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Progress in Robot Road-Following zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R. Wallace, K. Matsuzaki, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY .  Goto, 
J. Crisman, J. Webb, T. Kanade 

Robotics Institute, Carnegie-Mellon University 

Abstract 

We  report  progress  in visual road following by autonomous robot 
vehicles. We present results and work in progress in the areas of 
system architecture,  image  rectification and camera calibration, 
oriented edge tracking,  color  classification and road-region 
segmentation, extracting geometric structure. and the use of a 
map. In test runs of an outdoor  robot vehicle, the Terregator, under 
control of the Warp computer, we have demonstrated continuous 
motion  vision-guided  road-following at speeds up to 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.OB km/hour 
with image processing and steering servo loop times of 3 sec. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. Introduction 

Research in  robot  navigation  on roads is part of the Autonomous 
Land Vehicle Project (ALV) at Carnegie-Mellon University. Broadly, 
our work is aimed at creating autonomous mobile robots capable of 
operating in unstructured environments. To this end, our research 
program involves a variety of sensors, programs and experimental 
robot vehicles. This paper is focused on recent progress in 
detection of and navigation  on  roads,  using a TV camera as our 
sensor and  a  six-wheeled  outdoor autonomous robot, the 
Terregator [7], as our test vehicle. We present results and work in 
progress  in  the areas of system architecture, image rectification 
and camera calibration,  oriented  edge  tracking,  color  classification 
and road.region Segmentation, extracting geometric structure. and 
the  use of a map. 

For robot navigation of roads, we use a single television camera 
as our primary sensor. In this application,  the  monocular TV 
camera  is  considered  superior to ranging sensors such as laser 
scanners or sonar for  three reasons. First,  roads,we are interested 
in  following  do  not necessarily have prominent  3-dimensional 
features at their shoulders; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmost often there is no depth 
discontinuity between the  road  surface and the surrounding 
roadside. Second, we have developed one steering strategy that 
servos the vehicle based on measurements in the image plane 
itself, rather than on measurements in a world  coordinate frame. 
Third, we hove so far relied on a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal ground plane assumption, 
that  the  ground  around  the vehicle is  locally planar, so that any time 
we do need to transform image points to world  coordinates,  the 
transformation  is trivial. 

To attain the broad  goals of our project,  we have split  the 
research into two efforts. The  goal of the first effort  is  to develop a 
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road-following system which uses a map to navigate  around  a 
highly  structured and visually simple network  of sidewalks on  the 
CMU campus. The goal of the second  effort  is to develop vision 
routines for road-following  in a less structured  and visually more 
complex environment In 1 nearby park. 

2. Sidewalk  Navigation 
The sidewalk environment at CMU is a network of mostly straight 

concrete pathways joined at intersections of various shape. The 
sidewalks have fairly  uniform  color and texture and are always 
surrounded by well-groomed grass, giving  them  consistent  high- 
contrast edges. The goal of our research in this environment is  to 
develop algorithms for geometric reasoning, shapematching  and 
navigation  with a map. 

2.1 Map and Blackboard 
The overall system architecture to which a vision-based  road- 

following subsystem interfaces  is a blackboard [5], a shared 
memory structure  confaining  a  local map of the  robot's 
environment. Other sensing processes, such as those interpreting 
range data, and other knowledge.based processes, such as those 
updating the local map, are also tied to the blackboard. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.7.1 Dialogue Model 

The  road-following subsystem consists of four modules; Vision, 
Map, Navigator, and Motion Control. These modules communicate 
with each other by sending and receiving tokens through the 
Blackboard.  In selecting this decomposition of our system into 
modules, we followed the  principle of inforrr~ation hiding. The 
Vision module contains expertise needed for  extracting features 
from images. The Map module knows  the  structure of the robot's 
environment and its position. The Navigator is responsible for 
planning paths. The Motion  Control module insures that the vehicle 
executes navigation commands. Thus each module has a different 
domain of expertise. For example the Vision module does  not  know 
the robot's map or route. That information  is  kept  hidden and is 
used only by the Map module to make predictions to the Vision 
module. 

Communication between the various modules looks  like  a 
dialogue. Figure 1 shows the dialogue  model of the road-following 
subsystem. This model retiects the information  hiding  principle  of 
tile desiyrl. in the axarrlpia, the iviap hi&s iniormaiion il-orx The 
vision module, except for the facts which are relevant for the 
current scene. The Map tells the Vision module only about  the 
predictions i t  makes For the  current  scene. 

