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Abstract

We introduce a conceptually simple and scalable

framework for continual learning domains where

tasks are learned sequentially. Our method is con-

stant in the number of parameters and is designed

to preserve performance on previously encoun-

tered tasks while accelerating learning progress

on subsequent problems. This is achieved by train-

ing a network with two components: A knowledge

base, capable of solving previously encountered

problems, which is connected to an active column

that is employed to efficiently learn the current

task. After learning a new task, the active column

is distilled into the knowledge base, taking care

to protect any previously acquired skills. This

cycle of active learning (progression) followed by

consolidation (compression) requires no architec-

ture growth, no access to or storing of previous

data or tasks, and no task-specific parameters. We

demonstrate the progress & compress approach on

sequential classification of handwritten alphabets

as well as two reinforcement learning domains:

Atari games and 3D maze navigation.

1. Introduction

The standard learning process of neural networks is under-

pinned by the assumption that training examples are drawn

i.i.d. from some fixed distribution. In many scenarios such a

restriction is not of major concern. However, it can prove to

be an important limitation particularly when a system needs

to continuously adapt to a changing environment, as often

happens in reinforcement learning and other interactive do-

mains such as robotics or dialogue systems. This ability to

learn consecutive tasks without forgetting how to perform
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previously trained problems is known as continual learning

(e.g. Ring, 1995).

A large body of literature recognises the importance of the

continual learning problem, and there has been some in-

creased interest in the topic recently (e.g. Rusu et al., 2016a;

Shin et al., 2017; Lopez-Paz et al., 2017; Nguyen et al.,

2017; Kirkpatrick et al., 2017; Chaudhry et al., 2018). Part

of the challenge stems from the fact that there are multiple,

often competing, desiderata for continual learning:

(i) A continual learning method should not suffer from catas-

trophic forgetting. That is, it should be able to perform rea-

sonably well on previously learnt tasks. (ii) It should be able

to learn new tasks while taking advantage of knowledge ex-

tracted from previous tasks, thus exhibiting positive forward

transfer to achieve faster learning and/or better final perfor-

mance. (iii) It should be scalable, that is, the method should

be trainable on a large number of tasks. (iv) It should enable

positive backwards transfer as well, which means gaining

immediate improved performance on previous tasks after

learning a new task which is similar or relevant. (v) Finally,

it should be able to learn without requiring task labels, and

ideally it should even be applicable in the absence of clear

task boundaries.

Many approaches address some of these to the detriment of

others. For example: Naive finetuning often leads to suc-

cessful positive transfer, but suffers from catastrophic forget-

ting; elastic weight consolidation (EWC) (Kirkpatrick et al.,

2017) focuses on overcoming catastrophic forgetting but

the accumulation of Fisher regularisers can over-constrain

the network parameters leading to impaired learning of new

tasks; Progressive Networks (Rusu et al., 2016a) avoid catas-

trophic forgetting altogether by construction, however it

suffers from lack of scalability as the network size scales

quadratically in the number of tasks.

This paper presents a step towards unifying these techniques

in a framework that satisfies multiple desiderata, by taking

advantage of their complementary strengths while minimis-

ing their weaknesses. The proposed method implements two

neural networks, a knowledge base and an active column,

which are trained in two distinct, alternating phases. During

the progress phase, the network is presented with a new

learning problem, and only parameters in the active column
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Figure 1. Illustration of the Progress & Compress learning process.

In the compress phases (C), the policy learnt most recently by the

active column (green) is distilled to the knowledge base (blue)

while protecting previous contents with EWC (Elastic Weight

Consolidation). In the progress phases (P), new tasks are learnt by

the active column while reusing features from the knowledge base

via lateral, layerwise connections.

are optimised. Similar to the architecture of Progressive

Networks (Rusu et al., 2016a), layerwise connections be-

tween the knowledge base and the active column are added

to facilitate the reuse of features encoded in the knowledge

base, thus enabling positive transfer from previously learnt

tasks. At the completion of the progress phase, the active

column is distilled into the knowledge base, thus forming

the compress phase. During distillation, the knowledge base

must be protected against catastrophic forgetting such that

all previously learnt skills are maintained. We propose a

modified version of Elastic Weight Consolidation (Kirk-

patrick et al., 2017) to mitigate forgetting in the knowledge

base. The Progress & Compress (P&C) algorithm alternates

these two phases, allowing new tasks to be encountered,

actively learned, and then carefully committed to memory.

