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Abstract: Cardiovascular diseases are one of the leading global causes of morbidity and mortality,
posing considerable health and economic burden on patients and medical systems worldwide. This
phenomenon is attributed to two main motives: poor regeneration capacity of adult cardiac tissues
and insufficient therapeutic options. Thus, the context calls for upgrading treatments to deliver
better outcomes. In this respect, recent research has approached the topic from an interdisciplinary
perspective. Combining the advances encountered in chemistry, biology, material science, medicine,
and nanotechnology, performant biomaterial-based structures have been created to carry different
cells and bioactive molecules for repairing and restoring heart tissues. In this regard, this paper
aims to present the advantages of biomaterial-based approaches for cardiac tissue engineering and
regeneration, focusing on four main strategies: cardiac patches, injectable hydrogels, extracellular
vesicles, and scaffolds and reviewing the most recent developments in these fields.

Keywords: cardiac tissue engineering; cardiac regeneration; stem cells; biomaterials; cardiac patches;
injectable hydrogels; scaffolds; extracellular vesicles

1. Introduction

Cardiovascular diseases (CVD) comprise a group of life-threatening pathological
disorders that represent the leading cause of mortality worldwide. As the adult heart
has a limited regeneration ability, cardiac injury leads to progressive function deteriora-
tion, resulting in heart failure [1–4]. Particularly, myocardial infarction (MI) is a frequent
cause of heart failure as it induces irreversible cardiomyocyte loss, scar formation, altered
myocardial architecture, thin and weakened ventricular walls, and arrhythmias [4–6].

Immediately after an MI, no histological change is visible under the microscope.
However, within the period of 30 min–4 h, swollen fibers are observed in the margins
of the affected tissues, and glycogen is lost. Within the next 8 h, myocardial coagulation
necrosis occurs, leading to swelling of the area. During the 12–24 h period, the darkening
of damaged tissue is noticed, with the accumulation of neutrophils. The cell nucleus is
destroyed on days 1–3, while in the following period (i.e., days 3–7), macrophages clear
apoptotic cells from the injured area. On days 7–10, the formation of granulation tissue
occurs, after which type I collagen settles in the area. Finally, within 2 months, the formation
of fibrous tissue is observed, thus replacing dead cells and scars [7,8]. For clarity, the timely
evolution of histological changes post-MI is represented in Figure 1.
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Figure 1. Histological changes after MI on heart tissue, including the period of 0–10 days. Adapted 
from [7]. 

In the necrosis phase, apoptotic cardiomyocytes release reactive oxygen species 
(ROS) and other intracellular contents into the niche, triggering pro-inflammatory cyto-
kines and the recruitment of immune cells into the injured area. The inflammatory micro-
environment further contributes to homeostasis disruption and increases oxidative dam-
age, aggravating inflammation and fibrosis. Thus, an orchestrated biological and mechan-
ical therapeutic strategy is imposed to efficiently mediate pathological processes in the 
necrosis, inflammation, and fibrosis phases [9]. 

Unfortunately, beyond pharmacological therapy, the main treatment possibilities for 
post-MI heart failure remain heart transplantation and cell-based therapies [2,10,11]. 
Nonetheless, these cardiac therapies face several difficulties, including the small number 
of donors, the necessity of immunosuppressive drug administration following surgery, 
and the limited success of cell therapies due to challenging delivery, poor integration, and 
implanted cell survival [4,10–12]. 

In this context, better strategies must be sought to ensure effective and efficient car-
diac regeneration. Therefore, intense research efforts have been directed to integrate bio-
engineering concepts in optimized cardiovascular treatments to overcome the shortcom-
ings of current therapies [13,14]. One particularly appealing interdisciplinary approach 
that has gained ground in the past years is cardiac tissue engineering by combining vari-
ous biomaterials, cells, and bioactive molecules for repairing and restoring heart tissue 
[4,10,15,16]. Specifically, various natural and synthetic biomaterials can act as both deliv-
ery platforms and support structures for cells to proliferate and differentiate into healthy 
cardiac tissue. 

In this respect, recent studies have exploited the variety and versatility of biomateri-
als for creating innovative patches, hydrogels, scaffolds, and delivery platforms that hold 
tremendous promise for future clinical utility. Even though some of these topics have been 
addressed in previous reviews [11,14,17–21], this paper aims to provide an updated out-
look on the subject. Hence, this review focuses on the most recent developments in bio-
materials used for cardiac tissue engineering and regeneration, mostly discussing studies 
published between 2018 and 2022 while offering several future perspectives. 

More specifically, this paper briefly discusses cell-based therapy limitations, empha-
sizing the need for biomaterial-based approaches. Then, the following sections aim to pre-
sent in more detail the identified novelties in the field of cardiac tissue engineering and 
regeneration, focusing on recently developed cardiac patches, injectable hydrogels, extra-
cellular vesicle-based therapies, and advanced scaffolds. Through this comprehensive 

Figure 1. Histological changes after MI on heart tissue, including the period of 0–10 days. Adapted
from [7].

In the necrosis phase, apoptotic cardiomyocytes release reactive oxygen species (ROS)
and other intracellular contents into the niche, triggering pro-inflammatory cytokines
and the recruitment of immune cells into the injured area. The inflammatory microenvi-
ronment further contributes to homeostasis disruption and increases oxidative damage,
aggravating inflammation and fibrosis. Thus, an orchestrated biological and mechanical
therapeutic strategy is imposed to efficiently mediate pathological processes in the necrosis,
inflammation, and fibrosis phases [9].

