ease were largely limited to large-effect loci, such as the MHC

in autoimmune disease, APOE in Alzheimer’s and other

diseases, and the sickle mutation for malaria susceptibility.

2. Genome-wide association studies
The ability to assay genome-wide genetic variation in large

numbers of individuals has transformed our knowledge

of the genetic architecture of common human diseases [1].

Several developments over the last decade have led to a

dramatic increase in our knowledge.

The realization that there are extensive local correlations

(called ‘linkage disequilibrium’) between nearby variants

in the human genome led to the International HapMap

Project [3], a major collaborative effort to map patterns

of genetic variation in several global population groups.

Critically, the extent of linkage disequilibrium in human

populations means that much of the common variation in

the genome (by convention, ‘common’ refers to variants

with minor allele frequency (MAF) . 5%) can be assessed

by directly typing only a subset of variation. For example, a

carefully chosen set of approximately 500 000 SNPs covers

over 80% of common variation in populations of European

ancestry [4].

Parallel technological developments in array technologies,

in part prompted by the HapMap project, allowed assays

for hundreds of thousands of single-nucleotide polymorph-

isms (SNPs) in a single experiment. These SNP arrays were

game-changing. They allowed, for the first time, a systematic,

genome-wide assessment of the role of common genetic

variation in human disease.

GWAS used SNP arrays to type hundreds of thousands

of SNPs in large numbers of cases and controls for common

diseases of interest. GWAS look for SNPs with statistically

significant allele frequency differences between cases and

controls. (The intuition is simple: if an allele increases suscep-

tibility to a particular disease, that allele should be more

common in cases than controls.) For quantitative traits,

GWAS assess the correlation between SNP genotypes and

trait values. The first GWAS were published in 2005, and

within a few years there were over 100 DNA variants associ-

ated with disease susceptibility. There are now over 10 000

published genome-wide associations through December 2013 

published GWA at p < 5 × 10–8 for 17 trait categories

digestive system disease
cardiovascular disease
metabolic disease
immune system disease
nervous system disease
liver enzyme measurement
lipid or lipoprotein measurement
inflammatory marker measurement
haematological measurement
body measurement
cardiovascular measurement
other measurement
response to drug 
biological process
cancer
other disease
other trait

Figure 1. The NHGRI GWA catalogue. Published associations are displayed by chromosome and colour-coded by class of phenotype. As of December 2013, the

catalogue included 11 912 SNPs that were significant at p, 1025 and 6400 SNPs that were genome-wide significant ( p, 5 � 1028) [5]. Currently, the

catalogue includes approximately 9400 genome-wide significant SNPs.
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published associations, across hundreds of diseases and

quantitative traits (figure 1; see also Web resources) [5].

To minimize false-positive findings, the field (or in practice

its journal editors) have insisted on two criteria for declaring

an association to be genuine. First, the association must meet

stringent levels of statistical significance (e.g. p, 5 � 1028).

This has often been justified on the basis ofmultiple hypothesis

testing [6], although others (including some of the current

authors) have argued the multiple testing paradigm is not

appropriate in the GWAS context (in brief, in assessing evi-

dence for association with a particular SNP on chromosome

1, say, why should it matter whether one also looks at evidence

for a completely different SNP on, say, chromosome 16?), but

that stringent thresholds are nonetheless warranted due to the

low prior probability of association (see box 1 in [7]). Second,

the association must be replicated in a separate sample of cases

and controls, ideally using a different genotyping technology

to minimize the possibility of assay artefacts [8]. As a conse-

quence of these criteria, along with extensive efforts to perform

careful quality control and correct for confounding factors

such as population stratification, the vast majority of published

GWAS associations have proved to be real.

Most variants discovered by GWAS have relatively small

effects on disease susceptibility, with typical odds ratios of

1.1 or lower, and rarely above 1.3. It has become clear (see

below) that for a typical common human disease there will

be a large number of SNPs that each have a small (but non-

zero) effect on disease risk. Since power to detect an association

depends on sample size and allele frequency, increasing the

size of GWAS studies for a particular disease will lead to

further discovery of associated variants. For relatively small

GWAS size, one of the key factors driving success is the

number of SNPs with common risk alleles at the top end of

theGWAS range of effect size, whichwill differ across diseases.