With map data,  the  Map module produces  the token, Predicted 
Object,  which shows what the Vision system shall sep. For 
example, a Predicted Object can be  a  road or an  intersection. 
Using  Predicted Object, Vision sees and makes the token, Detected 
Object, which shows the shapes of objects in  front of the vehicle. 
Using Detected Object, the Map decides  the  vehicle's Q ~ r e n t  
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Position. IJsing Current Position and  the map data, the Navigalor 
supplies the token,  Motion Command, which tells how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto drive the 
vehicle. Using' Motion Colrlmand, the hiotion  Control  drives the 
vehicle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 R4 I4 
User: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARobot is at road R1. 3 meters  from 11. 

Navigate to R3, 2 meters from 13. 
Map: Vision  will  see  straight  road  and  cross-type  intersection. 
The color in the left is ... Detect them. , 

Vision: Ok. I found  them.  Their  shapes are ... 
Navigator: Drive on it 2.5 meters  and turn to right 90 degrees. 
Motion  Contol: Ok. I drive.  (vehicle  moves) 
Map: Vision  will  see  straight  road. The color on  the left is ... 
Detect it. 
Figure 1: Dialogue Model  of  Map  Interface 

In  the  road-following subsystem, two kinds of coordinate systems, 
World Coordinate and Vehicle Coordinate, are used. World 
Coordinate  is an absolute coordinate. The map data is written  with 
World Coordinate. The Vehicle Coordinate frame, which is fixed on 
the vehicle, is used by Vision to represent Detected Object, 
because  it  does zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot know where the vehicle is. Coordinate 
transformation  is  done when necessary. 

2.1.2 Predictions 
The map module supplies predictions to the vision module. The 

map data consists of two  kinds of maps, a topological map and a 
geometrical map. The topological map stores the topology of roads 
and intersections. The geometrical map stores the shapes of roads 
and intersections. 

With these map data, the Map  predicts  the kinds, the shape and 
the image features of objects which shall be seen in a camera view. 
The purpose of detecting objects is to navigate the vehicle. The 
detail of an object shape is trivial and therefore, not necessary for 
navigation. The Map creates interest segments, which  are the 
primary edge line segments of roads and intersections. The 
interest segments are enough for Map to decide  the vehicle's 
Current Position and the object  shape necessary for navigation. 
They are likely to be the edge segments most easily detected by 
Vision, and therefore are included in the Predicted Object. An 
interest segment is also a key for matching. We discuss this in detail 
below. 

2.2 Extracting Geornetric Structure 
Our Autonomous Land Vehicle has to not only follow single road, 

but also to detect an intersection and turn  into one of the 
intersecting roads. in this case accurate shape of roads  and  an 
intersection has to  be extracted. This is  difficult because variations 
in  camera view and imaging  conditions  result  in variations in  the 
shapes detected.  Furthermore there are many factors which make 
it  difficult  to  detect a road shape, such as cracks, dust, gaps 
between concrete slabs. They are not noise but  physical 
substance, therefore even it reglon classification is  done  perfectly, 
they possibly rernain. To solve these prcblems, we impixmllted 
two procedures. First, the image is processed to eliminate these 
disturbing  factors and to reprodtlce  the  road  region.  After that, 

using  knowledge from map, interest segments, which are key to 
decide an position of an intersection, are found. 

2.2.1 Reproducing  the Road Region 
To eliminate the  disturbing factors, two phase image processing 

is  done;  extracting  high-confidence  road regions and then 
connecting them. 

The result of region segmentation includes four types of 
segments: 1)actually road and Classified as road, 2)nctually not 
road andclzssified as not  road,  3)actually road but  classified as not 
road, 4)actually  not road but classified as road. At the first image 
processing phase, the program  selects a conservative classification 
threshold so that only ideal road surface  is classified as road. This 
result  includes much type 3 region  but  little type 4 region, and 
region classified as road is  confidently  road. Then, to cover type 3 
region, we did zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI a combination of reducing  resolution  and 
expansion/contraction of image. 

