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Abstract

Diseases of the nervous system have devastating effects and are widely distributed among the
population, being especially prevalent in the elderly. These diseases are often caused by inherited
genetic mutations that result in abnormal nervous system development, neurodegeneration, or
impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic
changes induced by environmental insults, injury, disease-related events or inflammatory
processes. Standard medical and surgical practice has not proved effective in curing or treating
these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease
progression. Gene therapy is emerging as a powerful approach with potential to treat and even
cure some of the most common diseases of the nervous system. Gene therapy for neurological
diseases has been made possible through progress in understanding the underlying disease
mechanisms, particularly those involving sensory neurons, and also by improvement of gene
vector design, therapeutic gene selection, and methods of delivery. Progress in the field has
renewed our optimism for gene therapy as a treatment modality that can be used by neurologists,
ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy
strategies that have the potential to treat patients with neurological diseases and discuss prospects
for future development of gene therapy.

Introduction

The nervous system is a complex and difficult organ system to study, and the brain is an
organ where many of the most pervasive disease processes arise, for which the cause
remains elusive. These diseases encompass a broad spectrum of pathological states and can
have global or local effects on metabolism, and neural development and function. Drugs and
neurosurgical procedures have generally not proven effective in the treatment of these
disorders owing to the complexity and limited understanding of the pathophysiology
involved. In addition, the blood–brain barrier (BBB) limits the use of systemic treatments as
it impedes widespread delivery of therapeutic agents to the CNS.

Genetic interventions to supply gene products that permanently restore function and even
induce replacement of lost cells could represent an alternative to standard pharmacological
approaches. Such approaches, in which DNA or RNA is used as the pharmacological agent,
are defined as gene therapy. Despite its tortuous development, the field of gene therapy has
matured, emerging as a legitimate and promising choice for the treatment of many nervous
system disorders. Improvements in gene transfer methods can largely be attributed to the
development of sophisticated delivery vehicles that have been evaluated in animal models of
human disease. On the basis of numerous preclinical studies, early clinical trials have been
carried out to test the safety and, in some cases, efficacy of gene therapy. Some results have
been encouraging, suggesting that this approach will soon be translated to the clinic.

In this Review, we describe some of the most promising emerging gene therapy approaches
for the treatment of various nervous system disorders. We begin by describing the most
common gene delivery systems and how vector design and biology fits their application. We
discuss progress in the treatment of retinal degeneration, neuropathic pain and
polyneuropathy in the PNS, and in the CNS we focus on lysosomal storage diseases,
Parkinson disease (PD), epilepsy and glioblastoma. Progress has been made in the field of
gene therapy to treat other disorders, but advances for the diseases described above are
representative of the development of nervous system gene therapy. Our opinion is that gene
therapy has the potential to prevent the onset or slow progression of neurological diseases
and possibly to restore normal function. Our hope is that in the future, some of these gene
therapy approaches will become available for patients.
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Gene therapy vectors

The success of gene therapy depends on effective gene delivery. Over the past two decades,
vectors to deliver the therapeutic gene have undergone remarkable changes in design to meet
the complex demands of transgene delivery to the host. Great effort has gone into the
creation of nonviral gene delivery vehicles, including naked DNA or RNA, liposomes, and
nanoparticles, owing to their low cost and ability to deliver a large cargo. Therapeutic gene
expression with such vectors, however, is typically low and of limited duration.1 None of
these nonviral vectors contain the highly evolved mechanisms that wild-type viruses use to
insert their genetic material into host cells and to alter cell functions. The use of gene vectors
to treat patients with nervous system disorders has a complex history that in part mirrors the
history of vector development. The most common CNS gene therapy vector is an adeno-
associated virus (AAV), but lentiviral vectors have an increasing role in CNS gene therapy,
and have the advantage of a larger transgene capacity. Herpes simplex virus (HSV) and
adenoviral vectors have also been used to treat CNS disorders, especially tumours.

Viral vectors

The key to development of an effective viral vector is to harness the virus biology for
transgene expression rather than viral replication after host transduction. Achievement of
this goal has not been easy and, indeed, suitable vectors are still in development and vary
with respect to level and duration of transgene expression, cellular specificity and safety
issues (Table 1).

Current design strategies for the most common viral vectors make use of the unique
technical advantages of each vector (Figure 1). For example, vectors constructed from an
AAV are safe, nonpathogenic and afford long-term gene expression. However, such vectors
have limited transgene capacity, can be difficult to target to the appropriate location, require
a high dose for effective gene expression, and are readily eliminated by humoral immune
responses in patients previously exposed to the virus.2 Other vectors, such as lentiviruses
and retroviruses, can insert novel genetic material into the host cell chromosome, which is
essential to avoid therapeutic gene loss in dividing cells. However, oncogenesis resulting
from chromosomal insertion of the vector DNA poses a potential problem with the use of
these viral vectors.3

Vectors with a large transgene capacity include those constructed from adenoviruses and
HSV, which have the potential for effective gene targeting and sustained transgene
expression. These vectors can, however, cause toxicity and inflammation stemming from
‘leaky’ expression of viral genes and reaction to the vector coat. Avoidance of these adverse
effects requires complete vector genome silencing, which can affect transgene expression.
These vectors can all be targeted by innate immune responses that, together with humoral
immune responses, might trigger immune-mediated inflammatory processes that limit vector
delivery, gene expression and the potential for redosing.4 Despite these limitations, many of
these vectors have proven to be highly effective gene delivery tools if used in a careful
manner that takes advantage of their natural biology and strengths.

