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Abstract Recent technological advances in hardware de-

sign of the robotic platforms enabled the implementation

of various control modalities for improved interactions with

humans and unstructured environments. An important appli-

cation area for the integration of robots with such advanced

interaction capabilities is human-robot collaboration. This

aspect represents high socio-economic impacts and main-

tains the sense of purpose of the involved people, as the ro-

bots do not completely replace the humans from the work

process. The research community’s recent surge of interest

in this area has been devoted to the implementation of vari-

ous methodologies to achieve intuitive and seamless human-

robot-environment interactions by incorporating the collab-

orative partners’ superior capabilities, e.g. human’s cogni-

tive and robot’s physical power generation capacity. In fact,

the main purpose of this paper is to review the state-of-the-

art on intermediate human-robot interfaces (bi-directional),

robot control modalities, system stability, benchmarking and

relevant use cases, and to extend views on the required future

developments in the realm of human-robot collaboration.
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Human Robot "Collaboration OR Cooperation"
"User OR Human" Intention

Fig. 1: Number of publications on the topic of human-robot collabo-

ration from 1996 to 2015. The contribution of the research keyword

“human intention” (red) to the numbers is illustrated in this plot. The

data is extracted from Google Scholar.

1 Introduction

The fast growing demands for service robot applications in

home or industrial workspaces have led to the development

of several well-performing robots equipped with rich pro-

prioception sensing and actuation control. Such systems that

range from robotic manipulators [Albu-Schäffer et al., 2007]

to full humanoids [Tsagarakis et al., 2016, Ott et al., 2006,

Kaneko et al., 2008, Radford et al., 2015] are expected to

help the human user in various tasks, some of which require

collaborative effort for a safe1, successful, and time and en-

ergy efficient execution. In fact, the integration of robotic

systems in collaborative scenarios has seen an extensive and

fast-growing research effort, a tentative estimation of which

is provided in Fig.1 by referring to the number of publica-

tions on this topic over the last two decades.

Physical human-robot collaboration (PHRC), which falls

within the general scope of physical human-robot interac-

tion (see [De Santis et al., 2008, Murphy, 2004, Alami et al.,

2006]), is defined when human(s), robot(s) and the environ-

ment come to contact with each other and form a tightly cou-

pled dynamical system to accomplish a task [Bauer et al.,

2008, Krüger et al., 2009]. Ideally, each active component

of such a system must be capable of observing and estimat-

ing the counterparts’ contributions to the overall system’s

response through the fusion and processing of the sensory

information [Argall and Billard, 2010, Ebert and Henrich,

2002, Lallée et al., 2012]. As a consequence, an appropriate

reactive behaviour can be replicated (e.g. by the human from

a set of obtained skills in previous attempts of performing a

similar task) or developed to complement and improve the

performance of the collaborative partners.

1 The problem of safety in human-robot interaction (HRI) and the

related open issues have been extensively discussed in literature [Had-

dadin et al., 2009, De Santis et al., 2008, Alami et al., 2006]. Hence,

our focus in this review paper will be on other important aspects of

physical human-robot collaboration (PHRC).
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Similar to the humans’ anticipatory (feed-forward [Shad-

mehr and Mussa-Ivaldi, 1994b]) or feed-back [Todorov and

Jordan, 2002] mechanisms to develop a suitable motor be-

haviour, the collaborative robots’ response to sensory in-

put can be achieved through model/knowledge based tech-

niques [Tamei and Shibata, 2011,Ogata et al., 2003,Kimura

et al., 1999,Magnanimo et al., 2014], the implementation of

feedback controllers with pre-set interaction modalities [Pe-

ternel et al., 2016c, Donner and Buss, 2016a] or a combined

approach [Rozo et al., 2013,Peternel et al., 2016b,Lawitzky

et al., 2012b, Palunko et al., 2014]. A key strategy in this

direction is the establishment of a shared authority frame-

work in which the significant capabilities of both humans

and robots can be exploited. For instance, humans’ signifi-

cant cognitive abilities in learning and adaptation to various

tasks demands and disturbances can be used to supervise the

collaborative robots’ superior physical capabilities. The in-

creasing slope in the research community’s interest towards

the integration of human intention in real-time adaptation of

the robot behaviour is illustrated in Fig.1.

With this in mind, the main purpose of this paper is to re-

view the state-of-the-art on the key enabling technologies to

achieve a seamless and intuitive human-robot collaboration.

Although hardware-related components are among the most

critical to achieve this goal, a remarkable effort has been re-

cently devoted to overview the underlying progress in terms

of communication [Wang et al., 2005], sensing [Tegin and

Wikander, 2005], and actuation [Vanderborght et al., 2013a]

developments. Hence, our focus in this review will be on

other relevant key elements of the HRC, i.e. human-robot

interfaces (bi-directional), robot control modalities, system

stability, benchmarking and relevant use cases. In addition,

with the aim to achieve a reasonable convergence of views

for the required future developments, our focus will be mostly

on the physical aspects2 of the human-robot collaboration.

2 Interfaces for Improved Robot Perception

Humans embrace a diversity of experiences from working

together in pairs or groups. This has contributed to the devel-

opment of implicit and explicit communication standards so

that task-related information can be perceived and commu-

nicated intuitively [Sebanz et al., 2006]. In fact, one of the

main objectives in the realm of physical human-robot col-

laboration is to design and establish similar communication

standards so that the robot is aware of human intentions and

needs in various phases of the collaborative task [Klingspor

et al., 1997, Bauer et al., 2008]. Despite the fact that the

robotic replication of the human sensory system is hardly

2 A good overview of the cognitive aspects in HRC can be found

in the literature, e.g., see [Fong et al., 2003, Freedy et al., 2007, Rani

et al., 2004]

possible with the current technology, the understanding and

implementation of the underlying communication principles

can potentially lead to an enhanced physical human-robot

interaction performance [Reed and Peshkin, 2008].

A widely known example of such a communication in-

terface is built on the use of visual [Perzanowski et al., 1998,

Agravante et al., 2014a,Morel et al., 1998] or language com-

mands [Medina et al., 2012a,Miyake and Shimizu, 1994,Pe-

tit et al., 2013], as user-friendly means of communicating

with a robot, from the human standpoint, given that the hu-

man is not required to learn additional tools. The use of

head, body or arm gestures are common examples in the ar-

eas of human-robot interaction and collaboration [Li et al.,

2005,Carlson and Demiris, 2012]. In this direction a method

to interpret the human intention from the latest history of

the gaze movements and to generate an appropriate reactive

response in a collaborative setup was proposed in [Sakita

et al., 2004]. Authors in [Hawkins et al., 2013] developed

a vision-based interface to predict in a probabilistic manner

when the human will perform different subtasks that may re-

quire robot assistance. The developed technique allows for

the tracking of the human variability, environmental con-

straints, and task structure to accurately analyse the timings

of the human partner’s actions.