Unfortunately, beyond pharmacological therapy, the main treatment possibilities
for post-MI heart failure remain heart transplantation and cell-based therapies [2,10,11].
Nonetheless, these cardiac therapies face several difficulties, including the small number
of donors, the necessity of immunosuppressive drug administration following surgery,
and the limited success of cell therapies due to challenging delivery, poor integration, and
implanted cell survival [4,10–12].

In this context, better strategies must be sought to ensure effective and efficient cardiac
regeneration. Therefore, intense research efforts have been directed to integrate bioengi-
neering concepts in optimized cardiovascular treatments to overcome the shortcomings of
current therapies [13,14]. One particularly appealing interdisciplinary approach that has
gained ground in the past years is cardiac tissue engineering by combining various bioma-
terials, cells, and bioactive molecules for repairing and restoring heart tissue [4,10,15,16].
Specifically, various natural and synthetic biomaterials can act as both delivery platforms
and support structures for cells to proliferate and differentiate into healthy cardiac tissue.

In this respect, recent studies have exploited the variety and versatility of biomaterials
for creating innovative patches, hydrogels, scaffolds, and delivery platforms that hold
tremendous promise for future clinical utility. Even though some of these topics have been
addressed in previous reviews [11,14,17–21], this paper aims to provide an updated outlook
on the subject. Hence, this review focuses on the most recent developments in biomaterials
used for cardiac tissue engineering and regeneration, mostly discussing studies published
between 2018 and 2022 while offering several future perspectives.

More specifically, this paper briefly discusses cell-based therapy limitations, empha-
sizing the need for biomaterial-based approaches. Then, the following sections aim to
present in more detail the identified novelties in the field of cardiac tissue engineering
and regeneration, focusing on recently developed cardiac patches, injectable hydrogels,
extracellular vesicle-based therapies, and advanced scaffolds. Through this comprehensive
pathway, this review aspires to present the progress in the field of biomaterials for cardiac
repair, serve as an inception point for future research, and help envisage more efficient
treatment strategies.
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2. Cell-Based Therapies

Cell therapy is one of the recently considered strategies for cardiac regeneration, con-
sisting of direct injection of exogenous therapeutic cell suspension into the affected heart
or activation of endogenous regenerative processes through stimulation of adult tissue-
restricted stem cells [11,22]. In this respect, a broad range of stem cells at different develop-
mental stages has been researched in relation to their ability to replace damaged or dead
cardiomyocytes toward improving cardiac function and ensuring heart tissue regeneration.
Cells ranging from adult stem or progenitor cells to embryonic or induced pluripotent stem
cells have been taken into consideration for creating efficient treatments [4,23–26] (Figure 2).
Specifically, scientists have investigated in vitro and in vivo testing of bone marrow-derived
stem cells [27–29], cardiac stem cells [29,30], induced pluripotent stem cells [31], pluripotent
stem cell-derived cardiomyocytes [32], pluripotent stem cell-derived mesenchymal stromal
cells [33], adipose-derived stem cells [34,35], embryonic stem cells [36], fetal membrane-
derived mesenchymal stem cells [37], menstrual blood-derived endometrial stem cells [38],
and more.

Polymers 2023, 15, 1177 3 of 24 
 

 

pathway, this review aspires to present the progress in the field of biomaterials for cardiac 
repair, serve as an inception point for future research, and help envisage more efficient 
treatment strategies. 

2. Cell-Based Therapies 
Cell therapy is one of the recently considered strategies for cardiac regeneration, con-

sisting of direct injection of exogenous therapeutic cell suspension into the affected heart 
or activation of endogenous regenerative processes through stimulation of adult tissue-
restricted stem cells [11,22]. In this respect, a broad range of stem cells at different devel-
opmental stages has been researched in relation to their ability to replace damaged or 
dead cardiomyocytes toward improving cardiac function and ensuring heart tissue regen-
eration. Cells ranging from adult stem or progenitor cells to embryonic or induced plu-
ripotent stem cells have been taken into consideration for creating efficient treatments 
[4,23–26] (Figure 2). Specifically, scientists have investigated in vitro and in vivo testing 
of bone marrow-derived stem cells [27–29], cardiac stem cells [29,30], induced pluripotent 
stem cells [31], pluripotent stem cell-derived cardiomyocytes [32], pluripotent stem cell-
derived mesenchymal stromal cells [33], adipose-derived stem cells [34,35], embryonic 
stem cells [36], fetal membrane-derived mesenchymal stem cells [37], menstrual blood-
derived endometrial stem cells [38], and more. 

 
Figure 2. Overview of stem cells investigated for cardiac regenerative therapy. Adapted from [22]. 
Abbreviations: MSCs—mesenchymal stem cells; CSCs—cardiac stem cells; HSCs—hematopoietic 
stem cells; iPSCs—induced pluripotent stem cells; ESCs—embryonic stem cells; CMs—cardiomyo-
cytes; ECM—extracellular matrix. 

In addition to their pluripotency and self-renewal capacity, stem cells are also en-
dowed with paracrine effects, anti-inflammatory activity, and immunomodulatory capac-
ity [24,26,39]. Moreover, the high cardiac differentiation potential and the possibility to 
develop large-scale cultivation systems render cell-based therapies promising for achiev-
ing great progress in unveiling MI’s molecular and cellular mechanisms [40,41]. 

Nonetheless, the efficacy of cell-based therapies is impeded by several drawbacks, 
counting low retention and engraftment of transplanted cells, the potential for differenti-
ation into host cell types, viability under the harsh conditions of damaged tissue, and risk 
of inflammation and immunoreaction [1,7,24,42]. In addition, from the wide range of 
available cell candidates, only bone marrow-derived stem cells, myoblasts, cardiac 

Figure 2. Overview of stem cells investigated for cardiac regenerative therapy. Adapted from [22]. Ab-
breviations: MSCs—mesenchymal stem cells; CSCs—cardiac stem cells; HSCs—hematopoietic stem
cells; iPSCs—induced pluripotent stem cells; ESCs—embryonic stem cells; CMs—cardiomyocytes;
ECM—extracellular matrix.