Vector targeting through capsid modifications

Considerable advances in vector targeting have been made in terms of the overall efficiency
of transduction, delivery to a wide target area, and in some cases delivery to a specific tissue
or cell type. Improvements to AAV vectors over the past decade serve as a good example of
how targeting can be improved. Alternative serotype capsids (the protein shell of a virus),
rational mutagenesis of the capsid, insertion of targeting peptides into the capsid, and
derivation of novel capsids by directed evolution have all been used to improve targeting of
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AAV vectors. Over 100 AAV capsid variants have been identified, each with a potentially
different cell tropism that provides a broad toolkit of vectors for optimized transgene
delivery. For example, AAV9 could be used for CNS applications owing to its ability to
cross the BBB after intravenous injection.5–7 Enthusiasm for the use of AAV9 as a vector
might be tempered by its high liver tropism (relative to its CNS tropism), but this tendency
can be reduced by introduction of point mutations into the capsid,8 or via the introduction of
micro-RNA target sequences that respond to microRNAs highly expressed in the liver, but
not in the CNS, into viral genes or virally delivered transgenes to limit their expression in
the liver, thereby reducing toxicity to nontarget areas.9

Peptide insertions can confer novel features to AAV capsids and, by using a phage display
library to generate novel peptides, modified AAV2 capsids were developed that specifically
targeted the cerebral vasculature after intravenous injection.10 To generate entirely new
AAV capsids, DNA shuffling of capsid genes can be combined with directed evolution to
select for novel traits.11 In one study, a novel AAV capsid was generated that, after
intravenous injection, showed increased expression at sites of epilepsy damage, with almost
no expression in liver, heart and muscle; that is, a favourable safety and bio-distribution
profile.12 Similar to drug optimization, virus capsid engineering can increase vector potency
and cell specificity and reduce the potential for adverse effects.

Transgene expression control

The level of transgene expression and cell-specific expression can be directed by cis-acting
elements contained within the vector genome or by the innate tropism of the virus itself. For
example, the choice of 5’ untranslated region (UTR), 3’ UTR, enhancer, promoter and
polyadenylation signal can affect cell specificity and level of transgene expression.13–20

Through changes to the vector genome design, transgene expression can be modulated
across at least a 1000-fold range and be restricted to specific cell populations.

Gene therapy strategies

A good example of progress toward gene therapy strategies is the work done in retinal
diseases. At least six strategies for transgene delivery and expression have been explored,
extending the use of gene therapy from autosomal recessive sensorineural diseases (Leber
congenital amaurosis) to complex inherited and acquired diseases, such as age-related
macular degeneration.

Gene augmentation and/or gene knockdown is aimed at correcting gene expression in the
context of a loss-of-function mutation by introducing the wild-type cDNA,21 or at reducing
expression of or eliminating a toxic gain-of-function gene product.22–24 Gene augmentation
is often limited by a narrow therapeutic window owing to the progressive nature of the
disease, whereby the therapeutic target cell often degenerates and dies.

Correction of the primary genetic lesion at the chromosomal level is another approach to
gene therapy, but is challenging owing to limited efficiency of current gene-editing
technologies. Delivery of a vector carrying a transgene that encodes a decoy protein to the
target organ is a technique that has been used to treat pathological ocular neovascularization.
This approach involved expression of the sFlt1 transgene, which encodes a tyro sine kinase
that binds vascular endothelial growth factor—a key driver of pathology in ocular
neovascularization (Supplementary Table 1 online).25

Delivery of vectors to express genes that encode proteins with antineovascular or
antiapoptotic function is also possible. For example, delivery of the pigment epithelium-
derived factor-encoding gene, which has antiangiogenic properties that are not fully
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characterized is in development for treatment of choroidal neovascularization
(Supplementary Table 1 online). Increased expression of genes encoding growth factors has
been used to enhance nerve regeneration. Induction of a photoreceptor phenotype through
expression of the CRX transcription factor has been shown in retinal stem cells.26 Such an
approach has also been used to produce functional auditory hair cells in the cochlea in
animal models.27,28 Finally, molecular prosthetics is an option to restore visual function by
introducing light-sensitive ion channel proteins or ion pump proteins derived from bacteria
and algae, such as the channel rhodopsin or halorhodopsin subfamilies, into the retina.29

This approach is unique in that it can theoretically restore some function by rendering
remaining cells in the retina light-sensitive and harnessing the function of remaining
circuitry in the retina or optic nerve long after the primary disease-causing cells have died.
Ultimately, this kind of gene therapy might be useful for all in herited diseases or
environmentally induced degenerative processes that affect retinal pigment epithelium and
photoreceptors, and also for blindness due to untreated retinal detachment.

The approaches described above all require some intact CNS function or sufficient plasticity
to incorporate the neural signal from the treated peripheral organs. Sufficient plasticity exists
in at least some retinal degenerative diseases, as demonstrated in a functional MRI study in
recipients of retinal pigment epilethium-specific 65 kDa protein (RPE65) retinal gene
augmentation therapy, in whom light-induced cortical responses were present even after
long-term (>3.5 decades) visual deprivation.30

Gene therapy targets

Sensory organs and the PNS

Considerable progress has been made in developing gene therapy for sensorineural
disorders, in particular blinding retinal degenerative diseases, for which no treatments are
available. The mammalian eye has been the target organ in a number of therapeutic trials of
gene therapy, because of its accessibility, its benign immunological response to gene
transfer, and the availability of noninvasive functional and structural analyses. Many of
these studies have focused on rare diseases, such as retinitis pigmentosa, Leber congenital
amaurosis and choroideraemia, which could provide stepping stones to treat more-prevalent
blinding conditions that have limited treatment options such as age-related macular
degeneration, glaucoma and diabetic retinopathy.

Gene therapy to treat retinal blindness has progressed furthest of all the therapeutic
strategies discussed above, with several completed or ongoing clinical trials (Supplementary
Table 1 online). Three independent clinical trials have demonstrated safety and efficacy of
RPE65 gene augmentation in patients with Leber congenital amaurosis.31–33 This strategy
was aided by progress in identification and cloning of the disease-associated genes, and has
provided momentum for several studies of gene therapy for other inherited forms of
blindness (Supplementary Table 1 online). More than 25 genes associated with blindness
have been recognized after identification of the first two— the choroideraemia and
rhodopsin genes—in 1990.34–36 A number of the retinal disease-associated mutant genes
can also cause hearing and/or vestibular disorders (Usher syndrome). Progress in the field of
genetics has led to the development of animal models of blindness and an improved
understanding of disease pathogenesis. Studies in these models have been used for proof of
concept in gene therapy and have led to clinical trials.