The approach is purposefully reminiscent of daytime and

nighttime, and of the role that sleep plays in memory consol-

idation in humans, allowing the important skills mastered

during the day to be filed away at night. As P&C uses two

columns of fixed sizes, it is scalable to a large number of

tasks. In experiments, we observe positive transfer, while

minimising forgetting, on a variety of domains.

2. The Progress and Compress Framework

The P&C architecture is composed of two components, a

knowledge base and active column. Both components can

be visualised as columns of network layers which compute

either predicted class probabilities (in case of supervised

learning) or policies/values (in case of reinforcement learn-

ing). The two components are learnt in alternating phases

(progress/daytime and compress/nighttime). Figure 1 pro-

vides an illustration of the architecture and the two phases

of learning when P&C is applied to reinforcement learning.

2.1. Learning a new task

The separation of the architecture into two components

allows P&C to focus on positive transfer when a new task is

introduced. As illustrated in Figure 1, the knowledge base

(light blue) is fixed, while parameters in the active column

(green) are optimised without constraints or regularisation,

allowing effective learning on the new task. In addition,

P&C enables the reuse of past information through simple

layerwise adaptors to the knowledge base (lateral arrows),

an idea borrowed from Progressive Nets.

Adaptors themselves are implemented as multi-layer per-

ceptrons. Specifically, if hi denotes the activations in layer

i, superscript KB the knowledge base, and σ a nonlinearity,

the ith layer of the active column is computed as:

hi = σ(Wihi−1 + αi ⊙ Uiσ(Vih
KB

i−1
+ ci) + bi) (1)

where bi and ci are biases, αi is a trainable vector of size

equal to the number of units in layer i, Wi, Ui, Vi are weight

matrices and ⊙ denotes elementwise multiplication. The

vector αi is initalised by sampling from U(0, 0.1). In the

case of convolutional networks, we use 1× 1 convolutions

for the adaptors.

Note that one could make this phase similar to naive finetun-

ing of a network trained on previous tasks by not resetting

the active column or adaptors upon the introduction of a new

task. Empirically, we found that this can improve positive

transfer when tasks are very similar. For more diverse tasks

however, we recommend re-initialising these parameters,

which can make learning more successful.

2.2. Distillation and knowledge preservation

During the “compress” phase, newly learnt behaviour is

consolidated into the knowledge base. This is also where

methods guarding against catastrophic forgetting are intro-

duced. The consolidation is done via a distillation process

(Hinton et al., 2015; Rusu et al., 2015), which is an effec-

tive mechanism for transferring knowledge from the active

column to the knowledge base. In the RL setting it has the

additional advantage that the scale of the distillation loss

does not depend on the (scale of the) reward scheme, which

can be quite different for different tasks. We minimise the

cross-entropy between the teacher’s (active column) and

student’s (knowledge base) prediction/policy.

As a method of choice for knowledge preservation, we rely

on Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,

2017), a recently introduced method that poses an approx-

imate Bayesian solution to continual learning. The main

insight is that information pertaining to different tasks can

be incorporated sequentially into the posterior without suf-

fering catastrophic forgetting since the resulting posterior

does not depend on task ordering. However, the exact poste-
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rior is intractable for neural networks, and EWC employs a

tractable Gaussian approximation. This results in regulari-

sation terms, one for each previous task, that constrain the

parameters not to deviate too much from those that were op-

timised. However, the number of regularisation terms grow

linearly in the number of tasks, meaning that the original

EWC algorithm is not scalable to a large number of tasks.

In Section 4, we elaborate on a modification that we refer to

as online EWC which does not exhibit this linear growth in

computational requirements.