In addition to their pluripotency and self-renewal capacity, stem cells are also endowed
with paracrine effects, anti-inflammatory activity, and immunomodulatory capacity [24,26,39].
Moreover, the high cardiac differentiation potential and the possibility to develop large-scale
cultivation systems render cell-based therapies promising for achieving great progress in
unveiling MI’s molecular and cellular mechanisms [40,41].

Nonetheless, the efficacy of cell-based therapies is impeded by several drawbacks,
counting low retention and engraftment of transplanted cells, the potential for differen-
tiation into host cell types, viability under the harsh conditions of damaged tissue, and
risk of inflammation and immunoreaction [1,7,24,42]. In addition, from the wide range of
available cell candidates, only bone marrow-derived stem cells, myoblasts, cardiac progeni-
tor cells, and adipose-derived stem cells have been involved in clinical trials, leading to
mixed encouraging and disappointing results. However, negative outcomes might have
been caused by the poor permanence of the injected cells inside the tissue [13]. In more
detail, the environment of the post-MI heart is relatively acidic and presents a severely
affected extracellular matrix (ECM), hampered mechanical properties causing a higher
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ventricular applied tension than that of the threshold of the defective tissue. Hence, the
unfavorable environment causes a significant volume of cells to suffer apoptosis at a short
time after transplantation, leading to overall unsatisfactory results [43]. To overcome these
limitations, biomaterials appeared as a convenient solution. Seeding cells to a scaffolding
material can improve cell retention and engraftment, enhancing cell survival and restoring
cardiac function [1,39,42].

3. Biomaterial-Based Approaches
3.1. Biomaterials—Brief Overview

Biomaterials comprise a broad field of different scaled materials from macro- to micro-
and nano-sized polymers, ceramics, metals, and composites that can work with living
matter to replace or restore damaged tissues [12]. They can be used in tissue engineering in
various forms (e.g., carriers, hydrogels, scaffolds), playing a vital role in anchoring cells
and serving as a framework for their further proliferation and differentiation [44].

For the specific purpose of cardiac tissue engineering, biomaterial structure and
function should mimic the native features of cardiac ECM and furnish a proper microen-
vironment for enhancing cell viability [1,5]. Specifically, biomaterials aiming to ensure
cardiac repair should be biocompatible and biodegradable, exhibit similar mechanical and
biological properties to native myocardium, enable cell integration, diminish the hostility of
the local microenvironment, ensure a slow release of bioactive molecules, and provide ap-
propriate electrical conductivity [1,12,45]. Moreover, integrating antioxidant agents within
biomaterials has the potential to mediate inflammation and fibrosis. By scavenging ROS,
antioxidant structures can attenuate oxidative damage, pro-inflammatory polarization of
macrophages, and fibrotic response to cardiac repair [9].

Despite the complex requirements for a suitable biomaterial, various natural (e.g., fibrin,
gelatin alginate, chitosan, collagen, hyaluronic acids, silk) and synthetic polymers (e.g., polyg-
lycolic acid (PGA), polylactic acid (PLA), polylactic-co-glycolic acid (PLGA), polyurethane
(PU) and their derivatives) have been reported to resemble (in various degrees) several ECM
properties of interest [5,12,44,46]. Their beneficial features include biocompatibility, appro-
priate chemistry, hydrogel formation ability, suitable mechanical properties, and satisfactory
degradation rate [5,15,47].

Further processing of convenient materials allows their tailoring with appropriate
morphology and characteristics for application in cardiac tissue engineering [44]. Moreover,
stem and/or progenitor cells of interest can be mixed with or cultured on biomaterials [12].
This results in a synergic combination as cells endow biomaterials with the capacity of
tissue reconstruction and regeneration, while biomaterials offer the necessary support for
cell-to-tissue processes, such as cell–cell adhesion, proliferation, and differentiation [44,47].
To improve restorative potential, biomaterials can also be combined with regenerating
factors that activate reparative processes in the infarcted heart and pro-survival factors that
protect transplanted cells from the aggressive environment of post-MI damaged tissues [5].
Additionally, through their engineered 3D structure, biomaterials permit gas and nutrient
transportation and the formation of supportive vascular substructures for blood vessels,
maximizing cellular adhesion space and inducing ECM secretion, revascularization, and
paracrine processes [44].

As the heart has a contractile nature, multiple mechanical forces act upon cardiac
tissues, inducing non-uniform 3D deformations [3]. Thus, biomaterials chosen for cardiac
regeneration must be able to withstand forces such as mechanical strain, tensile forces, and
shearing forces to fit the natural stretching and compression of the myocardium. Moreover,
biomaterial implants should be capable of stimulating electrical conductivity to promote
dynamic cardiac tissue functions [45,48].

For clarity, Figure 3 was created to summarize the specific characteristics of biomateri-
als required for cardiac tissue regeneration.
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3.2. Approaches for Cardiac Tissue Engineering and Regeneration

Biomaterial-based approaches have gained increasing attention for cardiac tissue
engineering and regeneration as recent developments demonstrated promising results in
improving cardiac function, promoting angiogenesis, and diminishing adverse immune
responses in animal testing and clinical trials [11,50]. To highlight the current progress in
cardiac regeneration therapies, the following subsections describe the newest advances
in therapeutic delivery via cardiac patches, injectable hydrogels, extracellular vesicles,
and scaffolds.