Progress has been made in gene therapy for other, extraocular sensory deficits, albeit at a
slower rate than for retinal applications. The clinical need here is large: hearing loss and
deafness due to presbycusis is a growing problem owing to the ageing of populations.
Although surgical access is more of a challenge for cochlear than for retinal disorders, proof
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of concept for gene therapy in several inherited conditions leading to deafness has been
demonstrated.37,28 In one of these studies, cochlear hair cells were regenerated after noise-
induced degeneration, by delivering a transcription factor known to be important in the
development of stereocilia.28 In another study, a gene encoding the missing vesicular
glutamate transporter-3 was delivered to the cochlea in mice lacking this enzyme; gene
augmentation therapy at least partially restored hearing in these mice.37 A third pivotal
proof-of-concept study showed correction of a splicing defect in one form of Usher
syndrome through administration of antisense oligonucleotides to a mouse model of the
disease.38 Finally, although target organs such as the nose and tongue are more accessible
than the retina and cochlea, very few studies have addressed disorders of smell and taste,39

probably owing to the complex aetiologies of these disorders and risk–benefit ratios for
these indications.

Pain and sensory neuropathy

Nonreplicating HSV vectors are promising vehicles for delivery of therapeutic transgenes to
the PNS.40 Enthusiasm for the use of this vector has been prompted by the high rate of
infectivity of the virus in dorsal root and trigeminal ganglia, as well as its life-long
persistence in sensory neurons in a nonintegrated state that is thought to mimic viral latency.
HSV vector delivery to the PNS is achieved by simple inoculation of the skin. The vector
enters nerve terminals and undergoes retrograde axonal transport to the nucleus, where the
therapeutic gene is expressed in the absence of viral lytic functions (Figure 2). Potential
applications for HSV vectors include the treatment of peripheral pain dis orders
(inflammatory or neuropathic)41,42 and nerve degeneration (sensory polyneuropathy).43

In preclinical studies involving rodent models of pain, subcutaneous inoculation with a
nonreplicating HSV vector expressing the opioid peptide enkephalin substantially reduced
pain-related behaviour caused by inflammation, nerve damage or cancer.44,45 A similar
vector expressing the glutamic acid decarboxylase (GAD) transgene to cause release of the
inhibitory neuro-transmitter γ-aminobutyric acid (GABA) prevented neuropathic pain
caused by spinal nerve trauma or diabetes.46,47 In addition, HSV vectors that expressed anti-
inflammatory peptides, including IL-4 and IL-10, reduced pain in models of CNS and PNS
neuropathic pain.48–50

Pain control has been achieved by using an HSV vector to express the glycine receptor—a
ligand-gated Cl– channel that inhibits neurotransmission—in sensory neurons, combined
with application of glycine to activate nerve silencing and provide a molecular switch for
pain control.42 Similarly, subcutaneous inoculation of rodent models with nonreplicating
HSV vectors that express conventional or atypical neurotrophic factors, including nerve
growth factor, neurotrophin-3 and erythropoietin, has been shown to prevent progression of
neuropathy caused by an overdose of pyridoxine, treatment with chemotherapeutic drugs, or
diabetes.51–56

An HSV vector construct to express the prepro-enkephalin gene was the first to advance to
clinical trials.57 In phase I–II of the trial, patients with intractable pain from cancer did not
experience adverse events related to vector inoculation. Studies to treat painful
diabeticneuropathy using a viral vector to express a GAD transgene are planned.58

Genetic diseases

A large number of human genetic diseases affect the CNS; these conditions are frequently
characterized by neurodegeneration and typically have pathology that is widely distributed
in the brain. Transfer of the normal gene into diseased cells can correct the biochemical
defect. Other gene transfer strategies besides direct gene replacement may be needed
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depending on the underlying nature of the disease; for example, neurotrophic factors may
rescue diseased cells even when the gene defect is not known. Alternatively, small
interfering RNA approaches may be used to suppress dominant-negative genes (for
example, in Huntington disease).59 However, to deliver the therapeutic gene to the entire
brain is a major challenge, especially in humans, whose brains are 2,000–3,000 times larger
than a mouse brain.60 Potential routes of vector delivery for widespread distribution of the
transgene, which have shown promise in animal models, include injections of the vector
along multiple injection tracks;61 transport of the vector to brain regions distal to the
injection site via neural pathways;62–64 intravenous injection so that the vector crosses the
BBB;5,6 and injection of the vector into the cerebrospinal fluid spaces for distribution within
the brain via the circulation (Figure 3).65,66

The properties of some proteins, such as lysosomal enzymes, can be harnessed to achieve
wider distribution of the expressed protein and, therefore, provide a broader therapeutic
effect. More than 50 human lysosomal storage diseases (LSDs) exist, most of which are
characterized by accumulation of storage material in somatic and nervous system cells,
leading to progressive degeneration of the CNS, usually beginning in early childhood. In the
normal brain, lysosomal enzymes are released from the cell and taken up by neighbouring
cells. Gene therapy for LSDs makes use of this mechanism to transfer lysosomal enzymes
released from a set of genetically corrected cells and taken up into mutant cells, in a process
known as cross-correction.67 Studies in animal models using transplantation of cells
corrected for the genetic defect or direct viral vector gene transfer have shown that the levels
of functional enzyme delivered are sufficient to arrest or even reverse pathology.68 A major
barrier to treating the CNS has been delivery of the normal protein to a sufficiently large
area of the brain to have a therapeutic effect. Positive results have been shown in many
experimental models of LSDs, providing a foundation for clinical trials (Supplementary
Table 2 online). In naturally occurring large-animal models of LSDs, direct delivery of the
transgene into the CNS after symptoms have developed has shown substantial reversal of
established lesions,61,69 which raises hope that treatment of even advanced disease in
patients with an LSD may provide some clinical benefit.