For example, early studies of age-relatedmacular degeneration

were successful with quite small sample sizes [9]. GWAS

studies of a few thousand individuals have tended to yield

reasonable numbers of associations for some autoimmune

diseases, intermediate numbers of associations for diseases

such as type 2 diabetes and heart disease, and small numbers

(often none) for neuro-psychiatric disorders. At larger sample

sizes, GWAS studies have been very successful, even

in neuro-psychiatric diseases (e.g. a recent primary GWAS

of 34 241 individuals with schizophrenia and 45 604 controls

yielded 108 associations [10]).

The realization that sample size is a critical factor in

GWAS success created strong incentives for groups studying

a particular disease to collaborate by pooling their samples

(e.g. by meta-analysing their association results). One positive

side effect of the GWAS era is that there are now major global

consortia in place to tackle the genetic basis of particular dis-

eases, often involving tens of thousands of disease cases

(or hundreds of thousands of individuals for quantitative

traits); in some instances, the genotyping of large samples

has been facilitated by cost-effective specialty chips targeting

variants that were highly ranked in previous studies of rela-

ted traits. Early in the GWAS era, there was debate about the

relative merits of small, exquisitely phenotyped disease collec-

tions when compared with larger samples with limited or less

precise phenotype information available. From a statistical

perspective, this reduces to a question about noise and study

power, and it has become clear that noise in the phenotype

measurement can often be more than offset by large sample

sizes. Even studies with self-reported phenotypes can be

successful for at least some diseases [11].

One important methodological development for GWAS

studies has been genotype imputation, introduced in 2007

[12]. Imputation further leverages the correlations between

nearby alleles due to linkage disequilibrium. First, a relatively

small sample of individuals (called a reference panel) is typed

at a dense set of SNPs or directly sequenced. Then, given a

much larger target sample of individuals typed at only a

subset of the SNPs, knowledge of the correlation structure

in the reference panel can be combined with the data from

the target sample to predict, or impute, genotypes at untyped

SNPs in the target sample. The accuracy of the imputed gen-

otypes at untyped common variants is typically very high

(e.g. r2 ¼ 0.96 between imputed and true genotypes for

common SNPs imputed using European reference samples

from HapMap 3) [13]. Imputation accuracy decreases for

low-frequency (0.5%,MAF, 5%) and rare (MAF, 0.5%)

variants, but the latest imputation methods still perform

well for many of these variants, and accuracy will increase

as reference panels grow larger. The 1000 Genomes reference

panel [14] is currently widely used, but larger reference

panels such as the Haplotype Reference Consortium (see

Web resources) are now available. In the context of GWAS,

there have been two main uses of imputation. The first is to

combine studies that use different genotyping arrays—SNPs

typed in one study but not the other can be imputed in the

other study to facilitate meta-analyses. The second is to use

imputation from available reference panels to dramatically

increase the number of variants for which genotype data

are available for association testing (and fine-mapping; see

below). Figure 2 illustrates part of the output from a GWAS

study, called a Manhattan plot, in this case giving the

strength of evidence of association of a phenotype with a

dense set of imputed and directly genotyped SNPs.

Despite extensive study, relatively little is currently

known about the underlying biological triggers and pro-

cesses that lead to most diseases. Each GWAS association

provides a potential clue about these mechanisms. If carrying

one or two copies of a particular allele increases risk of a dis-

ease (relative to individuals not carrying that allele), then it

should be possible to understand the different functional
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Figure 2. Manhattan plots from dense imputed data. A Manhattan plot for

chromosome 4 for a GWAS of height in the UK Biobank imputed dataset of

approximately 73 000 000 genetic variants (genome-wide) in approximately

150 000 individuals. The plot is adapted from fig. 3 in the document ‘UK

Biobank phasing and imputation documentation’, written by J. Marchini

(see Web resources).
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consequences, at a molecular and physiological level, of car-

rying that allele. In turn, this understanding can shed light on

disease processes, and potentially point to novel targets for

drug therapies. Progress in this harvesting of GWAS associ-

ations for novel biological insights has lagged considerably

behind the rate of novel GWAS discovery. We discuss the

reasons for this in the next section—it is a hard problem—

and provide examples of some of the biological insights

that have already arisen from GWAS findings. Assessment

of the ultimate impact of GWAS discovery will be clearer

when we have travelled further down the road of uncovering

the underlying biology.