Although such interfaces appear natural to the humans,

their usage is mostly limited to activating high-level robot

operations and the task complexity can potentially prevent

the robot from deriving the desired sensorimotor behaviour

from these higher-level modalities. In fact, a large degree

of robot autonomy, which is far beyond current capabilities

of the autonomous robots, is required for vision or auditory

based interfaces to function on a wide range of applications.

An alternative approach to the design of human-robot in-

terfaces recognises the use of force/pressure sensors in con-

tact to anticipate the objective of the human partner and/or

to control the cooperation effort. Due to the simplicity of the

underlying mechanism, it has been explored in several ap-

plications, examples include collaborative object transporta-

tion [Ikeura and Inooka, 1995a,Kosuge and Kazamura, 1997a,

Al-Jarrah and Zheng, 1997a,Tsumugiwa et al., 2002a,Duchaine

and Gosselin, 2007, Agravante et al., 2014a, Gribovskaya

et al., 2011a, Rozo et al., 2014, Rozo et al., 2015, Adams

et al., 1996], object lifting [Evrard and Kheddar, 2009,Evrard

et al., 2009], object placing [Tsumugiwa et al., 2002a,Gams

et al., 2014], object swinging [Donner and Buss, 2016a,Palunko

et al., 2014], posture assistance [Ikemoto et al., 2012, Pe-

ternel and Babič, 2013], and industrial complex assembly

processes [Krüger et al., 2009] (see also Fig. 2).

In most of the above techniques, the interaction forces/torques

are used to regulate the robot control parameters and tra-

jectories following the admittance [Duchaine and Gosselin,

2009,Lecours et al., 2012] or impedance [Tsumugiwa et al.,

2002a,Agravante et al., 2014a] causality [Hogan, 1985]. Notwith-
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Fig. 2: An example of human-robot collaborative manipulation in

a productive environment (image courtesy of ABB received from

www.abb.cz).

standing the wide margin of applications, collaborative tasks

that involve simultaneous interaction with rough or uncer-

tain environments (e.g. co-manipulative tool-use) can induce

various unpredictable force components to the sensor read-

ings [Peternel et al., 2014]. This can significantly reduce the

suitability of such an interface in more complex interaction

scenarios since it can be difficult to distinguish the compo-

nents related to the active counterpart(s) behaviour from the

ones generated from the interaction with the environment.

Bio-signals such as electromyography (EMG) and elec-

troencephalography (EEG), or other physiological indices

such as electrodermal activity [Pecchinenda, 1996,Rani et al.,

2006] can be used to anticipate the human intention in PHRC.

In particular, due to the adaptability and ease-of-use of EMG

measurements, they have found a wide range of applica-

tions in human-in-the-loop robot control such as: prosthe-

sis [Farry et al., 1996, Jiang et al., 2009, Farina et al., 2014,

Castellini et al., 2014, Strazzulla et al., 2017], exoskeletons

[Rosen et al., 2001,Fleischer and Hommel, 2008] and indus-

trial manipulator control [Vogel et al., 2011, Peternel et al.,

2014, Ajoudani, 2016, Gijsberts et al., 2014]. Peternel et al.,

used EMG signals to anticipate the stiffening/complying be-

haviour of a torque controlled robotic arm in a co-manipulation

task [Peternel et al., 2016c]. Through this interface, the lead-

ing/following roles of human and the robot counterpart were

estimated online. In another study, Bell et al., used EEG sig-

nals to command a partially autonomous humanoid robot

through high-level descriptions of the task [Bell et al., 2008].

A remarkable use of bio-signals in the development of

HR interfaces is to estimate the human physical (e.g. fa-

tigue) or cognitive (anxiety, in-attention, etc.) state varia-

tions that might deteriorate the collaborative robot’(s) per-

formance. The authors in [Rani et al., 2004] developed a

method to detect human anxiety in a collaborative setup by

extracting features from EMG, electrocardiography (ECG)

and Electrodermal responses. In a similar work, the human

physical fatigue was detected and used to increase the ro-

bot’s contribution to the task execution [Peternel et al., 2016b].

Fig. 3: Authors in [Peternel et al., 2016b] proposed a human-robot co-

manipulation framework for robot adaptation to human fatigue. The

myoelectric interface provides the robot controller with a feedback

about human motor behaviour to achieve an appropriate impedance

profile in different phases of the task. The human fatigue estimation

system provides the robot with the state of the human physical en-

durance (image courtesy of L. Peternel).

Although an interface that is build on a unique source

of sensory data can configure a pre-defined robot behav-

iour in collaborative settings, the underlying functionality

is limited and cannot be easily generalised to cross domain

scenarios. For instance, the use of visual feedback for the

estimation of the exchanged amount of energy between the

counterparts is less effective than the use of force or pressure

sensors. Similarly, the use of bio-signals such as EMGs for

tracking of the human limb movements may result in less

accurate performances in comparison to the external opti-

cal or IMU-based (inertial measurement unit) tracking sys-

tems [Corrales et al., 2008]. To address this, a combined ap-

proach, associating multi-modal sensory information to dif-

ferent robot control modalities (commonly known as multi-

modal interfaces [Mittendorfer et al., 2015, Peternel et al.,

2016c]), can be exploited. In this direction, the authors in

[Agravante et al., 2014a] proposed a hybrid approach by

merging vision and force sensing, to decouple high- and

low-level interaction components in a joint transportation

task where a human and humanoid robot carry a table with

a freely moving ball on top (see also [Rozo et al., 2016]). A

similar work proposed a multi-modal scheme for intelligent

and natural human-robot interaction [Böhme et al., 2003] by

merging vision-based techniques for user localisation, per-

son localisation and person tracking and their embodiment

into a multi-modal overall interaction schema.