The expansiun/contraction  method  is  known as a good method 
to eliminate gaps or small holes, but  calculation time is  long when 
the size of defects are large  and  large number of 
expansion/contraction is needed. We have to use this method in 
real time during vehicle running. So, we reduced  resolution  before 
expansion/contraction.  This method absorbs several pixels into 
one  pixel,  and decides the the new pixel value by a threshold  on the 
proportion of original  pixels classified as road to nonroad. We use 
a reduction  ratio of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8*8 to 1 pixel followed by 1 or 2 iterations of 
expansion/contraction. This obtained  both  sufficient shape 
estimates and quick calculation. 

2.2.2 Polygon  Fitting 
To recognize an intersection from the reproduced shape, we fit a 

polygon to the intersection  contour. Shape analysis based on 
polygon  is much quicker than one based on whole pixels or run- 
length data. The processing  includes  following steps. 

1. Extracting  Straight  Line. Most of roads imaged are 
straight  but if they include curves, these can  be 
represented as a set of segmented straight lines. So, 
we apply a polygonal approximation to original  precise 
polygon to extract major straisht components. The 
tolerance  is set so that the interest segments can  be 
picked  up well. 

2. Labeling  Lines. We have developed a program  which 
labels lines.  At first,this program identifies viewing 
frame edge lines by searching lines which are 
ccntzined  in the coordinate of viet?!ing frcme. Second, 
this program classifies lines by angle and gives same 
labels for the similar angle lines. The Map module 
produces also the  description of interest segments 
which shows the segment attribute and the relationship 
between segments. Using this description, this 
program can match  the classified lines to the predicted 
interest segments easily. The list showing the detected 
seglnents and their correspondence to the predicted is 
returned to the Map module. Understanding of whole 
geometric  structure  is  done  by the Map in next map 
matching step. 

2.2.3 Map matching 
With the result of the Vision module and the object prediction,  the 

Map module can know the names and the shapes of the  detected 
objects. In order to estimate the vehicle current position, the Map 
module selects crossing lines in the detected  objects and 
corresponding  lines  in the map data, and calculates  coordinates 
transformation  which  can  match them. In this stage, when only 
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straight  portion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the  road  is  in the view frame, the measurement 
from the Vision module' can  constrain the vehicle  position and 
orientation only perpendicular to the road. In  such case, the 
location along the road is calculated  using the vehicle motion. The 
positional  error  which might accumulate along the  path  will  be 
corrected as the vehicle approaches to the intersection  and  can 
see the  road edges in  multiple orientations. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 shows a result of  CMU campus sidewalk run. Along the 
vehicle approaches an intersection, the vision module detects 
different parts of road  contour  which  are  predicted as major  line 
segments by the map module. 

1'"0*RII> 

r4(IOADF4: 

LElu  *1 

Navigation on tho campus sidewalk I 

approaching intersection 1.5. The trapezoidal region in (a) represents the predicted 
view 01 the Vision. (c) the results of road region extraction of the images in (b). The 
images are rectified into the map coordinates from the image coordinates. The 
edges matched wilh prediclion are ind'icated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbold lines. 

Figure 2: Navigation  on  Campus  Sidewalk  using  Map 

Our park envirooment contains  a 1 kilometer curving asphalt path 
part of which  is always illuminated directly  and part of which  is 
shaded by trees. The path itself varies in texture from mostly 

smooth and featureless to  cracked  and  pot-holed,  and in color from 
b luegay  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto black. The shoulder around the path consists mostly 
of grass, but  there  are also some sections of dirt  and  rock. 
Seasonally, both  road  and  shoulder  are  obscured  by leaves, snow 
or ice. Trees and their shadows are also present. The main goal of 
our research in the park environment is to develop vision algorithms 
capable of steering the vehicle reliably in  this  unstructured 
environment. 

3.1 Road-Edge Follcrwing 
We have developed a  technique  for  tracing the edges of a road 

using  an oriented edge detector.  Like  the tracker discussed  in 191 
our  algorithm begins with an estimate of the start position from 
which  is the edge is to be  traced.  Unlike that tracker, ours 
integrates or smooths the edge along  the edge direction. 
Integrating the signal along  the  direction  of  the  edge has the  effect 
of smoothing  and  reducing noise content. Then, the position of the 
edge  is  localized  by matching an ideal step edge model with the 
one-dimensional  cross-section. 