3.2.1. Cardiac Patches

One of the significant focuses of cardiac regeneration approaches is represented by
cardiac patches. Such structures can be made from both natural and synthetic materials
engineered to have a microstructure that mimics native heart tissues, provides a microenvi-
ronment for the incorporated biological moieties, and ensures the necessary support for
the construct itself [11,50]. Cardiac patches can impart functional benefits to damaged
myocardium, relying on appropriate cell adhesion and proliferation. Fine-tuning cardiac
patches according to desired size, shape, and mechanical strength offers enhanced compati-
bility. Moreover, cardiac patches can be seeded with cells before implantation, allowing
their growth and maturation in culture or biological reactors [51].

When placed on the heart surface at the infarction site, these biomaterial structures
can improve cardiac function by delivering various bioactive factors or cells [52]. Specif-
ically, scientists have successfully incorporated a wide range of relevant cells, counting
synthetic cardiac stromal cells [42], adipose tissue-derived mesenchymal stem cells [53],
cardiomyocytes [54–59], mesenchymal stromal cells [56], endothelial cells [56], and skeletal
myoblast stem cells [60]. Moreover, several studies have also investigated the addition of
bioactive molecules, such as hepatocyte growth factor, insulin-like growth factor-1 [61],
isoproterenol, and epinephrine [57], to increase the therapeutic efficiency of the patches.
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In terms of substrate materials, recent studies mainly approached the use of decellu-
larized porcine biological materials [42,62], natural-based polymers (e.g., cellulose [53,59],
chitosan [53,54,63], silk fibroin [53], collagen [55,61], gelatin methacrylate [56]) and syn-
thetic polymers (e.g., polyethylene glycol diacrylate [56], polycaprolactone [60], polyvinyl
alcohol [58], polyvinyl pyrrolidone [58]). The advantage of using decellularized natural
ECM from native tissues resides in its complex composition of proteins interlaced with pro-
teoglycans that provide the necessary support for cells to orient and interact via signaling
factors. Nonetheless, when considering the transition from in vitro and in vivo testing to
human studies, these biological materials pose several challenges, including autologous
tissue/organ scarcity, host responses, and pathogen transfer when utilizing allogenic and
xenogenic tissues [64].

Thus, there is an increased scientific interest in developing cardiac patches from non-
animal natural sources or biocompatible synthetic materials. One particularly interesting
recent research direction is proposed by He and colleagues [59]. The authors aimed to
solve two problems at once by fabricating cardiac patches from waste biomass-sea squirts
(Figure 4). The researchers proved that the tunic cellulose-derived natural self-conductive
structures successfully served as functional cardiac patches, promoting cardiomyocyte
maturation and spontaneous contraction. Therefore, their solution could benefit ma-
rine environmental bio-pollution while also upgrading current therapeutic options for
MI treatment.
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For an at-glance perspective over newly designed cardiac patches, Table 1 presents
several recent studies, summarizing information concerning utilized substrate materials,
cells, and bioactive molecules, also emphasizing the testing stage and reported observations.

Table 1. Examples of recently developed cardiac patches.

Substrate Cells Bioactive
Molecules Testing Observations Ref.

Decellularized
porcine myocardial
extracellular matrix

Synthetic cardiac
stromal cells - Rat and porcine

models of acute MI

Supports cardiac recovery
Reduces scarring

Promotes angiomyogenesis
Boosts cardiac function

The patch is clinically feasible
and easy to store

[42]

Decellularized
porcine

myocardium slice
- - Rat model of

acute MI

Firm attachment to host
myocardium

Prevents thinning of the left
ventricular wall

Allows infiltration of a large
number of host cells

Significant improvement of left
ventricle wall contraction and
cardiac functional parameters

[62]

Cellulose nanofibers
modified with

chitosan/silk fibroin
(CS/SF) multilayers

Adipose
tissue-derived
mesenchymal

stem cells

- Rat model of
acute MI

Less ventricular remodeling
than direct cell injection

Elevates left ventricular ejection
fraction and fractional

shortening Attenuates cardiac
fibrosis and apoptosis

Promotes local
neovascularization

[53]

Chitosan films
micropatterned with

a re-entrant
honeycomb (bowtie)
pattern and coated

with polyaniline and
phytic acid

Neonatal rat
ventricular myocytes

and fibroblasts
- Rat MI model

Conductive and cytocompatible
patch

No detrimental effect on the
electrophysiology of both

healthy and MI hearts
Conform better to native heart
movements than unpatterned

patches
No detrimental effect on cardiac

function
Negligible fibrotic response

after two weeks

[54]

Collagen-based
hybrid

nanocomposite
loaded with

nanogold

Neonatal rat
cardiomyocytes - Murine model 7 days

post-MI

Increases connexin-43
expression in cells cultured
under electrical stimulation

Able to recover cardiac function
Increased blood vessel density

Reduces scar formation

[55]

Collagen patch
incorporated with

alginate
microparticles

-

Hepatocyte
growth factor
Insulin-like

growth factor-1

Isolated myocardial
tissue from rats

Extends the release of
encapsulated proteins up to

15 days
Increases motogenic and

proliferative effect
Favors the natural regenerative
potential of cardiac stem cells

[61]

Gelatin methacrylate
and polyethylene

glycol
diacrylate-based

patch with
myocardial fiber

orientation

Cardiomyocytes,
mesenchymal

stromal cells, and
endothelial cells

-
Mice model of

chronic MI with
ischemia-reperfusion

Increases cell density
Reduces damaged tissue area

Ensures high engraftment rates
Strong integration within the

epicardium
Progressive implant

vascularization

[56]
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Table 1. Cont.

Substrate Cells Bioactive
Molecules Testing Observations Ref.

