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This article reports on recent progress in robot perception and control methods

developed by taking the symmetry of the problem into account. Inspired by

existing mathematical tools for studying the symmetry structures of geometric

spaces, geometric sensor registration, state estimator, and control methods

provide indispensable insights into the problem formulations and generalization

of robotics algorithms to challenging unknown environments. When combined

with computational methods for learning hard-to-measure quantities,

symmetry-preserving methods unleash tremendous performance. The article

supports this claim by showcasing experimental results of robot perception,

state estimation, and control in real-world scenarios.
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1 Introduction

Understanding the underlying principles of intelligence is at the heart of Artificial

Intelligence (AI) and its applications for robotics, i.e., embodied AI, towards building a

fully adaptive autonomous system capable of operating in the real world. Computational

mathematics and intelligence have become a pivot for these fields, given the current

advances in hardware. By combining, unifying, and expanding our mathematical and

data-driven understanding of these areas of science and research, one can push the

boundaries towards a unifying cognitive model that.

1. is robust to challenging environments and behavior modes;

2. takes into account hierarchical semantic knowledge of the scene such as objects and

affordances as well as the geometry;

3. possesses sufficient mathematical and computational structures to be exploited for

developing efficient and generalizable algorithms;
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4. follows compositional principles to assemble integrated

models that can produce outcomes bigger than the sum of

individual modules.

This work provides an overview of our recent efforts for

robot perception and control methods that can leverage

structures such as symmetry and data simultaneously.

Roughly speaking, symmetry of an object is a motion that

leaves it unchanged (Tapp, 2021). For example, consider the

sphere S2 � {(x1, x2, x3) ∈ R3 | x2
1 + x2

2 + x23 � 1}. Its symmetry

group is the three-dimensional orthogonal group O(3), i.e., the

disjoint union of all 3D rotations and reflections. No matter how

we rotate the sphere, its shape remains the same. More generally,

Lie groups model the continuous symmetry of geometric spaces

and are equipped with a natural coordinates system called

exponential coordinates. An important consequence of this

observation is that we can formulate problems more naturally

where the Lie group action commutes with the (data-driven)

functional representation of data (Section 2), the state estimation

and control error dynamics become independent of the current

operating point, and only depend on the desired relative motion

(Sections 3 and Section 4), and we can lift multimodal signals,

including images and point clouds, to some Lie algebras via

equivariant networks (Section 5).

Section 2 presents a nonparametric analytical framework that

models semantically labeled point clouds for solving the sensor

registration problem (Ghaffari et al., 2019; Clark et al., 2021;

Zhang et al., 2021). The framework lifts the data into a

Reproducing Kernel Hilbert Space (RKHS), where the inner

product structure captures the cross-correlation between two

labeled point clouds as functions. This framework is an example

of an equivariant model for modeling data where a Lie group

transformation acts on these functions to align them.

Section 3 presents a robot state estimation framework using an

invariant Kalman filtering (Barrau and Bonnabel, 2017; Barrau and

Bonnabel, 2018; Hartley et al., 2020) and deep learning for

estimating contact events from multi-modal proprioceptive

sensory data (Lin et al., 2022). The novel combination of a

geometric filter on Lie groups with deep learning to provide

learned contact events without physical sensors show a

promising direction on how to integrate real-time deep learning

in high-frequency robot state estimation tasks.

Section 4 provides an overviewof the error-stateModel Predictive

Control (MPC) on Lie groups and the stability analysis by a Lyapunov

function expressed in the Lie algebra (Teng et al., 2022a; Teng et al.,

2022b). We derive the linearized configuration error dynamics and

equations of motion in the Lie algebra (tangent space at the identity)

that, given an initial condition, are globally valid and independent of

the system trajectory. This approach leads to a convexMPCalgorithm

for the tracking control problem using the linearized error dynamics,

which can be solved efficiently using Quadratic Programming (QP)

solvers. The proposed controller is validated in experiments on

quadrupedal robot pose control and locomotion.

Section 5 presents recent frameworks for equivariant feature

learning and their applications in registration and place recognition

tasks (Zhu et al., 2022b). We learn an embedding for each input in a

feature space that preserves the equivariance property, enabled by

recent developments in symmetry-preserving neural networks.

Symmetry (or equivariance) in a neural network enables efficient

learning (by removing the need for data augmentation),

generalization, and a clear connection between the changes in the

input and output spaces, i.e., explainability.

Finally, Section 6 provides closing remarks by summarizing

our new findings and their impacts on robot perception and

control. We also discuss future opportunities enabled by the

presented results in this article.

2 RKHS registration for spatial-
semantic perception

Point clouds obtained by modern sensors such as RGB-D

cameras, stereo cameras, and LIDARs contain up to 300, 000

points per scan at 10–60Hz and rich color and intensity

(reflectivity of a material sensed by an active light beam)

measurements besides the geometric information. In addition,

deep learning (LeCun et al., 2015) can provide semantic attributes

of the scene as measurements (Long et al., 2015; Chen et al., 2017;

Zhu et al., 2019).