In a similar fashion, voice commands were used to pause,

stop or resume the execution of a dynamic co-manipulation

task, the control parameters of which regulated by an EMG

based interface (See Fig. 3). In this work, an external track-

ing system detected the human arm configuration to regulate

the robot task frame in real-time. By the same token, au-

thors in [Yang et al., 2016] developed a multi-modal teach-

ing interface on a dual-arm robotic platform. The interface

was built on the use of EMG on the user arm and force sen-

sors on robot end-effector. In this setup, one robotic arm is
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Fig. 4: In [Ivaldi et al., 2016] naive participants (not expert in robot-

ics) interacted with the humanoid iCub to build an object: the physical

interaction was at the level of the arms, covered by a soft tactile skin

(image courtesy of S. Ivaldi).

connected to the tutee’s arm providing guidance through a

variable stiffness control approach, and the other to the tu-

tor to capture the motion and to feedback the tutees perfor-

mance in a haptic manner. The reference stiffness for the

tutors arm stiffness was estimated in real-time and repli-

cated by the tutee’s robotic arm. Ivaldi et al., [Ivaldi et al.,

2016] studied multi-modal communication of people inter-

acting physically with the humanoid iCub to build objects

(see Fig. 4). Participants would naturally gaze at the ro-

bot’s hands or face to communicate the focus of attention

of the collaborative action, while speaking to the robot to

describe each action. The authors found that individual fac-

tors of the participants influence the production of refer-

ential cues, both in speech and gaze: particularly, people

with negative attitude towards robots avoid gazing at the ro-

bot, while extroverted people speak more to the robot dur-

ing the collaboration. The robot, controlled in impedance

with a low stiffness at joints, switched to zero-torque control

when the humans were grasping the robot arms covered by a

tactile skin (enabling precise contact estimation [Fumagalli

et al., 2012]) and giving the voice command to “be compli-

ant”. This multi-modal command strategy allowed the par-

ticipants, not experts in robotics and mostly interacting with

a robot for the first time, to physically move the robot arms

in an intuitive way, without generating anxiety for their safety

as reported by the participants in their interviews. Despite

the lack of experience, all the human participants were able

to interact physically with the robot to teach the task. Fa-

cilitated probably by the child-like appearance of the iCub,

the participants naturally acted as teachers/caregivers, in line

with the observations of [Nagai and Rohlfing, 2009]; how-

ever, it has to be remarked that in that situation of physical

interaction the authors did not observe exaggerated move-

ments typical of parental motionese/scaffolding situations

in HRI, where often there is little physical interaction and

more social cues as gaze or gestures. These results are in

accord with previous work presented, see e.g. [Kilner et al.,

2003, Ugur et al., 2015].

The improved performance of the multi-modal interfaces

in the generation of compound robot behaviours that are

required to execute more complex collaborative tasks has

shifted the attention towards the usage and fusion of multi-

source sensory information. Results of Google Scholar sug-

gest that over 76% of the publications in the area of human-

robot collaboration used multi-modal interfaces in year 2015.

Nevertheless, the inclusion of more communication chan-

nels in the development of the intermediate interfaces will

potentially contribute to an increase in the human cogni-

tive burden and the low level robot control complexity. This

may affect the intuitiveness of the interface and result in an

excessive human effort to operate a specific robot modal-

ity. A solution to this issue can be obtained by the intro-

duction of shared communication modalities [Green et al.,

2008,Lackey et al., 2011,Lackey et al., 2011]. Alternatively,

robotic learning techniques such as: gradual mutual adap-

tation [Ikemoto et al., 2012, Peternel et al., 2016a], rein-

forcement learning [Palunko et al., 2014] or learning from

demonstration [Evrard et al., 2009, Lawitzky et al., 2012a,

Rozo et al., 2015] can be exploited to weaken the communi-

cation loops’ demands (e.g. bandwidth, number of feedback

modalities) due to an increased level of robot autonomy.

3 Interfaces for Improved Human Perception

The visual and auditory systems of the humans provide pow-

erful sensory inputs that contribute to a fast and accurate per-

ception of the movement kinematics and the environment,

and a constant update of the internal models. The role of

such sensory inputs in dynamic perception of the environ-

ment, e.g. anticipating the weight of an object through vi-

sion [Gordon et al., 1993], and estimating a required amount

of force to move the object along a pre-defined path [Johans-

son, 1998], has also been investigated.

During collaboration and dyadic interaction, mutual gaze

and joint attention are common ways of conveying informa-

tion [Tomasello, 2009]. Such mechanisms are often imple-

mented in robots to make the interaction more effective by

providing additional back-channels. For example in [Ivaldi

et al., 2014] the robot was equipped with anticipatory gaze

mechanisms and proactive behaviours, increasing the pace

of the interaction and reducing the reaction time of the hu-

man to the robot’s cues.

In a similar study, Dumora et al. [Dumora et al., 2012],

studying haptic communication between an operator and a

robot for a bar transportation task, observed that wrench

measurements provide incomplete information to detect the

operator’s intent of motion. This has been also observed

in [Reed, 2012] for cooperating dyads able to communicate
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Fig. 5: An example of providing haptic and visual feedback (via AR) to

the human counterpart in collaborative settings [Glassmire et al., 2004]

(image courtesy of M. O’Malley).

only through physical interaction3. Although haptic feed-

back can temporarily be sufficient to achieve sub-tasks, if

contextual information about the task phase are provided,

for the interaction to be efficient more non-verbal cues are

necessary to recognize the partner intent during collabora-

tive tasks and synchronize the dyadic activity. In this sense,

joint attention or proactivity can improve the mutual aware-

ness, hence the task performance, as shown by [Ivaldi et al.,

2014] for a dyadic learning task.

An enhanced perception of the environment through hu-

man visual feedback can also be achieved by Augmented

Reality (AR) approach, enabling the human partner to ob-

serve and review a plan with the robot prior to execution

[Green et al., 2009,Glassmire et al., 2004] (see Fig. 5). Head

Mounted Displays, that were mostly used in research labs

or in very specific, critical applications (e.g. aero-space and

military), are nowadays becoming a consumer product: the

Rift by Oculus and the Gear VR by Samsung (among oth-

ers), are the first modern and large scale examples of a mar-

ket that is on the verge of the explosion. Potential drawbacks

of the AR based approaches can be the information over-

loading, limited privacy (e.g. augmenting without permis-

sion) and additional cost, that may limit the expected per-

formance of such systems in collaborative settings.

Haptic information provided by receptors in human limbs

(fingertips, arm skin, etc.), on the other hand, represents a

very important and complementary input to explore the ex-

ternal environment and for everyday task accomplishments.

Since in most collaborative scenarios the human partner comes

to physical contact(s) with the object and/or the robot in a

closed dynamic chain, a large amount of meaningful infor-

mation can be perceived by the human receptors. Neverthe-

less, as regards specific interaction scenarios in which the

human perception of the environment is influenced by the

task or environmental conditions, the use of artificial sen-

3 The effect of human sensorimotor learning is very crucial in such

scenarios as the perception of the environment and the task by two

experts will be different from two naive operators.

sory systems in the provision of haptic feedback to the hu-

man partner can be beneficial.

