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�e most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram- (EEG-) based Brain
Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. �is technology
is promising for elderly or disabled patient assistance with daily life. �e key issue of a BRI system is to identify human mental
activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller,
the development of these applications may be more challenging since control of robot systems via brainwaves must consider
surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture
and behavior. �is article reviews the major techniques needed for developing BRI systems. In this review article, we 	rst brie
y
introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal
models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail
commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classi	cation, and
summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators,
drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some
existing problems and challenges with future BRI techniques.

1. Introduction

�ere are several approaches to brain activity measure-
ments, such asmagnetoencephalogram (MEG), near infrared
spectroscopy (NIRS), electrocorticogram (ECoG), functional
magnetic resonance imaging (fMRI), and electroencephalo-
gram (EEG) [1]. Brain machine interface (BMI) [2, 3] or
Brain Computer Interface (BCI) [4–6] provides a new non-
muscular channel for sending messages and commands to
the external world. A BCI creates an additional communi-
cation channel for users who are not able communicate via
normal pathways and computers. In BCI systems, the signal
acquisition devices are generally divided into two categories:
invasive and noninvasive. In an invasive BCI system, arrays
ofmicroelectrodes are permanently implanted in the cerebral

cortex [7]. �e brain signals are recorded from ensembles of
single brain cells (also known as single units) or the activity
of multiple neurons (also known as multiunits) [8]. Schmidt
investigated the possibility of making long-term connections
to the central nervous system with microelectrodes to con-
trol external devices [9]. In the year 2000, Nicolelis had
successfully realized an invasive BMI on a night monkey,
which reconstructed its arm movements to obtain food by
operating a joystick. �is open-loop BMI-based system was
upgraded to test a closed-loop motor control on a macaque
monkey. �e monkey was able to control movements of a
robot arm to grasp an object by a moving cursor on a video
screen via visual feedback [10]. In terms of human beings,
Hochberg et al. demonstrated the ability of two people with
long-standing tetraplegia to use a neural interface system to
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control a robotic arm to perform three-dimensional reach
and grasp movements [11]. Participants controlled the arm
and hand over a broad space without explicit training, using
signals decoded from a small, local population of motor
cortex neurons, recorded from a 96-channel microelectrode
array. Schwartz et al. comprehensively reviewed invasive BMI
technologies for mind-controlled robot systems [12].

An EEG device, as a representative of noninvasive tech-
nology, found a wide application in both clinical and research
	elds [13–16] due to its low cost and portability. Invasive BCI
systems are mainly used to restore special sensations, such as
visual sense, and motor functions for paralyzed patients. �e
quality of neural signals is relatively high because the micro-
electrodes are directly implanted into the cerebral grey mat-
ter. However, invasive BCI systems have the disadvantage of
easily causing immune reaction and callus, which most likely
lead to the regression and disappearance of neural signals.

In order to solve these problems, many researchers have
focused on noninvasive BCI systems because of their ease of
use, portability, low cost, and low damage to human bodies.
Di�erent from the invasive BCI systems, which record the
single-unit activity from within cortex, the noninvasive BCI
systems use EEGs to record brain electrical activities from
the scalp [17].�erefore, noninvasive BCI systems have found
a wider application. Early in the 1990s, Niels Birbaurmer
had translated the EEG signals of paralyzed patients into
control commands to control the cursor of a computer. In
the following years, the EEG-based BCI has been largely
researched to analyze the characteristics of brain signals
from the scalp and apply it to control intelligent devices to
assist paralyzed patients with their daily lives. �e typically
used signal acquisition devices include a series of products
(g.USBamp [18–20], g.BSamp [21, 22], and g.BCIsys [23])
made by g.tec in Austria, Cerebus [24–28] made by Black-
RockMicrosystems in USA, a series of products with 64, 128,
or 256 channels (SynAmps 2 [29–33])made byCompumedics
Neuroscan inAustralia, wireless Emotiv EPOC [34–36]made
by Emotiv Systems in USA, BrainNet-36 [37], ANT-Neuro
[38], FlexComp In	niti encoder [39], and so forth. And
the most commonly used BCI operating system is BCI2000
[40] because it is highly 
exible and interchangeable and
especially can incorporate alone or in combination with any
brain signals, signal processing methods, output devices, and
operating protocols.

Based on brain activity patterns, the EEG-based BCI
systems are categorized into four di�erent types: event-
related desynchronization/synchronization (ERD/ERS) [41],
steady-state visual evoked potential (SSVEP) [42], event-
related potential (ERP) [43], and slow cortical potential (SCP)
[44]. Among them, the SSVEP, ERPs, ERD/ERS, and their
hybrids [45–48] attract the interests of researchers.

In the application of BCI-based cognitive models to
control externalmechanical devices, such as a robot arm [49],
a wheelchair [50], or a humanoid robot [34], Brain Robot
Interaction (BRI) [24, 51, 52] has become more and more
popular. A BRI system is a closed-loop control system that
uses brain signals in combination with surrounding informa-
tion feedback.�e collected brain activities must be decoded
to generate commands for robots to execute an action or a

task that an operator wants to ful	ll. �e robot must provide
feedback of the surroundings to the operator, to assist in
making proper decisions. �erefore, an ideal setup for a
BRI system usually consists of evoking sources (for SSVEP
or ERP) to generate speci	c brain signals, signal acquisi-
tion devices, data analyzing systems, and control objects,
among which the signal generating and data analyzing are
the most challenging and worthy researching tasks. More
and more researchers focus their attention on discovering
new evoking mechanisms and testing novel decoding algo-
rithms.

In this paper, we present a comprehensive review and a
critical analysis of the three main EEG models with respect
to brain signal generation, methods of feature extraction,
and feature classi	cation. �en, we list some applications of
synchronous and asynchronous BRI systems, especially for
humanoid robots. Last, we focus on discussing the challenges
and future perspectives of brain signal modeling and the
di�culties of BRI.

2. EEG-Based Brain Signal Models

2.1. SSVEP

2.1.1. EvokingMechanism. In EEG-based brain signalmodels,
SSVEP is generated by visual stimuli. From retinal photore-
ceptors, visual percepts propagate 	rst to the visual areas and
next to the rest of the brain [53]. Following the presentation
of visual stimuli, sensory evoked potentials (SEPs) and
termed visually evoked potentials (VEPs) can be recorded
in the visual areas. VEPs elicited by brief stimuli are usually
transient responses of the visual system. Transient evoked
potentials are responses of the system under study to sudden
changes (jumps or steps) in the input [54]. About 50 years
ago, Regan started experimenting with long stimulus trains,
consisting of sinusoidally modulated monochromatic light
[55].�ese stimuli produced a stable VEP of small amplitude,
which could be extracted by averaging over multiple trials.
�ese EEG waves were termed as “steady-state” visually
evoked potentials (SSVEP) of the human visual system.
SSVEPs can also be found in animals, such as in primates [56]
or in cats [57].

SSVEP is a steady-state physical response to outside
periodic stimuli and generated at the primary visual cortex
without triggering senior visual information process [62].
Since SSVEP is generated at the occipital EEG electrodes
(including Oz, O1, and O2 [63]), the corresponding areas
have the strongest power. Although the electrodes used in
SSVEP vary from person to person, the most reasonable
electrodes used in SSVEP mainly include Oz, O1, O2, Pz,
P3, P4, and some surrounding electrodes located at the
occipital. Researchers had concluded that SSVEP evoking
frequencies had a wide range from 1 to at least 90Hz, and the
steady-state potentials exhibited clear resonance phenomena
around 10, 20, 40, and 80Hz [64]. �e most commonly
used frequencies range from 4 to 60Hz. In terms of SSVEP
evoking, the repetitive visual stimulus (RVS) [58] mainly
include simple square 
icker, checkerboard, gratings, and
light-emitting diode (LED) [65].



Computational Intelligence and Neuroscience 3

2.1.2. Experimental Paradigm. SSVEP-basedBCIs allowusers
to select a target by means of an eye-gaze. �e user visually
	xes attention on a target and the BCI identi	es the target
through SSVEP features analysis [172]. Considering a BCI
as a communications channel, SSVEP-based BCIs can be
classi	ed into three categories depending on the speci	c
stimulus sequence modulation in use [173]: time modulated
VEP (t-VEP) BCIs, frequency modulated VEP (f-VEP) BCIs,
and pseudorandom code modulated VEP (c-VEP) BCIs.
VEPs that react to di�erent stimulus sequences should be
orthogonal or near orthogonal to each other in some domain,
to ensure reliable identi	cation of the target. In a t-VEP BCI,
the 
ash sequences of di�erent targets are orthogonal in time.
�at is, the 
ash sequences for di�erent targets are either
strictly nonoverlapping or stochastic. In an f-VEP BCI, each
target is 
ashed at a unique frequency, generating a periodic
sequence of evoked responses with the same fundamental
frequency as its harmonics. In a c-VEP BCI, pseudorandom
sequences are used. �e duration of ON and OFF states
of each target’s 
ash is determined by a pseudorandom
sequence. Signal modulations can optimize the information
transfer rate. Indeed, code modulation provides the highest
communication speed.