3. Biological insights from genome-wide
association studies

It has become clear that changes in gene regulation, rather

than changes to the proteins produced by genes, are at the

heart of the biology underlying most GWAS associations

(for example, top GWAS signals predominantly lie in inter-

genic and intronic regions). Owing to our lack of detailed

knowledge of (and tools for studying) the biology of gene

regulation, it has not been straightforward to move from

GWAS findings to the underlying biological mechanisms,

or even to definitive identification of the gene involved and

direction of gene regulation effect. An added complication

is that gene regulation effects are often tissue-specific, and

for many diseases the appropriate tissue(s) or cell type(s)

are not known precisely and/or are inaccessible and difficult

to study. For example, for coronary artery disease, relevant

tissue/cell types that could mediate genetic susceptibility

include liver/hepatocytes (e.g. through involvement in lipo-

protein metabolism, source of inflammatory cytokines), cells

of the immune system (lymphocytes, macrophages), platelets

and cells of the vessel wall, including smooth muscle cells

and endothelial cells. Moreover, the biological mechanisms

could operate at any stage of the individual’s development

and adult life (e.g. for neuro-psychiatric conditions, either

brain development and/or adult brain could be important).

For diseases involving the immune system (including but

not exclusively autoimmune diseases) what is most relevant

may be the way in which a specific immune cell type reacts

to a particular external stimulus.

Although linkage disequilibrium is helpful at the stage of

GWAS discovery (see above), it complicates GWAS follow-

up: a GWAS discovery typically points to a region of linkage

disequilibrium spanning tens of thousands of base pairs and

tens of correlated SNPs, any of which could be driving the

underlying molecular mechanism. GWAS results generally

do not distinguish between the set of highly correlated

SNPs. Further genetic study can be helpful, via fine-mapping,

in which additional samples are typed at a denser set of SNPs

in an effort to pinpoint causal variants. Fine-mapping is par-

ticularly effective when carried out in multiple ethnicities,

because patterns of linkage disequilibrium (arising from

shared ancestry) differ between populations. In a population

different from the discovery sample, the biologically causal

SNP may be in linkage disequilibrium with a different set

of SNPs, thus reducing the overall set of potential proxy

SNPs [15].

Despite these challenges, GWAS have produced valuable

biological insights about the pathways involved in a

particular disease, the functional mechanisms of (regulation

of) a particular gene affecting the disease, and the functional

and cell-type-specific enrichments for variants associated

with the disease. Below, we discuss each of these in turn.

(a) Biological pathways
Because much gene regulation acts in cis, biologically causal

genes will often be physically close to the most associated

GWAS SNP. GWAS associations are sometimes labelled by

the closest gene, or by a nearby gene thought to be a good

candidate for the disease or trait in question. This is often

used in the field as a convenient shorthand in describing

the association—it is not typically intended as a statement

about the underlying biological basis for the association,

nor should it be interpreted in this way. Nonetheless, the

set of genes near a GWAS association is likely to be highly

enriched for causal genes. One feature that became clear

early in the GWAS era is that many of these potentially

causal genes had not figured on the lists compiled by experts

of likely candidate genes for the diseases in question, and

hence that GWAS findings were pointing to genuinely

novel biological insights for human disease.

Through a range of formal and informal analyses, exam-

ination of gene sets arising from GWAS findings have

implicated specific and often novel pathways as being

important for diseases studied. We illustrate just a few of

many such examples. GWAS pointed to the previously unrea-

lized importance of autophagy in Crohn’s disease, and

more generally has highlighted the importance of innate

immune pathways in this condition [16]. In multiple sclerosis,

GWAS confirmed a primary role for adaptive immunity, with

surprisingly few neuronal hits [17], a finding reinforced by

the overlap between GWAS variants for multiple sclerosis

and those for other autoimmune diseases (see Pleiotropy sec-

tion below for other instances of insights from comparisons

of GWAS findings across diseases). In type 2 diabetes, the

majority of GWAS loci appear to act primarily through

defects in insulin secretion (implicating the pancreatic beta-

cells) with unexpected pathways appearing to play key

roles in disease pathogenesis, including cell cycle regulation

and CREBBP-related transcription factor activity [18]. Parallel

analyses of GWAS loci for glycaemic traits revealed the sur-

prising finding that while many loci that affect levels of

fasting glucose in non-diabetic individuals also affect risk of

type 2 diabetes, some do not [19], indicating that the mechan-

ism by which glucose homeostasis is disturbed, rather than

simply the change in glucose levels, may be relevant to the

pathophysiology of type 2 diabetes. Going forward, pathway

analyses will continue to play a key role in interpretation of

GWAS findings [20].