Fibrin gel-based 3D
patch

Cardiac myocytes
reprogrammed from
human adipogenic
mesenchymal stem

cells

Isoproterenol
Epinephrine In vitro

Increases the expression of
mTOR, KCNV1, GJA5, KCNJ16,

CTNNT2, KCNV2, MYO3,
FOXO1 and KCND2

Restores the electrical activity of
infarcted hearts

Improves cardiac functions

[57]

Polycaprolactone
nanoscale-to-

microscale
fibers

Skeletal myoblast
stem cells - Rat MI model

Presents strong compliance and
survival after transplantation

Release VEGF
[60]

Polyvinyl alcohol
and polyvinyl

pyrrolidone-based
patch

Neonatal mouse
cardiomyocytes - Rat model

Biocompatible and
biodegradable

No signs of tissue damage or
necrosis at the implantation site,

no detectable wound
complications, inflammatory

response, or adverse
tissue reactions

[58]

Fibrin gel-based
patch with

microengineered
blood vessels

Human umbilical
vein endothelial cells
and human cardiac

stem cells

- Rat model of acute
MI

Induces profound mitotic
activities of cardiomyocytes

Significantly enhances
myocardial capillary density

[65]

Porous
self-conductive

cellulose hydrogel
Cardiomyocytes - Rat model of acute

MI

Significantly promotes the
maturation and spontaneous

contraction of cardiomyocytes
Enhances cardiac function of

animal models

[59]

3.2.2. Injectable Hydrogels

Sustained efforts to develop strategies for improving the retention of cell therapy
have also resulted in the design and fabrication of various hydrogels that can be injected
at the damaged site. The viscoelastic properties of hydrogels contribute to inhibiting
applied tensions on the injured region, preventing the formation of fibrous and scar tissue.
Moreover, their porosity facilitates stem cell migration to the affected site, positively
impacting their retention and survival [43,66,67].

Hydrogel-type biomaterials can be employed in the delivery of both cellular and
acellular biological components. For instance, natural polymers, including alginate, chi-
tosan, collagen, fibrin, fucoidan, hyaluronic acid, and keratin, have been used as efficient
injectable carrier materials for active factors [15]. Nonetheless, given their favorable archi-
tectures, hydrogels also represent the most commonly utilized cellular scaffold. Specifically,
hydrogels form networks due to molecular interactions between the different functional
groups present in the base polymer (Figure 5). These structures allow hydrogels to swell
upon absorption of biological fluids, serving as soft elastic scaffolds resembling native
tissue microenvironments [23,68].

In what concerns its working principle, hydrogel material in its liquid form can be
mixed with cells and biomolecules of interest and injected as a solution to the target my-
ocardial area, where it undergoes gelation, becoming a mixed 3D cell polymeric network
ready for integration with the surrounding tissue. Thus, injectable hydrogels offer a mini-
mally invasive therapeutic alternative for creating the protective environment cells need
to survive and bioactive agents to exert their intended activity [1,5,11,69,70]. Additionally,
the high-water content of hydrogels endows them with the ability to efficiently exchange
nutrients and metabolic waste products with the surrounding environment. Moreover,
hydrogel formulation can be fine-tuned to mimic the mechanical properties of the native
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ECM and provide cells with the biochemical stimuli required for directing them toward
desired fates [66].
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Depending on the nature of the base material, hydrogels can be divided into natural
and synthetic. Natural hydrogels made of polysaccharides or proteins are considered ap-
pealing due to their non-toxicity, immunogenicity, and excretion of metabolites. Moreover,
superior water-swelling properties allow them to easily adsorb and contain nutrients and
small molecules, upgrading cell survival and boosting exercise performance. In contrast,
synthetic hydrogels are recognized for their stronger mechanical properties and the feasi-
bility of physically or chemically linking to new functional groups to enhance functionality.
Synthetic hydrogels also benefit from a low risk of immune rejection but present low
adhesion and not as good biocompatibility as that of natural materials [70].

One particularly appealing cardiac repair strategy is the use of self-healing injectable
hydrogels that mechanically support infarcted tissue and prevent pathological ventricular
remodeling while repairing their own structure and regaining original properties following
damage [71–73]. Self-healing hydrogels can be functionalized with diverse growth factors,
pro-angiogenic cytokines, microRNAs (miRNAs), and stem or progenitor cells to enhance
cardiac tissue regeneration [74]. Specifically, studies have shown that stem cell-laden hydro-
gels lead to better effects than either stem cell transplantation or hydrogel injection alone,
achieving synergistic potential in recovering infarcted myocardium [43,75]. Moreover,
enriching hydrogels with antioxidative properties can lower the oxidative stress levels
from ischemic myocardium, whereas providing immunomodulatory activity contributes to
decreasing postinfarct inflammatory response [74].

Given the tremendous potential of injectable hydrogels, researchers have investi-
gated various formulations for cardiac repair and regeneration. For instance, Traverse Jay
et al. [76] have investigated the safety and feasibility of VentriGel in early and late post-MI
patients with left ventricular dysfunction. The decellularized ECM hydrogel was injected
transendocardially into 15 patients as the first-in-man study concerning this material. In
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terms of efficacy, the study revealed improvements mainly in patients who had MI more
than 12 months before treatment.

Alternatively, Contessotto et al. [77] proposed the use of an ECM-mimicking hydrogel
that can be intramyocardially injected. Tested on an ovine model, the injectable hydrogel
made of elastin-like recombinamers led to complete functional recovery of ejection fraction
21 days after the intervention. Moreover, fibrosis was diminished, angiogenesis was
stimulated, and GATA4+ cardiomyocytes were better preserved in the border zone of the
infarct.

In contrast, Bai et al. [78] have created an injectable temperature-sensitive hydrogel
based on ECM from decellularized rat hearts seeded with cardiomyogenic cells isolated
from brown adipose. The synergistic combination led to the preservation of cardiac function
and chamber geometry, as the ECM hydrogel enhanced cell engraftment and myocardial
regeneration.