Three phase I clinical trials of gene therapy for genetic diseases of the CNS have been
completed.70–72 The most promising results were in patients with X-linked
adrenoleukodystrophy—a severe demyelinating disease caused by deficiency of the ABCD1
gene. In this trial, a lentivirus vector was used to transfect haematopoietic stem cells ex vivo
with the ABCD1 gene.72 These cells were subsequently infused into the patient, and the
effects of the treatment were thought to be mediated by corrected monocytes migrating into
the CNS. The other trials involved direct injection of AAV2 vector into the brains of
patients with Canavan disease70 or a form of Batten disease.71 Both were phase I safety
trials of AAV2 that involved too few injection sites to be therapeutic. New trials are under
way to test AAV vector serotypes that may mediate increased spread of the transgene once
delivered to the target area. However, true clinical improvement will probably require
substantial increases in the amount of gene vector delivered, as well as significantly greater
dispersion within the brain.

Parkinson disease

The most common neurodegenerative diseases, PD and Alzheimer disease (AD), affect the
ageing population and are, therefore, an expanding demographic.73,74 Some
neurodegenerative diseases, such as Huntington disease (HD), are entirely genetic, whereas
others, including PD, AD and amyotrophic lateral sclerosis (ALS), occur more commonly in
idiopathic than in familial forms.75–77 Consequently, gene therapy strategies for HD have
concentrated on correcting the underlying gene defect and the resultant neurodegeneration,
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whereas in PD, AD and ALS, the focus has been on neuroprotection and repair. Here, we
limit the discussion of gene therapy to PD, although substantial progress has been made in
preclinical studies towards gene therapy for HD and ALS, and a trial for gene therapy in AD
is ongoing (Table 2).

PD is characterized by neurodegeneration of dopaminergic neurons in the substantia nigra
that provide input to the basal ganglia. Three gene therapy strategies have evolved in the
treatment of PD: induction of dopamine production, protection of substantia nigra neurons,
and inhibition of the subthalamic nucleus through enhanced GABA signalling (Figure 4).
The mainstay of therapy for patients with PD is pharmacological dopamine replacement. In
patients with this condition, however, dopamine production in the nigrostriatal pathway is
disproportionally reduced compared with that in the mesolimbic pathway. Pharmacological
replacement of dopamine in the nigrostriatal pathway causes increased mesolimbic
dopamine levels, leading to adverse effects such as poor impulse control.78

AADC, tyrosine hydroxylase and GCH1—Replacement of dopamine in an

anatomically specific fashion, targeting nigrostriatal rather than mesolimbic pathways, could
be a strategy to avoid the adverse effects of standard dopamine replacement strategies.
Research efforts have been directed at targeted replacement of the enzymes and cofactors
required to produce dopamine from tyrosine: aromatic amino acid decarboxylase (AADC),
tyrosine hydroxylase and GTP cyclohydrolase. An equine infectious anaemia virus (EIAV)
vector was created to deliver the genes encoding these proteins to rodent and primate models
of PD. EIAV has a large transgene capacity, thereby enabling the vector to contain all three
genes. This vector was shown to reverse functional deficits in pharmacological animal
models of PD with substantia nigra lesions,79,80 and was taken forward into phase I–II trials
of an escalating dose of putaminal injections in patients with PD. The results of this trial
have not yet been published.

Two research groups have attempted to deliver the AADC gene in isolation to the putamen
using an AAV vector. Because AADC uses levodopa as its substrate, dopamine production
can be controlled by oral levodopa treatment in patients. In dopamine-depleted rodents and
primates, AAV-mediated delivery of AADC resulted in long-term dopamine replacement
and functional recovery when paired with oral levodopatherapy.81,82 A phase I trial of
AADC delivery to the putamen using an AAV2 vector showed a 31% increase in putaminal
dopamine as measured by PET scanning. Three patients were able to reduce their
medication intake, but two experienced worsening of dyskinesia.83 A second study showed a
56% increase in dopamine activity above baseline on PET, and a 46% improvement in
scores of motor function from baseline.84

Glutamate decarboxylase—Injection of GABA receptor agonists into the subthalamic

nucleus has been shown to reduce the symptoms of PD by suppressing neuronal activity in
this region.85 Prompted by this finding, researchers developed an AAV2 vector to express
the GAD gene, which encodes glutamate decarboxylase, the enzyme that converts glutamate
to GABA. Delivery of this vector to the subthalamic nucleus in rodents and primates
reduced excitatory output from the subthalamic nucleus, and improved tremor or
dyskinesia.86,87 The improvement in motor functions might be the result of a change in the
excitatory glutamatergic output from the subthalamic nucleus to inhibitory GABAergic
output, increased GABA production in the subthalamic nucleus that reduced excitatory
activity in the subthalamic nucleus, or increased GABAergic input to the subthalamic
nucleus owing to retrograde transport of the GAD-containing vector from the subthalamic
nucleus injection site to input nuclei that would inhibit activity in the subthalamic
nucleus.86,87
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A phase II trial of an AAV2 vector containing GAD, injected bilaterally into the subthalamic
nuclei, improved Unified Parkinson Disease Rating Scale (UPDRS) scores by 36% from
baseline at 6 months.88 Notably, however, 27% of patients in the treatment group were not
included in the analysis. Nonetheless, this study is the first to demon strate the efficacy of
gene therapy for a neurodegenerative disease in a randomized, placebo-controlled trial.
Pharmacological dopamine replacement strategies and GAD delivery to the subthalamic
nucleus provide symptomatic relief, but do not slow or prevent dopaminergic neuron loss.
Such surgical strategies should, therefore, only be considered for patients with late-stage
refractory PD, given the lack of alternative therapeutic options in these circumstances.
Dopamine replacement can also reduce dyskinesia resulting from the shift in dopamine
production that occurs in the later stages of PD.