Although replicating the richness of human sensory ap-

paratus through artificial systems remains a daunting task,

the state-of-art reviews several non-invasive techniques to

present haptic stimuli to robot operators, by delivering dif-

ferent types of stimuli to the human limb. This is not only to

provide cheaper and easily applicable feedback systems can

replace full force feedback with none or small performance

reduction, but also to resolve fundamental issues such as sta-

bility in closed loop [Tegin and Wikander, 2005]. In addi-

tion, such sensory substitution techniques can also be used

to provide the human with feedback about the advanced ro-

botic perception of the environment (e.g., depth sensors [Plage-

mann et al., 2010]), that may not be covered by the hu-

man sensory system. Examples include vibrotactile, electro-

cutaneous or mechanical pressure [Shannon, 1976, Nohama

et al., 1995,Wang et al., 1995], to convey information about

force, proprioception, and/or texture. By the same token,

previous works recognized different types of non-invasive

sensory substitution techniques, roughly dividing haptic in-

formation into low-frequency, e.g. force related and high-

frequency [Ajoudani et al., 2014], e.g. acceleration related

[Godfrey et al., 2013]. In a similar vein, a haptic force feed-

back interface was developed in [Yang et al., 2016] to pro-

vide a tutor with information about the deviations of the

tutee arm from desired trajectories in a human-robot col-

laboration setup that was developed as a teaching interface

through a dual-arm robotic platform. The amount of force

was related to the kinematic error between the desired and

the tutee’s replicated trajectories in real-time.

Table 1 presents an overview of the interfaces used in lit-

erature with the purpose of enhancing the robot and human

perception of the task and the environment.

4 Interaction Modalities

This section aims at presenting an overview of the different

strategies to endow the robot with interaction capabilities.

While the interfaces and the underlying perception mecha-

nisms are dealt with in Section 2, this part discusses differ-

ent approaches to link the perception inputs to their actual

effects in terms of robot behaviour.

As mentioned earlier, a very important aspect in setting

up a successful PHRC framework is to achieve robot adap-

tivity to the task conditions and environmental constraints.

One of the pioneering works in this sense are due to Hogan

[Hogan, 1985], presenting the well-known impedance (and

admittance, as a dual representation) control framework. Al-

though the original work did not cover explicitly the case of

human-robot interaction, the same formalism has been fur-

ther developed in [Kosuge and Kazamura, 1997b,Tsumugiwa

et al., 2002b,Albu-Schäffer et al., 2007,Albu-Schäffer et al.,
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2007,Gribovskaya et al., 2011b] to explicitly account for the

human as the source of interaction forces. In particular, Ko-

suge et al. proposed several control strategies to allow the

human and a robotic manipulator to co-manipulate heavy

and bulky objects in [Kosuge and Kazamura, 1997b]. In this

scenario, that is quite common in the literature, the robot is

responsible for carrying a payload, while the human steers

the object to a desired position or along a desired path.

A similar concept was investigated in [Tsumugiwa et al.,

2002b], where the authors augmented the sensor space with

virtual forces to ease the human to complete a collabora-

tive peg-in-hole task. The work in [Bestick et al., 2015] pre-

sented a framework for the parameter and state estimation

of personalised human kinematic models using motion cap-

ture data. Data-driven musculoskeletal models are incorpo-

rated into the robot interaction controllers to account for

differences of individuals and to provide personalised inter-

action/assistance capabilities. The authors in [Gribovskaya

et al., 2011b] proposed an adaptation scheme for imped-

ance parameters to enhance robot learning capabilities. In

particular, Gaussian Mixture Models (GMM) were used to

learn the task model, thus allowing the robot to anticipate

the partner’s intentions and to adapt its motion according

to perceived interaction forces. The same concept was ex-

tended in [Kronander and Billard, 2014]. Similarly, the work

in [Ragaglia et al., 2016] proposed a kinaesthetic teaching

strategy (see also [Lee and Ott, 2011]), based on impedance

control, which is able to achieve both high accuracy and re-

peatability of the motion of the robot, as it is hand-guided by

the human operator. In [Mörtl et al., 2012], the authors pro-

posed dynamic role exchange mechanisms and applied the

approach to a collaborative transportation task. Here, the im-

pedance control concept is used to simultaneously account

for the load sharing problem, the motion control of the ma-

nipulated object and the minimisation of internal wrenches.

Alternative techniques aim at developing implicit inter-

action capabilities through real-time motion generation and

trajectory re-planning methods. Visual perception is one of

the commonly adopted sensory input in this area due to the

possibility of tracking the human motion in real-time. In the

work of Ebert et al. [Ebert and Henrich, 2002], a set of sta-

tionary 2D ceiling cameras were used to predict possible

unsafe situations within a collaborative industrial work-cell.

The system was able to predict possible collisions and to

promptly command a stopping trajectory to the manipula-

tor. Within a similar setting, in [Bascetta et al., 2011] the

system is trained to predict long-term walking trajectories of

the human worker in order to proactively trigger an appro-

priate interaction behaviour. The approach used GMM for

modelling the data set of acquired trajectories and a Hidden

Markov Model (HMM) for the online prediction phase.

A relatively recent line of research in the realm of human-

robot collaboration is established to generate natural human-

like robot motions for an enhanced acceptability and com-

patibility to the human workspaces [Zanchettin et al., 2013b].

The applications of robotic learning techniques in this con-

text has become indispensable. For instance, the authors in

[Kim et al., 2006] exploited a motion capture database filled

with human movements to generate human-like motion prim-

itives. In a similar vein, authors in [Khatib et al., 2009] de-

veloped a musculoskeletal model to analytically describe

the natural human motion and to minimise human fatigue.

Calinon et al. [Calinon et al., 2010] proposed a probabilistic

learning strategy to reproduce human-like motions through

imitation. The approach is based on a combination of HMMs

and Gaussian Mixture Regression (GMR) to learn and repro-

duce from a demonstrated set of data.

Given the variety of interfaces already discussed in Sec-

tion 2 and the availability of different control strategies analysed

so far, a natural field of new investigations is represented

by multi-modal interaction: several modes among those dis-

cussed earlier in this Section are combined to form the in-

teraction behaviour of the robotic manipulator. With the aim

of mimicking the way humans interact with each other, the

first combination of perception and control algorithms ex-

ploited the two mostly important senses: vision and touch

(tactile perception). The first results on this topic were re-

ported in [De Santis et al., 2007] where a control scheme,

mainly targeting the enhancement of safety, has been pro-

posed to account for both force and vision information. The

authors in [Magrini et al., 2014] used visual information

to understand the contact points between the human and

the robotic manipulator. Another control architecture con-

sidering both visual and force information was presented

in [Zanchettin and Rocco, 2015], where visual information

was used to track an object while the human and the ro-

botic manipulator are interacting by means of an imped-

ance control scheme. In [Cherubini et al., 2013], the authors

present a control scheme dealing with both visual percep-

tion and force information allowing the robot to infer human

intentions during a collaborative screwing task. The differ-

ent interaction modalities are sequenced based on the gath-

ered sensor information. A multi-modal control strategy for

a peer to peer collaborative carrying task has been presented

in [Agravante et al., 2014b]. Here, the force and visual infor-

mation are merged together to allow both safe and effective

interaction. In particular, the former is mainly used to estab-

lish safety, while the latter is used to control the orientation

of the transported object.