Following a different approach, Xu and colleagues [79] have developed biodegradable
hybrid hydrogels based on thiolated collagen and multiple acrylate-containing copolymers.
Alone or encapsulated with bone marrow mesenchymal stem cells, these hydrogels were
able to increase ejection fraction and improve cardiac function at 28 days after administra-
tion into rat MI model. Anatomically, the injected formulation considerably diminished the
infarct size and increased the wall thickness.

Dong et al. [80] have fabricated a self-healable conductive hydrogel based on chitosan-
graft-aniline tetramer and dibenzaldehyde-terminated poly(ethylene glycol) that can be
injected into infarcted hearts. The injectable hydrogels present good biocompatibility,
biodegradability, tunable release rate, and a conductivity of ∼10–3 S·cm–1, which is similar
to native cardiac tissue.

Another self-healing hydrogel was proposed by Hu et al. [81], who used recombinant
humanized collagen type III for the delivery of curcumin nanoparticles at the MI site. The
natural drug exhibited remarkable antioxidant and anti-inflammatory activity, effectively
reducing ROS levels, cell apoptosis, and post-MI inflammatory reactions, while the bioma-
terial stimulated cell proliferation, migration, and angiogenesis. The synergistic approach
led to rapid recovery of cardiac function, rendering this multifunctional cytocompatible
hydrogel a promising tool for regenerating infarcted hearts.

Navaei and colleagues [82] have manufactured a mechanically robust injectable hydro-
gel made of gelatin crosslinked to temperature-responsive poly(N-isopropylacrylamide) for
cardiac cells delivery and tissue engineering. The hybrid material offered bioactivity and
enhanced water content, resulting in optimum cell survival, adhesion, and spreading, also
leading to cytoskeletal and cardiac-specific markers organization. The injectable matrix was
able to accommodate cardiac fibroblasts, augmenting the functionality of the cell-embedded
hydrogel.

On a different note, Waters et al. [83] have prepared a gelatin and Laponite®-based
injectable hydrogel to deliver therapeutic biomolecules (secretome) secreted by human
adipose-derived stem cells. The biocompatible system significantly increased capillary
density, reduced scar area, and improved cardiac function, demonstrating its potential as
an MI treatment.

3.2.3. Extracellular Vesicles

Besides the above-discussed cardiac repair techniques, extracellular vesicles in general
and exosomes in particular hold great promise for designing performant alternative or com-
plementary formulations for cell therapies, cardiac patches, and injectable hydrogels (Figure 6).
Their potential resides in the role played in regulating cardiac function, as it was recently
discovered that extracellular vesicle dysregulation might be an important mechanism of injury
progression [2,84,85]. Moreover, exosome content is beneficial for cardiac regeneration as the
combination of messenger RNAs (mRNAs), proteins, miRNAs, and other bioactive molecules
facilitates angiogenesis, reduces infarct size, ensures cell survival and proliferation, releases
paracrine factors, and modulates immune response [11,84,86,87].
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Extracellular vesicles originating from various cells have demonstrated potential for
cardiac regeneration therapy either alone or in different combination approaches [85].
The use of hydrogels or cardiac patches as delivery vehicles allows tailored release of
extracellular vesicles, whereas the injection of parent cells results in a variable release [11].
Thus, most of the recent studies have approached extracellular vesicle-based treatments
in association with various biomaterials as convenient biocompatible carriers for creating
multifunctional therapeutic platforms.

For instance, Lv et al. [88] tackled the potential of mesenchymal stem cell (MSC)-
derived small extracellular vesicles for treating MI. In this respect, the authors have incor-
porated them into alginate hydrogel to improve their retention in the cardiac tissue and
enhance the therapeutic outcomes. The as-designed treatment was reported to considerably
decrease cardiac cell apoptosis, promote macrophages polarization at day 3 after MI, and
increase scar thickness and angiogenesis at 4 weeks post-infarction, thus leading to overall
improved cardiac function and infarct size. Similarly, Shao et al. [89] demonstrated the
cardiac repair potential of MSC-derived exosomes, comparing their effects to MSCs. Their
study concluded that the exosome-based treatment stimulated cardiomyocyte prolifera-
tion, inhibited H2O2-induced apoptosis, and hindered TGF-β induced transformation of
fibroblast cells into myofibroblast, leading to better therapeutic activity than MSCs.

Exosomes derived from human umbilical cord MSCs can also be employed in cardiac
regeneration, as demonstrated by Han et al. [90]. The authors encapsulated these exosomes
in functional peptide hydrogels to improve their retention and stability. In comparison
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to exosome treatment alone, the hybrid formulation was noticed to bring better results
in terms of reducing inflammation, fibrosis, and apoptosis, and promoting angiogenesis,
overall leading to an improvement in myocardial function.

Alternatively, Chen and colleagues [91] harvested extracellular vesicles from endothe-
lial progenitor cells (EPCs), incorporating them into an injectable shear-thinning gel. The
novel formulation was observed to enhance peri-infarct vascular proliferation, allow preser-
vation of ventricular geometry and positively impact the hemodynamic function post-MI.

Differently, Liu et al. [92] have chosen to work with extracellular vesicles secreted from
cardiomyocytes derived from induced pluripotent stem cells. When encapsulated into an
engineered hydrogel patch, these vesicles were able to reduce arrhythmic burden, promote
ejection fraction recovery, decline cell apoptosis 24 h post-MI, and diminish infarct size and
cell hypertrophy 4 weeks post-MI.