Oriented edgo detectinn  operators have been explored  in 
computer vision, with perhaps the best results found in [2]. We 
chose an oriented operator since  it  is  Illore reliable than an 
unoriented one. For example, if the road  in the image is oriented  at 
45 degrees, then a conventional  edge  detector will find gradually 
sloping  intensity values, see figure 3. However, if the same detector 
is  oriented at 45 degrees, then the oriented  detector  would see a 
sharp change  in intensities, and therefore, the edge  location  is 
detectable. We have implemented edge operators at a number of 
different  orientations so that we can obtain a reliable response 
regardless of the orientation of the road  in the image. 

Road Image and Edge  Profile 
Edge Operator 

Nondirectional  Operator 

Oriented  Operator 

Figure 3: An Oriented Edge Opt?rotor 

The edge tracer  constructs a !ist af road edge points  in an image 
given a  position  (ro, co) and  crientation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,  of a road edge. The 
oriented edge operator inksrates the signal along its columns. If 
the operator does not  align  with the image columns, then i t  selects 
pixel values nearest to the position of its colurnns for the 
summation. This one dimensional result of the  edge operator is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2 impiementation 

called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAedge signature or edge profik. 

Then a new road edge point,  (r , c ), is predicted to lie a distance 
from (ro, c,) at an angle of 0 .  A search window zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis creatcd  centered 

P P  

at (rD, cp),,orienkd at the angle 8. The edgo  operator  creates  an 
edge profrle in  the saarch window.  The road edge, (ri, ci), is 
clc4ermined to be where tlte  an  ideal step adge  and  the :bindow 
profile have the best correspondence. The orientation of the  road 
is  recalculated by 0 =, arctan2(ci - ci-l, ri - ri). This  algorithm  is 
iterative if (Ti,  ci) -> (ri-,, c ~ . ~ ) .  This  process  is repeated until  the 
search window falls outside of the image bounds. 
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3.4 Color zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Early in our work on visual detection of roads we recognized the 

importance of utilizing  color vision sensors. We found in  black- 
and-white images of our test site that the perceived intensity of the 
asphalt road differed very little from the intensity of the surrounding 
grass, although the color was very different. Gray-level histograms 
of the images were either very flat, or they had peaks caused by 
shadows and highlights, rather than road or nonroad features. 
Histogram-based segmentation techniques and edge operators 
failed for the same reason. We considered texture energy 
measures to segment road  and grass, since the grass has more 
edges per unit area, but the noise introduced  into the images by an 
inferior TV transmission system confounded attempts to measure 
high-fregllency texture information. Even in the presence of high 
spatial frequency image noise color  information  is retained. 

3.4.1  Pixel  Classification 
In  color images each pixel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  has an associated color  vector 

(R(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyl, G(x, yl, E(x, yl). The set of all possible fR,G,B) values forms 
a  color  cube RGB. The RGB cube  can  be divided in  various ways 
so that pixels having certain  color vector values can  be  classified as 
road or nonroad. A simple region  classification involves selecting a 
sample road region and grass region from a training image, and 
using  the average values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Y R ~ ~ ~ ~ , Y G ~ ~ ~ ~ , Y ~ ~ , , ~ . ,  and 
( Y R ~ ~ ~ ~ ~ , Y G ~ ~ ~ ~ ~ , ~ E ~ ! ~ ~ ~ )  as ideal feature  points  in RGE space. If 
the covariance matrices Croad and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZgrass are also measured then 
:he colors  can  be modeled as trlvariate normal distributions 
(TVNDs). The result of  a TVND model is to divide color space into 
regions separated by  quadratic surfaces. Figure 5 shows a result of 
classifying a sequence of  rectified  road images from the park site. 

3.4.2  Color  variation 
Unfortunately the color of road and shoulder do not remain 

constant from one image to the next. Variation in  color arises for a 
variety of reasons, such-as illumination changes (e.g. shadow 
versus direct illumination) and material changes (e.g. dry asphalt 
versus Wet, green ~ r a s s  versus yellow). ArJc!itiona!!y, our test 
vehicle is equipped with a TV broadcast station, through  which 
images are transmitted to a  fixed-based computer. The chromatic 
component  of the TV signal varies depending on such factors as 
the  position of the robot vehicle with respect to the TV receiver. 

We have begun to explore the use of adaptive color models to 
reduce the problems arising from color variation. 