A more recent work in this area proposed a multi-modal

interaction modality by implementing a hybrid impedance/force

control in different Cartesian axes of the collaborative ro-

bot [Peternel et al., 2016c]. The force controller’s objective

was to establish and maintain the contact between a sawing

tool and the environment. Instead, the impedance controller

operated on a combined EMG-visual tracking interface to
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regulate the task stiffness and its frame in various phases of

the collaborative task.

In general terms, the improved adaptability of the ro-

botic platforms to unpredicted events has paved the way for

the deployment of well-perfoming robots in complex inter-

action scenarios. However, the understanding the required

levels of adaptivity from the two counterparts is still at its

beginning, and a principled formalism is required to address

the mutual human-robot adaptation requirements [Ikemoto

et al., 2012].

5 Stability and Transparency of the PHRC Systems

When humans interact physically with robots, the robot con-

trol faces critical challenges in achieving performances while

ensuring stability. Indeed, as well explained in [Buerger and

Hogan, 2007], the stability of the human-robot system de-

pends on the coupled dynamics. Interactions can alter both

performance and stability of the two systems when coupled;

hence, even if the two systems are stable in isolation, the

coupled system may be unstable and not satisfy performance

objectives. For example, a robotic manipulator may be very

fast and precise in following a desired path along a known

surface; a human may physically grab the robot to adapt the

nominal trajectory to variability in the task: this interaction

should always be “stable” regardless of the forces exerted by

the human, gripping force, hand stiffness while grabbing and

steering the robot, etc. Most controllers for such interacting

systems regulate forces or dynamics behaviour of the robot

at the interaction port (the location of the interaction, e.g.,

the end-effector). As mentioned before, a traditional con-

trol concept for achieving these performances is impedance

control [Hogan, 1985], which consists in controlling the dy-

namic behaviour of the robot under the action of an external

force, modelling the system as a spring-mass duo, with de-

sired stiffness and damping.

Another desirable property of the robot control during

interaction should be transparency [Lamy et al., 2009], e.g.,

in some applications, the robot should not oppose resistance

to the force applied by the human operator when driving the

robot, but it should rather move according to the intention of

the human operator. This issue is particularly critical during

co-manipulation, where an object is simultaneously held by

the human and the robot. A similar performance is required

in medical applications, such as assisted gesture guidance,

but also in industrial contexts, such as assisted assembly.

Transparency is usually obtained by force feedback con-

trol. However, even transparency requires stability: a large

bandwidth with high-force feedback gains is necessary to

achieve a good transparency, but it has been shown in [Ep-

pinger and Seering, 1987] that this condition may lead to

instability if the environment is stiff (see in [Colgate and

Hogan, 1989] the concept of “contact instability”), or more

generally if its impedance is unknown or varying.

Stability in interaction control is therefore linked to the

control of mechanical impedance. In traditional robots, dri-

ven by stiff DC actuators, impedance is obtained by active

force control: while many recent robots equipped with per-

vasive joint torque sensing and controlled with fast low-level

loops (e.g., the KUKA iiwa) can achieve good response in

safe impedance ranges, interaction control can be more chal-

lenging in other robots with proximal sensing (such as the

iCub [Fumagalli et al., 2012] ). Indeed, time-delays in com-

puting the active control and non-collocation (e.g., distance

between sensors and actuation) can cause potential threats to

the stability, reducing significantly for example the range of

stable impedance values for interaction [Berret et al., 2011].

To increase the intrinsic compliance of the robot, there have

been several robots equipped with elastic or flexible joints,

and more recently with variable impedance actuators [Van-

derborght et al., 2013b], which enable fast regulation of me-

chanical impedance at the joint level.

As well documented in [Buerger and Hogan, 2007], early

works in interaction control assumed that impedance could

be sculpted to achieve desired performances. However, achiev-

ing truly arbitrary impedance on any real robotic system

is not possible, especially during interaction with humans,

because the environment stiffness is unknown or varying,

which may lead to coupled or contact instability [Colgate

and Hogan, 1989]. This issue has been investigated using the

concept of passivity: in [Colgate and Hogan, 1988], Colgate

showed that when two stable systems with passive port func-

tions are physically coupled, stability of the coupled sys-

tem is guaranteed. However, passivity leads to very conser-

vative gain tuning and constrain the apparent endpoint in-

ertia to remain 50% higher than its real value, which pre-

vents many co-manipulation applications with heavy robots

[Lamy et al., 2009]. It is important to note here that in robots

with joint torque sensing, the torque feedback can contribute

to a substantial reduction of total inertia, while staying in a

passivity framework [Albu-Schäffer et al., 2007].

Several studies showed that passivity may be too conser-

vative and should be relaxed to increase performance during

physical collaboration [Buerger and Hogan, 2006,Duchaine

and Gosselin, 2008]. To relax the passivity constraint, New-

man introduced the natural admittance control (NAC) [New-

man, 1992], focused at reducing the apparent friction inde-

pendent from inertia. Ficuciello et al. in [Ficuciello et al.,

2014] proposed to use the robot’s redundancy to ensure a

decoupled apparent inertia at the end-effector thus increas-

ing the range of stable impedance parameters. Buerger &

Hogan introduced the concept of “complementary stabil-

ity” [Buerger and Hogan, 2007], which transforms the sta-

bility problem into a robust stability problem: by making the

hypothesis that the human arm dynamics is unknown but
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Method Pros Cons Use case examples in PHRC (robot control strategy)

Feed-forward

Vision Suitable for motion plan-
ning and trajectory genera-
tion, Intuitive from the hu-
man standpoint

Provides only a rough es-
timation of the contact dy-
namics

[Morel et al., 1998] (impedance control), [Carlson and
Demiris, 2012] (shared control), [Agravante et al., 2014b]
(visual control), [Perzanowski et al., 1998, Sakita et al.,
2004,Li et al., 2005,Hawkins et al., 2013] (not concerned)

Auditory Intuitive from the human
standpoint

Robots must run on a large
degree of autonomy to re-
spond to such high-level
commands

[Medina et al., 2012b] (motion primitives), [Miyake and
Shimizu, 1994] (nonlinear oscillators), [Ivaldi et al., 2016]
(fixed joint impedance control)

Force/Pressure Accurate estimation of
the exchanged forces
and torques in contact,
Straightforward processing
and integration into the
control loop

Interaction with uncertain
environment may add un-
desired components and
the robot’s performance
may deteriorate

[Kosuge and Kazamura, 1997a] (impedance control) [Al-
Jarrah and Zheng, 1997b] (compliant motion control),
[Ikeura and Inooka, 1995b, Tsumugiwa et al., 2002b,
Gribovskaya et al., 2011b] (variable impedance control)
[Agravante et al., 2014b] (visual control), [Duchaine and
Gosselin, 2009] (variable damping), [Peternel and Babič,
2013](variable impedance control), [Palunko et al., 2014,
Donner and Buss, 2016b] (energy-based)

Bio-signal
(EMG,
EEG, etc.)