To elicit an SSVEP, a RVS has to be presented to the
user. �e RVS can be rendered on a computer screen by
alternating graphical patterns or with external light sources
able to emit modulated light. Alternating graphical patterns
mainly include single graphic and pattern reversal stimuli.
Single graphic stimuli could be a rectangle, square, arrow,
or robot picture and rendered on a computer screen and
appear from and disappear into the background at a speci	ed
rate, as shown in Figure 1(a). Pattern reversal stimuli could
be a checkerboard or grating that is rendered by oscillatory
alternation of graphical patterns, as shown in Figure 1(b).
�ey consist of at least two patterns that are alternated at
a speci	ed number of alternations per second. �e external
light can 
ash with any frequency and the graphical patterns
with only certain frequencies because of the computer screen
refresh rate limitations.

2.2. ERP

2.2.1. Evoking Mechanism. ERP is generated when a speci	c
stimulus acts on the sensory systemof the brain or somemen-
tal factor occurs. Subsequently, ERP is evoked in response to
the emerging or disappearing of the stimuli. Classical ERPs
include several positive and negative waves, such as P1, N1,
P2, N2, and P3 (namely, P300) according to the emerging
sequences and polarities. �e N1 is associated with attention
[174] and P2 with stimulus encoding [175]. N2 has been
associated with “response selection” or “response activation”
[176] and P300 with “context updating” [177] or “context
closure” [178]. As the “exogenous component,” the P1, N1,
and P2 components are easily in
uenced by physical stimuli
characters, while as the “endogenous component,” N2 and P3
are not in
uenced by physical stimuli characters.

In 1965, Sutton et al. discovered an electrical potential
that exhibited a positive 
uctuation within approximately
300ms a�er the presentation of an unexpected event (visual,

auditory, etc.) [179]. Smith et al. named this potential “P300”
potential based on its polarity and relatively 	xed latency
[180]. A P300 potential is induced prominently in chan-
nels Pz, Fz, and Cz in the midline centroparietal regions,
and its latency varies from 300ms to 800ms when a set
of visual stimuli are presented unexpectedly in a random
sequence [181]. �erefore, the most commonly used elec-
trodes in ERP aremainly located in themidline centroparietal
regions, such as Fz, Cz, Pz, Oz, and their surrounding ones.
�e P300 component has a relatively high amplitude of
5–20�V and can be found in EEG a�er a single stimu-
lus without superposition, so it has wide applications in
BRI.

2.2.2. Experimental Paradigm. A P300 system o�en uses
stimuli with di�erent characters, contents, and decoding
methods to run the corresponding cognitive process of the
subject, according to the di�erent contents and purposes
of the research. �e visually evoked P300 system o�en
adapts the visual oddball paradigm, in which two di�erent
visual stimuli are presented to the subject randomly and the
standard stimulus appears generally and the bias stimulus
incidentally. �e bias stimulus is called target stimulus when
the subject reacts to it.�e P300 component will be observed
in 300ms a�er the target stimulus appears [182]. Except the
evoking paradigm of presenting a single visual stimulus in
turn, researchers have put forward more and more P300
evoking paradigms to present more stimuli e�ciently in the
P300-based character speller system.

Farwell and Donchin 	rst put forward a P300 speller
system [59]: a 6-by-6 matrix containing the letters of the
alphabet and a few 1-word commands (see Figure 2) were dis-
played on a computer-controlled CRT screen. �e “stimulus
events” that occurred in the test consist of intensi	cations
of either a row or a column of the matrix. �e detection
was achieved by repeatedly 
ashing rows and columns of the
matrix. When the element containing the chosen character
was 
ashed, a P300 was elicited, and it was this P300 that was
detected by the computer. Treder and Blankertz put forward
a Hex-o-Spell paradigm and Figure 3 shows a screenshot of
the visual speller [60]. Figure 3(a) was the group level. �e
group containing the target symbol “B” (group “ABCDE”)
was intensi	ed. Figure 3(b) was the transition phase. �e
symbols of the selected group were expanded onto the other
discs. Figure 3(c) was the symbol level. �e nontarget disc
with the symbol “A” was intensi	ed. �e empty disc at the
bottomwas intended as a backdoor for returning to the group
level in case the wrong group was selected. Acqualagna and
Blankertz developed rapid serial visual presentation (RSVP)
as a paradigm for mental typewriting for patients unable to
overtly 	xate the target symbol [61]. Figure 4 showed the
process of the paradigm. First, the sentence was presented on
the display. A�er the 	xation cross, the RSVP of the symbols
starts. �e target letter was highlighted on the top of screen.
Participants had to concentrate on the target letter and were
asked to silently count its number of occurrences. �e data
recorded in this phase were used to train the classi	er. In the
online phase, the classi	er selected the symbol with the best
score and displayed it.
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(a) Single graphic stimuli (b) Pattern reversal stimuli

Figure 1: (a) Single graphic stimuli: the graphical object alternately appears and disappears in the background. (b) Pattern reversal stimuli:
at least two patterns are alternated at a speci	ed frequency [58].
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Figure 2: �e rows and columns of the matrix were 
ashed
alternately [59].

Researchers have recently paid attention to some other
ERPs to improve the performance of the ERP-based BCI. Jin
et al. use faces as visual stimuli to induce N400 potential
to make the ERP more obvious [183, 184]. Jin et al. apply
mismatch paradigm to evokemismatch negativity to improve
the accuracy and information transfer rate [185].

2.3. MI

2.3.1. Generation Mechanism. Motor imagery may be seen
as mental rehearsal of a motor act without any overt motor
output. It is broadly accepted that mental imagination of
movements involves similar brain regions/functions which
are involved in programming and preparing suchmovements
[188]. Pfurtscheller and Neuper showed independent imag-
ination of movements versus planning of voluntary move-
ments of either the right or the le� hand; the most prominent
EEG changes were localized over the corresponding primary
sensorimotor cortex [189]. During the imagination of a
right hand or le� hand movement, for example, a similar
ERD can be found over the contralateral hand area and an
ERS over the ipsilateral hand area. Traditionally, transient
increases and decreases in spectral power recorded in the
human EEG have been termed event-related synchronization
(ERS) and desynchronization (ERD), respectively [190]. Both
phenomena are time-locked but not phase-locked to the
event and they are highly frequency band speci	c. It has long
been known thatmovements elicit frequency speci	c changes
in the EEG [191–193] and changes in spectral power in the �

(8–14Hz) and � (15–30Hz) frequency bands can be observed
during both voluntary [194] and passive movements [195].

During overt execution of the movement, the initially
contralateral ERD develops a bilateral distribution [196],
whereas during mental simulation this ERD remains mostly
limited to the contralateral hemisphere. �is means that the
suppression of � and central � rhythms is more pronounced
at the contralateral hemisphere when subjects imagine one-
sided handmovements thanwhen they actually perform such
movements.�ese ERDphenomena are used as the classi	ca-
tion basis in MI. �e most representative MI-ERD phenom-
ena are generated by imaging themovement of le� hand, right
hand, and feet and are distributed on primary motor cortex
(M1).�e corresponding areas locate at the EEG electrodes of
C3, C4, andCzwhich are also themost used electrodes inMI.

2.3.2. Experimental Paradigm. InMI, producing the EEG sig-
nal is an important factor in a successful BCI. �erefore, the
issues concernedwith human training are worth considering.
Di�erent from SSVEP or ERP, the MI needs a longer training
period in order to generate the ERD/ERS phenomena. It
may take months of training before the user achieves the
desirable level of performance. In order for the user to acquire
self-control of an EEG response, some kind of feedback is
essential, at least in the beginning, and the feedback can speed
up the learning process and improve performance.

�e MI training process usually consists of o�ine and
online training. A period of o�ine training is essential for
adjusting user’s EEG signals and training the recognition
algorithm. Time for a single training trial is o�en 9 seconds
(see Figure 5). During the trial, an arrow with random direc-
tion (le� or right) is displayed on the computer screen and the
user imagines movement of the le� or right hand according
to the direction of the arrow. During the 	rst two seconds of
one trial, nothing is displayed on computer screen. At � = 2 s,
a 	xation cross appears with a short beep. From � = 3 s to 9 s,
the user is asked to carry out the MI task while the 	xation
cross with le� or right direction displayed on the screen.
�en several trials of training data will be used to generate
a template of recognition algorithm. �e train generated
template is stored to recognize online training. For online
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(a) (b) (c)

Figure 3: Screenshot of Hex-o-Spell paradigm [60].
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training, Neuper et al. used a feedback bar to inform the user
of the imaging results [197]. �e feedback stimulus began to
extend horizontally towards the right or le� side according
to the classi	cation result. Yu et al. used a hybrid BCI with
SSVEP and MI to extend the feedback bar in the targeted
direction [198]. Alimardani et al. asked the subjects to watch
	rst-person images of robots through a headmounted display
[18]. A lighting ball in front of robot’s hands gave motor
imagery cue and subjects held images of a grasp for their own
corresponding hand. Classi	er detected two classes of results
(right or le�) and sent a motion command to robot’s hand.

3. Brain Signal Decoding Methods

An essential factor in the successful operation of BCI systems
is the methods used to process the brain signals [58]. �is

paper summarizes di�erent signal processing schemes that
have been used in BCI systems. It speci	cally focuses on
the following signal processing components of a BCI: the
preprocessing, feature extraction, and feature classi	cation.
As for various brain signal evoking mechanisms, this paper
chooses the most commonly used paradigms (SSVEP, P300,
MI) as the objects to summarize the brain signal processing
methods.