Illustrated in Figure 1, the following formulation provides a

general framework for lifting semantically labeled point clouds

into a function space to solve a registration problem (Ghaffari

et al., 2019; Clark et al., 2021; Zhang et al., 2021). Consider two

(finite) collections of points, X = {xi},Z � {zj} ⊂ R3. We want to

determine which element h ∈ SE(3), aligns the two point clouds

X and hZ = {hzj} the “best.” To assist with this, we will assume

that each point contains information described by a point in an

inner product space, (I , 〈·, ·〉I ). To this end, we will introduce

two labeling functions, ℓX: X → I and ℓZ: Z → I . To measure

their alignment, we turn the point clouds, X and Z, into

functions fX, fZ: R
3 → I that live in some RKHS,

(H, 〈·, ·〉H). The action, SE(3)gR3 induces an action

SE(3)gH by h. f(x)≔f(h−1x). Inspired by this observation,

we will set h.fZ ≔ fh−1Z.

Problem 1. The problem of aligning the point clouds can now

be rephrased as maximizing the scalar products of fX and h. fZ,

i.e., we want to solve

arg max
h∈SE 3( )

F h( ), F h( ) ≔ 〈fX, fh−1Z〉H. (1)

2.1 Constructing the functions

For the kernel of our RKHS, H, we first choose the squared

exponential kernel k: R3 × R3 → R:

Frontiers in Robotics and AI frontiersin.org02

Ghaffari et al. 10.3389/frobt.2022.969380

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.969380


k x, z( ) � σ2 exp
−‖x − z‖23

2ℓ2
( ), (2)

for some fixed real parameters (hyperparameters) σ and ℓ (the

lengthscale), and ‖ ·‖3 is the standard Euclidean norm onR3. This

allows us to turn the point clouds to functions via

fX(·) ≔ ∑xi∈X ℓX(xi)k(·, xi) and

fh−1Z(·) ≔ ∑zj∈Z ℓZ(zj)k(·, h−1zj). Here ℓX(xi) encodes the

semantic information, for example LIDAR intensity and

image pixel color. k(·, xi) encodes the geometric information.

We can now obtain the inner product of fX and fZ as

〈fX, fh−1Z〉H ≔ ∑
xi∈X,zj∈Z

〈ℓX xi( ), ℓZ zj( )〉I · k xi, h
−1zj( ) (3)

We use the kernel trick (Murphy, 2012) to substitute the

inner products in (3) with the semantic kernel as

〈fX, fh−1Z〉H � ∑
xi∈X,zj∈Z

kc(ℓX(xi), ℓZ(zj)) · k(xi, h−1zj). We

choose kc to be the squared exponential kernel with real

hyperparameters σc and ℓc that are set independently.

2.2 Feature embedding via tensor product
representation

We now extend the feature space to a hierarchical distributed

representation to incorporate the full geometric and hierarchical

semantic relationship between the two point clouds. Let (V1, V2,

. . . ) be different inner product spaces describing different types

of non geometric features of a point, such as color, intensity, and

semantics. Their tensor product, V1 ⊗ V2 ⊗. . . is also an inner

product space. For any x ∈ X, z ∈ Z with features ℓX(x) = (u1, u2,

. . . ) and ℓZ(z) = (v1, v2, . . . ), with u1, v1 ∈ V1, u2, v2 ∈ V2, . . . , we

have

〈ℓX x( ), ℓZ z( )〉I � 〈u1 ⊗ u2 ⊗ . . . , v1 ⊗ v2 ⊗ . . . 〉
� 〈u1, v1〉 · 〈u2, v2〉 · . . . . (4)

By substituting (4) into (3), we obtain

〈fX, fh−1Z〉H � ∑
xi∈X,zj∈Z

〈u1i, v1j〉 · 〈u2i, v2j〉 . . . k(xi, h−1zj).
After applying the kernel trick we arrive at

〈fX, fh−1Z〉H � ∑
xi∈X,zj∈Z

k xi, h
−1zj( )

·∏
k

kVk
uki, vkj( ) ≔ ∑

xi∈X,zj∈Z

k xi, h
−1zj( ) · cij.

(5)
Each cij does not depend on the relative transformation. It

is worth noting that, when choosing the squared exponential

kernel and when the input point clouds have only

geometric information, cij will be identity, and (5) has the

same formulation as Kernel Correlation (Tsin and Kanade,

2004).

2.3 Equivariance property

If instead of working with the inverse of the transformation

acting on the function basis we work with the function input,

then the equivariance property becomes evident. Let C(R3) be
the set of point clouds on R3 and H be the RKHS. Let

f: C(R3) → H be our map which assigns a function to a

point cloud. Consider the space of smooth functions on R3,

C∞(R3), and let the group G act on R3. The action lifts to an

action on C∞(R3) via g. f(x) = f(g−1x), g ∈ G. This inverse is

needed to make the action a group action:

hg( ).f x( ) � h.f g−1x( ) � f g−1h−1x( )
� f hg( )−1x( ), h, g ∈ G.