Adaptive and versatile,
Suitable for detecting hu-
man physical and cognitive
state variations

Require advanced process-
ing techniques to extract
reliable control signals

[Rani et al., 2004, Bell et al., 2008] (not concerned),
[Peternel et al., 2016b, Peternel et al., 2016c] (hybrid
force/impedance control)

Feed-back
Vision Suitable for augmented re-

ality applications or remote
human-robot collaboration

Not intuitive to indicate the
interaction forces in con-
tact, information overload-
ing in AR

[Glassmire et al., 2004] (teleoperation), [Green et al.,
2009] (not concerned)

Grounded
Force
Feedback

Intuitive perception of the
interaction forces

Usually not wear-
able/portable, May limit
the human natural work-
space, May deteriorate the
overall system’s stability

[Horiguchi et al., 2000] (teleoperation), [Yang et al., 2016]
(variable stiffness control), [Fernandez et al., 2001] (active
trajectory re-generation)

Tactile
Feedback

Lightweight and wearable
(e.g. mechano- and vibro-
tactile)

Adequate training is re-
quired to use such sensory
substitution systems suc-
cessfully

[Ajoudani et al., 2014] (variable stiffness control)

Table 1: An overview of the HRC Interfaces and interaction modalities. Feed-forward interfaces are developed for robots to recognize human

intentions and perceive the unknown environment. Feed-back interfaces provide additional input (through artificial systems) to improve human

perception of the task and the environment. References include both uni- and multi-modal use of such interfaces to associate sensory input(s) to

the artificial systems’ (robot or the feedback device) functionalities.

reasonably bounded, the goal is to find the optimal tuning

for a parameterized controller that is stable for the range of

different environment dynamics. NAC and complementary

stability were combined in [Lacevic and Rocco, 2011], but,

as observed in [Dimeas and Aspragathos, 2016], their con-

servative gains were still hindering a smooth collaboration

without efforts for the human operator. In [Dimeas and As-

pragathos, 2016], the authors proposed online adaptation of

an admittance controller gains on the basis of an instabil-

ity index, computed in the frequency domain, that detects

unstable behaviours of the human-robot coupled system by

monitoring high-frequency oscillations in the force signal.

The main advantage of using admittance control schemes

or optimal control schemes for adapting the gains and reg-

ulating the exchanged forces is that control theory provides

rigorous frameworks and methods to prove the stability of

the system and designing controls that are robust to pertur-

bations. For interaction policies acquired or refined via ma-

chine learning techniques, such proofs are more difficult. If,

for example, an interaction policy is learned from demon-

stration and refined through reinforcement learning (which

is a common case in most robotics learning scenarios [Amor

et al., 2009]), since the policy or its model are acquired

on-line, and not known a priori, it is very difficult to pro-

vide stability proofs if not some conditions on the control

bounds. In [Khansari-Zadeh and Billard, 2011], Khansari-

Zadeh and Billard proposed a method, called SEDS, to learn

stable parameterisations of dynamical systems used to re-

produce robot movements learned by demonstrations. The

method, exploiting Gaussian Mixture Models, ensures time-

invariance and appropriate reaction to perturbations thanks

to a proof of global asymptotic stability at the target. How-

ever their approach was focused on stabilising movement

trajectories, not specifically to stabilising impedance dur-

ing interaction. In [Khansari-Zadeh et al., 2014], Khansari-

Zadeh et al. proposed an extension of their framework that

combines the problem of learning motion trajectories and

regulating the impedance during interaction, ensuring global

stability. They provided sufficient conditions to ensure global

asymptotic stability for movements in free-space, and pas-

sivity during persistent contact with a passive environment.

Stability and transparency are primordial to achieve a

safe physical interaction, particularly to allow the robot to

follow human guidance. These properties are fundamental

for the robot to optimize the collaboration introducing other

features such as legibility (i.e., the property of generating

legible motions that can be easily understood by the human

partners) and anticipation (i.e., the property of predicting the

human intention, the goal of the collaboration, and optimiz-

ing the robot control policy to take into account the human
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action, reducing the human effort or improving some shared

performance criteria) [Stulp et al., 2015,Dragan et al., 2013].

Communication of intention in human-human physical in-

teraction increases with mutual pratice, it is related to the

arm impedance, to the continuous role adaptation between

the partners [Mojtahedi et al., 2017] and it is also related to

transparency [Jarrasse et al., 2008]: the same evidence holds

for human-robot physical interaction [Dragan and Srinivasa,

2012, Jarrasse et al., 2013]. Transparency and stability are

also crucial for optimizing the control in a way to provide as-

sistance to the human while performing the task, as it is fre-

quently done in robotic rehabilitation [Morasso et al., 2007].

5.1 Lessons from human motor control

The main problem in physical human-robot interaction is

therefore tuning online the gains of the impedance or ad-

mittance control, for optimising performance, reducing the

effort of the human operator4, and ensuring the stability.

Let us consider the simple case of the human arm in-

teracting with a robotic manipulator at the end-effector. The

main difficulty here for the robot is the accurate estimation

of the varying environment, e.g., the end-point stiffness of

the human arm [Ajoudani, 2016,Burdet et al., 2000]. To en-

sure stability and provide transparency, the impedance or ad-

mittance parameters should be tuned online according to the

estimated human stiffness. A common way to estimate it, is

via the grasping force at the interaction point, by dedicated

force/torque sensors, even if in industrial applications there

exists several cases where the human operator interacts di-

rectly with the payload, such as with lifting or assist devices.

In [Lamy et al., 2009], the authors designed a handle for in-

tuitive co-manipulation, where a 6-dof force/torque sensor

was covered by a soft foam: when held delicately through

a precision grip, the foam acts as a mechanical filter, and

the system reflects low inertia; conversely, when held firmly

through a power grasp, resulting from higher impedance in

the arm because of muscle co-contraction [Napier, 1956],

the squeezed foam does not filter, the system exhibits higher

inertia, the gains are lowered and the system remains stable.