3.1. Preprocessing Methods. Preprocessing methods in BCI
mainly include frequency domain 	ltering and spatial 	lter-
ing. Band-pass 	lters andnotch 	lters are themost commonly
used methods in frequency domain 	ltering, which can
extract the characteristic signals located in the stimulus
frequency and remove noise and artifacts. �ese 	lters are
designed according to frequency characteristics of related
signals. O�en, the frequency range of a band-pass 	lter is
designed according to the stimulation frequencies or their
harmonics, while a notch 	lter is used to remove power line
interference. Spatial 	lters can expand the signal-to-noise
ratio of the brain signal response, by processing brain signal
data of multiple channels. Signals from multiple channels
are less a�ected by noise than signals from a unipolar or
bipolar system. �e spatial 	ltering technique can be also
used to extract features. Generally, the spatial 	ltering meth-
ods include minimum energy combination (MEC), canon-
ical correlation analysis (CCA), common average reference
(CAR), principal component analysis (PCA), independent
component analysis (ICA), and autocorrelation (AC). MEC
is used to cancel nuisance signals as much as possible. CCA
computes the relation between two multivariable data sets
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Table 1: Preprocessing methods in di�erent EEG paradigms.

EEG paradigms Authors Preprocessing methods

SSVEP

Bevilacqua et al. [66] 2–60Hz for band-pass 	lter, notch 	lter at 50Hz

Müller-Putz and Pfurtscheller [21] 0.5–30Hz for band-pass 	lter, notch 	lter at 50Hz

Ortner et al. [67] 0.5–100Hz for band-pass 	lter, notch 	lter at 50Hz

Wu et al. [65] 0.3–40Hz for band-pass 	lter

Muller et al. [37] 3–60Hz for band-pass 	lter, CAR

Júnior et al. [68] CCA

Wang et al. [69] CCA

Zhang et al. [70] Multiset CCA

Nan et al. [71] MEC, CCA

Pouryazdian and Erfanian [72] PCA

P300

Rakotomamonjy and Guigue [73] 8-order, 0.1–10Hz band-pass Chebyshev Type I 	lter

El Dabbagh and Fakhr [74] 8 order, 0.1–20Hz band-pass Chebyshev Type I 	lter

Mak et al. [75] 0.5–30Hz band-pass

Panicker et al. [38] 3 order, 0.5–12Hz Butterworth 	lter

Lugo et al. [76] 0.1–30Hz band-pass 	lter

Lotte et al. [77] 25Hz low-pass 	lter

Li et al. [25] 1–10Hz band-pass 	lter

Spüler et al. [78] 0.5–16Hz band-pass 	lter, CAR

Casagrande et al. [79] CAR

Syan and Harnarinesingh [80] 10-order low-pass Hamming-window 	lter with 6 dB cuto� at 30Hz, CAR, PCA

MI

Park et al. [81] 5-order, 8–30Hz Butterworth 	lter

Coyle et al. [22] R2CA with a standard 8–26Hz band

Wang et al. [82] FB (Filter Bank) with 4–8, 8–12, . . . , 36–40Hz

Devlaminck et al. [83] A set of spatial 	lters

Ang et al. [84] FB

Li et al. [85] 8–30Hz band-pass 	lter

Yao et al. [29] 8–26Hz band-pass 	lter

Song et al. [39] 4-order Butterworth IIR 	lter, Laplacian 	lter

Wu and Ge [86] CAR, FIR (Finite Impulse Response) 	lter

Zhou et al. [87] 8–35Hz band-pass 	lter, ICA

Sharma and Baron [88] PCA, tensor ICA

Bashar et al. [89] Autocorrelation

a�er linear combinations of original data. For the CAR
method, the average value of all electrodes is subtracted
from the channel of interest to make the EEG recording
nearly reference-free. PCA is used to decompose signals into
components of responses of brain activities. It aims to reduce
the dimension of original data. ICA is o�en used to separate
movement related independent components from EEG data.
AC enhances the weak EEG signal, reduces noise, and makes
it suitable for analysis. Table 1 lists some preprocessing
methods of di�erent EEG paradigms.

3.2. Feature Extraction Methods. �e feature extraction is a
key issue in signal processing and plays an important role to
the whole BCI system. A variety of methods have been used
in di�erent EEG paradigms. Several commonly used feature
extraction methods are described as follows.

3.2.1. Fourier-Based Transform (FT). �e FT contains Fast
Fourier Transform (FFT) and Discrete Fourier Transform

(DFT). FT methods are mainly used for power spectrum
density analysis (PSDA). FFT is a fast computation algorithm
for DFT, which could in
uence the practical applications. In
real applications, the available stimulation frequencies may
be limited because the frequency resolutions are limited to a
given data segment length.�e advantages include simplicity
and small computation time.

In SSVEP-based BCI, Wang et al. used 256-point FFT to
transform EEG signals into the frequency domain represent-
ing 5 frequencies of 9Hz, 11 Hz, 13Hz, 15Hz, and 17Hz [30].
A 128-point FFT averaged the three spectral components
around the target frequency when the subjects did not focus
on any stimuli. �e average value was used to recognize an
idle state of a subject. Mouli et al. used maximum amplitudes
of the FFT to distinguish di�erent target stimuli of 7, 8,
9, and 10Hz [90]. Müller-Putz and Pfurtscheller computed
the frequency components by estimating the power density
spectrumof the EEG signal with split-radix FFT and averaged
the three spectral components around the target frequency
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[21]. Hwang et al. estimated the EEG data using the FFT with
a frequency resolution of 0.1 Hz and constructed the feature
vectors by the arithmetic sum of the stimulation frequencies
and the second harmonic frequencies [91]. As for DFT,
Oikonomou et al. used the FFT algorithm as the estimation
of DFT coe�cients [92]. Diez et al. also used the FFT as an
estimation of the power spectral density based on the DFT
[93]. All these studies which used FFT as the estimation of
DFT show the computational advantages of FFT. FFT has a
wide use in SSVEP systems from low and medium to a high
range of frequencies. DFT is o�en estimated by FFT because
of its small computational time.

�e P300 components are not sensitive to frequency, so
there is no study of it using FFT as feature extraction meth-
ods. However, the MI paradigm generates the � and � rhy-
thms responses when motor imagery is active. A few studies
have tried to recognize the MI tasks using FFT. For example,
Hiroyasu et al. used � rhythms (13–16Hz or 13–30Hz) and �
rhythms (8–12Hz) as the feature values of recognition [111].
�e FFT overlap processing was performed to calculate the
power spectrum transitions. Jin et al. utilized FFT to analyze
the frequency range of � and � so as to analyze the energy of
EEG and get its features [112].

3.2.2. Wavelet Transform (WT). EEG signals are nonstation-
ary whose frequency components vary as a function of time
[199].�e analysis of such signals can be facilitated byWavelet
Transform which provide 
exible time-frequency resolution.
WT is based on FT and is an adjustable-window Fourier
analysis [200]. �e advantage of WT over FT is that it is
easy to choose di�erent mother wavelet functions to analyze
di�erent types of signals. WT is potentially one of the most
powerful signal processing techniques because of its ability
to adjust to signal components and its multiresolution which
is broadly used to analyze EEG signals.

In SSVEP-based BCI, Zhang et al. introducedContinuous
Wavelet Transform (CWT) into SSVEP feature extraction and
classi	cation [94]. �e choice of mother wavelet is the key
issue in CWT. �ey investigated di�erent types of wavelets
and compared the performances in SSVEP classi	cation.
Experimental results showed that Complex Morlet wavelet
outperformed others and especially had advantages in short
EEG data segment. Kumari and Somani used the coe�cients
of CWT as the feature vectors to 	nd the location of high-
frequency components in SSVEP [95].

In P300-based BCI, Demiralp et al. used theWT to iden-
tify themost signi	cant response property re
ecting the P300
wave [102]. �e application of a 5 octave quadratic B-spline-
WT on single sweeps yielded discrete coe�cients in each
octavewith an appropriate time resolution for each frequency
range. �e main feature indicating a P300 response was the
positivity of the 4th delta (0.5–4Hz) coe�cient a�er stimulus
onset. Vareka andMautner appliedDaubechies7wavelet to an
averaged target epoch in DWT [103].�e P300 component is
obtained by the signal reconstructed from the approximation
coe�cients of level 6. Guo et al. used Daubechies4 (db4)
as the mother wavelet of DWT because of the similarity
between db4 and P300 [104]. �e decomposition level was
set from 4 to 6. �ey tested the method in traditional P300

speller system. Also, Pan et al. used a WT-based method to
recognize P300 components in P300 speller systems [105].
�ey applied theMallat algorithm to calculate the coe�cients
of WT and decomposed the signals into satis	ed resolution,
which resulted in multiresolution of WT. Vequeira et al. also
used WT on P300 speller system as the feature extraction
method to help patients with oral communications problems
[106].