Now let Z be a point cloud and fZ be its associated function. If

G acts on R3 via isometries, then k(gx, gz) = k(x, z) and we have

g.fZ x( ) � fZ g−1x( ) � ∑
j

ℓZ zj( ) · k g−1x, zj( )
� ∑

j

ℓj · k x, gzj( ) � fgZ x( ).

2.4 Experimental results

We present the point cloud registration experiments on real

world outdoor and indoor datasets: KITTI (Geiger et al., 2012)

odometry and TUMRGB-D data set (Sturm et al., 2012), with the

following setup: All experiments are performed in a frame-to-

frame manner without skipping images. The first frame’s

transformation is initialized with identity, and all later frames

start with the previous frames’ results. The same hyperparameter

values such as lengthscale of the kernels in (2) are used for the

proposed registration methods within one data set. All the

baselines except Robust-ICP (Zhang et al., 2022) use all the

pixels without downsampling because they do not provide an

optimal point selection scheme. Fast-Robust-ICP and the

proposed methods select a subset of pixels via OpenCV’s

FAST (Rosten and Drummond, 2006) feature detector to

reduce the frame-wise running time.

The qualitative and quantitative results on KITTI Stereo is

provided in Figure 2, Figure 3, and Table 1, respectively. The

baselines are GICP (Segal et al., 2009), Multichannel-ICP (Servos

and Waslander, 2014), 3D-NDT (Magnusson et al., 2007), and

Robust-ICP (Zhang et al., 2022). GICP and NDT are compared

with our geometric registration method (Geometric CVO,

i.e., ℓX(xi) = ℓZ(zj) = 1). Multichannel-ICP competes with our

color-assisted registration method (Color CVO). GICP and 3D-

NDT implementation are from PCL (Rusu and Cousins, 2011).

The Robust-ICP implementation is from its open source Github

repositiory. The Multichannel-ICP implementation is from

(Parkison et al., 2019). The semantic predictions of the images
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come from Nvidia’s pre-trained neural network (Zhu et al.,

2019), which was trained on 200 labeled images on KITTI.

The depth values of the stereo images are generated with

ELAS (Geiger et al., 2010). All the baselines and the proposed

methods remove the first 100 rows of image pixels that mainly

include sky pixels, as well as points that are more than 55 m away.

Averaged over sequence 00 to 10, our geometric method has a

lower translational error (4.55%) comparing to the GICP

(11.23%), NDT (8.50%), and Robust-ICP (11.02%). Our color

version has a lower average translational drift (3.69%) than

Multichannel-ICP (14.10%). If we add semantic information

the error is further reduced (3.64%). In addition, excluding

the image I/O and point cloud generation operations, the

proposed implementations takes on average 1.4 s per frame on

GPU when registering less than 15k downsampled points. Fast-

Robust-ICP also takes downsampled point clouds and takes 0.3 s

per frame on CPU. GICP, NDT, and Multichannel-ICP on CPU

use full point clouds (150k-350k points), and take 6.3, 6.6, and

57 s per frame, respectively.

The qualitative and quantitative results on TUM RGB-D is

provided in Figure 2 and Table 2, respectively. We evaluated our

method on the fr1 sequences, which are recorded in an office

environment, and fr3 sequences, which contain image

sequences in structured/nostructured and texture/notextured

environments. We use the same baselines for geometric

registration as KITTI. We compare Color CVO with Dense

Visual Odometry (DVO) (Kerl et al., 2013) and Color ICP

(Park et al., 2017). We reproduced DVO results with the code

from (Pizenberg, 2019). The Color ICP implementation is taken

from Open3D (Zhou et al., 2018). From Table 2, the proposed

geometric registration outperforms the geometric baselines and

achieves a similar performance to DVO and Color ICP.

Moreover, with color information, the average error of the

proposed registration decreases.

2.5 Discussions and limitations

Results in Section 2.4 demonstrate that embedding features

like color and semantics in function representations provide finer

data associations. Specifically, in (5), the extra appearance

information cij encodes the similarity in color or semantics

between the two associated points. It eliminates pairwise

associations whose color or semantic appearances do not

agree. Moreover, each point xi ∈ X is matched to multiple

points zj ∈ Z. The proposed color registration significantly

improves over geometric-only methods in both KITTI Stereo

and TUM RGB-D datasets.