In summary, for consolidating task k into the knowledge

base, we optimise the following loss with respect to the

parameters θKB of the knowledge base while keeping the

parameters of the active column unchanged,

E

[

KL(πk(·|x)‖π
KB(·|x))

]

+
1

2
‖θKB − θKBk−1

‖2γF∗

k−1

(2)

where πk(·|x) and πKB(·|x) are the prediction/policy of the

active column (after learning on task k) and knowledge

base respectively, x is the input, E denotes expectation over

either the dataset or the states of the environment under the

active column, θKBk−1
and F ∗

k−1
are the mean and diagonal

Fisher of the online EWC Gaussian approximation resulting

from previous tasks, and γ is a hyperparameter (see Section

4). The policies are computed at inverse temperature τ

(a hyperparameter). Note that πk is fixed throughout the

consolidation process to that learnt on task k.

3. Related Work

We now provide a brief survey of work in the areas of con-

tinual learning, characterising each approach in the light

of the desiderata introduced in Section 1. Note that con-

tinual learning is known by different names (though with

somewhat different foci), such as lifelong learning (Thrun,

1996) and never-ending learning. Slightly different than

continual learning, different aspects of transfer learning

for reinforcement learning are discussed and compared in

Taylor & Stone (2011).

A common method of choice is finetuning a pretrained

model on a target domain, hence introducing an alternative

method of initialisation. This is commonly used due to its

simplicity and has been shown to be a successful method for

positive transfer, provided there is sufficient task similarity.

Early successful applications include unsupervised to super-

vised transfer learning (Bengio, 2012) and various results in

the vision domain. When a sequence of tasks is considered,

this is usually done through the careful design of curricula,

introducing tasks of increasing complexity. As catastrophic

forgetting is a significant issue, such methods are usually

not able to compose skills learned in previous tasks unless

such skills keep being reused. Examples of this technique

include transfer from Deep Q-Networks (Parisotto et al.,

2015) or curriculum learning in memory models (Graves

et al., 2016).

A second family of methods introduces task-specific pa-

rameters, allowing components within a larger ensemble

to learn representations of the data specific to a given task.

Transfer in such models can be achieved by sharing a sub-

set of features or by introducing connections between such

task-specific modules. An apparent issue with these meth-

ods is their lack of scalability, often making the application

to large number of tasks computationally cumbersome and

unstable. In addition, a task label has to be either provided

or inferred at test time such that the correct module can be

chosen.

Progressive networks (Rusu et al., 2016a) are a method

within this category designed for continual learning. The

authors propose an architecture that introduces an identical

”neural network column” for each task, allowing transfer

through adaptor connections to columns dedicated to pre-

vious problems. The method has particular appeal, namely

its immunity against catastrophic forgetting, which is due

to freezing parameters after a task has been learnt. Unfortu-

nately, this does not allow for positive backward transfer.

Learning Without Forgetting (Li & Hoiem, 2017) mainly

focuses on improving resilience against catastrophic forget-

ting. This is achieved by recording the output of old task

modules on data from the current task before any update to

the shared parameters, allowing regularisation towards those

values during training. A problem with this method is that

it is not immediately applicable to Reinforcement Learning.

Other examples include (Aljundi et al., 2016) which intro-

duces a gating mechanism between columns and (Rozantsev

et al., 2016), who formulate an alternative regularisation

objective to keep weights of columns tied.

Another category of work is based on the idea of episodic

memory, where examples from prior tasks are stored to ef-

fectively recall experience encountered in the past (Robins,

1995). Examples making use of this idea are (Rebuffi et al.,

2016; Schmidhuber, 2013; Thrun, 1996). A similar ap-

proach is proposed by Lopez-Paz et al. (2017), however

instead of storing examples, gradients of the previous task

are stored, such that at any point in time the gradients of all

tasks except the current one can be used to form a trust re-

gion that prevents forgetting. Such methods can be effective

against catastrophic forgetting, provided a good mechanism

for the selection of relevant experience is proposed. An

inherent problem is the constraint on the amount of expe-

rience that can be stored in memory, which could quickly

become a limiting factor in large scale problems. Recent

methods have tried to overcome this by sampling synthetic

data from a generative model (Shin et al., 2017; Silver et al.,

2013). This shifts the catastrophic forgetting problem to the

training of the generative model.
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The replay of past experience can be seen as moving closer