(b) Functional mechanisms
Most GWAS loci contain common non-coding variants of

modest effect whose signals span multiple genes. However,

there are some examples where the top GWAS hit at a locus,

or a SNP in strong linkage disequilibrium with it, is a protein-

altering coding variant (e.g. the association at IL23R for

Crohn’s disease), and others where there is a second signal of

association, independent of the main GWAS signal, caused by

a protein-altering variant in one of the genes in the GWAS

locus. These settings suggest both an obvious functional mech-

anism and gene of action. In other cases, loci may contain both
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regulatory variants for a particular gene and coding variants

within that gene. For example, several GWAS loci for type 2 dia-

betes contain genes known to harbour causal coding variants

for rare Mendelian syndromes related to type 2 diabetes

(e.g. HNF1A, HNF1B, WFS1, PPARG, KCNJ11, HNF4A, GCK).

In this case, a natural hypothesis is that the protein-coding

change in each gene that causes the rare syndrome has a large

effect on phenotype, whereas the (unknown) causal variant

underlying the GWAS association affects regulation of the

samegene andhas a smaller effect on the disease.More broadly,

conditional joint analyses of GWAS significant loci have often

identified multiple independent signals at the locus [21].

GWAS findings and biological follow-up have suggested

new treatment approaches for sickle cell disease (SCD), a sub-

stantial cause of mortality (176 000 deaths in 2013 [22]) and

morbidity globally. SCD was first described over 100 years

ago—and more than 60 years ago, it became arguably the

first example of a disease where the underlying molecular

basis was known—but in spite of intensive efforts, efficacious

treatments for the disease have remained elusive. Although

SCD is a Mendelian condition, novel biological insights

arising from GWAS of a related trait have radically trans-

formed the search for a treatment. Humans normally have

several different types of haemoglobin. One type, haemo-

globin F (HbF, fetal haemoglobin) predominates during

fetal development and early life. At about six weeks of age,

there is a switch (the ‘haemoglobin switch’) from HbF to hae-

moglobin A (HbA), which dominates throughout life. After

this switch, there remain low levels of circulating HbF, with

the exact amount differing between individuals. It had been

observed that individuals with SCD (and also individuals

with b-thalassemia) with higher levels of HbF suffer

less severe symptoms, leading to treatments that aim to

increase HbF levels. In parallel, there had been a long-

standing, but largely unsuccessful interest in understanding

the mechanism behind the haemoglobin switch, in the hope

of fully or partially reversing it. Two GWAS treating levels

of HbF as a quantitative trait identified the gene BCL11A

[23,24], a transcription factor that had not previously been

suggested as a player in the haemoglobin switch. A series

of elegant studies have subsequently shown that production

of HbF is controlled in a dosage-sensitive manner by

BCL11A, and that inactivation of BCL11A in a mouse

model for SCD corrects the defects associated with SCD by

inducing HbF production [25], suggesting a natural focus

for therapeutic intervention. It is worth noting that although

SCD (and b-thalassemia) primarily affect individuals of non-

European ancestry, the critical GWAS were undertaken in

European ancestry groups. GWAS link genetic variation to

phenotypes of interest, potentially leading to new biological

understanding that will often be relevant across human

populations, not just the population in which the GWAS

was undertaken.

The 8q24 locus implicated in several common cancers pro-

vides another example of valuable biological insights. The

locus was initially associated with prostate cancer, and later

shown to harbour multiple independent variants influencing

prostate cancer risk [26–28]. Subsequent studies showed that

the locus is also associated with colorectal, breast, ovarian

and bladder cancers [9,29,30]. Functional analyses have impli-

cated a transcriptional enhancer involved in long-range

interaction with the MYC oncogene and determined that mice

lacking this enhancer are resistant to intestinal tumours [12,31].

A partial list summarizing some of the early successful

approaches, and the resulting insights about functional mech-

anisms gained from GWAS, is provided in the electronic

supplementary material, table S1.

A commonly expressed misconception about GWAS

findings is that the small effect sizes at GWAS loci (which

typically explain less than 1% of trait variance) are too

small to be biologically interesting, or to be useful as drug

targets. However, effect size and biological relevance are

two distinct issues. Regardless of the effect size, each reliable

association of genetic variation with a particular phenotype is

the result of real biological mechanisms. Functional follow-up

of the association can be used to reveal the mechanism, typi-

cally leading to new insights into human biology and disease

pathophysiology, and potentially novel therapeutic targets

[32]. By contrast, observed effect sizes for common genetic

variants are a consequence of the interplay between the

mutational events that give rise to genetic variation, and

natural selection. If variants have large effects on disease

susceptibility and on other phenotypes affecting fitness,

then natural selection is likely to act to prevent those variants

from becoming common. A drug targeting that gene may per-

turb the gene more than the GWAS variant does, and hence

may have a larger effect on the downstream phenotype.