FIGURE 1
Point clouds X and Z are represented by two continuous functions fX, fZ in an RKHS. Each point xi has its own semantic labels, ℓX(xi), encoded in
the corresponding function representation via a tensor product representation (Zhang et al., 2021). The registration is formulated as maximizing the
inner product between two point cloud functions.
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One limitation of the proposed method is the computational

complexity introduced by the double sum in (5). However, the

double sum is sparse because a point xi ∈ X is far away from the

majority of the points zj ∈ Z, either in the spatial (geometry) space

or one of the feature (semantic) spaces. But this similarity still has

to be calculated with the help of GPU implementations or

K-nearest-neighbor search (Blanco and Rai, 2014). In practice,

an efficient point selection mechanism like FAST (Rosten and

Drummond, 2006) corner selector or DSO’s (Engel et al., 2017)

image gradient-based pixel selector can reduce the computation

time. Alternatively, representation learning can be a way to

reduce the number of input points while providing richer

features.

3 Learning-aided invariant robot sate
estimation

Matrix Lie groups (Chirikjian, 2011; Hall, 2015; Barfoot,

2017) provide natural (exponential) coordinates that exploits

FIGURE 2
Stacked semantic and color point clouds based on frame-to-frame registration results using KITTI (Geiger et al., 2012) LiDAR, TUM RGB-D
(Sturm et al., 2012) and KITTI Stereo sensors.

FIGURE 3
An illustration of the proposed registration methods on KITTI Stereo (Geiger et al., 2012) sequence 01 (left) and 07 (right) versus the baselines.
The black dashed trajectory is the ground truth. The dot-dashed trajectories are the baselines. Plotted with EVO (Grupp, 2017).
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symmetries of the space (Long et al., 2013; Barfoot and Furgale,

2014; Forster et al., 2016; Mangelson et al., 2020; Mahony and

Trumpf, 2021; Brossard et al., 2022). State estimation is the

problem of determining a robot’s position, orientation, and

velocity that are vital for robot control (Barfoot, 2017). An

interesting class of state estimators that can be run at high

frequency, e.g., 2 kHz, are based on Invariant Extended

Kalman Filter (InEKF) (Barrau, 2015; Barrau and Bonnabel,

2017; Barrau and Bonnabel, 2018). The theory of invariant

observer design is based on the estimation error being

invariant under the action of a matrix Lie group. The

fundamental result is that by correct parametrization of the

error variable, a wide range of nonlinear problems can lead to

(log) linear error dynamics (Bonnabel et al., 2009; Barrau, 2015;

Barrau and Bonnabel, 2017).

Proprioceptive state estimators often combine data from

an Inertial Measurement Unit (IMU) with signals such as

body velocity, kinematics information, and contact events. A

successful method in this domain for legged robots is the

contact-aided InEKF (Hartley et al., 2020). This approach is

attractive because the odometry estimate only depends on

inertial, contact, and kinematic data, which barring sensor

failure, always exist. Furthermore, the independence from any

vision systems make the state estimator robust to perceptually

degraded situations (Hartley et al., 2018; Lin et al., 2022).

Many existing perception and navigation methods can work

well, given a correct though uncertain initial condition; hence,

such an accurate dead reckoning can enable higher levels of

autonomy for existing systems.

The invariant observer design provides us with a

framework with better convergence properties. However,

sensory data input likewise plays a crucial role in state

estimation tasks. Noisy and biased measurements can

hinder the performance of the observer. On the other hand,

sensor failures can lead to catastrophic results in state

estimation. Recent deep learning methods allow one to

address these challenges by estimating the bias or inferring

the information that traditional sensors cannot obtain (Liu

et al., 2018; Wellhausen et al., 2019). By combining learning

with the symmetry-preserving observer design, the

performance and robustness of a state estimator can be

greatly improved (Brossard et al., 2019; Brossard et al., 2020).

This section reports our recent developments on deep-

learning-aided invariant state estimator (Lin et al., 2022). In

this work, a deep contact estimator is designed to estimate the

foot contact events for legged robots. The learned foot

contacts are then used to enforce the non-slip constraint in

an InEKF. Although the complete state estimation pipeline is

purely proprioceptive, it can achieve a similar performance to

a state-of-the-art visual SLAM system. In addition, the

program, including the deep contact estimator, runs in

real-time (500 Hz) on an MIT Mini Cheetah robot. We also

report our new results on developing the InEKF for wheeled

platforms in Section 3.4. The data sets and software are

available for download .