to multitask learning (Caruana, 1998), which differs from

continual learning in that data from all tasks is available

and used jointly for training. In the simplest case, this is

achieved by sharing parameters, similar to aforementioned

methods. Distral (Teh et al., 2017) explicitly focuses on

positive transfer through sharing a distilled policy which

captures and transfers behaviour across several tasks. Dis-

tillation is also used by Ghosh et al. (2017) to composite

multiple low-level RL skills, and by Furlanello et al. (2016)

to maintain performance on multiple sequential supervised

tasks through a transfer learning paradigm.

Another family of methods avoid catastrophic forgetting

by regularising learning. One prominent example in this

category is Elastic Weight Consolidation (Kirkpatrick et al.,

2017). Synaptic Intelligence (Zenke et al., 2017) is similar

to Elastic Weight Consolidation but computes an importance

measure online along an entire learning trajectory. Recently

He & Jaeger (2018) proposed a different mechanism, which

employs a projection of the gradients such that no direction

relevant to the previous task is affected.

PLAiD (Berseth et al., 2018) is method with similarities

with our approach. However the method is not designed

for continual learning, but rather for maximising transfer,

since it assumes access to all tasks at any point in time. The

approach relies on two stages, similar to ours. In one stage

a new task is learnt, transferring from the previous learnt

tasks. In the second stage, the learnt policy is consolidated

by multitask distillation from all previously seen tasks.

Some ideas that could serve as inspiration for future work

on the continual learning problem can also be found in

Schmidhuber (2018).

4. Online EWC

The starting point of Elastic Weight Consolidation (EWC)

(Kirkpatrick et al., 2017) is an approximate Bayesian treat-

ment of continual learning. Let θ be the parameter vector of

interest (in P&C these are the parameters θKB of the knowl-

edge base; i.e. we drop the superscript KB in this section for

simplicity), and let T1:k = (T1, T2, . . . , Tk) denote the data

associated with a sequence of k tasks. The posterior of θ is:

p(θ|T1:k) ∝ p(θ)

k
∏

i=1

p(Ti|θ) (3)

∝ p(θ|T1:k−1)p(Tk|θ) (4)

where the multi-task likelihood term in Eq. (3) factorises

due to the task data conditional independence. According

to Eq. (4), the posterior given all k tasks can be computed

sequentially, by first computing that for the first k − 1 tasks,

and treating it as the conditional prior as we incorporate the

likelihood for the k-th task.

Unfortunately, the exact posteriors needed are intractable,

and are replaced by Laplace’s approximation (MacKay,

2003). For EWC:

p(Ti|θ) ≈ N (θ; θ∗i , F
−1

i ), (5)

with mean θ∗i centred at the maximum a posteriori (MAP)

parameter when learning task i, and precision given by the

(diagonal) Fisher information matrix evaluated at θ∗i , which

is a surrogate for the Hessian of the negative log likelihood

that is guaranteed to be positive semidefinite.

The MAP parameter is computed using a standard stochastic

optimiser applied to the loss

− log p(Ti|θ) +
1

2

i−1
∑

j=0

‖θ − θ∗j ‖
2

Fj
(6)

which is the negative log of (4). The j = 0 term is a

notational convenience for the prior − log p(θ) while the

norm is the Mahalanobis norm.

Note that in the above formulation a mean and a Fisher need

to be kept for each task, which makes the computational

cost linear in the number of tasks. One can reduce the

cost to a constant by “completing the square” for the Fisher

regularisation terms in (6). Alternatively, as pointed out

by (Huszár, 2017), we can apply Laplace’s approximation

to the whole posterior (4), rather than the likelihood terms.