Indeed there are several existing examples of exactly this.

Statin drugs inhibit the enzyme HMGCo-A reductase. They

reduce levels of circulating LDL cholesterol, and have had a

substantial global impact on reducing cardiovascular disease.

GWAS of LDL cholesterol levels found an association near the

HMGCo-A reductase gene, but the GWAS variants had small

effects [33]. Other examples of successful drugs targeting

genes that arise (with small effect sizes) in GWAS include

PCSK9 for LDL cholesterol [33], and PPARG and KCNJ11 for

type 2 diabetes [18]. Each of these examples acts as a positive

control for the hypothesis that GWAS variants of small effect

can still point at effective drug targets.

(c) Functional enrichment and cell-type-specific effects
Analyses of all GWAS loci (instead of a single GWAS locus)

may also provide insights about functional mechanisms, by

determining which functional annotations are enriched for

association to disease. These analyses have largely focused

on regulatory annotations using data generated by the

ENCODE and Roadmap Epigenomics projects [34,35] to anno-

tate predicted regulatory elements (e.g. enhancers), which are

often cell-type-specific. One approach is to search for an enrich-

ment of GWAS hits in one type of functional element seen in

one cell type but not others. Several recent studies have

reported that GWAS loci (and loci that do not reach genome-

wide significance) exhibit cell-type-specific enrichments at

DNase I hypersensitivity sites (DHS), histone marks and

other regulatory elements. For example, variants associated

with rheumatoid arthritis are enriched for H3K4me3 marks

in CD4þ regulatory T cells [36], and variants associated with

schizophrenia, body mass index and smoking behaviour

are enriched for H3K27ac and other histone marks in brain

tissues [10,37]. This information can also be used to prioritize

causal variants, improving the efficacy of fine-mapping [38].

Most integrative analyses ultimately only provide suggestive

hypotheses of causal mechanisms, with detailed functional

follow-up being required to prove or support causality.
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4. The polygenic architecture of common disease
GWAS have consistently demonstrated that most common

diseases and traits are highly polygenic, with a large

number of underlying genetic variants that affect the disease

or trait [39]. As noted above, these common genetic variants

generally have very small effects that require large sample

sizes for detection [9] (with only a few exceptions). Further-

more, the set of associated variants often explain only a

small proportion of the genetic variation in the disease or

trait. For example, although the large schizophrenia study

described earlier identified 108 associated loci, these loci

collectively explain only 3% of the liability-scale variance of

schizophrenia, a highly heritable trait [10]. As we have

seen, the small effect sizes of associated variants do not

preclude important biological insights, but the incomplete

picture of the genetic architecture of diseases painted by the

known associated loci has motivated intense efforts to

explain the source of this ‘missing heritability’ [40].

An important step towards understanding the genetic

architecture of common diseases, starting in 2010, was

the use of statistical linear mixed models to estimate the herit-

ability explained by all common variants, not just those

associated at stringent statistical significance [41]. These

studies showed that common variants typically explain

roughly half of the narrow-sense heritability estimated from

twin studies, with the remainder likely to be due to rare var-

iants [42] (see below) and/or upward bias in twin-based

estimates [43]. In other words much, or potentially even

most, of the ‘missing heritability’ was not actually missing—

it was explained by the many common variants whose effect

sizes were small enough that they had not individually

reached statistical significance for association. Quantifying

the total number of common variants contributing non-zero

effects remains an ongoing challenge, with initial estimates

in the thousands for several traits [44]. Most studies of the

polygenic architecture of common disease have focused on

additive effects, as there is currently limited evidence of inter-

actions between alleles within a locus (dominance) or between

loci (epistasis).

5. Pleiotropy
The term pleiotropy is used to describe the phenomenon

whereby genetic variation at a single locus has an effect on

more than one phenotype. A related but different concept is

genetic correlation, defined as a correlation in direction and

magnitude of genetic effects. (Genetic correlation is a specific

measure of the extent to which genome-wide SNPs have the

same direction and magnitude of effect on two phenotypes.)

Some care is needed in differentiating different types of pleio-

tropy and genetic correlation in associations across traits [45],

particularly when the causal SNPs have yet to be identified.