TABLE 1 Results of the proposed frame-to-frame method using the
KITTI (Geiger et al., 2012) stereo odometry benchmark averaged
over Sequence 00–10. The table lists the average drift in translation,
as a percentage (%), and rotation, in degrees per meter(°/m). The drifts
are calculated for all possible subsequences of 100, 200 . . ..,
800 m.

t (%) r (°/m)

Geometric Registration (Proposed) 4.55 0.0236

GICP Segal et al. (2009) 11.23 0.0452

3D-NDT Magnusson et al. (2007) 8.50 0.0396

Robust-ICP Zhang et al. (2022) 11.02 0.0256

Color Registration (Proposed) 3.69 0.0159

MC-ICP Servos and Waslander, (2014) 14.10 0.0488

Semantic Registration (Proposed) 3.64 0.0155

TABLE 2 The RMSE of Relative Pose Error (RPE) averaged over TUM RGB-D (Sturm et al., 2012) fr1 and fr3 structure v.s texture sequences. The t
columns show the RMSE of the translational drift in m/sec and the r columns show the RMSE of the rotational error in deg /sec. The RMSE is
averaged over all sequences.

fr1 fr3 structure v.s texture

t (m/sec) r (deg /sec) t (m/sec) r (deg /sec)

Geometric Registration (Proposed) 0.0730 2.3805 0.0794 2.8536

GICP Segal et al. (2009) 0.4034 15.8838 0.2116 5.2979

3D-NDT Magnusson et al. (2007) 0.2290 14.0311 0.2487 6.9860

Robust-ICP Zhang et al. (2022) 0.1487 6.6911 0.2091 5.4168

Color Registration (Proposed) 0.0545 2.4333 0.0754 2.6651

DVO Kerl et al. (2013) 0.0623 2.6943 0.1386 4.9843

Color ICP Park et al. (2017) 0.1353 5.8985 0.0820 2.2041
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3.1 Deep contact estimator

The goal of the deep contact estimator is to accurately

estimate the foot contact events where the robot’s foot

maintain zero velocity in the world frame. We model the

contact as binary events on each leg l ∈ {RF, LF, RH, LH}.

The overall contact states of the robot becomes a collection of

binary values C � [ cRF cLF cRH cLH ], where cl ∈ {0, 1} with

0 indicates no contact, and 1 denotes a firm contact. For a

quadruped robot, there exist 16 different combinations of the

contact states. We formulate our approach as a

classification task1.

The contact estimator takes sensor measurements from an

IMU, joint encoders, and kinematics as input. To allow the

network to extract information from the time domain, a fixed

number of past data is concatenated together before inputting

into the network. Figure 4 lists the input data along with the

network architecture. The linear block contains 3 fully-connected

layers that convert the deep features into the 16 classes. Dropout

mechanisms are also added to the first 2 fully-connected layers to

prevent the network from overfitting. Finally, we employ the

cross-entropy loss for the classification task.

3.2 Contact data sets

We create open-sourced contact data sets using an MITMini

Cheetah robot (Katz et al., 2019). The data sets are collected using

an MIT controller (Kim et al., 2019) across 8 different terrains

(shown in Figure 5). We record proprioceptive measurements

such as joint encoders data, foot positions and velocities, IMU

measurements, and estimated joint torques from the controller.

The IMUmeasurements are received at 1000Hz, while other data

are recorded at 500Hz. We upsample all measurements to match

the IMU frequency after recording the data. In addition to the

proprioceptive measurements, we also record RGB-D images

with an Intel D455 camera mounted on top of the robot. These

RGB-D images are used in a state-of-the-art visual SLAM

algorithm, ORB SLAM2 (Mur-Artal and Tardós, 2017). For

the grass data sets, we obtain ground truth trajectories from a

motion capture system. However, for the rest of the data sets, we

use the trajectory from ORB SLAM2 as an approximation to

ground truth. In total, around 1,000,000 data points were

collected on 8 different terrains. We also include some

examples of the robot walking in the air to provide the

network with negative examples by holding the robot up and

applying the same controller commands. The detailed number of

data collection is listed in Table 3. The labels of the ground truth

contacts are generated automatically with an offline pre-

processing algorithm (self-supervised learning). Detailed of the

algorithm can be found in the work of (Lin et al., 2022).

3.3 Experimental results

We evaluate the accuracy, false positive rate, and false

negative rate of the proposed contact estimator using the Mini

Cheetah robot, as shown in Table 4. We compare our method

with a model-based approach (Focchi et al., 2013; Fakoorian

et al., 2016; Fink and Semini, 2020), denoted GRF Thresholding,

and a fixed gait cycle assumption which assume the pre-

determined gait cycle is precisely followed by the controller.

Our method performs the best across all three sequences. It is

FIGURE 4
The architecture of the proposed contact estimator (Lin et al., 2022). The inputs include linear accelerations and angular velocities from an IMU,
joint angles and joint velocities from encoders, and foot positions and velocities from kinematics.

1 https://github.com/UMich-CURLY/deep-contact-estimator; https://
github.com/UMich-CURLY/cheetah_inekf_realtime; https://github.
com/UMich-CURLY/husky_inekf.
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worth noticing that the proposed contact estimator has the lowest

false positive rate, which is crucial for state estimation tasks as the

violation of the non-slip condition could lead to severe drift in the

estimation.