This results in the following loss:

− log p(Ti|θ) +
1

2
‖θ − θ∗i−1

‖2∑i−1

j=0
Fj

(7)

Compared with (6), the difference is that the Gaussian ap-

proximation of previous task likelihoods are “re-centred” at

the latest MAP parameter θ∗i−1
. This means that we only

need to keep the latest MAP parameter along with a run-

ning sum of the Fishers (which is another approximation,

as Fisher information is a local measure and all Fi’s should

more correctly be recomputed for the new θ∗, an infeasible

computational burden).

Note that it is unclear what the effect of this re-centring

will be for nonlinear neural networks ((Huszár, 2017) did

not show any experimental validation). Shifting the mean

to the latest MAP value will mean that older tasks will be

remembered less well, since there will not be any regulari-

sation terms constraining the parameters to be close to that

learnt on the older tasks. We demonstrate this effect in the

Appendix.

In a continual or life-long learning regime, where the model

is applied to many tasks, one interesting aspect occurs when

tasks can be revisited. (Huszár, 2017) propose taking the

expectation propagation (EP) (Minka, 2001) approach of

keeping an explicit approximation term for each likelihood,
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so that when a task is revisited the approximation to its

likelihood can be removed and recomputed. However this

means a return to the linear scaling of the original EWC. We

will instead take a stochastic EP (Li et al., 2015) approach,

which does not keep explicit approximations for each factor.

Instead a single overall approximation term is maintained

and updated partially when a task is revisited. More pre-

cisely, let θ∗i−1
, F ∗

i−1
be the MAP parameter and overall

Fisher after presentation of i− 1 tasks. The loss for the ith

task is then:

− log p(Ti|θ) +
1

2
‖θ − θ∗i−1

‖2γF∗

i−1

(8)

where γ < 1 is a hyperparameter associated with removing

the approximation term associated with the previous presen-

tation of task i. If θ∗i is the optimised MAP parameter and

Fi the Fisher for task i, the overall Fisher is then updated as

F ∗

i = γF ∗

i−1
+ Fi (9)

This approach has the benefit of avoiding the need for identi-

fying the task labels, since the method treats all tasks equiva-

lently (as opposed to EWC/EP). Identifying task boundaries

is significantly easier than identifying task ids, since detec-

tion of a change in low level statistics is often sufficient. In

the case of reinforcement learning, for example, changes in

reward statistics can be used, which intuitively has connec-

tions to memory consolidation in the brain due to changes

in dopamine levels. Another interesting side effect is that

the method can, via the γ down-weighting, explicitly forget

older tasks in a graceful and controlled (rather than catas-

trophic) manner. This is useful, for example, if the learning

has not converged on an older task, and it is better to grace-

fully forget its effect on the approximation term. Graceful

forgetting is also an important component for continual

learning as forgetting older tasks is necessary to make space

for learning newer ones, since our model capacity is fixed.

Without forgetting, EWC misbehaves when the model runs

out of capacity, as discussed in (Kirkpatrick et al., 2017).

We refer to our modified method as online EWC.

Finally one important observation we make is that each

EWC penalty protects the policy in expectation over the

state space, regardless of the reward scheme of the task.

One problem that we can address is that it favours policies

that are more deterministic, as in expectation, small changes

to θ for such policies will cause larger changes in the KL

and the Fisher matrix measures the curvature of the KL term.

This results in Fisher matrices of variable norm. However,

the goal of the algorithm is to protect each task equally.

We counteract this issue by normalising the Fisher informa-

tion matrices Fi for each task. This allows the algorithm

to compute the updates F ∗ (Eq. 9) based on the relative

importance of weights in a network, i.e. treating each task

equally rather than through an arbitrary scale of the original

Fisher matrix.

5. Experiments and Results

We now provide an assessment of the suitability of P&C as

a continual learning method, conducting experiments to test

against the desiderata introduced in Section 1. We introduce

experiments varying in the nature of the learning task, their

difficulty and the similarity between tasks. To evaluate P&C

for supervised learning, we first consider the sequential

learning of handwritten characters of 50 alphabets taken

from the Omniglot dataset (Lake et al., 2015). Considering

each alphabet as a separate task, this gives us a way to test

continual learning algorithms for their scalability.1

Assessing P&C under more challenging conditions, we also

consider the sequential learning of 6 games in the Atari

suite (Bellemare et al., 2012) (“Space Invaders”, “Krull”,

“Beamrider”, “Hero”, “Stargunner” and “Ms. Pac-man”).