3.4.3  Shadows  and  normalized  color 
Shadows cause many  of the failures of our vision system. Edge- 

based schemes for detecting  road edges are fooled by high- 
contrast shadow edges, as shadow edges often have a greater 
brightness-to-darkness  ratio khan material edges. Even region 
classification schemes based on  color are confounded by shadows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

;,..;‘;p r?;.,$;: Figure 4: Road Edge Tracking wit11 an Oriented Operator 

3.2.1 Results 
The edge tracer has been tested on 480 X 51 2 grey level images. 

The dimensions used for the search window were 64 rows  by 128 
columns. Figure 4 shows a  typical result of the edge tracer.  The 
initial  position  is given near the bottom of the image and the 
oriented edge  detector  proceeds  upward  in the image. The larger 
boxes outline the search windows, and  the smaller, inner  boxes 
show the positions of best correlation. The edge  profiles are shown 
inside the search windows. 

We have developed a vehicle driver system based on oriented 
edge tracing. The initial  position and orientation of the left  and 
right road edges are input to the system and used for the first 
iteration of the oriented  edge tracer. After finding the road edges in 
the image, they are back-projected to the  ground plane. The 
vehicle moticn between images is used to locate  the previously 
found road edges relative to  the  vehicle. Then the  previous edges 
are projected  in the new image. These edge  locations are used for 
the  position and orientation estimations required for the edge 
tracer. The 3D projection of the road edges also allow the right and 
left road edges to be tested for parallelism and  proper separation. 

This system works well on images where there  is  a fair amount of 
contrast between the road edge and the road shoulder. We have 
been able to drive our vehicle quite reliably on gently curving roads. 
However, we have had difficulty when the edge of the road  lies 
close to obstacles or when shadows lie  on the road. The edge 
tracer  can  locate a road edge  point  in  under  one second. The 
system can drive the vehicle at speeds up to 0.3 meters/sec. 

We are currently  working  on  testing the road edges found by the 
edge  tracer for geometrical consistency. If the  right and left edges 
of the road are not parallel and the proper  width apart, then the 

Measures of evaluation based on the height, width, smoothness, 
and consistency are currently being tested. If these measures are 
reliable, the system should  be able to evaluate its  performance. 

sysiel-1-1 iriusi decide wiiiiiii edge  should be tiseil to drive the vehicle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.3 Road-Region Segmentation 

The second major approach to road  feature  detection  is  region 
segmentation. This differs  from  the  edge-based  procedure  in  that 
t\?e  road  itself  is  extraxted, rather than its  contours. AS we 
mentioned earlier, the edge informatiorl  can  be used to Verify and 
localize  the  region hypothesis. Region classification  is based on 
assignment of  region labels to all pixels  in an image, where the 
assignment depends on  properties of that pixel  such as brightness, 
texture and color-around that pixel. Our work is fOCU%?d On Color 
classification. 
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because images of objects in shadow contain color Values 
clustered  around  different  points  in RGB space. 

Consider an object imaged with  color zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, in a sunlit part of the 
scene and color zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, in a shadowed region. To a first approximation, 
c ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkc, for some constant k. This is because the object reflects 
the same color  in shadow, it is just imaged at a different intensity. 
Thus a preprocessing step is to normalize all the color  vectors Of an 
image, by transforming each point ( R h ,  y), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(x, y), B(x, y ) )  into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( d x ,  
y), g(x, y), b(x, y ) )  such  that 

Then all  the  color  points lie on the plane R + G + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 = I .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = R/ (R  + G + E), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg = G/(R + G + B), b = B/ (R  + G + B). 

Although the transformation from RGB to rgb is  sufficient for 
erasing shadows in many cases, it  is  not alvmys successful. There 
are two factors limiting  its usefulness. First, the dynamic range of a 
TV camera is  not very large (a maximum brightness:darkness ratio 
of 7:l) compared  with film (a maximum brightness:darkness ratio of 
20:l)  or  the human eye (a maximum brightness:darkness ratio of at 
least '1OOO:l). Thus TV images containing of shadowed regions 
may have splotches of maximum brighi or dark, in which a11 spatial 
detail and color  information  is lost. Color normalization will  not 
work in these areas. The  second factor is less important, but easier 
to work around. Nonshadow areas in our outdoor road scenes are 
illuminated by direct  sunlight,  which has a more-or-less  constant 
spectral  distribution. Shadowed regions are illuminated by skylight 
and by sunlight reflected off surrounding objects (such as tree 
leaves and tree trunks  in  our case). Thus the  reflected  color of a 
sha.dowed part of a region  is  not  quite  the same  as the color 
.reflected from that part of the  region  in  direct sunlight. In  practice 
the  difference  is small enough not to matter for our classification 
techniques. 