When pleiotropy is observed, Mendelian randomization,

which employs significantly associated variants as instru-

mental variables, can be used to assess causal relationships

between risk factors and disease [46]. Some genes seem to

be particular foci for association with multiple phenotypes

(figure 3). These include genes whose function is at least

partially understood, such as the gene ABO (which deter-

mines the ABO blood group), where a complex pattern of

association is found with infectious diseases such as malaria,

red cell counts, inflammatory, lipid and liver biomarkers,

common cardiovascular disease and Grave’s disease [5].

Autoimmune disease encompasses a range of disorders

in which it is thought that immune and inflammatory mechan-

isms damage normal tissues in the body. GWAS have yielded

hundreds of loci across the genome that are robustly associated

with the risk of developing one or more of these disorders, and

it is therefore one of the areas where pleiotropy has been

studied most extensively. These analyses have shown that

many susceptibility alleles are shared across autoimmune dis-

orders [47,48]. Classifying shared associations according to

whether the direction of effect is the same or different between

phenotypes provides further evidence about the molecular

relationship between diseases [49]. One example is a putative

loss of function variant in PTPN22 that decreases the risk of

Crohn’s disease but increases the risk of rheumatoid arthri-

tis and type 1 diabetes [50]. Another interesting example

is the TNFRSF1A locus (electronic supplementary material,

table S1), where the same allele increases the risk of multiple
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Figure 3. Genes involved in pleiotropy. Barplot of the 40 genes in the NHGRI GWAS catalogue (www.genome.gov/gwastudies, accessed 23 October 2014) that have

the highest number of associations where they are listed as the reported gene. Genes in the MHC region have been excluded. Colours show the number of

associations that are attributed to each different category of study phenotypes.
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sclerosis but decreases the risk of ankylosing spondylitis (AS).

Intriguingly, this mimics the effect of response to anti-TNF

treatment which can reduce symptoms of AS, but increased

the relapse rate of multiple sclerosis in a clinical trial.

There are a number of associations shared between infec-

tious disease and non-infectious disease, highlighting the fact

that pleiotropy can potentially lead to conflicting evolution-

ary pressures. Specific examples include susceptibility loci

for inflammatory bowel disorder (IBD) and mycobacterial

infection, including at the gene NOD2, where a variant

upstream of NOD2 reduces risk of IBD but increases risk of

leprosy. The MHC region is a classic example where HLA

alleles are strongly linked to both autoimmune disease risk

and susceptibility to infectious diseases. Those confirmed

by GWAS include the alleles DRB1*15 (which protects from

visceral leishmaniasis [51] and leprosy [52], but increases

the risk of MS [17]) and HLA-B57 (which is associated with

slowed HIV progression [53] but increases AS risk [54]).

Beyond autoimmune disease, variants around the APOL1

locus (electronic supplementary material, table S1) that

reduce susceptibility to trypanosome infection increase the

risk of two specific types of kidney disease in individuals

with African ancestry [55].

One common approach to detecting pleiotropy is to com-

pare the lists of SNPs significantly associated with each

phenotype separately. This will typically underestimate the

extent of pleiotropy because SNPs with real effects may

happen not to reach significance for one or other phenotype

(depending on the sample size). Instead, it is more natural to

jointly model the effect of a SNP across different phenotypes.

These model comparison approaches are better powered to

detect pleiotropyandprovide a better assessment of the genetic

relationship between diseases [56]. They can even increase

power to detect association for individual phenotypes [57].

The genetic relationship between diseases can be

studied via polygenic effects as well as at individual loci.

For example, a recent study of five psychiatric diseases

reported significant genome-wide genetic correlations

among several pairs of traits, including a genetic correlation

of 0.68 for schizophrenia and bipolar disorder [58]. A more

recent study of 276 genetic correlations among 24 traits

with publicly available GWAS summary statistics reported

significant genome-wide genetic correlations for many

traits, including positive genetic correlations between schizo-

phrenia and anorexia nervosa, and between autism and

educational attainment [59].

6. Rare variant association studies
The genotyping arrays used in GWAS studies predominantly

typed common variants. As a consequence, these studies are

unable to systematically identify associations involving rare

variants (including rare copy number variants), which could

potentially contribute substantially to the genetic architecture

of commondisease [42]. A full appreciation of the genetic archi-

tecture of common disease requires direct assessment of the

role of rare variants. In addition knowledge of rare risk alleles

can point to potential novel therapeutic targets—even if they

explain little genetic variance. This has motivated rare variant

association studies, including exome sequencing and whole-

genome sequencing studies. Particular sets of rare variants

can also be assayed by genotyping technologies including the

so-called exome arrays or genome-wide arrays with millions

of markers.