In MI-based BCI, the CWT gives a highly redundant
representation of EEG signals in the time-scale domain [199],
so it can be applied for the precise localization of ERD/ERS
components in the time-scale domain. Hsu and Sun applied
CWT together with Student’s two-sample �-statistics for 2D
time-scale feature extraction [113]. �e 2D time-scale yielded
a highly redundant representation of EEG signals in the time-
frequency domain, from which the precise location of event-
related brain desynchronization and synchronization (ERD
and ERS) components could be obtained. �en, the CWTs
of EEG data performing le� and right MI in both C3 and
C4 channels were analyzed, respectively. Xu and Song used
DWT to execute multiresolution decomposition for a signal
[114].�ey chose the decomposition level of 4 and the wavelet
of Daubechies order 10. �e extracted wavelet coe�cients
showed the distribution of the motor imagery signal in time
and frequency and the component D3 (8–16Hz) was within
the � rhythm and D2 (16–32Hz) was within the � rhythm.
Bashar et al. proposedDual TreeComplexWavelet Transform
(DTCWT) domain to identify le� and right hand motor
imagery movements [89]. DTCWT is a recent enhancement
to the DWTwhich has additional properties including nearly
shi� invariant and directionally selective of two and higher
dimensions [201]. It is more e�cient in time-frequency
localization of EEG signals.�ey applied DTCWT to decom-
pose EEG signals into three levels and reconstruct these
components using the inverse DTCWT approximately cor-
responding to the physiological EEG subbands delta, theta,
alpha, and beta, respectively. �en, EEG signals in lower
frequency bands and � rhythms (7.5–12.5Hz) were extracted.

According to the references we have consulted, the
Wavelet Transform (WT) is suitable for various kinds of EEG
paradigms analysis because of its optimal resolution in both
the time and frequency domain. �erefore, WT has a wide
application in SSVEP, P300, and MI paradigms for feature
extraction.

3.2.3. Hilbert-Huang Transform (HHT). HHT, consisting of
empirical mode decomposition (EMD) and Hilbert spectral
analysis (HAS) [202], is a recently developed adaptive data
analysis method, which has been used extensively in EEG
research. �e key part of HHT is EMD with which any
complicated data set can be decomposed into a 	nite and
o�en small number of intrinsic mode functions (IMFs). An
IMF is an oscillator function with time-varying frequencies
that can represent the local characteristics of nonstationary
signals [203]. Di�erent from FFT, which is based on cosine
functions,HHT is self-adaptive and can acquire better perfor-
mance in some signal segments, so it can be used in analyzing
both stationary and nonstationary signals. However, HHT
computation time is higher than that of FT.
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In SSVEP-based BCI, Huang et al. used HHT for the
recognition of high-frequency SSVEP signals [96]. �e orig-
inal signals were transformed into 11-order IMF, which satis-
	ed the requirements of theHT, by themethodof EMD.�en,
HTmethod was used on each order of IMF above to calculate
its instantaneous frequency. All those results were used to
create an integrated time-frequency 	gure.�e component of
its corresponding frequency could be seen from its frequency
diagram by analyzing the corresponding levels with FFT.
Ruan et al. applied HHT to decompose the independent
components by ICA to obtain IMF needed and analyzed IMF
by frequency domain analysis or power spectrum estimation
[97]. �ey could identify the subjects at the target stimulus
frequency according to the spectrum peak in the spectrum
diagram and frequency diagram. Zhang et al. put forward
an Improved HHT (IHHT) to extract time-frequency fea-
ture of High-Frequency Combination Coding-Based SSVEP
(HFCC-SSVEP) [98]. �e extraction method consists of
synchronous averaging, band-pass 	ltering, EMD, selection
of IMF, instantaneous frequency, and Hilbert spectrum.
Besides, the HT has also been employed to compute SSVEP
phases [99, 100]. According to the investigation above, HHT
provides an e�ective solution for high-frequency SSVEP.

In P300-based BCI, there is no reference using HHT to
extract the P300 components. While in MI-based BCI, HHT
is an e�ective way to extract � and � rhythms. Wang et al.
usedHHT to analyze threemotor imagery tasks [115].�e raw
signal was decomposed using EMD and several IMFs were
gained. �en, the Hilbert spectrum was calculated based on
the IMF1 and IMF2. In eachmotor imagery task, local instan-
taneous energies, within speci	c frequency band of electrode
C3 and C4, were selected as the features. Jerbic et al. investi-
gated the perspective of HHT for extracting time-frequency
information used for MI classi	cation [116]. �e IMFs
obtained by EMD were mapped into time-frequency-energy
matrix, constraining frequency scale to 1Hz wide frequency
bins (range 6–40Hz). Liu et al. devised a feature, Degree
of Imagery (DOI) based on HHT, which can e�ectively
detect the ERD duringmotor imagery, thereby improving the
classi	cation performance [117]. In this paper, they thought
that not all of the IMFs were useful for the detection of
ERD, so they calculated partial IMFs to accomplish the EMD
process in practice in order to improve the computational
speed of HHT. Furthermore, they demonstrated that DOI
could improve the detection and classi	cation of ERD e�ect.

�e HHT is useful for EEG paradigms that are sensitive
to frequency. From the references referred to above, HHT
provides an e�ective solution for high-frequency SSVEP.
Also, the � and � rhythms in motor imagery can be extracted
by HHT.

3.2.4. Independent Component Analysis (ICA). ICA is a
recently developed method with the goal of 	nding a linear
representation of non-Gaussian data so that components are
statistically independent or as independent as possible. Such
a representation seems to capture the essential structure of
the data in many applications, including feature extraction
and signal separation [204]. ICA can be performed in two
di�erent ways, namely, spatial ICA that extracts unique

independent spatial maps and temporal ICA that extracts
independent time courses.�e electrodes “record” themixed
EEG signal at di�erent locations around the scalp. �erefore,
it is reasonable to apply ICA on EEG signals to identify those
independent sources and map them to needed components.

In SSVEP-based BCI, ICA is o�en used to extract EEG
signals from raw signals.Wang et al. employed ICA to decom-
pose EEGs over the visual cortex into SSVEP signal and back-
ground noise [101]. �irteen ICs were calculated as sources
through ICA and the four with most signi	cant power at
stimulation frequency were supposed to be signal activities
of SSVEP while the remaining were considered as noise
activities.

In P300-based BCI, Li et al. chose FastICA to perform
ICA in a P300 speller systembecause of its fast speed and high
reliability [107].�ey computed 16 ICs and selected 3 ICswith
the largest di�erence in their coe�cients as the P300 related
ones.�e activation status of these 3 ICs in di�erent channels
was used as the feature for P300 identi	cation. Turnip et al.
put forward a nonlinear independent components analysis
(NICA) extraction method for P300 [108]. With the NICA
method, a level of accuracy was attained a�er about 240 iter-
ations, which were less than 1800 iterations in the same level
without using the proposed feature extraction. �e results
showed that NICA accelerated the network’s training process
and the tracking error convergence was faster. Li et al. applied
ICA to select the channelswhose brain signals contained large
N200 and P300 potentials and small artifacts as the opti-
mal channels to extract the features [26]. �ey separated the
source signals that produced ERP, muscle artifacts, or ocular
artifacts.

In MI-based BCI, Naeem et al. studied three di�erent
ICA algorithms (Infomax, FastICA, and SOBI) and com-
pared them to Common Spatial Patterns (CSP), Laplacian
derivations, and standard bipolar derivations [118]. Among
the ICA algorithms, the best performance was achieved by
Infomaxwhen using 22 components as well as for the selected
6 components by visual inspection. Guo et al. explored a
dynamic ICA based on the sliding window Infomax algo-
rithm to analyzemotor imagery EEG [119].�emethod could
get a dynamic mixing matrix with the new data input, which
was unlike the static mixing matrix in traditional ICA algo-
rithms.�e feature patterns were based on the total energy of
dynamicmixingmatrix coe�cients in a certain time window.

In most cases, ICA is used to separate the noise/inter-
ference from the raw EEG signals in preprocessing. While
in feature extraction, ICA usually combines other feature
extraction algorithms to classify the di�erent targets in
various EEG paradigms.

3.2.5. Common Spatial Pattern (CSP). �e CSP method is
a powerful signal processing technique that was shown to
superiorly extract discriminative information, compared to
other spatial 	lters such as bipolar, Laplacian, or CAR [205].
�e principle of CSP is yielding a set of spatial 	lters that are
designed to minimize the variance of one class while maxi-
mizing it for the other class. Ortner et al. advised that the CSP
method needs more electrodes than others [206]. CPS can
suppress noise by using the data from many electrodes and
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hence needs a minimum number of electrodes to perform
well. However, because CSP is based on the Fisher discrim-
inative criterion, it can only re
ect the separative ability of
the mean power of two classes. In practice, this mean power
separation may be insu�cient to re
ect the discrimination
of samples around the decision boundary. From the statistics
viewpoint, arithmetic mean is sensitive to outliers. Artifacts
such as eye and muscle activities may dominate over the
EEG signal, and thus they may give excessive power in some
channels. Because of CSP simply pooling the covariance
matrixes of trials together, if an artifact happens to be
unevenly distributed in di�erent experiment conditions, CSP
will capture it with high eigenvalue. �is will distort the
following CSP spatial 	lter [207].

In P300-based BCI, Pires et al. proposed an application
of standard CSP combined with an approach of feature
combination based on probabilistic models of spatial 	ltered
data embedded in a Bayesian classi	er [109]. �e result
showed that CSP could be e�ectively used on P300. Amini
et al. used morphological, intelligent segmentation, CSP, and
combined features (segmentation+CSP) in the feature extrac-
tion block [110]. Within the P300 oddball principle context,
they considered two spatiotemporal matrixes which repre-
sented the P300 potential evoked by the target event and the
ongoing EEG for nontarget events, respectively. �en the set
of features was obtained via the CSP technique. A statistical
analysis was applied for evaluating the 	tness of each feature
in discriminating between target and nontarget signals.