We integrated our contact estimator into the contact-aided

InEKF. The entire state estimation pipeline, including our deep

contact estimator, runs in real-time at 500Hz on an NVIDIA Jetson

AGX Xavier. Figure 6 shows the trajectory generated by the InEKF

using different contact sources on a concrete loop sequence.We also

run the filter using the ground truth contact data to serve as a

reference. Qualitatively compared to the baseline contact detectors,

the resulting trajectory with the proposed contact estimation has

smaller drifts from the trajectory with ground truth contacts,

especially in the height (Y) axis. Furthermore, compared to the

baseline contact estimators, the proposed method also yields a

smoother trajectory.

3.4 Invariant EKF with body velocity
measurements

In addition to legged robots, we also develop state

estimation software for wheeled robots using the InEKF.

Instead of using the foot contact, here we use the body

velocity as measurements in the correction step. Although

the implementation is not restricted to a specific platform, we

evaluate the performance of the filter on a differential-drive

wheeled robot, Husky, from Clearpath robotics. We obtain the

body velocity measurements from wheel encoders using a

simple differential-drive model, vbody � r(ωl+ωr)
2 , where ωl

and ωr are wheel angular velocities measured by the wheel

encoders and r is the wheel radius. Moreover, we also use

pseudo velocity measurements by assuming zero velocities on

the Y and Z axis (Dissanayake et al., 2001). However, this

estimation can be noisy and inaccurate due to slip or bumping

on the wheels. In order to know the full potential of this

framework, we also record several sequences in a motion

capture facility and use the velocity from the motion

capture system to correct the estimated state. Figure 7

shows the resulting trajectories. Using the wheel velocity

and pseudo velocity measurements, the state estimator can

produce a good estimation of the robot pose. If the accuracy of

the velocity is improved, then the drift can be further reduced.

Although this section does not discuss the incorporation of

learning into the InEKF state estimator, as done previously for

the legged robot, the following lessons from our experiments are

noteworthy.

• Body velocity measurements provide a generic correction

model that can work on any robotic platform. However,

accurate body velocity measurement is not readily

available. Specifically, the filer requires the ground

FIGURE 5
(A) Setup of an MIT Mini Cheetah with the perception suite used in the data collection. (B) Different ground types in the contact data set.

TABLE 3 Number of data of each terrain in the contact data sets.

Terrain Type

overall air
trotting

air
pronking

asphalt
road

concrete forest grass middle
pebble

small
pebble

rock
road

sidewalk

1,013,441 44,386 48,972 94,615 465,144 72,144 103,392 44,442 52,669 45,819 58,115
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FIGURE 6
Concrete short loop test sequence. Top Left: The bird’s-eye view of the trajectories. The estimated trajectory is mapped to the camera frame (Y
pointing downward, and Z pointing forward). Top Right: Zoomed-in of the bird’s-eye view. Bottom Left: This figure shows that the gait cycle and GRF
thresholding methods produce a significant height (Y) drift. Bottom Right: Robot configuration.

TABLE 4 Accuracy comparison against baselines. The proposed method achieves the highest accuracy on all sequences. Although the gait cycle
method has an accuracy closer to the proposed method, it does not remove false positives when gait cycle is violated.

Sequence Method % Accuracy % False Positive Rate % False Negative Rate

Leg RF Leg LF Leg RH Leg LH Leg Avg Leg Avg Leg Avg

Concrete Short Loop GRF Thresholding 73.43 70.02 71.69 70.04 71.30 37.07 13.24

Gait Cycle 85.66 84.98 84.68 85.11 85.11 22.95 0.00

Proposed Method 98.34 97.87 97.95 98.56 98.18 1.45 2.51

Grass Test Sequence GRF Thresholding 82.55 78.93 84.62 82.48 82.14 26.87 0.63

Gait Cycle 92.41 92.38 91.04 90.55 91.59 10.95 3.53

Proposed Method 98.08 97.57 97.73 97.73 97.78 2.35 1.98

Forest Test Sequence GRF Thresholding 80.99 80.09 82.75 83.24 81.77 26.54 1.84

Gait Cycle 83.03 82.56 84.44 84.28 83.58 24.71 0.08

Proposed Method 97.05 96.62 97.24 97.40 97.08 2.82 3.12

Bold values in tables show the best performance.
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referenced body velocity (Teng et al., 2021b; Potokar et al.,

2021).

• The robot’s nonholonomic constraints (i.e., velocity

constraints that cannot be integrated) can provide

pseudo observations that can significantly improve the

performance. However, these constraints are

assumptions and detached from the robot’s behavior.

Learning such constraints provides a way to use sensory

inputs instead of assumptions (Brossard et al., 2019;

Brossard et al., 2020).

• Moreover, the nonholonomic constraints are violated

when the robot drifts. Slip detection and friction

estimation are challenging and necessary tasks for future

learning-aided robot estimation modules.

4 Symmetry-preserving geometric
robot control

The geometry of the configuration space of a robotics system

can naturally be modeled using matrix Lie (continuous) groups

(Bloch, 2015; Lynch and Park, 2017). For example, the centroidal

dynamics of legged robots can be approximated by a single rigid

body, whose motion is on SE(3).