Neurturin—Neurturin (NRTN) is a neurotrophic factor that protects dopaminergic neurons

from degeneration. AAV2 vector-mediated expression of NRTN to protect the nigrostriatal
dopamine system from degeneration was demonstrated in rodents and primates.89,90

Neuroprotection by NRTN expression is expected to prevent neuronal degeneration, and the
first clinical trial was designed to detect improvements in motor function over a 1-year
period. The anticipated improvement in motor function depends on an increase in dopamine
production from the substantia nigra after putaminal injection with a vector containing the
NRTN gene. In a phase I trial, bilateral putaminal injection of the AAV2–NRTN vector
increased UPDRS motor scores by 36% at 1 year compared with baseline,91 but no
significant effect was detected at 1 year in a phase II trial.92 A second phase I–II trial,
implementing transgene delivery to both the putamen and substantia nigra, is under way to
examine higher doses of vector than in the first trial and with longer follow-up.
Histochemical analysis of postmortem tissue from the first phase II trial suggested poor
retrograde delivery of AAV2–NRTN to the substantia nigra from the putamen, which
prompted direct injection of AAV2–NRTN into the substantia nigra in the second phase II
trial. Given that NRTN expression protects substantia nigra dopaminergic neurons against
degeneration and promotes axonal regeneration, therapeutic NRTN delivery should probably
be used early in the course of PD to maximize preservation of the substantia nigra.

Epilepsy

The term epilepsy encompasses disorders characterized by a persistent increase in neuronal
excitability that is occasionally and unpredictably expressed as seizures.93 Seizures can be
generalized, when the electrical activity occurs in bilaterally distributed networks, or focal,
when activity is limited to one brain hemisphere.94 Epilepsies associated with generalized
seizures are often caused by a genetic defect, whereas epilepsies with focal seizures
generally result from a lesion in a specific brain region.

Gene therapy could be an option for patients with epilepsy, most probably for epilepsies
caused by a lesion rather than those caused by a genetic defect. Genetic epilepsies usually
result from inheritance of multiple susceptibility genes, and the associated pathology affects
large brain areas, which would require widespread transfection of the brain with multiple
genes. Lesional epilepsies are more amenable to gene therapy: first, a causal event is often
identified, which provides a therapeutic window for prevention of disease during the latency
period before spontaneous seizures occur (antiepileptogenic effect); second, seizure-
generating areas in the brain are restricted and easily identified. The unmet medical needs of
patients with epilepsy include antiepileptogenic therapy (available drugs do not prevent the
development of epilepsy in at-risk patients); new antiseizure therapies (available drugs fail
to control seizures in one-third of patients and can have debilitating adverse effects); and
disease-modifying therapies (available drugs do not prevent disease progression or the
associated comorbidities).95 Gene therapy could help to address these needs.
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Gene therapy has been used to produce antiepileptogenic and antiseizure effects in
experimental models of epilepsy (Table 3). Epileptogenesis may be alleviated by limiting
the associated tissue damage.96 An HSV vector containing transgenes encoding two
neurotrophic factors, fibroblast growth factor 2 and brain-derived neurotrophic factor was
injected into the lesion area to supplement growth factor expression in the epileptogenic
region during latency, which led to attenuation of cell loss and reduction of
epileptogenesis.97–99

Antiseizure effects can be obtained by targeting the threshold for neuronal excitability; that
is, by increasing the strength of inhibitory signals or reducing that of excitatory signals.
Gene therapy intervention leading to re arrangement of GABA or glutamate receptor
composition, so as to either increase or reduce the responsiveness of the receptors, produced
antiseizure effects in animal models of epilepsy.100,101 These effects were, however,
dependent on which cell population expressed the transgene: selective inhibition of
excitatory, but not inhibitory, neurons produced antiseizure effects.91 Consistent with this
finding, lentivirus vector-mediated overexpression of the potassium channel Kv1.1
preferentially in excitatory neurons, which reduced neuronal excitability, suppressed
seizures in a rodent model of neocortical epilepsy.102

One way to circumvent the problem of cell-population selection is to induce constitutive
secretion of seizure-inhibiting factors—for example, inhibitory neuropeptides—from
transduced cells. Seizure control can be achieved without targeting specific cells if the
receptors for these factors are present in brain tissue affected by epileptiform activity.
Promising results for gene therapy in epilepsy have been obtained by local injection of
vectors containing transgenes encoding the neuropeptides galanin or neuropeptide Y (NPY).
In particular, NPY-expressing AAV vectors produced robust antiseizure effects and did not
have adverse effects,103–111 which supports their application in the clinic.

Patients with partial epilepsies who have been selected for surgical resection of the
epileptogenic area are ideal candidates for gene therapy. In such cases, brain pathology is
focal, medical treatment has failed, and gene transfer of seizure-inhibitory factors (such as
NPY) into the seizure-generating area might silence epileptic hyperactivity. These patients
undergo implantation of depth electrodes for diagnosis before surgery, thereby obviating the
need for ad hoc surgical intervention to inject the vector. In the event that gene therapy fails
to prevent seizures, patients could undergo surgery as originally planned. Studies of gene
therapy for epilepsy to date have been carried out in experimental animal models by
injecting vectors directly into the epileptogenic region. However, a recombinant vector in
which the capsid is a mixture of various AAV serotypes has been created that crosses only
the seizure-compromised BBB,11 which suggests that selective targeting of seizure-
generating areas after intravenous administration of the vector may become possible.