This is a significantly more demanding problem, both due

to the high task diversity and the generally more difficult

RL domain. Specifically, the high task diversity constitutes

a particular challenge for methods guarding against catas-

trophic forgetting.

We also evaluate our method on 8 navigation tasks in 3D en-

vironments inspired by experiments with Distral (Teh et al.,

2017). In particular, we consider mazes where an agent

experiences reward by reaching a goal location (randomised

for each episode) and by collecting randomly placed objects

along the way. We generate 8 different tasks by varying

the maze layout, thus providing environments with signifi-

cant task similarity. As the experiments with Distral show

high transfer between these tasks, this allows us to test our

method for forward transfer.

We use a distributed variant of the actor-critic architecture

(Sutton & Barto, 1998) for both RL experiments. Specifi-

cally, we learn both policy π(at|st; θ) and value function

V (st;φ) from raw pixels, with π, V sharing a convolutional

encoder. All RL results are obtained by running an identical

experiment with 4 random seeds. Training and architecture

details are given in the Appendix. For the remainder of the

section, when writing P&C, we assume the application of

online EWC on the knowledge base. As a simple baseline,

we provide results obtained by learning on a new task with-

out protection against catastrophic forgetting (terming this

“Finetuning”2). Confidence intervals (68%) appearing in

several results throughout this section are calculated with a

non-parametric bootstrap unless otherwise stated.

Throughout this section, we aim to answer the following

questions: (i) To what extent is the method affected by

catastrophic forgetting? (ii) Does P&C achieve positive

1Note that reported performance is not directly comparable
to published results as we do not learn Omniglot in a few-shot
learning setup.

2Referred to as “SGD” in (Kirkpatrick et al., 2017)
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(a) Performance retention: Results show how the accuracy on
an initial task changes as further alphabets are being learnt.
Averaged over 5 different initial tasks.
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(b) Forward transfer: Results show the relative performance
achieved on a unique tasks after a varying number of previous
tasks have been learnt. Averaged over 5 different final tasks.

Figure 2. Results on Omniglot. Performance normalised by train-

ing a single model on each task. Best viewed in colour.

transfer? (iii) How well does the knowledge base perform

across all tasks after learning?

5.1. Resilience against catastrophic forgetting

As an initial experiment, we provide more insight into the

behaviour of methods designed to overcome catastrophic

forgetting, motivating the use of online EWC. Figure 2a

shows how the accuracy on the initial Omniglot alphabet

varies over the course of training on the remaining 49 alpha-

bets. The results allow for several interesting observations.

Most importantly, we do not observe a significant differ-

ence between online EWC and EWC, despite the additional

memory cost of the latter. The results for Learning Without

Forgetting (LwF) show excellent results on up to 5 tasks,

but the method struggles to retain performance on a large

number of problems. The results for online EWC as applied

within the P&C framework are encouraging, yielding re-

sults comparable to the application of (online) EWC within

a single neural network. As expected, the results for simple

finetuning yield unsatisfactory results due to the lack of any

protection against catastrophic forgetting.
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Figure 3. Positive transfer on random mazes. Shown is the learn-

ing progress on the final task after sequential training. Results

averaged over 4 different final mazes. All rewards are normalised

by the performance a dedicated model achieves on each task when

training from scratch. Best viewed in colour.

Table 1. Positive Transfer on Atari. Shown is the relative perfor-

mance after having trained on a various number of previous tasks.