Human motor control actually provides several prior knowl-

edge that can be exploited to adapt the impedance gains dur-

ing physical interaction and more in general to optimize ro-

bot control [Ivaldi et al., 2012]. Dimeas and Aspragathos

4 The human effort can be identified in two stages: the physical

and cognitive loads while learning a new collaborative task, and their

amount on a regular basis after the human becomes an expert. This is

important to note here that the CNS is capable of learning and adapta-

tion to various tasks demands and disturbances, hence contributing to a

reduction in the overall physical and cognitive loading while perform-

ing tasks with dynamic uncertainties [E. Burdet, 2001, Franklin et al.,

2003]. Nevertheless, the (robot) counterpart’s adaptive behaviour can

affect such learning and adaptation processes in terms of time and per-

formance.

observed in [Dimeas and Aspragathos, 2016] that the band-

width of voluntary motion in humans is relatively low and

below 2Hz [de Vlugt et al., 2003], hence during physical

interaction with the robot it is possible to discriminate the

human operator’s intent from the unstable motions thanks

to frequency analysis. External oscillatory excitations of the

arm up can be mitigated by the central nervous system (CNS)

by changing the arm impedance: indeed, it has been shown

by [E. Burdet, 2001] that the CNS can learn to control the

magnitude, shape and orientation of the endpoint stiffness

in a predictive way that is independent of the force needed

to compensate for the imposed dynamics. Instead of simply

co-contracting all the muscles, the CNS adopts the optimal

strategy of increasing the impedance to be robust to external

perturbations.

As discussed in [Yang et al., 2011], while in robots the

common strategy to deal with perturbations and uncertainty

is to design robust controllers that preserve stability, humans

adapt the endpoint force and viscoelasticity to compensate

for external forces, minimising error and effort while ensur-

ing a constant stability margin. In fact, there is evidence that

humans learn and adapt internal dynamic models of their

own arm and of the environment during interaction [Shad-

mehr and Mussa-Ivaldi, 1994a], and these models are used

for predicting muscle activations for planning movements.

However, these feedforward signals alone are not sufficient

in case of unstable dynamic environments: in several stud-

ies [Franklin et al., 2008,Franklin et al., 2007,Franklin et al.,

2003], Franklin et al. reported evidence that the CNS regu-

lates the arm compliance by co-contracting the muscles to

cope with instability and feedback delays. More precisely,

in [Franklin et al., 2007] the authors observed that the in-

crease in stiffness was oriented along the direction of insta-

bility in the environment, confirming that the CNS is able to

control the endpoint impedance of the limbs and selectively

adapt it to the environment.

These studies support the idea that the CNS acts like an

impedance controller at the level of the endpoint, ensuring

stability, and reducing movement variability by increasing

the impedance to reject disturbances. Upon these observa-

tions, in [Yang et al., 2011] the authors proposed a bio-

mimetic controller with adaptive properties similar to those

of humans. The controller increased feed-forward force and

impedance in presence of large errors, whereas in absence of

disturbance it decreased feed-forward force and impedance

profiles while maintaining stability.

The aforementioned studies reported experimental evi-

dence that the CNS can actually learn to control the inter-

action and adapt to different dynamics. In bimanual visuo-

motor tasks, even perturbed by deviating force fields, hu-

mans rapidly learn to control the interaction-forces by a com-

bination of arm stiffness properties and direct force con-

trol [Squeri et al., 2010]. This property of the human mo-
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tor control system is exploited in robot assisted rehabilita-

tion, where often assistance is provided by robotic devices

via haptic signals [Morasso et al., 2007], to the point of

changing the arm impedance and viscosity in impaired sub-

jects [Piovesan et al., 2013].

More generally, the capability of humans to adapt/learn

during physical interaction should be taken into account while

designing a collaborative robotic system. The human can

rapidly learn how to proficiently interact with the robot in

visuo-motor tasks such as guiding and tracking, and can

“adapt” to novel dynamics. A continuous interaction with

the robot can make them become “expert” in the collabo-

ration, at the price of a (small) cognitive load on the task.

Therefore, an interesting research question arises: does the

robot need to continuously adapt to the human partner, forc-

ing him/her to re-adapt (thus increasing the task load, both

cognitively and physically), or should it keep its control pol-

icy to exploit the fast learning capabilities of the human to

(simply) improve the collaboration?

The question is very relevant as a continuous interac-

tion will make the human “expert”, however this holds if the

robot does not change its policy, forcing the human to re-

adapt. There may be cases where a continuous re-adaptation

from both sides would make sense and lead to more efficient

collaboration, for example when the robot has to collabo-

rate with a variety of different partners and could improve

its skills by continuous learning from the different partners.

However, to the authors’ knowledge there are not yet results

showing the benefit of long-term multi-partner adaptation on

collaborative tasks between robots and humans in real world

applications.

6 Benchmarking and Relevant Use Cases

Over the last decade, several research groups aimed at eval-

uating the quality of human-robot interaction and collabora-

tion by examining the acceptability of the framework by hu-

man volunteers. For example, authors in [Kahn et al., 2006]

and [Feil-Seifer et al., 2007] proposed several benchmarking

methods based on psychological assessments. In particular,

a common approach, at the time, was to divide the assess-

ment into three categories: one based on the robot (address-

ing safety and scalability), another based on social interac-

tion (autonomy, imitation, privacy, understanding of specific

domain, social success), and the latter based on the impact

of the assistive technology on the users.

Other contributions additionally addressed the anthropo-

morphism of robotic agents, by confirming or invalidating

the well-known concept of the Uncanny Valley [Hegel et al.,

2008, Hwang et al., 2013]. The first studies were mainly

focused on subjective responses, like questionnaires. Later

on, based on the pioneering work of Kulic and Croft (see

[Kulic and Croft, 2007]) the focus was moved towards a

more objective evaluation, and no longer focused on pure

appearance of robots, but rather on their motion capabilities

(see also [Zanchettin et al., 2013a, Oztop et al., 2005, Kil-

ner et al., 2003]). Recently, the authors in [Bestick et al.,

2015] provided some objective insights on the benefits of a

personalised robot behaviour on human physiological mea-

surements. As of today, however, no significant evaluation

procedures specifically targeting physical interaction is re-

ported in literature.

When it comes to validating research results within ef-

fective and significant demonstrations, several benchmark-

ing applications are introduced. Collaborative transportation

of bulky and/or heavy objects is one the most common can-

didates to test collaboration modalities and interfaces. In

most of the cases, the object to be manipulated is a rigid,

non-articulated one, like a box or a planar surface, as re-

ported in [Al-Jarrah and Zheng, 1997b, De Schutter et al.,

2007,Wojtara et al., 2009,Mörtl et al., 2012,Agravante et al.,

2014b]. The most challenging aspects of this demonstration

are related to the task definition (both the human and the

robot have to agree on the direction). Particularly interest-

ing, from an ergonomic point of view, the focus is on how

the problem of sharing the carrying the effort is solved. For

example in [Rozo et al., 2013] a learning strategy is com-

bined with an impedance controller to perform a collabora-

tive assembly task on a wooden table. In particular, while

the robot is holding the table, the human can easily mount

the legs as the robot automatically tunes its stiffness para-

meters to facilitate the completion of the task. The authors

in [Kim et al., 2017] proposed a technique to monitor the

overloading joint torque profiles (due to the external load) of

the human partner for ergonomic and comfortable execution

of heavy co-manipulation tasks. The authors of [Edsinger

and Kemp, 2007] presented an object handover task between

a robot and a human. The manipulator stiffness is adapted

to accommodate for the physical interaction with the object

and to ultimately accomplish the task.