Brain tumours

Glioblastoma multiforme, WHO grade IV, is the brain tumour with the most aggressive
disease course. Advances in surgical techniques, radiotherapy and chemotherapy have
increased the median survival of patients from 6–9 months to 18–21 months.112 Fatal
tumours that recur are thought to originate from surviving glioma cells and/or glioma-
initiating cells after therapy. Advances in viral vector development in the 1980s, coupled
with the idea that vectors injected into the brain might reach tumour cells not killed by other
therapies, led to the development of gene therapy approaches for brain tumours in the 1990s
(Table 4).113

Initial clinical trials used a nonreplicating retrovirus vector containing an HSV thymidine
kinase gene, which sensitizes transfected cells to ganciclovir treatment.114–118 Researchers
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aimed to transduce tumour cells with thymidine kinase, and to kill the transfected cells with
a systemically administered ganciclovir prodrug toxic to tumour cells. Trials moved rapidly
from early phase I to a randomized controlled phase III trial, which failed to find
improvement in patient survival, possibly owing to poor intratumoural distribution of the
retroviral vector and subsequent immune responses to vector-producing cells.119

Developments in the technology to produce adenoviral vectors to high titres, and data that
showed extensive intratumoural vector diffusion, led to phase I–II trials of adenoviral
vectors containing the thymidine kinase transgene. 120–123 The results of these early trials
prompted a randomized control phase III trial that was completed in 2009. This trial failed to
demonstrate a significant therapeutic effect.124 Other gene therapy strategies have included
adenovirus-mediated expression of the tumour suppressor gene p53 and augmentation of the
localized immune response through adenoviral delivery of IFN-β. These approaches were
not developed further, however, possibly owing to limited transduction of tumour cells with
p53 or toxicity from the adenovirus-IFN-β construct.125,126 Nevertheless, the safety of viral
vectors, which has been demonstrated in clinical trials, has led to the proposed use of
replication-competent oncolytic viruses to increase intratumoural vector diffusion and
tumour killing. Replication-competent HSV-1, adenovirus, reovirus, measles virus,
retrovirus, and Newcastle disease virus are currently being tested as vectors in early-phase
clinical trials. 127−130

Research continues to improve vector delivery and transgene expression, as well as vector
specificity for tumour cell delivery and targeting. A promising method is the use of MRI to
guide viral vector and transgene delivery, and to track vector distribution. Strategies include
construction of a vector to express the ferritin reporter gene, which is detectable by MRI,
and covalent binding of the viral vector to superparamagnetic iron oxide nanoparticles for
detection by MRI.131,132 Focused ultrasound combined with MRI to focally disrupt the BBB
has been proposed to increase delivery of viral vectors to specific brain regions in a
noninvasive manner via the bloodstream.133 Such strategies allow controlled and focused
therapeutic delivery to brain tumours.

Despite technical advances, changes to regulatory procedures, and promising results from
translational studies in the past 20 years, a breakthrough in gene therapy for treatment of
patients with glioblastoma multiforme is still awaited. Gene therapy strategies currently in
phase I–II clinical trials include oncolytic wild-type viruses (measles virus), oncolytic
viruses containing molecular therapeutics (retroviruses encoding cytosine deaminase), and
adenoviral vectors that provide a combination of genes encoding cytotoxic factors and
immune-stimulatory cytokines (HSV-1-thymidine kinase and Flt3L; IND14574—study
NCT01811992).134–141 Safety of these gene therapy strategies in early phase I–II trials
provides hope for success in randomized phase III trials and improved therapeutic options
for glioblastoma multiforme.

Conclusions

The aim of this Review has been to provide an overview of promising gene therapy
strategies for diseases of the nervous system. PNS diseases are the most likely to have
approved treatments available within the next decade. These diseases include sensory nerve
degeneration due to diabetes or chemotherapy; functional deficits of vision, hearing and
smell; and chronic pain conditions. Development of gene therapy for CNS diseases is far
more challenging as gene delivery trials have required surgical procedures, and the
pathogenesis of many of these diseases is multifactorial and poorly understood. Moreover,
CNS diseases often involve large brain regions or even the entire brain, suggesting the need
for widespread gene delivery. Results in animal models, however, indicate that alternative
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routes of delivery to intraparenchymal injection, combined with novel properties of vectors
and proteins, might enable correction of whole-brain pathology. We anticipate that most of
the scientific and technical hurdles that remain to the clinical application of gene therapy for
neurological disorders will be overcome.

Other barriers to the development of gene therapy approaches include regulatory and
commercial issues. It is recognized that current regulations in Europe and the USA make
clinical trials of gene therapy very costly and time-consuming. In addition, we suggest that
in a competitive commercial environment, the potential for disruption of existing markets by
new gene therapy applications might render the biopharmaceutical industry reluctant to
contribute to the development of innovative technological advances.

Opinion regarding gene therapy has evolved from it being a highly touted gene-correction
strategy that can be achieved with ease, to the belief that the risk from a replication-
competent vector is too great for its application to patients who are not desperately sick, to a
more sober view that gene therapy might be an effective treatment or cure for some of our
most difficult-to-treat diseases. Application of gene therapy to PNS disorders is rapidly
maturing, whereas application to the CNS will require breakthroughs in research on targeted
gene delivery, controlled transgene expression, and methods to facilitate widespread
correction of brain pathology. With continued commitment from researchers in this field,
gene therapy could in future make important contributions to therapeutic options for diverse
neurological diseases.
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Key points

▪ Standard pharmacological and surgical interventions are either inadequate or
unavailable for most diseases of the PNS and CNS

▪ Gene therapy is a viable approach to the prevention of neurological disease
progression, and might offer a cure or slow down the disease process

▪ The efficacy of gene therapy depends on the development of gene delivery
vehicles (mostly viral vectors) to target disease-modifying products to where
they are needed

▪ Gene therapy strategies to treat some diseases that affect vision and hearing
or that cause debilitating pain are at an advanced stage of development