Color normalization reduces the dimensionality of color 
classification to two,  in  which case a  bivariate normal distribution  is 
me6 as a  color feature model. 

3.5 image Rectiiication 
We have implemented programs  for nonlinear warping of an 

perspective of a road  to  transform  it  into a view like what we would 
see if we were flying over the road  and  looking  down on it. This 
transformation, called image rectification, produces a  map-like 
image in  which  the  structure of the  road  is made explicit. The result 
is an image which  is  in vehicle coordinates and can  be used for 
camera  calibration,  debugging of ground-plane operations, 
detection of ground-plane features, and display of planned robot 
paths. 

3.5.1 Definit ion 
Figure 6 shows the  process of image rectification. It is most easily 

described by considering  a  rectangular  grid  projected  onto  the 
ground plane. Grid  points can be  considered as pixels of  the 
rectified irnage. Rectification consists of back-projecting  the grid. 
points  in the ground plane to the original image, in order to see 
what intensity value should be placed at that point. Once the back- 
projection  is  computed,  it  is  stored as a  lookup table so that 
subsequent images can be  rectified  quickly. 

Figure  7 shows the process of image rectification  for a wide-angle 
fish.eye lens. This lens is superior to a standard reflex lens  (which 
we usually model as a pin-hole) for imaging the road, because the 
road always remains in view even when the vehicle makes sharp 
turns off the centerline. The point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-1, ill, j A )  on the grollnd plane 
is  first  projected  onto  the  unit sphere centered at the origin, then 
perpendicularly to the image plane which  is tangent to the sphere at 
(0, 0, 1 ). The overall transformation  is 

( i c i c )=( - l ,  ~ A ) / d ' i T + ~ - T j z A  
where A is the rectified image ana c IS the orlglnal Image. 

This transforma.tion is more useful if it  can  be  done  quickly: we 
anticipate  carrying out this transformation on the CMU Warp 
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Figure 7: image Rectification for  FisI1.Eye Lens 

3.5.2 Camera  calibration 
The image rectification  process  (for the pin-hole  lens model) can 

be used for camera calibration. By "camera  calibration" we mean 
deriving the necessary parameters for transforming image points to 
the  local  ground plane around  the vehicle. By intersecting a pair  of 
lines  in the ground plane around the vehicle a point on the horizon 
(vanishing line) can be  detected. Note that the actual  horizon need 
not  be  in view, only a pair of lines  in  the  local  ground plane. In  fact, 
the lines need only lie  in any plane parallel to  the  ground plane, 
except the planes containing  the camera axis. In  practice we use a 
pair  of  forward-pointing  straight metal poles bolted to the side of 
the Terregator as a calibration  "hood  ornament". We hand.select 
these points from a  calibration image. 

Once the horizon  line  is  known, the tilt of the camera  is easily 
derived as in figure 6 Given the  tilt p of the camera and an estimate 
of the camera focal length f ,  the  transformation from ground plane 
points to image points  is  obtained  directly as in  figure 6. 

A second aspect of camera calibration  is  determining  the x and y 
scale factors for the image, where x indicates  distance along an 
axis parallel to the vehicle forward  direction  and y is  distance  along 
an axis parallel io  the wheel rotation axes. To m e a w e  these 
pxameters, we place meter sticks  on the ground plane in crunera 
view, digitize and rectify  a test image, and then measure the lengths 
of the meter sticks along the x and y dimensions. 

3.6 Warp Runs 
In test runs of  an outdoor  robot vehicle, the  Terregator, under 

control of the Warp computer, we have demonstrated continuous 
motion  vision-guided  road-following at speeds up to 1.08 km/hour 
with image processing and steering servo loop times of 3 sec. 
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3.6.1 Warp  Hardware  Description 
The Warp machine has three components: the Warp processor 

array, or simply Warp, the  interface  unit, and the host, as depicted 
in Figure 8. We describe this machine only briefly here; more detail 
is available separately [ l ] .  The Warp processor array performs  the 
bulk of the computation:in this case, low-level vision routines [2]. 
The interface unit handles the input/output between the array and 
the host. The host has  two  functions:  carrying out high.level 
aPFlication routines  and supplying data to the Warp processor 
array. 