Indeed, the CSP is an e�ective method especially for MI
classi	cation.Many improved CSP-basedmethods have been
put forward recently to enhance the classi	cation accuracy.
Samek et al. proposed a method called stationary CSP
(sCSP) which regularizes the CSP solution towards stationary
subspaces; that is, the CSP is extended to be invariant to
nonstationarities in the data [120]. CSP reduced variations of
the extracted features by assuming that the variations were
not task-related like eye movements or electrode artifacts.
�e results showed that the sCSP was competitive compared
with the state-of-the-art CSP method. He et al. proposed
an EMD-based CSP method to realize the data-related and
adaptive frequency band selection [121]. �e IMFs decom-
posed from the EMD and the amplitude modulated signal
by instantaneous amplitude (IA) calculated from HT were
fully explored and employed. Use of the EMD 	lter property
avoided manually dividing the frequency band, which was
usually adopted in the traditional CSP method. Moreover,
it could be expected that a small number of informative
frequency band related IMFs would lead to higher algorithm
e�ciency. To address the problem of selecting the subject-
speci	c frequency band for the CSP algorithm, the Filter
Band CSP (FBCSP) algorithm was proposed for MI-BCI.
�e FBCSP algorithm classi	es single-trial EEG based on
selected features computed from subject-speci	c temporal-
spatial 	lters. Keng et al. used FBCSP on BCI competition
IV Datasets 2a and 2b to classify 4 classes (le� hand, right
hand, feet, and tongue) and 2 classes (le� hand and right
hand) of MI tasks, respectively [122]. Also, Chin et al. used
FBCSP to classify 4 classes of MI tasks [123]. To improve
the CSP algorithm’s robustness against outliers, Yong et

al. 	rst investigated how multivariate outliers a�ected the
performance of the CSP algorithm and then proposed a
modi	ed version of the algorithm whereby the classical
covariance estimates are replaced by the robust covariance
estimates obtained usingMinimumCovariance Determinant
(MCD) estimator [208]. Median Absolute Deviation (MAD)
is also used to robustly estimate the variance of the projected
EEG signals. �e results showed that the proposed algorithm
is able to reduce the in
uence of the outliers. �en, Kai
et al. tested the RFBCSP algorithm on BCI competition IV
Datasets 2b and the results revealed a promising direction of
RFBCSP for robust classi	cations of EEG measurements in
MI-BCI [124].

In the context of Brain Computer Interfaces, the Com-
mon Spatial Patterns method is widely used for classi	cation
of motor imagery events. However, it is not very o�en used
for classi	cation of event-related potentials such as P300.
Meanwhile, there is no reference describing the applications
of CSP on SSVEP-based BCI.

All the feature extractionmethods we have referred to are
most commonly used in BCI, including SSVEP, P300, and
MI. Due to article length limitations, we cannot list all the
feature extraction methods one by one. Table 2 summarizes
the methods mentioned above in di�erent EEG paradigms.

3.3. Feature Classi�cation Methods. Nonstationarities are
ubiquitous in EEG signals.�ey are especially apparent in the
use of EEG-based BCI.�erefore the stability of a classi	er is
a signi	cant factor in the discrimination of targets in various
paradigms. Overall, it was agreed that simplicity is generally
best and therefore, the use of linearmethods is recommended
wherever possible. Furthermore, linear classi	ers are gener-
ally more robust than nonlinear ones. �is is because linear
classi	ers have fewer free parameters to tune and are thus
less prone to over	tting. It was also agreed that nonlinear
methods in some applications can provide better results, par-
ticularly with complex and/or other very large data sets [209].

In the following, the paper introduces the most com-
monly used classi	cation methods and their applications
in BCI systems, which mainly include Linear Discriminant
Analysis (LDA), Support Vector Machines (SVM), neural
networks, nonlinear Bayesian classi	ers, nearest neighbor
classi	ers, and combinations of classi	ers [210]. Table 3
summarizes partial applications of classi	cation methods on
SSVEP, P300, MI, and so forth.

3.3.1. LDA (FLDA). �e aim of LDA (also known as Fisher’s
LDA) is to use hyperplanes to separate the data representing
the di�erent classes [211]. For a two-class problem, the class
of a feature vector depends on which side of the hyperplane
the vector is (see Figure 6). LDA 	nds the optimal projection
which maximizes the distance between the two-class means
andminimizes the interclass variances.�e separating hyper-
plane is perpendicular to the projection direction [186]. �e
strategy generally used for multiclass BCI is the “One Versus
the Rest” (OVR) strategy which consists in separating each
class from all the others.

�is technique is simple and has a very low computational
requirement, which makes it suitable for online BCI system.
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Table 2: Feature extraction methods in di�erent EEG paradigms.

EEG paradigms Authors Feature extraction methods

SSVEP

Wang et al. [30] Average and FFT, 5 targets (9, 11, 13, 15, 17Hz)

Mouli et al. [90] FFT, 4 targets (7, 8, 9, 10Hz)

Müller-Putz and Pfurtscheller [21] FFT, 4 targets (6, 7, 8, 13Hz)

Hwang et al. [91] FFT, spelling system (5–7.9Hz with a span of 0.1 Hz)

Oikonomou et al. [92]
FFT as an estimation of DFT, 5 target (6.66, 7.5, 8.57, 10,
12Hz)

Diez et al. [93]
FFT as an estimation of DFT, 4 targets (37, 38, 39,
40Hz)

Zhang et al. [94] CWT, 4 targets (15, 12, 10, 8.57Hz)

Kumari and Somani [95] CWT, 3 targets (8, 14, 28Hz)

Huang et al. [96] HHT (34, 35, 37, 38, 45, 48Hz)

Ruan et al. [97] HHT (11, 12Hz)

Zhang et al. [98] IHHT (25, 33.33, 40Hz)

Molina et al. [99] HT (all integer frequencies from 30 to 40Hz, 4 phases)

Zhu et al. [100] HT (all integer frequencies from 32 to 40Hz, 4 phases)

Wang et al. [101] ICA (13Hz)

P300

Demiralp et al. [102]
WT (5 octave quadratic B-spline-WT), auditory
oddball paradigm (800, 1200Hz tones)

Vareka and Mautner [103]
DWT (Daubechies7), oddball paradigm (traditional
OQ experiment)

Guo et al. [104] DWT (Daubechies4), P300 speller (6 by 6 matrix)

Pan et al. [105] WT (Mallat), P300 Speller (6 by 6 matrix)

Vequeira et al. [106] WT (bior), P300 Speller (6 by 6 matrix)

Li et al. [107] FastICA, P300 Speller

Turnip et al. [108] NICA, EPFL BCI group data

Li et al. [26] ICA, oddball paradigm (6 targets)

Pires et al. [109] CSP, P300 arrow paradigm

Amini et al. [110]
morphological, intelligent segmentation, CSP and
combined features (segmentation+CSP), P300 Speller

MI

Hiroyasu et al. [111] FFT, le� or right hand (13–16Hz or 13–30Hz, 8–12Hz)

Jin et al. [112] FFT, le� or right hand (8–30Hz)

Hsu and Sun [113] CWT, le� or right hand

Xu and Song [114] DWT (Daubechies10), le� or right hand

Bashar et al. [89] DTCWT, le� or right hand

Wang et al. [115] HHT, le� or right hand, foot

Jerbic et al. [116] HHT, le� or right hand

Liu et al. [117] HHT, le� or right hand

Naeem et al. [118] ICA, le� or right hand, foot, tongue

Guo and Wu [119] Dynamic ICA, BCI competition 2003 data set III

Samek et al. [120] sCSP, Dataset IVa, BCI Competition III

He et al. [121] EMD-based CSP, BCI Competition IV dataset I

Ang et al. [122]
Chin et al. [123]

FBCSP, BCI Competition IV 2a (4 classes) and 2b (2
classes)

Kai et al. [124] RFBCSP, BCI Competition IV 2b (2 classes)
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Table 3: Feature classi	cation methods in di�erent EEG paradigms.

EEG paradigms Authors Classi	cation methods

SSVEP

Chu et al. [125] LDA, 3 classes (20, 15, 12Hz)

Bi et al. [126] LDA, 2 classes (12, 13Hz)

Oikonomou et al. [92] LDA, 5 classes (6.66, 7.5, 8.57, 10, 12Hz)

Maggi et al. [127] RLDA, 5 classes (6, 7, 8, 10Hz, idle)

Singa and Haseena [128] SVM, 4 classes (7, 9, 11, 13Hz)

Bi et al. [129] SVM, 3 classes (12, 13Hz, idle)

Sakurada et al. [130] SVM, 4 classes (6, 7, 8, non	xation)

Jian and Tang [35] OVO RBF SVM, 5 classes (8, 10, 12, 14, 15Hz)

Cecotti and Gräser [131] TDNN, 5 classes (13, 14, 15, 16, 17Hz)

Cecotti [132] CNN, 5 classes (6.66, 7.5, 8.57, 10, 12Hz)

Hartmann and Kluge [133] HMM, 3 classes (10, 12, 15Hz)

Ko et al. [134] kNN, 2 classes (15, 20Hz)

Oikonomou et al. [92] kNN, 5 classes (6.66, 7.5, 8.57, 10, 12Hz)

P300

Gareis et al. [135] LDA, P300 Speller

Onishi and Natsume [136] Ensemble Stepwise LDA, P300 Speller

Elwardy et al. [137] Disjunctive Normal Unsupervised LDA, P300 Speller

Li et al. [31] SVM, P300 speller

Raju et al. [138]
Least Square SVM (LS-SVM), Competition III, Dataset II
(P300 Speller)

Li et al. [139] Self-Training Semisupervised SVM, P300 Speller

Yang et al. [140] LVQNN, 7 classes (oddball paradigm)

Turnip et al. [141] MNN, raw data in Ho�mann et al.