▪ Gene therapy for degenerative diseases requires a more in-depth
understanding of the underlying pathophysiology and, for some diseases,
global brain delivery of the transgene

▪ With ongoing development of gene therapy applications for nervous system
disease, such treatments are expected to be available to patients within 10
years
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Review criteria

Review of the literature was conducted by searching the MEDLINE database using the
following terms: “gene therapy”, “genetic vectors”, “retroviridae”, “lentivirus”,
“adenoviridae”, “dependovirus”, “herpesviridae”, “retina”, “cochlea”, “pain”, “brain
diseases, metabolic, inborn”, “lysosomal storage diseases”, “neurodegenerative diseases”,
“Parkinson disease”, “epilepsy” and “brain neoplasms”, alone and in combination. Papers
were selected on the basis of title, abstract or full version (when available). The reference
sections of relevant articles were checked for additional relevant articles.
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Figure 1.
Diagrams of the genomes of various viral vectors used in gene therapy approaches. Each
diagram depicts the genome of the virus along with that of the corresponding viral vector,
showing viral structural genes, viral genes involved in replication, and genes essential or
non-essential (accessory) for virus replication or growth. Viral genes that are transcribed in
the 5’ to 3’ direction (rightward arrow) are depicted above the viral genome, and those
transcribed in the opposite direction (leftward arrow) are depicted below the genome. Genes
or regulatory elements deleted from viral vectors are shown in red and common locations for
introduction of the therapeutic gene in the vector genome are depicted in green.
Abbreviations: ds, double-stranded; ITR, inverted terminal repeat; IRL, inverted repeat long;
IRS, inverted repeat short; LTR, long terminal repeat; TRS, terminal repeat short.
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Figure 2.
Gene therapy for pain using an HSV vector. a,b | Pain signalling is mediated by primary
sensory afferents that connect via synapses in the spinal cord to release neurotransmitters
and peptides, including glutamate, substance P and CGRP. After injection into the skin, the
HSV vector is delivered to the cell bodies of primary afferents by retrograde axonal
transport, enabling production and release of the transgene product (in this case ENK) from
nerve terminals in the dorsal horn. c | ENK released from the transduced primary afferents
inhibits nociceptive neurotransmission through binding to opioid receptors at presynaptic
and postsynaptic sites Abbreviations: CGRP, calcitonin gene-related peptide; ENK,
enkephalin; GAD, glutamic acid decarboxylase; GLU, glutamate; HSV, herpes simplex
virus; SP, substance P.
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Figure 3.
Vector-delivery strategies for gene therapy of neurogenetic diseases. Most inherited
neurological diseases have global brain pathology, which requires widespread distribution of
the vector for effective treatment. Certain properties of a therapeutic gene product can
enhance its therapeutic effect; for example, in diseases of lysosomal enzyme deficiency, a
cell corrected by transduction with the vector can secrete the previously missing enzyme,
which can then be endocytosed by neighbouring cells. Some proteins can also be transported
via neural pathways within the brain, providing wide distribution. a | Multiple, distributed
injection tracks into the brain parenchyma with multiple deposits of vector along each track.
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b | Vector transport via axonal pathways is dependent on the specific neural system and on
vector design. c | Injection into the cerebrospinal fluid (ventricles, cisterna magna or spinal
cord) produces variable patterns and amounts of vector distribution. d | Vector entry into the
brain via administration of herpes simplex virus to the PNS, intravenous infusion of adeno-
associated virus serotypes, transplantation of lentivirus-transduced haematopoietic stem
cells, or temporary osmotic opening of the blood–brain barrier.
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Figure 4.
Gene therapy targets in Parkinson disease. Excitatory connections from the cortex stimulate
striatal neurons. Dopamine release regulates two populations of striatal neurons inversely:
neurons that project directly to the GPi from the striatum are stimulated, and neurons that
project to the GPi via the globus pallidus pars externa and STN are inhibited. Therefore,
dopamine inhibits thalamic activity, which disinhibits the cortex and allows movement to
occur. In PD, loss of dopaminergic neurons eliminates this cortical activation and inhibits
movement. a | Vector injection into the caudate for the expression of dopamine producing
enzymes replaces PD-related dopamine loss. b | Neurturin expression in the striatum and
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substantia nigra might preserve dopamine neurons, and enhance their function. c | Delivery
of GAD to the STN induces GABA production, changing the STN input to the GPi from
excitatory to inhibitory. GAD expression, therefore, reverses the abnormal increase in STN
activity that occurs in PD, reducing the abnormally high GPi activity that prevents
movement. Abbreviations: AADC, aromatic amino acid decarboxylase; GCH1, GTP
cyclohydrolase 1; GABA, γ-aminobutyric acid; GAD, glutamic acid decarboxylase; GPi,
globus pallidus pars interna; PD, Parkinson disease; STN, subthalamic nucleus; TH, tyrosine
hydroxylase.
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Table 2

Gene therapy for neurodegenerative diseases

Study Gene-delivery target Clinical trial
status

Viral vector Therapeutic mechanism

Parkinson disease

Christine et al. (2009)83 Stereotactic injection
into putamen

Phase I AAV2 AADC expression to convert
levodopa to dopamine

Jarraya et al. (2009)80

Muramatsu et al. (2010)75

Stereotactic injection
into putamen

Phase I Equine infectious
anaemia virus

AADC-mediated expression of
tyrosine hydroxylase
and GTP cyclohydrolase 1 to
stimulate autonomous
dopamine production from tyrosine

Marks et al. (2010)92 Stereotactic injection
into putamen

Phase II AAV2 NRTN expression protects
substantia nigra neurons,
and promotes nigrostriatal
regeneration and
upregulation of dopamine
production

Kells et al. (2010)142 Stereotactic injection
into putamen

Phase I–II AAV2 GDNF expression similar to NRTN

Bartus et al. (in press)143 Stereotactic injection into
substantia nigra and
putamen