The Euler angle based convex Model Predictive Control (MPC)

(Di Carlo et al., 2018) has been proposed for locomotion planning

on the quadrupedal robot. Zero roll and pitch angle assumptions are

validated by assuming a flat ground, which may fail when such

assumptions no longer hold. To avoid the problem, the geometric

MPC that utilize the symmetry of the Lie group has been proposed.

A local control law has been proposed by Kalabić et al. (2016);

Kalabić et al. (2017), where the linearized dynamics are defined by a

local diffeomorphism from the SE(3) manifold to Rn space.

However, such a diffeomorphism is not unique and too abstract

for controller design.

The Variational Based Linearization (VBL) technique (Wu and

Sreenath, 2015) are applied to linearize the Lagrangian to obtain the

discrete-time equation of motion and applied to robot pose control

(Chignoli and Wensing, 2020). A VBL based MPC is proposed by

Agrawal et al. (2021) for locomotion on discrete terrain using a gait

library. The result suggests that the VBL based linearization can

preserve the energy, thus making the system more stable. However,

FIGURE 7
Top: Two sequences of trajectories recorded at the University of Michigan MAir motion capture facility. The green lines are the InEKF estimated
trajectories using velocity estimated from thewheel encoders, and the blue lines are the InEKF results using velocity from themotion capture system.
Bottom: The robot setup. The ground of the facility is planted with natural grass.
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the VBL method linearized the system at the reference trajectory,

which may result in unstable motion (Ding et al., 2021). Other than

linearizing at the reference trajectory, the work of Ding et al. (2021)

linearized the system at the current operating point to obtain the QP

problem for tracking of legged robot trajectory. However, the

linearized state matrix of Ding et al. (2021) depends on the

orientation, which can be avoided by exploiting the symmetry of

the system as done by Teng et al. (2022a,b). The proposed

framework is illustrated in Figure 8.

4.1 Error-state convex MPC

For tracking control on Lie group G , we define the desired

trajectory as Xd,t ∈ G and the actual state as Xt ∈ G, both as

function of time t. Given the twists ξt and desired twists ξd,t and

the reconstruction equation, we have
d
dtXt � Xtξ

∧
t ,

d
dtXd,t � Xd,tξ

∧
d,t. Similar to the left or right error

defined in (Bullo and Murray, 1999), we define the error between

Xd
t and Xt as

Ψt � X−1
d,tXt ∈ G. (6)

For the tracking problem, our goal is to drive the error from

the initial conditionΨ0 to the identity I ∈ G. Taking derivative on
both sides of (6), we have

d

dt
Ψt � _Ψt � d

dt
X−1

d,t( )Xt +X−1
d,t

d

dt
Xt � X−1

d,t

d

dt
Xt −X−1

d,t

d

dt
Xd,t( )X−1

d,tXt

� X−1
d,tXtξ

∧
t −X−1

d,tXd,tξ
∧
d,tX

−1
d,tXt � Ψtξ

∧
t − ξ∧d,tΨt.

_Ψt � Ψt ξt − Ψ−1
t ξd,tΨt( )∧ � Ψt ξt − AdΨ−1

t
ξd,t( )∧.

(7)

We define ψ∧
t as an element of the Lie Algebra that

corresponds to Ψt. Thus by the exponential map, we have

Ψt � exp(ψt), Ψt ∈ G, ψ∧
t ∈ g. Given the first-order

approximation of the exponential map, Ψt � exp(ψt) ≈ I + ψ∧
t ,

and a first-order approximation of the adjoint map

AdΨt ≈ AdI+ψt
∧, we can linearize (7) by only keeping the first

order term of ψt and ξt − ξd,t as:

_Ψt ≈ I + _ψ∧
t( ) ≈ I + ψ∧

t( ) ξt − Ad I−ψ∧
t( )ξd,t( )∧

, (8)
_ψt � −adξd,tψt + ξt − ξd,t. (9)

Eq. 9 is the linearized velocity error in the Lie algebra.

The dynamics of ξt is described by the forced Euler-Poincaré

equations (Bloch et al., 1996; Bloch, 2015) as Jb _ξ � adpξJbξ + u,

where u ∈ gp is the generalized control input force applied to the

body fixed principal axes, adp is the co-adjoint action, and gp is

the cotangent space. This model is nonlinear. To compute a

locally linear approximation of the nonlinear term, we adopt the

Jacobian linearization around the operating point �ξ as

Jb _ξ ≈ adp�ξJb
�ξ + zadpξ Jbξ

zξ |�ξ(ξ − �ξ) + u. Thus, we have the linearized

dynamics in the following form _ξ � Htξ + J−1b u + bt, We define

FIGURE 8
The proposed error-state MPC framework by Teng et al. (2022a). The tracking error is defined on a matrix Lie group and linearized in the Lie
algebra. A convex MPC algorithm is derived via the linearized dynamics for tracking control. The proposed algorithm is applied to a single rigid body
system and verified on a quadrupedal robot MIT Mini Cheetah. A quadratic cost function in the Lie algebra can verify the stability of the
proposed MPC.
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the system states as xt ≔
ψt
ξt

[ ]. Then, the linearized dynamics

becomes _xt � Atxt + Btut + ht, where

At ≔
−adξd,t I
0 Ht

[ ], Bt ≔
0
J−1b

[ ], ht ≔ −ξd,t,
bt

[ ].