Cecotti and Gräser [142] CNN, P300 Speller

Helmy et al. [143] HMM, raw data in Ho�mann et al.

Speier et al. [144] HMM, P300 Speller

Syan and Harnarinesingh [80] kNN, P300 Speller, BCI Competition II

Chikara and Ko [145] kNN, 2 classes

MI

Chen et al. [32] LDA, 2 classes (le� or right hand)

Steyrl et al. [146] Shrinkage RLDA, 2 classes (right hand and feet)

Vidaurre et al. [147] KALDA, 2 classes (le� or right hand)

Rathipriya et al. [148]
SVM, 2 classes, Dataset IVa (right hand, foot) and IVb (le�
hand, foot), BCI Competition III

Oskoei et al. [149]
supervised and unsupervised SVM, 3 classes, Dataset V,
BCI Competition III (le� or right hand, word association)

Siuly and Li [150]
LS-SVM, 2 classes, Dataset IVa and IVb, BCI Competition
III

Hamedi et al. [151] BP, 3 classes (le� or right hand, tongue)

Wei et al. [152] LVQNN, 2 classes (le� or right hand)

Hazrati and Erfanian [153]
APNN, 2 classes (le� or right hand), BCI competition
2003, data set III

Haselsteiner and Pfurtscheller [154] TDNN, 2 classes (le� or right hand)

Siuly et al. [155]
Näıve Bayes, 2 classes, Dataset IVa and IVb, BCI
Competition III

Obermaier et al. [156] HMM, 2 classes (le� or right hand)

Suk and Lee [157]
HMM, Dataset IIa, BCI Competition IV (2008),
4 classes (le� or right hand, feet, tongue)

kNN, 2 classes (le� or right hand),

Bashar et al. [89] BCI Competition 2003 data set (motor imagery III)

Bashar and Bhuiyan [158] BCI Competition II data set (GRAZ motor imagery III)

Diana Eva and Tarniceriu [159] kNN, 2 classes (le� or right hand), BCI Competition 2002
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Figure 6: A hyperplane which separates two classes: the “circles”
and the “crosses” [186].

Additionally, FLDA is simple to use and generally provides
good results. It has been successfully used in a variety of
BCI systems. Since the main drawback is its linearity, it may
provide poor results on complex nonlinear EEG data. �is
can be resolved by using a kernel function [212].

To classify the time-varying EEG signals better, an
adaptive LDA classi	er is needed. Kalman adaptive LDA
(KALDA) is an adaptive version of LDA based on Kalman
	ltering, in which the Kalman gain changes the update
coe�cient and varies the adaptation speed according to the
property of the data [147]. KALDA is a supervised classi	er.
Maggi et al. put forward a regularized linear discriminant
analysis (RLDA) which is based on the modi	ed samples
covariance matrix method [127]. �e RLDA included a
boosting algorithm based on a cyclic minimization of the
classi	cation error in the training set and an algorithm for
outlier rejection. �e multiclass identi	cation problem was
solved by means of a combination of binary classi	ers using
a one-versus-all approach.

3.3.2. Support Vector Machines (SVM). SVMs are becoming
popular in a wide variety of biological applications [213]. A
SVM is a computer algorithm that learns by example to assign
labels to objects. It is also discriminates classes by construct-
ing a linear optimal hyperplane, which is induced from the
maximum margin principle between two classes [214]. �e
selected hyperplane is the one that maximizes the margins,
that is, the distance from the nearest training points (see
Figure 7). Also, the OVR strategy is used for multiclass BCI.

One of the major advantages of the SVM approach is its

exibility. Using the basic concepts of maximizing margins,
duality, and kernels, the paradigm can be adapted to many
types of inference problems [187]. Additionally, the usage of
SVM is simple. �e decision rule of SVM is a simple linear
function in the kernel space whichmakes SVM stable and has
a low variance. A low variancemay be a key for low classi	ca-
tion error in BCI because BCI features are very unstable over
time. Furthermore, the robustness of SVM enables SVM to
obtain ideal results even with very high dimensional feature
vectors and a small training set. However, SVM classi	ers
have a longer computational time than others.
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Figure 7: SVM	nd the optimal hyperplane for generalization [187].

In order to maintain the classi	cation accuracy and
overall performance of the system, online classi	cation and
adaptive schemes which modify BCI classi	cation parame-
ters in real-time are particularly important. Jian and Tang
appliedOneAgainOneRadial Basis Function SupportVector
Machine (OAO RBF SVM) to classi	cation in order to
improve the short time window classi	cation accuracy [35].
Moreover, they presented a signal quality evaluation method
which cancelled the decision of the RBF SVM when signal
quality was low and prone to be misclassi	ed. Making no
decision could reduce the cost of making a wrong decision.
Oskoei et al. applied supervised and unsupervised adaptive
schemes to online SVM that classi	ed BCI data [149]. Online
SVM processed fresh samples as they came and updated
existing support vectors without referring to pervious sam-
ples. It was shown that the performance of online SVM was
similar to that of the standard SVM, and both supervised
and unsupervised schemes improved the classi	cation hit
rate. To reduce the time-consuming training sessions, there
are also semisupervised SVM learning algorithms. Li et al.
designed a Self-Training Semisupervised SVM algorithm for
classi	cation in small training data cases [139].�is algorithm
converges fast and has low computational burden.�ey illus-
trated that the algorithm can be used to signi	cantly reduce
training e�orts and improve adaptability of a BCI system.

3.3.3. Neural Networks. Neural networks are highly e�cient
in classi	cation of data and are similar to the working of
the human neurons. �e method is especially useful when
a perfectly algorithmic solution cannot be formulated, but
adequate data must be available. Considering these features,
a neural network is the best possible solution to classify the
BCI. Among all the neural networks used in BCI, the Multi-
layer Perception (MLP) is the most widely used methods.

MLP is a feedforward arti	cial NN, in which the Back-
propagation (BP) network is the most famous and active
model in all the feedforward neural networks. Its kernel is
the BP algorithm. BP neural network consists of input layers,
hidden layers, and output layers. �e number of hidden
layers is determined by practical situations. �e relationship
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between the input pattern and the corresponding output
pattern can be obtained by learning arithmetic and can be any
nonlinear function.

Besides, there aremany other neural networks used in the
	eld of BCI, such as Convolutional Neural Network (CNN),
CCA-NN, Learning Vector Quantization (LVQ) Neural Net-
work, Multilayer Neural Network (MNN), Adaptive Proba-
bilistic Neural Network (APNN), Time Delay Neural Net-
work (TDNN), and Time-Dependent Neural Networks
(TDNN). Table 3 lists partial practices in di�erent EEG
paradigms.

3.3.4. Bayesian Classi�ers. �e classi	cation principle of the
Bayesian classi	er is to calculate the posterior probability
using Bayesian formulas according to the prior probability of
an object, namely, the probability of some class to which the
object belongs. �e class with the highest posterior probabil-
ity is the one to which the object belongs. Bayesian classi	ers
mainly include naı̈ve Bayes classi	er, Hidden Markov Model
(HMM), and Bayesian Graphical Network (BGN). All these
classi	ers produce nonlinear decision boundaries. �ey are
generative, which enables them to perform more e�cient
rejection of uncertain samples than discriminative classi	ers.
However, Bayesian classi	ers are not as widespread as linear
classi	ers or Neural Networks in BCI applications. �e näıve
Bayes classi	er and HMM have been employed for BCI, but
BGN is not commonly used because of its long computational
time.

�e naı̈ve Bayes classi	er greatly simpli	es learning by
assuming that features are independent given class. Although
independence is generally a poor assumption, in practice
naı̈ve Bayes o�en competes well with more sophisticated
classi	ers [215]. �e naı̈ve Bayes classi	er is mainly used in
motor imagery.

HMMs are very e�cient for the classi	cation of time
series. �ey are popular in the 	eld of speech recognition
and signal processing, and recently they have been applied
to mental task classi	cation of temporal sequences of BCI
features and even to the classi	cation of raw EEG.HMMs can
also naturally accommodate variable-length models, permit
reading of these models, and make sense of them. �ere are
some applications using it in SSVEP, P300, and MI.

3.3.5. Nearest Neighbor Classi�ers. �ese classi	ers are very
simple. A feature vector is assigned to a class with respect to
its nearest neighbor(s). �e neighbor can be a feature vector
or a class prototype. If the number of samples is large, itmakes
sense to use it, instead of the single nearest neighbor. �e
majority vote of the nearest � neighbors is called � Nearest
Neighbor (kNN). kNN is the most widely used classi	er
among nearest neighbor classi	ers.

kNN classi	er is rarely applied in SSVEP and P300.
However, it has a good performance in MI and has a higher
accuracy rate thanmany other classi	ers, such as LDA, Naı̈ve
Bayes, and SVM.