3.2.4. Scaffolds

Interesting possibilities have also been envisaged by creating myocardial tissue grafts
based on preformed implantable scaffolds. Cardiac tissue engineering scaffolds can be
fabricated via crosslinking of biomaterial solution into the desired shape, followed by solid-
ification and/or drying/freeze-drying to generate a porous ECM-like matrix. Compared
to hydrogels, scaffold preparation allows more control over the porosity of the structure
before cell seeding, also significantly reducing cell exposure to stress during mixing and
molding procedures [5]. Moreover, the involvement of advanced manufacturing techniques
such as electrospinning, self-assembled monolayers, 3D bioprinting, and thermally induced
phase separation allows the combination of the substrate material with peptides and DNA
for creating biomimetic 3D scaffolds able to support the regeneration of various stem cells
down multiple lineages [44,93]. Additionally, through their customized porous architecture,
scaffolds can influence cardiac cell alignment to organize into the gross conformation of
native cardiac tissue [5].

Several factors have been observed to be particularly relevant for cardiac applications,
counting substrate geometry, stiffness, matrix topography, and electrical stimulation. These
aspects must be thoroughly tailored to ensure the differentiation of seeded cells toward
achieving high specific functionality as they are known to significantly influence cellular
behavior, regulation of motility, proliferation, and differentiation responses [44,45,93]. In
this respect, several studies have investigated various scaffolds based on different substrate
materials, embedded nanostructures, and seeded cells, a few examples being described in
more detail below.

Hayoun-Neeman et al. [94] have created macroporous scaffolds based on alginate
in either pristine form or modified with arginine-glycine-aspartate (RGD) peptide and
heparin-binding peptide (HBP). The scaffolds were seeded with human ESC-derived
cardiomyocytes and human dermal fibroblasts to form functional cardiac tissues. Alginate
modification with peptides was noticed to improve the biomaterial’s functionality. Its
potential for cardiac regeneration was demonstrated by an increase in contraction amplitude
and calcium transients with time, a decrease in excitation threshold, and a display of typical
fiber morphology with massive striation.

Tamimi et al. [10] have constructed ternary scaffolds made of solubilized ECM, chi-
tosan, and alginate in different blending ratios. All samples had porosities exceeding 96%
and very high swelling rates while maintaining their stability in PBS solution. Moreover,
the addition of polysaccharides was noted to improve the tensile strength of the designed
scaffolds. Nonetheless, the best results were obtained for the mixture containing 75%
ECM, 12.5% alginate, and 12.5% chitosan, which improved human MSCs proliferation and
produced a higher cardiac marker expression.

Liang et al. [95] have recently developed a conductive scaffold using polypyrrole
blended with silk fibroin solutions. The researchers tested various silk fibroin concentra-
tions and different polymer blending ratios, obtaining the closest mechanical properties to
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the native heart tissues for 7% silk fibroin solution and sufficient electrical conductivity for
cardiomyocytes with a polypyrrole-to-silk fibroin ratio of 15:85.

Alternatively, Li and colleagues [96] have incorporated high-aspect-ratio gold nanowires
into gelatin methacrylate (GelMA) hydrogels to obtain biomaterial scaffolds with enhanced
electrical conductivity and mechanical properties. Their scaffold provided a proper medium
for constructing functional cardiac tissue as cardiomyocytes cultured on it demonstrated
better cell viability and maturation state than those cultured on plain GelMA hydrogels,
also displaying synchronous beating activity and a faster spontaneous beating rate on
nanocomposite hydrogels.

Saravanan et al. [97] have also utilized gold as a component for designing an advanced
scaffold for cardiac repair. The authors have created a conductive biodegradable structure
by incorporating graphene oxide gold nanosheets into a chitosan matrix. The synthesized
scaffold presented well-controlled porous architecture, swelling, and degradation prop-
erties, supporting cell attachment and growth without signs of cytotoxicity. Following
implantation, the scaffold improved cardiac contractility and restored ventricular function.

On a different note, Feiner and colleagues [49] have fabricated an elastic biodegradable
electronic made of electrospun albumin fibers serving as substrate and passivation layer
for evaporated gold electrodes (Figure 7). The performant scaffold allowed cardiomyocytes
to organize into functional cardiac tissue, enabled actuation of the engineered tissue, and
triggered drug release. Moreover, the electronic scaffolds degraded post-implantation,
which makes them an appealing candidate for short-term in vivo application.
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stuck together using an ECM-based hydrogel as an adhesive. Next, a layer of polypyrrole loaded
with dexamethasone is deposited onto selected electrodes. Neonatal rat ventricular cardiomyocytes
are seeded onto the device that permits further organization into functional cardiac tissue. With the
aid of an external amplifier, extracellular signals may be recorded from the tissue, and stimuli may be
delivered to the device for pacing and drug release. Adapted from [49].

4. Summative Discussion and Future Perspectives

To address the limitations of current cardiac injury treatments, extensive research has
been noted in developing biomaterial-based strategies. Special focus was observed on using
various natural and synthetic polymeric materials to create delivery platforms for different
cells and bioactive molecules relevant to cardiac tissue engineering and regeneration.
Recent research efforts have materialized into a number of cardiac patches, injectable
hydrogels, extracellular vesicle-based therapies, and advanced scaffolds that showed
promising results when tested in vitro and in vivo. Nonetheless, the proposed innovative
treatment strategies have not yet reached the stage of clinical testing, except for a few
studies (Table 2). Specifically, scientists have translated pre-clinical research to human
testing of several biomaterial approaches, including VentriGel [98], CorMatrix-ECM [99],
PeriCord [100], and epicardial atrial appendage micrograft (AAM) patch [101].

Table 2. Clinical trials involving biomaterials for cardiac tissue engineering and regeneration.