Phase II AAV2 NRTN expression

Lewitt et al. (2011)88 Stereotactic injection into
subthalamic nucleus

Phase II AAV2 Glutamic acid decarboxylase gene
expression converts
glutamate to γ-aminobutyric acid,
thereby increasing
synaptic inhibition in the
subthalamic nucleus

Huntington disease

McBride et al. (2011)144 Stereotactic injection
into striatum

Preclinical AAV2 NRTN expression provides
neuroprotection

Ramaswamy et al
(2009)145

Injection of striatum or
diffuse
delivery (intravenous)

Preclinical AAV Expression of mutant Huntingtin
siRNA (allele specific)

Alzheimer disease

Aravanitakis et al
(2007)146

Stereotactic injection
into nucleus of Meynert

Phase II AAV2 Nerve growth factor gene
expression enhances
cholinergic neuron protection,
axonal regeneration
and upregulation of acetylcholine
production

Nagahara et al. (2009)147 Stereotactic injection
into entorhinal cortex

Preclinical AAV2 Expression of brain-derived
neurotrophic factor
enhances neuroprotection and
axonal regeneration

Amyotrophic lateral sclerosis

Suzuki et al. (2007)148 Injection into spinal cord Preclinical Lentivirus-
transduced neural
progenitors

Ex vivo gene transfer of GDNF to
human neural
progenitor cells

Franz et al. (2009)149 Ventral horn of spinal cord Preclinical AAV2 IGF1 expression

Boulis (personal communication;
trial not yet initiated)

Remote gene delivery;
intravenous or intrathecal

Preclinical AAV9 IGF1 or GDNF as candidate
transgenes

Kaspar et al. (2003)150 Remote gene delivery by
retrograde axonal
transport;

Preclinical AAV2 IGF1 or GDNF
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Study Gene-delivery target Clinical trial
status

Viral vector Therapeutic mechanism

nerve or muscle injection Expression of mutant SOD1 siRNA

Smith et al. (2006)151 Intrathecal injection Phase I Naked nucleic
acid

Delivery of antisense
oligonucleotides to target
mutated SOD1

Abbreviations: AADC, aromatic amino acid decarboxylase; AAV, adeno-associated virus; GDNF, glial cell line-derived neurotrophic factor; IGF1,

insulin-like growth factor 1; NRTN, neurturin; siRNA, small interfering RNA; SOD1, superoxide dismutase 1.
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Table 3

Gene therapy for epilepsy

Protein encoded by
transgene

Vector Time of treatment Effects References

Fibroblast growth
factor 2 and
brain-derived
neurotrophic factor

HSV-1 Latency (4 days after
epileptogenic
insult [pilocarpine])

Antiepileptogenic: reduced
seizure frequency
and severity
Disease-modifying: attenuated
epileptogenesis-
associated pathology; reduced
cell loss,
neuroinfammation and mossy
fibre sprouting;
increased neurogenesis

Paradiso et al. (2009)97

Bovolenta et al. (2010)98

Paradiso et al. (2011)99

γ-aminobutyric acid
receptor A subunit α1

AAV2 Before epileptogenic insult
(pilocarpine)

Antiseizure: decreased
percentage of animals
with spontaneous seizures

Raol et al. (2006)101

N-methyl-D-aspartate

subunit NR1*
AAV2 Before inferior collicus

stimulation
Antiseizure or proseizure,
depending on promoter
used and transduced cell type

Haberman et al.
(2002)100

Galanin AAV2 Before epileptogenic insult
(kainate)
Epileptic animals (fully
kindled)

Antiseizure: increased seizure
threshold, reduced
seizure frequency and severity,
reduced number
of animals experiencing
seizures
Disease-modifying: reduced
cell loss

Haberman et al.
(2003)103

Lin et al. (2003)104

McCown et al. (2006)106

NPY Chimaeric AAV1/2 Before epileptogenic insult
(kainate or kindling)
In chronic period (with
spontaneous seizures)
after epileptogenic insult
(self-sustained status
epilepticus)

Antiseizure: increased latency
to seizure, reduced
seizure frequency and duration,
and slowed
kindling development
Disease-modifying: arrested
disease progression
No adverse reactions: no
alterations in learning
and memory, anxiety or
locomotor activity

Richichi et al. (2004)105

Foti et al. (2007)107

Noe et al. (2008)108

Sorensen et al. (2009)109

Noe et al. (2010)110

NPY and NPY2R Chimaeric
AAV1/2

Before epileptogenic insult
(kindling)

Antiseizure effects more potent
than with NPY alone

Woldbye et al. (2010)111

Glial cell line-derived
neurotrophic factor

AAV2 Before epileptogenic insult
(kindling, self-sustained status
epilepticus)

Antiseizure: increased seizure
threshold, prevented
seizure generalization, reduced
seizure severity
and mortality

Kanter-Schlifke et al
(2007)152

Adenosine kinase* AAV8 Epileptic animals
(spontaneously seizing
adenosine kinase transgenic
mice)

Antiseizure: reduced frequency
of spontaneous seizures

Theofilas et al. (2011)153

ICP10PK
(antiapoptotic protein)

HSV-2 Before epileptogenic insult
(kainate)

Antiseizure:prevented seizures
Disease-modifying: prevented
neuronal loss
and inflammation

Laing et al. (2006)154

Voltage-gated
potassium channel
subunit Kv1.1

Lentivirus During or after epileptogenic
insult
(tetanus toxin in motor cortex)

Antiepileptogenic: prevented
epileptiform events
after administration during
epileptogenic insult
Disease-modifying: reduced
frequency of epileptiform
events following
administration in established
epilepsy

Wykes et al. (2012)102
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*
Antisense DNA.

Abbreviations: AAV, adeno-associated virus; HSV, herpes simplex virus; NPY, neuropeptide Y; NPY2R, NPY2 receptor.
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