The Warp processor array is  a programmable, one-dimensional 
systolic array, in  which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall cells art; replicas of each other. Data 
flow  through the array on two  data paths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(X and Y), while addresses 
and systolic control signals travel on the Adr path (as shown  in the 
Figure 8). The Warp cells are specialized for floating-point 
operations. The data path of a Warp cell is depicted  in Figure 9. 
Each Cell contains two floating-point processors: one multiplier and 
one ALU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 8 ] .  These are highly pipelined; they each can deliver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup 

to 5 MFLOPS each. This performance translates to a peak 
processing rate of 10 MFLOPS per cell or 100 MFLOPS for a 10.cell 
processor array. To ensure that data  can  be supplied at the rate 
they are consumed, an operand buffer  is  dedicated to each  of the 
arithmetic units, and a crossbar is used to support high  intra-cell 
bandwidth. Each input pa?h has a queue to buffer  input data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
4K-word memory is provided for resident and temporary data 
storage. 

AS address patterns are typically data-independont  and  common 
to all the cells, full address generation capability is fnctored o:lt 
from the cell  architecture and provided  in  the  interface  unit. 
Add:csocr, arc gcncratcd b y  the i::ter!ace  ::nit ?x!  prqxqrrtnd  frcn 
cell  to cell (together with !he control signals). In  addition to 
generating addresses, the  interface  unit passes data and results 
between the host and the Warp array, possibly performing some 
data conversion in the process. 

The host is  a  general purpose computer. It is responsible for 
high-level  application  routines as well as coordinating a11 the 
peripherals, which'might  include other devices such as the digitizer 
and graphics displays. The host has a large memory in  which 
images are stored. These images are fed through Warp by the host, 
and result images from Warp are stored back into memory by the 
host. This arrangement is flexible. It allows the host to do tasks not 
suited lo Warp, including low.level tasks, such as initializing an 
array to zero, as well as higher level tasks, such as processing a 
histogram to determine a threshold. 

3.6.2 Warp Road Following  Algorithm 
The Warp-implemented road following algorithm  is very simple, 

but proved to be remarkably robust. The algorithm  is  region-based; 
it searches for the road as a bright  region in the blue spectrum  of  a 
color image. A 100 x 512 band of the image is taken about  halfway 
down  the image. The algorithm then works as follows: 

1. Blue  Filter. The color image is filtered by digitizing 
only the blue band. Blue was chosen because blue is a 
strong component in the color of the roads we are 
driving on (asphalt and concrete),  but less StrOnglY a 
component of the background (generally grass). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2. Edge-preserving  smoothing. This is  a  smoothing 
operation  which avoids smoothing acrass edges. It is 
the algorithm EGPR in the Spider subroutine  library [dl, 
implemented on Warp. The algorithm takes a 5 X 5 
window nFOUnd each pixel and chooses nine 
subwindows in the 5 x 5 window. The subwindow with 
smallest variance is chosen, and the central  pixel  is 
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Figure 9: Warp cell  datapath 

replaced by the mean of this window. Two passes of 
this  algorithm are executed. The effect is to remove 
noise from the image, especially noise from the poor 
quality of  the  TV reception  in some cases. 

3. Histogramming. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA standard histogram is taken on 
the Warp machine. 

4. Threshold  selection. The histogram is used by the 
Sun 120 to select a  threshold. The threshold is 
selected by starting at the 50th percentile level in the 
histogram and then  finding  a  local minimum by 
comparing adjacent 3-element averages of the 
histogram. 

5. Binarization. A gray value table translation table  is 
constructed  by the Sun using the threshold, and the 
image in binarized using this table  on Warp. 

6. Region  Smoothing. The resulting binary image is 
once again subjected to two passes of  edge-preserving 
smoothing. The idea here is to remove small cracks in 
the road, and to eliminate small regions of ones in  the 
background.  Edge-preserving  smoothing was chosen 
for this step instead of a more traditional operation, like 
shrinking  and  growing, because the  edge-preserving 
filtering  program was available while the (simpler) 
binary operator program was not. 