Recently, the combination of several classi	ers has been
employed to solve the feature classi	cations in BCI. �e
combination of similar classi	ers may outperform the use
of the individual classi	ers on its own. �ere are many

strategies of classi	er combination in BCI applications, such
as Boosting [216], Voting [217], and Stacking [218]. Here, we
will not explain them in detail. �e detailed explanations can
be found in the referenced paper [210].

4. Typical BRI Systems

4.1. Wheelchair Control. As a simple intelligent device, a
wheelchair is primarily considered as a BCI-based control
object because of its small degree of freedom (DOF). Galán
et al. designed an asynchronous and noninvasive EEG-based
BCI for continuous mental control of a wheelchair. �e
subject was able to mentally drive both a real and a simulated
wheelchair from a starting point to a goal along a prespeci	ed
path by executing three di�erent mental tasks (le� hand
imagination movement to turn le�, rest to go forward, and
word association to turn right) [219]. Iturrate et al. used
a noninvasive brain-actuated wheelchair that relied on a
P300 neurophysiological protocol to realize an autonomous
navigation system which drove the wheelchair to the desired
location while avoiding collisions with obstacles in the envi-
ronment detected by the laser scanner [220]. Rebsamen et al.
used a slow P300-based BCI to select a destination among
a list of prede	ned locations and a faster MI-based BCI to
stop the wheelchair, which provides mobility to BCI users in
a safe way [221]. Philips et al. developed an adaptive shared
control system of a brain-actuated simulated wheelchair
aiming at providing an extra assistance when a subject was
in di�cult situations. Despite three possible discrete mental
steering commands of forward, le�, and right, three levels of
assistance, including collision avoidance, obstacle avoidance,
and orientation recovery, would be triggered whenever the
user had di�culties in driving the wheelchair towards the
goal [222]. Vanacker et al. introduced a shared control
system that helped the subject in driving an intelligent
wheelchair with a noninvasive brain interface. �e subject’s
steering intentions were estimated from EEG signals and
passed through to the shared control system before being
sent to the wheelchair motors [223]. Li et al. proposed a
hybrid BCI system combining P300 and SSVEP to improve
the performance of asynchronous control and applied the
paradigm to produce a “go/stop” command in real-time
wheelchair control [224]. In this way, thewheelchair probably
plays the role of a human’s legs, which guides the disabled or
elderly to the place where they want to go.

4.2. Manipulator Control. Manipulators mainly refer to a
variety of robot arms and mechanical prosthetics. Most of
the manipulators have a relatively small DOF, which are
able to imitate a human’s arm to 	nish di�erent kinds of
tasks. Palankar et al. applied a P300 BCI to control a 7-
DOF wheelchair-mounted robotic arm. �e BCI interface
consists of 15 stimuli corresponding to 14 movements of the
robot arm and one stop command, which interpret the user’s
intention to direct the robot along a step-by-step path to a
desired position [225]. Li et al. proposed a BMI system to
perform the motion of a serial manipulator in the whole
workspace. Small-world neural network (SWNN)was used to
classify 	ve brain states based on motor imagery and shared
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control. �e control strategy used six 2-tuple commands to
achieve motion control of the manipulator in 3D Cartesian
space [226]. Iáñez et al. used four cognitive processes or
“tasks” and a rest state to control a robot arm with 6 DOF
[227]. Pohlmeyer et al. let a marmoset monkey control the
movements of a robot arm for a reaching task using a rein-
forcement learning (RL) BMI. �e monkey was required to
move a robot arm to one of two LED targets to receive a food
reward [228]. Wang et al. presented a protocol for a three-
modeMI-based BCI, in which le�/right hand and foot motor
imageries were adopted. �e three modes constructed eight
commands to control a 5-DOF robotic arm to 	nish “le�,”
“right,” “up,” “down,” “ahead,” “aback,” “hold,” and “put.”
Using the system, the subject was able to move the robotic
arm to an appropriate position from the initial position to
grab an object, put the object down in a designated position,
and move the arm back to the initial position [229]. Elstob
and Secco developed a low cost EEG-based BCI prosthetic
using MI and realized the open or close of the whole hand
by detecting the le� or right MI [230]. Müller-Putz and
Pfurtscheller used four red LED bars mounted on the hand
prosthesis to elicit SSVEP and controlled the prosthesis to
	nish the tasks of turning right/le� and opening/closing hand
[21]. Here, controlling a manipulator mainly aims at dealing
with some grasping and carrying objects, which takes the
place of a human’s arms in the BRI system.

4.3. Drone Control. Drones are becoming more and more
popular in our daily lives. �ey are widely used in trans-
portation, air shooting, and entertainment. In the application
of BRI, Chen et al. established an SSVEP-based BCI system
using fuzzy tracking and control algorithm on an air swim-
mer drone vehicle.�e air swimmer drone vehicle was able to
elevate, dive, turn le�, go forward, and turn right.�e system
aims at helping subjects with amyotrophic lateral sclerosis
(ALS) participate in communication or entertainment [231].
Kos’Myna et al. put forward a bidirectional feedback in MI
BCIs, in which the subject was able to control a drone within
5 minutes. �ey applied the system to the piloting of an
AR.Drone 2.0 Quadcopter to do tasks involving taking o�,

ying in a straight line until a target is reached, and landing
the drone [232]. Doud et al. used a MI-based BCI to realize
a continuous control of a virtual helicopter through golden
rings positioned and oriented randomly throughout a 3D
virtual space [233]. In addition, LaFleur et al. realized a quad-
copter control in three-dimensional space using a noninva-
sive MI-based BCI. �e subject could pilot the AR Drone
Quadcopter safely through suspended-foam rings with the
help of the visual feedback of the quadcopter’s video on the
computer screen [234]. Due to its 
exibility and diversity, the
drone is a good option for the disabled to communicate with
the world.

4.4. Humanoid Robot Control. One of the greatest challenges
to the BRI systems is the control a humanoid robot, because it
has very complexmechanical kinematics and dynamics char-
acters. Bell et al. established an EEG-based BCI interface that
can be used to command a partially autonomous humanoid
robot to perform complex tasks such as walking to speci	c

locations and picking up desired objects [235]. Li et al. used a
32-channel EEG device to acquire a subject’s brainwaves and
controlled a humanoid robot, KT-X PC robot, by identifying
mental activities when the subject was thinking “turning
right,” “turning le�,” or “walking forward.” By doing this,
they primarily investigated the relationship between complex
humanoid robot behaviors and humanmental activities [236,
237]. Zhao et al. developed an OpenViBE-based brainwave
control system for Cerebot and used the platform to control a
humanoid robotNAO to 	nish four robot-walking behaviors:
turning right, turning le�, walking forward, and walking
backward [27].

In this section, we focus on the development of BRI
system from synchronous to asynchronous systems.�e con-
trolled objects mainly aim at humanoid robots. Tables 4 and
5 list some BRI applications of controlling humanoid robots
with synchronous and asynchronous BCI, respectively.

Table 4 shows that NAO is the most commonly used
humanoid robot in BRI systems. �ere is a wide application
for humanoid robots used in BCI including SSVEP, P300,
MI, and even their hybrids. Most of them are synchronous
systems. Even though the asynchronous BCI systems have
been explored a lot in theory, the practical application
techniques in social environment are still immature. �is is
because the detection of idle state is di�cult and complex,
and the additional classi	cation of idle state is at the cost of
accuracy. �erefore, the accuracy of the classi	cation in an
asynchronous BRI system o�en cannot satisfy an operator’s
demands.

Additionally, the BRI system is still on the level of lab
research, and there are few applications currently available.
Still, some BRI systems based on BCI have realized online
control of intelligent peripherals and feedback. New applica-
tion systems are emerging continuously. �e BRI system has
applications in medical and nonmedical 	elds. In the medi-
cal 	eld, patients with a normal functioning mind but a dis-
abled body can use the BRI system to communicate with
others and control some intelligent peripherals, such as an
intelligent wheelchair, mechanical prosthesis, virtual type-
writer, or humanoid robot.While in the nonmedical 	eld, the
BRI system can be applied to state supervising of the operator,
games, general amusement, and smart homes.

To realize the practical application in daily lives, the
safety of the BRI system will be the most signi	cant factor.
Considering the safety of the operator, the concept of “brain
switch” is put forward. Namely, the brain switch avoids
generating task commands in a nontask state, so the brain
switch plays an important role in a practical BRI system. For
example, when operating a wheelchair or prosthesis, a trigger
error may put the operator in danger. �e asynchronous
BCI system provides a solution by acting as a brain switch.
�e asynchronous BCI system detects the idle state of brain
activities and prevents the output of the control commands
while idle. Most BCIs are based on synchronous protocols
where the operator must follow a 	xed repetitive scheme to
switch fromonemental task to the next. In these synchronous
BCI systems, the EEG recognized phenomena are time-
locked to a cue, with a typical trial lasting 4 to 10 s or longer. In
contrast, asynchronous BCI relies on asynchronous protocols
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Table 4: Control of a humanoid robot with synchronous BCI.