The standard paradigm in rare variant association studies

is to aggregate rare variants in each gene and use genes as the

unit of association, via either a burden test that assumes uni-

form effects or an overdispersion test that allows for varying

effects [60]; other biological units of association (e.g. enhan-

cers) can also be used. Although exome and whole-genome

sequencing have been extremely effective in the context of

Mendelian disease, its results for common disease have

been mixed, with large investments in the past few years pro-

ducing a limited number of clear successes [61]. It had been

argued in advance of these studies that they would probably

detect rare variants of large or moderate effects on common

disease, but it is becoming clear that few such variants

exist with frequencies large enough for detection via this

approach. However, exome sequencing studies that do not

identify any individually significant genes can still be lever-

aged to detect and quantify polygenic signals [62], just as

in GWAS [41]. An interesting strategy in the Icelandic popu-

lation (for which GWAS array data are available for a

substantial fraction of the population) has been to use long-

range phasing of a target sample genotyped on GWAS

arrays to impute variants from a small subset of sequenced

individuals [63]. This approach has been particularly effective

(e.g. compared with 1000 Genomes imputation studies) in

identifying associations involving individual rare variants

as well as aggregate gene-level associations involving sets

of rare coding variants [64–66], highlighting the advantages

of a close match between the reference panel and the target

population when imputing rare variants.

7. Future directions
Over the past decade, the ability to assay genome-wide genetic

variation in large numbers of individuals has led to a trans-

formation in our knowledge of genetic variants associated

with common human diseases: there are now over 10 000

published associations between DNA sequence variants and

human diseases and traits. These findings have already deliv-

ered critical new insights intomany of the diseases studied. For

a typical disease, there will be a large number of common

variants (probably thousands), each of individually small

effect, that collectively explain a substantial portion of the gen-

etic component of the disease. As existing data resources are

leveraged using more sophisticated analytical approaches

(e.g. analyses across diseases) and integration of different

data types (e.g. functional annotation data), our understanding

will grow further. Although substantial resources have already

been spent on sequence-based studies of common diseases,

these have as yet delivered relatively modest additional find-

ings. As larger and better-powered sequencing studies are

undertaken, knowledge of disease-associated rare variants

should increase considerably. Sequencing studies are provid-

ing a more comprehensive catalogue of common and rare

variants in the genome, which is informative in a number of

contexts, including fine mapping.

While the pace of genetic discovery fuelled by GWAS

has been extraordinary and has already delivered many

important new insights into disease, systematic progress on

understanding the functional mechanism of individual

GWAS loci is lagging well behind their discovery. In large
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part, this reflects our relative lackof knowledge about and tools

for unravelling gene regulation, as well as the challenge of

identifying and studying the correct tissue, developmental

stage and potential external stimulus. Another factor has

been that groups responsible for genetic discovery are often

not best suited to undertake functional follow-up. However,

we are approaching a tipping point for understanding

and interpreting GWAS loci. The ENCODE and Roadmap

Epigenomics projects and other technological developments

have greatly expanded both our background knowledge of

gene regulation and the set of tools available for studying it.

Methods for assessing chromatin accessibility (e.g. DNase-

Seq, ATAC-seq), chromatin confirmation (e.g. 3C, 4C, 5C,

Hi-C, capture-C) and the epigenetic marks associated with

expression and repression of genes, together with new technol-

ogies such as the CRISPR-Cas9 genome editing system [67],

now complement established genetic approaches and poly-

genic analyses, and offer great promise for tackling the

biology underlying GWAS associations.

The next wave of genetic discovery in common diseases is

likely to be driven by the growth of large population biobanks

that combine genome-wide genetic information (currently geno-

typing arrays but in time sequence data) with extensive

phenotypic information and in some cases lifestyle, diet and

otherenvironmental exposures,allmeasuredonthesame individ-

uals (e.g. UKBiobank, a prospective studyof 500 000 individuals;

seeWeb resources). Large sample sizes are an obvious advantage

of these studies for genetic discovery (recall figure 2), but theywill

also substantially increase our understanding of gene–gene and

of gene–environment interactions. In addition, they facilitate

assessment of the consequences of particular genetic variants

on many phenotypes: the so-called PheWAS (phenome-wide

association studies). In turn, as noted above, this offers the poten-

tial to disentangle causal relationships from epidemiological

correlations using the so-called Mendelian randomization [46].