% Single Task Performance

Previous Tasks: 1 2 3 4 5

P&C (Active col, re-init) 127 129 125 129 128
P&C (Active col) 131 127 114 106 101
Finetuning 117 125 117 105 98
EWC 55 53 53 50 54
online EWC 53 53 49 50 57

5.2. Assessing forward transfer

Positive transfer in the context of transfer- and continual

learning is typically understood as either an improvement

in generalisation performance or more data-efficient learn-

ing. The latter is of great importance in problems where

data acquisition can be costly, such as robotics (Rusu et al.,

2016b). In order to assess the capability of P&C to obtain

positive transfer we show results for the navigation task

in random mazes in Figure 3. Specifically, we train on a

held-out maze after having visited all 7 previous mazes. As

the similarity between the tasks is high, we would expect

significant positive transfer for a suitable method. Indeed,

we observe both forms of transfer for all methods including

online EWC (although to a lesser extent). P&C performs on

par with Finetuning, which in turn suffers from catastrophic

forgetting. While online EWC does show positive transfer,

the method underperforms when compared with Finetuning

and P&C.

We show a summary of the same experiment on Atari in

Table 1. To quantify improved generalisation, we record

the score after training on a unique task, having visited a

varying number of different games beforehand. For P&C,

we report results obtained by the active column when pa-



Progress & Compress: A scalable framework for continual learning

rameters remain unchanged or are optionally re-initialised

after a task has been visited (denoted re-init).

In the case of a more diverse task set (Atari), both EWC

versions show significant negative transfer, resulting in a de-

crease of final performance by over 40% on average. While

initially showing positive transfer, this effect vanished for

Finetuning when more tasks are introduced. We observe the

same effect for P&C when parameters in the active column

remain unchanged, suggesting only a small utilisation of

connections to the knowledge base.

Thus, as argued in Section 2, we recommend re-initialising

parameters in the active column, in which case P&C con-

tinues to show significant positive transfer regardless of the

number of tasks. Furthermore, the results show that positive

transfer can indeed be achieved on Atari, opening the door

for P&C to outperform both online EWC and Finetuning

when evaluating the overall performance of the method (see

Section 5.3).

In combination, these results suggest that the accumulation

of Fisher regularisers indeed tends to over-constrain the

network parameters. While this does not necessarily lead to

negative transfer (provided high task similarity) we observe

slower learning of new tasks compared to our method.

Conducting a similar experiment on Omniglot (see Figure

2b), we observed no generalisation improvement achieved

by Progressive Nets or any other method across all alphabets

when compared to training dedicated models per task. The

effect of these methods is better described as “avoiding neg-

ative transfer”, a phenomenon we continued to observe for

EWC, online EWC & Learning Without Forgetting (LwF).

However, the application of P&C did results in faster learn-

ing, a claim which we support with additional results in the

Appendix. Together, these observations pose an interest-

ing challenge for P&C on Omniglot. Assuming a similar

lack of positive transfer, the framework can only provide

improvements if the knowledge preservation mechanisms

can maintain more performance than a direct application of

online EWC in a single network.

5.3. Evaluating overall performance

Motivated by these results, we now investigate the overall

performance for all methods. In case of P&C we evaluate

the model using the knowledge base (i.e. after distillation)

and thus show how the method performs when several com-

ponents are used in conjunction.

We first report the average test performance across all 50

Omniglot alphabets in Table 2, allowing for up to 5 re-visits

of each alphabet (maintaining a fixed order during training).

Importantly, we train until convergence on each visit. In

order to provide a competitive comparison, we also include

results achieved by less scalable methods. Progressive Nets

(immune to forgetting) and the averaged results obtained by

training a single model on each task (allowing no transfer)

serve as such. All hyperparameters are optimised for maxi-

mum performance after five visits. We also show how the

performance varies when 5 random task permutations are

considered.

As explained in Section 5.2, the performance of Progressive

Nets is slightly lower than training a separate model per task.

This is due to the observation shown in Figure 2b. Among

the remaining methods, P&C achieves the highest mean

performance across all methods, although online EWC is

competitive. The main observation explaining those results

is a higher amount of negative transfer for online EWC,

allowing some room for P&C to take advantage of the two

phases of learning.