EEG paradigms Authors Robot model Control commands

SSVEP

Güneysu and Akin [34] NAO Le�, right, down, up (hand)

Zhao et al. [160] NAO

Turn le�, right, walk forward, backward
for one-step walking, turn le�, right,
move forward, stop for continuous
walking, head le�, right, camera selecting
top or bottom, object grasping and li�ing

Caglayan and Arslan [36] Kondo KHR-3HV Raise le� or right arm

Zhao et al. [28] NAO
Walk forward and backward, turning le�
and right

Gergondet et al. [23] HRP-2
Walk forward and backward, turning le�
and right

Wang et al. [161] NAO Human face detection and tracking

P300

Zhao et al. [28] NAO
Walk forward and backward, shi� le� and
right, turn le� and right

Li et al. [162] NAO
Walk forward and backward, shi� le� and
right, turn le� and right

Tang et al. [163] NAO

Turn le� and right (with di�erent angle),
move forward (with di�erent speed),
stand up, sit down, wave hand, turn
on/o� the system

Liu et al. [164] Adult-size robot
Walk forward and backward, turn le� and
right

MI

Bouyarmane et al. [165] Humanoid robot HRP2 Go up and down

Batula et al. [166] DARwIn-OP
Walk forward and backward, turn le� and
right

Cohen et al. [167] HOAP3 Walk forward, turn le� and right

P300+MI Finke et al. [19] Honda’s Humanoid Robot
Walk forward and backward, sidestep le�
and right, turn le� and right

SSVEP+MI Duan et al. [20] NAO
Walk forward, turn le� and right, grasp
motion

Table 5: Control of a humanoid robot with asynchronous BCI.

EEG paradigms Authors Robot model Control commands

SSVEP Deng et al. [168] HanGood HGR-3M Turn le�, right, walk forward, stop

MI

Jiang et al. [169] NAO Walk forward, stop, turn le� and right

Jiang et al. [170] NAO Stop motion, open/close hand, shoulder up and down, elbow up and down

Chae et al. [33] NAO Head le� and right, body le� and right, walk forward, stop

SSVEP+P300+MI Choi and Jo [171] NAO Walk forward, body turn, head turn, object recognition

in which the operator makes voluntary, self-paced decisions
on when to stop performing a BCI task and when to start the
next one. �is makes the system very 
exible and natural to
operate and yields rapid response times [238].

5. Future Perspectives

Over past years, a number of research groups have had suc-
cess with EEG-based BCI paradigms, including SSVEP, ERP,
MI, and their hybrids. Some BRI groups have demonstrated
that some BRI systems have the potential for BRI practical
applications, such as assisting the elders or disabled persons
in daily tasks. However, there are still many technical prob-
lems with BCI and BRI that need to be addressed, especially

with humanoid robots interaction. In the following, we sum-
marize some di�culties and challenges in future research.

5.1. Novel EEG Evoking Patterns. �e existing EEG evoking
patterns have developed rapidly with respect to principles,
coding, and decoding. �e classi	cation accuracy has not
reached the maturity to control intelligent devices outside a
laboratory setting. For example, the visual evoking patterns
SSVEP and ERP need visual stimuli equipment, while the
MI pattern has the disadvantages of long training time,
limited commands, and relatively low classi	cation accuracy.
�erefore, novel EEG evoking patterns are essential to begin a
new epoch for BCI development.Novel EEGevoking patterns
mainly focus on being free of visual stimuli, applying more
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e�cient algorithms to generate more decoding commands,
and evoking higher classi	cation accuracy.

5.2. Adaptive EEG Decoding Methods. �e performance of
BCI varies from one person to another and is easily a�ected
by an operator’s mental state. To obtain a good performance
in the BCI system, the operator must be trained for a while,
especially for MI. �erefore, the generality of EEG decoding
methods remains unsolved. Considering the similarities and
di�erences among humans, adaptive EEG decoding methods
need to be designed so the classi	cation models have a
better performance with respect to self-studying and self-
correcting. Liu et al. adaptively change repetition number by
comparing the classi	cation results with a threshold [239];
Jin et al. detected the same target stimulus twice in limited
repetitions, by automatically adjusting the repetition number
[240]. In theory, an adaptive classi	cation method plays an
important role in online BRI systems.

5.3. Portable EEG Device. In a BCI system, the acquisition
of the brain signals is the primary function and is the key
in guaranteeing the stability and accuracy of the system.
With the development of the sensors and ampli	ers, the
noise attached to the brain signals can be largely restrained.
Even though an EEG device has high-precision and high
reliability, such as the Cerebus, it is heavy and not portable.
Even though the Emotive EPOC is more portable than
Cerebus, it has limited channels, which makes it not suitable
for multichannel analysis. In the visual evoking paradigms,
such as SSVEP or P300, an evoking device is essential, but
a LCD screen or a LED device is not suitable for real-
world application. A more portable EEG acquisition device
is needed and a wearable visual evoking device, such as a
Google glass, may solve the problem.

5.4. Dynamics and Kinematics and Control Architecture of
Robots. In terms of interaction between humans and robots,
the dynamics and kinematics of robots are supposed to
greatly in
uence the performance of a BRI system, whether
for wheelchairs, manipulator, drones, or humanoid robots.
On one hand, the dynamics determines the motion charac-
ters, such as the speed, acceleration, and stability. In addition,
the dynamics of robots can solve the matching problem
between the robot’s motion and the information transfer rate
(ITR) of BCI. �e research of dynamics is used to calculate
the time cost of each motion of a robot, which can give
guidance for choosing the corresponding ITR. �us, the
entire executing e�ciency of a BRI system will be improved
greatly. On the other hand, the kinematics of robots plays an
important role in path planning, path optimizing, and global
path modeling.

A humanoid robot has an especially sophisticated control
architecture that consists of sensor fusion, modeling, path
planning, and motion control. Solving these problems will
greatly prompt the development of BRI in three ways. First, a
humanoid robot is generally equipped with di�erent kinds of
sensors, such as sonars, cameras, bumpers, and GPS. Taking
advantage of the robot’s intelligence will assist the operator to
	nish tasks more e�ciently and relieves the mental pressure

of the operator. Second, a humanoid robot has a complex
mechanical kinematics and dynamics problem, but it can
friendly interact with users. �erefore, the application of
a humanoid robot in BRI system is becoming more and
more popular. Modeling a humanoid robot’s mechanical
kinematics and dynamics can keep the robot upright walking
and assist in path planning and motion control. �ird, the
former BRI systems mostly control the humanoid robot at a
low level and do not combine the operator’s intention with
the intelligence of the robot for higher level decision making.
How and when the brain signals are inserted into the BCI are
important considerations for BRI development. For example,
path planning can be realized by a camera and GPS, which
will never or rarely need the involvement of brain signals.
Brain signals only play a role in supervising the process and
gives guidance in the case of an emergency. �us, a human
does not need to care about the detailed path a humanoid
robot develops but just needs to set a destination. When an
emergency occurs, a humanoid robot will be prevented from
creating a path and the operator must maneuver via brain
signals. Last, there will be con
icts between the user and the
robot, so it becomes quite signi	cant to 	nd an appropriate
solution to these con
icts. Developing a strategy to 	nd the
optimal balance between automation and operator control
will be the vital issue in solving the problem.

5.5. Evaluation Index System. A system usually needs eval-
uation indexes to judge its performance. A good evaluation
index system should be suitable for di�erent types of systems.
For BCI systems, the commonly used evaluation indexes are
classi	cation accuracy and ITR. However, both indexes only
judge a single experiment of a subject. When conducting the
same BCI experiment on the same subject, the indexes must
be recalculated. �erefore, the indexes are not adaptive even
to the same subject. Average values may solve the problem,
but they will cover the di�erences of the same subject in
di�erent spirit status. �e evaluation index system of the
BCI needs not only classi	cation accuracy and ITR, but also
indexes that are able to represent the di�erences in the same
subject. Additionally, the evaluation index system should
comprehensively evaluate the entire performance of a BCI
system for di�erent subjects.

5.6. Individual Di
erences. �e character and amplitude of
the brain signal vary from person to person, which leads to
the individual di�erences in the sensitivity and performance
of BRI systems. Usually, a person who is familiar with the
experimental procedure or has experimental experience will
have a high accuracy rate. It is possible for some persons
to have a terrible performance in EEG-based BRI systems
even a�er a long training period. Particularly, theMI training
process always takes a long time for people to master the
skills. �erefore, how to diminish the individual di�erences
between persons still remains to be solved. Additionally, the
existing BRI systems mainly use normal functioning people
as volunteers, even though there are some applications for
special people such as the elderly and patients with neurolog-
ical conditions. Many experiments are needed to explore the
individual di�erences between a normal functioning person
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and the disabled or the elderly, for the application of the BRI
systems as a service.

5.7. Combination of EEGwithOtherDetectingMeans. Despite
EEG-based brain signal detecting, there are also many other
modern devices capable of detecting a person’s brain activity.
Some researchers attempted to explore brain activities by
combining EEG with functional near infrared spectroscopy
(fNIRS) and functional magnetic resonance imaging (fMRI).
For instance, Leamy et al. combined fNIRS and EEG to
improve motor cortex activity classi	cation during an imag-
ined movement-based task [241]. Putze et al. developed a
hybrid BCI which uses EEG and fNIRS to discriminate and
detect visual and auditory stimulus processing and found the
fusion of the two signi	cantly increased accuracies [242].
Mulert et al. integrated fMRI and EEG to understand brain
activities in an auditory oddball paradigmand the results sug-
gest their combination results in an improved understanding
of the spatiotemporal dynamics of brain activity [243]. With
the emerging of the combination of EEG with other brain
signal detecting methods, this technique will be particularly
useful in the design of BCI devices and BRI systems.
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