7. Blob  detection. At this uoint  the road is  a  region of 
ones surrounded by a background of zeroes. Ten scan 
lines, taken ten rows apart, are taken from the image 
and each is examined to find the longest continuous 
sequence of ones. Each scan line thus defines a left 
and right road edge. The left and right edges are 
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averaged together  individually to find  the  estimated 
road  edges. An earlier  approach was to  find the left 
edge by finding the first long sequence of ones moving 
to  the  right from the  left side of the  image and the  right 
edge  similarly.  This did  not  work as well as the second 
approach, since  the vehicle  tended  to steer into  the 
center zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof forks  in  the road. 

8. Steering. Our servoing  strategy is to steer the vehicle 
to  keep  the  center of the road centered in the image. 
Basically we start  with  a  large (512 x 512) image array 
and reduce  it as quickly as possible to  a  point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, y). 
This is  the point considered  to be  the center of the road 
some fixed  distance in front of the vehicle.  It  is  also the 
point  to  which  the vehicle  steers. Assuming that the 
center of the  image  is  the  point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO), the steering 
command  is to turn  left or right at some d7/& = y x  
where y is a  gain constant  related to  the  distance 
ahead imaged and to  vehicle speed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdT/dt is rate of 
turn of the vehicle  (giving  path  curvature) in degrees 
per second. See [6]for  details. 

3.6.3 Hardware  Configuration 
In addition to programming an efficient  road  following  algorithm 

on  Warp,  we  have made  improvements  in our video transmission 
system and vehicle interface that have increased  the  reliability of 
our system and further reducted time  between image digitizations. 
Time reductions  between  in  the  image  processing  cycle increase 
the servo rate of the  vehicle steering control loop, and enable the 
vehicle to drive at higher speed. 

We chose  to  digitize  the image of the  blue  band only, in order  to 
obtain the highest  possible contrast  between the  test road  and  the 
surrounding grass in  the image. Since grass  absorbs almost all 
blue  light and the  asphalt road  reflects  a  lot of blue  light,  the TV 
image in the  blue  band  shows a very bright road surrounded by  very 
dark  grass. The blue  filtering of the signal  is  tied to the  particular 
road on  which we are  testing  the  vehicle.  The  next  step in 
hardware  configuration  improvement  is to  selectively  digitize the 
red,  green  and blue  bands and to  combine them using our  Matrox 
frame buiters and the Warp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConclusion 

we have presented a  comprehensive view  of a vision-based road- 
following system for an autonomous  vehicle.  Various  parts  of  this 
system exist and have been  tested both  off-line on "canned" 
images and during  real-time tests using the  Terregator. 

An overall picture of our system can  be seen by considering the 
path of a single image through the  entire  processing loop.  First,  the 
Map  module  announces  a set of predictions  for the current scene, 
knowing  the vehicle's  position. The Vision  module  then 
dynamically  applies color and texture  segmentation  techniques  to 
extract the predicted road  region. An oriented edge tracker uses 
the geometry of the extracted  road  region and the  predicted 
interest segments to  either  localize the  position of  the  road or reiect 
the region and report  failure. If road or intersection  region 
detection  is successful,  the  Navigator is alerted and generates a 
steering plan from the road  region. If not successful,. the Vision 
system halts and signals the  blackboard so that  another  module (Or 
person)  to take control. The steering  plan is received  by the low. 
level  motian control module, which  interfaces  to  the  vehicle's gyros 
and  shaft  encoders and executes the steering Strategy. 
Timestamps on  data  carried  through  the entire system enable the 
vehicle to be  controlled  in real time, with old steering  plans  aborted 
as the Navigator  creates new ones. To work for  continuous motion 

road-following even at the slowest speed the Terregator has run  in 
any road-following experiment (IO cm/sec)  the entire  processing 
loop must complete every '10 seconds. 

Warp has proved to be a useful high-speed processor for  vision 
tasks. An important  advantage of Warp over other image 
processing  computers is its  floating-point  capability. Many of the 
processes we  have discussed, such as image rectification,  color 
segmentation, and oriented edge tracking,  are  implemented as 
floating.poin!  algorithms and can run  efficiently on Warp. Using  the 
Warp, we have already demonstrated one efficient and robust road- 
following algorithm. 
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