Apart from the obvious domestic applications, this col-

laborative task has an immediate application in construc-

tion sites, as described in [Lee et al., 2007] where a mini-

excavator was developed and used for the installation of cur-

tain walls. Relevant applications of physical human-robot

interaction are also reported in the healthcare field. Apart

from rehabilitation robotics, which is not the target of this

review paper, robotic assistance is the main relevant appli-

cation. For example, in [Chuy et al., 2006] a collaborative

mobile robot is developed in order to assist people to walk,

despite physical inabilities. In [Ulrich and Borenstein, 2001]

a haptic guidance cane is developed for the assistance of

visually impaired people. A similar application scenario is

also described in [Wakita et al., 2013].

In the field of industrial robotics, many manufacturing

applications are also reported in literature, ranging from load-
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ing and transporting heavy wheels [Levratti et al., 2016],

collaborative assembly of a homokinetic mechanical joint

[Cherubini et al., 2013, Cherubini et al., 2016] and cellu-

lar phones [Tan et al., 2009]. Another application within

this field was presented in [Erden and Billard, 2014]. Here,

an impedance controlled robot is used both to measure and

learn the end-point impedance of expert welders for subse-

quent autonomous execution as well as for the training of

non-skilled personnel. More recently, authors in [Peternel

et al., 2016c, Peternel et al., 2016b] performed a collabora-

tive sawing task as an illustrative example of dynamic in-

dustrial tasks with environmental uncertainties.

Some other developments are focused on collaborative

aspects in manipulating non rigid or articulated objects [Colomé

et al., 2015]. For example, in [Kosuge et al., 1998] the ro-

bot was commanded to deform a flexible metal sheet and

support its payload so that the human could easily handle

it. Similarly, in [Kruse et al., 2015] a collaborative robots

was employed to help the human to fold a tablecloth. As for

other examples, [Maeda et al., 2001] a collaborative rope

turning was presented, while in [Donner and Buss, 2016a]

the human and a robotic arm were collaboratively manipu-

lating pendulum-like objects in order to established a limit

cycle with the desired amount of energy. Deformable mate-

rials are also of concern within domestic service robotics.

Finally, a recent trend in collaborative robotics research

is devoted to the design of robots that take into account

the ergonomics requirements typical of industrial applica-

tions [Maurice et al., 2017]. This field of research is not only

promising but very important for the design of ergonomi-

cally compatible robots, as well as for the design of robot

controls that optimize human ergonomics performances.

7 Discussions and outlook

The enhanced physical dexterity of the new generation of ro-

botic platforms has paved the way towards their integration

into robotics enabled service and care applications. Among

various interaction scenarios, the exploitation of robots in

collaborative settings has created a very important and high

impact initiative. While HRC’s significant economic impact

on industry is expected at large, it will also serve to max-

imise the social impact by maintaining the sense of purpose

of the involved people in the work process.

In this paper, we provided an overview of the current

state-of-the-art in human-robot collaboration. Although the

hardware components of such systems are among the most

crucial for a successful market entry, this review paper was

dedicated to other important aspects, including the interme-

diate interfaces for improved human and robot perception;

robot control modalities to perform on these channels (inter-

action modalities); the control performances (stability and

transparency); and potential use cases (benchmarking).

The review of previous work on feed-forward (allowing

the robot to perceive the human) and feed-back (comple-

menting human perception of the task and the environment)

communication channels indicated that the implementation

of multi-modal human-robot interfaces presents a big ad-

vantage in addressing complex interaction scenarios. Never-

theless, it is likely to be accompanied by an increase on the

software complexity and the human cognitive burden (for

operating such modalities). Hence, an appropriate trade-off

between the complexity and completeness of human senso-

rimotor behaviour and intention modelling must be defined.

On the other hand, a considerable effort must be made to

understand the required level of human awareness about the

robot and environment states through artificial communica-

tion channels. In particular, despite the availability of several

technologies, e.g. force feedback, augmented reality, etc.,

the amount of information (and its level of detail) the robot

should communicate to the human is still an open research

topic.

It was also indicated that the implementation of adaptive

control methodologies such as impedance, force, admittance

or hybrid approaches will not only enhance the robot adap-

tivity to the human and the environment, it may also lead to

a reduced level of task-related pre-programming. Neverthe-

less, the application of such control concepts in human-robot

collaboration still appears in a premature state and must be

evaluated in cross-application HRC scenarios. In this direc-

tion, a principled human-robot mutual adaptation formalism

is required to understand the levels of adaptivity from the

two counterparts, and to address some questions arising on

this topic: e.g., should the robot adaptation be generic or

user-specific? As the robot eventually has some degree of

controllability on the human companion, should this be still

conceived as ethical?

Another very important aspect to be considered here is

the underlying human and robot safety, so that well-performing

robots can be successfully and seamlessly integrated in human-

collaborative settings. Although this topic was not directly

addressed in this review (due to the existence of a dense

body if literature to discuss this aspect [Haddadin et al.,

2009, De Santis et al., 2008, Alami et al., 2006]), it out to

be mentioned that a great deal of effort must be directed to-

wards ensuring safety for collaborating humans (to avoid in-

juries and accidents) and robots (to avoid unacceptable eco-

nomic losses).

A list of potential applications and relevant use cases

ranging from domestic to industrial environments was pro-

vided. A quick review of the state-of-the-art suggests that

the research community’s attention is being extended from

static tasks within structured environments to more dynamic

collaborative scenarios that are subject to un-modelled dy-

namics and uncertainties, to facilitate a large-scale integra-

tion of robotic systems in several real-world scenarios.
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Finally, several benchmarking examples were reported,

with the underlying analysis mainly focusing on the accept-

ability aspects, either from an explicit (e.g. using questionar-

ies) or implicit (using physiological data) perspective. A nat-

ural problem arising from human-robot collaboration is to

evaluate how the overall system behaviour, composed by

the robot and the human, with respect to a certain set of

performance indices. Such indices can be task-specific (a

common approach in industry), however, this may limit the

cross-application comparability of the HRC frameworks.

To conclude, this review paper was intended to give an

updated overview of the state-of-the-art and recent research

trends in human-robot collaboration. Despite the fast-growing

interest in the real-world applications of the HRC, several

challenges are still awaiting to be solved.
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