Another interesting observation is the difference in perfor-

mance between EWC and the proposed online EWC, which

we mainly observed when changing the amount of training

on any given task for either method. We will discuss this

in more detail below. LwF fails to achieve comparable re-

sults to either version of EWC which we attribute to the

observations made in Figure 2a.

Highlighting the lack of scalability of competing methods,

we also include the number of parameters of each model

in Table 2. Note that a large fraction of the parameters for

Progressive Nets are due to the non-linear connections to

each of the previous columns.

Moving onto experiments in Reinforcement Learning, we

show learning curves for all Atari games in Figure 4 after

optimising all hyper-parameters for maximum final score

across all games. In the case of P&C, we only show rewards

collected during the compress phase as the parameters re-

main unchanged when the active column is learning a new

task. The results show a significant improvement for P&C

on several games while performing comparable (or slightly

worse) on the remaining tasks.

Note that when choosing an appropriate regularisation term

for the objective in (8) in the case of multiple visits to a

task, allowing more forgetting to happen (i.e. choosing a

lower γ) can lead to an overall higher performance. This is

because a re-visit typically results in a higher score as the

extent of EWC’s capacity issues are weakened. This effect

can be particularly well observed in the case of P&C where

an initial high amount of forgetting allows the knowledge

base to perform overall better. Note that the regularisation

strength λ is not directly comparable between P&C and both

EWC variants as the scale of the loss (policy gradients or

policy distillation) is different.

Thus we can conclude that P&C is best used in domains

that allow for some positive transfer in which it can show a

large improvement over methods primarily designed to over-
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Table 2. Results on sequential Omniglot. Shown is the performance on all tasks after training. Results show mean and std. dev over task

permutations.

Model Test Accuracy #Parameters
Passes: 1 2 3 4 5

Single model per Task 88.34 - - - - 5,680 K
Progressive Nets 86.50 ± 0.9 - - - - 108,000 K

Finetuning 26.20 ± 4.6 42.40 ± 7.4 54.24 ± 7.1 60.84 ± 4.1 60.74 ± 3.8 217 K
LwF (λ = 0.1) 62.06 ± 2.0 72.24 ± 2.6 68.44 ± 6.3 68.95 ± 3.0 66.48 ± 3.3 217 K
EWC (λ = 12.5) 67.32 ± 4.7 71.92 ± 2.3 74.20 ± 2.8 74.46 ± 3.4 75.96 ± 3.2 11,100 K
online EWC (λ = 17.5, γ = 0.95) 69.99 ± 3.2 73.46 ± 2.7 76.70 ± 1.9 79.26 ± 0.8 79.15 ± 1.9 446 K
P&C (λ = 15.0, γ = 0.99) 70.32 ± 3.3 76.28 ± 1.3 78.65 ± 1.4 80.13 ± 1.0 82.84 ± 1.4 659 K
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Figure 4. Learning curves on Atari games. Each game is visited 5 times, allowing for training on 50m environment frames on each visit.

Games are learned top to bottom left to right. Here KB: Knowledge base. Dashed vertical bars indicate re-visits to the task. Results

averaged over random seeds. Best viewed in colour.

come catastrophic forgetting. In cases where this does not

hold (e.g. Omniglot), P&C can still show an improvement

although online EWC on its own is a competitive method.

6. Summary & Discussion

This work introduced Progress & Compress, a framework

designed to facilitate transfer in sequential problem solving

while minimising the effects of catastrophic forgetting. The

algorithm achieves a good trade-off between both objectives

when combined with state-of-the-art-methods and works in

a variety of challenging domains.

Moreover, due to the generality of the proposed method,

future methods to mitigate catastrophic forgetting should

be easily integrable within our framework. Throughout this

work, we made the assumption that the learner is aware of

when changes in the task distribution occur, allowing for the

computation of a new posterior approximation. However

this is a relaxation of the more stringent requirement of

knowing the identity of the current task that we hope can

be exploited further to address the gradual drift problem

described in Section 1.

Additionally we use an online version of EWC very similar

to the proposal of Huszár (2017). We add an explicit forget-

ting mechanism and provide empirical evidence suggesting

that online EWC can perform well in practice.
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