ClinicalTrials.gov
Identifier Official Title Intervention/

Treatment Phase Reference

NCT02305602

A Phase I, Open-label Study of the Effects
of Percutaneous Administration of an

Extracellular Matrix Hydrogel, VentriGel,
Following Myocardial Infarction

Biological: VentriGel Phase 1 [98]

NCT02887768
Cardiac Infarct Repair Using
CorMatrix®-ECM: Clinical

Feasibility Study

Device: Epicardial Infarct Repair with
CorMatrix-ECM

Procedure: Coronary Artery Bypass
Grafting Surgery

Early Phase 1 [99]

NCT03798353

Pericardial Matrix with Mesenchymal Stem
Cells for the Treatment of Patients With

Infarcted Myocardial Tissue (The
PERISCOPE Trial)

Combination Product: PeriCord: Expanded
and cryopreserved allogeneic umbilical

cord Wharton’s jelly-derived adult
mesenchymal stem cells colonized on

human pericardial matrix.
Procedure: Surgery by sternotomy

Phase 1 [100]

NCT05632432

Atrial Appendage Micrograft
Transplantation in Conjunction with

Cardiac Surgery—the AAMS2 Randomized
Controlled Trial

Procedure: Epicardial AAMs-patch
transplantation

Diagnostic Test: RNA-stabilized whole
blood sampling

Diagnostic Test: Plasma sampling
Diagnostic Test: Transthoracic

echocardiography
Diagnostic Test: Late-gadolinium

enhancement cardiac magnetic resonance
imaging (LGE-CMRI)

Other: Symptom-scaling
Other: 6 min walking test (6MWT)
Diagnostic Test: Blood sampling

(NT-proBNP)
Diagnostic Test: Transesophageal

echocardiography

Not
applicable [101]

Most of the tabulated studies do not have publicly posted results, with the excep-
tion of NCT02887768 [99], whose pre-clinical observations have been debated in several
publications [102,103]. It has been reported that the use of bioinductive ECM biomaterial
(i.e., CorMatrix Cardiovascular Inc, Roswell, Ga) promotes endogenous myocardial repair
and functional recovery after MI, its clinical translation being considered a promising
adjuvant therapy to surgical revascularization.
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Moreover, undergoing clinical studies may soon confirm the utility of novel biomateri-
als for cardiac tissue engineering and regeneration, leading to the entrance into the clinical
practice of performant treatment alternatives. In addition, investigating the effectiveness
and safety of the discussed biomaterial formulations in humans represents a mandatory
step in introducing improved therapeutic approaches in the clinical setting.

Another appealing future research direction consists in producing multi-material
structures via 3D printing for accurately recapitulating natural cardiac tissues and cus-
tomizing the implanted device to particular patient needs [15,104–107]. However, although
cardiovascular structures such as vasculature constructs, heart valves, and myocardium
have been successfully 3D bioprinted, these techniques are still in their infancy, requir-
ing further optimization studies. Specifically, in-depth research is needed to accurately
construct cardiac analogs with full functionality and complex micro-architecture [108].

One more perspective for creating personalized treatment approaches is machine
learning. These advanced computational models are expected to play greater and greater
roles in tissue culture, biomaterial development and fabrication, animal models, and
clinical research [109]. In combination with high-throughput theoretical predictions and
high-throughput experiments, machine learning represents a shifting paradigm from con-
ventional trial and error studies, leading to a faster technological advancement in materials
fabrication [110]. Specifically, artificial intelligence algorithms have the potential to improve
the design and processing of micro-physiological systems and help in the optimization
stages toward maximizing survival rates [44,106,111,112]. Moreover, the synergic use of
medical imaging and modern computational algorithms can improve myocardial textural
analysis toward identifying new biomarkers, thus addressing the need for novel clinical
endpoints. Additionally, based on phenogrouping through radiomics signatures, machine
learning algorithms would also enable appropriating patients likely to respond to stem cell
therapy [113], allowing for customized treatments of maximum efficacy.

Nanotechnology also offers good prospects for tissue engineering and regenera-
tion [114–119]. More specifically, nanomaterials can be integrated into the composition
of advanced cardiac-mimicking architectures to enhance the functionality and physico-
chemical properties of the composite constructs [120]. The association of biomaterials
with nanoparticles [55,81,86,121,122], nanofibers [53,60,123,124], nanowires [96,125], and
nanosheets [97,126,127] can positively influence cardiac repair. Moreover, nanostructures
can be used as carriers for the targeted delivery of therapeutic agents of interest for cardio-
vascular disease treatment [128–130].

The emerging technology of tissue-on-a-chip platforms also holds great promise
for finding better treatments for cardiovascular diseases. Microfluidic chips allow the
investigation of human physiology in a controlled, isolated, and accessible environment,
being suitable devices for relevant disease models and drug screening systems [2,7,131–136].
Newly developed advanced microfluidic platforms [137] are expected to clarify cellular and
molecular mechanisms specific to relevant cardiovascular diseases and unveil the response
of damaged cardiac tissues to various tested therapeutic strategies [136–140].

5. Conclusions

To conclude, tailoring biomaterials to meet the complex set of requirements imposed
by cardiac tissue engineering and regeneration is gaining increasing attention from the
scientific community. The ingenious combinatorial use of natural and synthetic polymers,
electrically conductive materials, stem and/or progenitor cells, and bioactive molecules
can revolutionize the manner cardiac injuries are managed. Embracing an interdisciplinary
approach, a recently developed series of cardiac patches, injectable hydrogels, extracellular
vesicle-based formulations, and biomaterial scaffolds have already been demonstrated
effective when tested in vitro and in vivo. However, there is still room for improvement to
optimize the proposed approaches and deepen investigations to ensure technology transfer
to the clinical setting.
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