Genomics has the potential to make a significant impact

on drug development pipelines. These are facing major

challenges, with only a small proportion (less than 5%) of

potential drugs successful in reaching the market, and esti-

mated development costs per successful drug in the billions

of dollars [68]. It has been argued that most of this failure

is due to the inadequacies of preclinical models of disease,

and our lack of understanding of human biology [68]. Criti-

cally, human genetic approaches provide the opportunity to

learn about human biology in humans, rather than in

model systems. This applies to both target discovery and

target validation. First, genetic findings from both common

and rare diseases can point to novel drug targets (i.e. the

choice of a gene in which to intervene and the direction in

which to modulate it). Second, genetics can also be used in

target validation. A drug aims to intervene in human biology

by altering the activity of a specific gene in a particular way,

with the aim of improving a desired outcome. Genetics can

be helpful here through what has been called ‘Nature’s clini-

cal trial’. To assess the therapeutic hypothesis underpinning

the drug target, researchers can find individuals who, by

chance, carry genetic variants whose consequences are simi-

lar to those of the drug. For example, if the drug inhibits a

specific gene, one could study individuals with genetic

variants which result in downregulation of the gene, or var-

iants knocking out the function of one or both copies of the

gene. If the therapeutic hypothesis is valid, these naturally

occurring changes should also improve the desired outcome.

Recent empirical studies have shown that the existence of

supporting human genetic evidence substantially increases

the chances of success for a drug [69]. This experiment can

also be informative for assessing drug safety and possible

side effects: if individuals carrying genetic variants that

mimic the effect of the drug are at higher risk of another

disease or condition, then this could point to a safety risk for

the drug. Existing GWAS datasets and the growth of large

population biobanks offer unprecedented opportunities to rea-

lize some of the potential for genetics to impact on drug

development pipelines. As larger datasets are generated and

analysed, genetics is also likely to be helpful in stratifying

patient populations and moving from ‘one size fits all’ to

more personalized choices of treatments.

Looking forward, genetic information will come to be col-

lected more in clinical contexts than, as has happened to date,

in research studies. Rapid decreases in costs are bringing

genome sequencing closer to routine clinical care, with

countries and healthcare systems already embarking on pro-

jects to sequence large numbers of patients (e.g. Genomics

England and Geisinger whole exome and whole genome

sequencing; see Web resources). Genome sequencing will

yield clinical insights beyond what could be obtained from

genotyping arrays. Whole-genome and whole-exome sequen-

cing has had, and will continue to have, a major impact on

identifying the mutations causing rare genetic conditions.

As has always been the case in human genetics, these find-

ings point directly to gene function. The consequences for

common diseases of extensive sequencing will depend on

the contribution of rare variants to common disease [42].

Nonetheless, integration of complementary functional infor-

mation from both rare and from common diseases promises

to greatly increase our understanding of human biology.

We hypothesize that within 10–15 years, there will be

1 billion individuals sequenced globally, and in many cases

this information will be linked to their electronic medical

records. If the challenges of data accessibility and intero-

perability can be overcome (e.g. Global Alliance for Genomics

& Health; see Web resources), these resources will be trans-

formative. Genetics will become an empirical big-data science:

to understand the consequences of a particular mutation or

the likely outcomes of different treatment choices, or to assess

disease risk, sophisticated analytical tools will extrapolate

from the data of genetically similar individuals under similar

conditions. The progress of the past decade is often referred

to as the genetic revolution. The imminence of ubiquitous

genome sequencing means that a second genetic revolution is

now under way.

8. Web resources
NHGRI GWA Catalogue: http://www.genome.gov/GWA

Studies and http://www.ebi.ac.uk/fgpt/gwas/.

Haplotype Reference Consortium: http://www.haplo

type-reference-consortium.org/.

UK Biobank: http://www.ukbiobank.ac.uk/.

UK Biobank documentation for genotype imputation and

genetic association studies: http://biobank.ctsu.ox.ac.uk/

crystal/refer.cgi?id=157020.

Genomics England: http://www.genomicsengland.co.

uk/.
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Geisinger whole genome sequencing: http://www.

geisinger.org/for-researchers/initiatives-and-projects/pages/

whole-genome-sequencing.html.

Global Alliance for Genomics & Health: http://genomic

sandhealth.org/.
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