4.2 Convex MPC design

On Lie groups, our cost function is designed to regulate the

tracking error ψt and its derivative _ψt rather than the difference

between ξd,t and ξt. Thus, our tracking error can be designed as:

yt ≔
ψt
_ψt

[ ] � I 0
−adξd,t I

[ ]xt − 0
ξd,t

[ ]. (10)

Given some semi-positive definite weights P, Q, and R, we can

now write the quadratic cost function as

N ytf( ) � yT
tf
Pytf, L yt, ut( ) � yT

t Qyt + uT
t Rut. (11)

Given the future twists ξd,t, initial error state ψ0 and twist ξ0,

we can define all the matrices. Discretizing the system at time

steps {tk}Nk�1, we can design the MPC as follows.

Problem 2. Find uk ∈ gp such that

min
uk

yT
NPyN + ∑N−1

k�1
yT
kQyk + uT

kRuk

s.t. xk+1 � Akxk + Bkuk + hk, uk ∈ Uk, x0 � x 0( ).

In Problem 2, Ak, Bk, and hk can be obtained by zero-order

hold or Euler first-order integration. Problem 2 is a QP problem

that can be solved efficiently, e.g., using OSQP (Stellato et al.,

2020).

4.3 Stability analysis

The stability of the proposed controller can be verified by a

quadratic Lyapunov cost function in Lie algebra. First, we introduce

the left invariant inner product. Then, we can derive the gradients of

the quadratic cost function in the tangent space.

Definition 1. Given ϕ1, ϕ2 ∈ Rdimg and ϕ∧1 , ϕ
∧
2 ∈ g, we define

the inner product 〈ϕ∧1 ,ϕ∧2〉g � ϕT1Pϕ2, where P is a positive definite

matrix. This inner product is left-invariant. To see this, suppose

Xϕ∧1 , Xϕ∧2 ∈ TXG, ∀X ∈ G, then

〈Xϕ∧1 , Xϕ∧2〉X � 〈(ℓX−1 )pXϕ∧1 , (ℓX−1 )pXϕ∧2〉g � 〈ϕ∧1 ,ϕ∧2〉g, where
(ℓX−1 )p � X−1: TXG → g is the pushforward map.

Theorem 1. Consider the state X ∈ G, ϕ ∈ Rdimg, and X =

exp(ϕ). We consider the metric in Definition 1. The function h �
1
2‖ϕ‖2P is a candidate Lyapunov function and the gradient of h with
respect to X is ∇h = Xϕ∧.

Finally, we show that a linear feedback in Lie algebra can

regulate the state to the identity exponentially.

Theorem 2. Consider the state in Theorem 1 as a trajectory.

Let ξ∧ ∈ g. The system _X � Xξ∧ can be exponentially stabilized to

X = I by linear feedback ξ = Kϕ, where K is a gain matrix that is

Hurwitz.

The detailed proof of the theorems are presented in the work

of Teng et al. (2022b). For the proposed MPC, we can follow the

same steps and estimate the region of attraction. For the

unconstrained case, the resulting LQR problem will lead to a

linear feedback that can be verified by Theorem 2.

4.4 Validation on quadrupedal robot

We conduct two experiments on the quadrupedal robot Mini

Cheetah (Katz et al., 2019) to evaluate the proposed MPC. Both

experiments use a single rigid body model to approximate the

torso motion. We apply MIT controller (Di Carlo et al., 2018)

with the proposed MPC to plan the Ground Reaction

Force (GRF).

4.4.1 Robot pose tracking
In this experiment, a mixture of roll and yaw reference angle

is applied for tracking. The reference signals and snapshots of

robot motion are presented in Figure 9. Each controller is

implemented three times. The details of the responses are

presented in Figure 10. It can be seen that as no feedforward

force at the equilibrium is provided, all controllers have steady-

state error. However, the geometric-based controller,

i.e., proposed and the VBL based MPC, has a smaller steady-

state error than the Euler angle-based one. As the VBL based

MPC does not conserve the scale of the error, the convergence

rate is much lower than our controller, especially when the

opposite Euler angle signal is applied at the middle of the

reference profile.

4.4.2 Robot trotting
We also apply our controller to robot locomotion. Ours and

baseline controllers are deployed to plan the robot’s GRF given

command twists. Then the GRF is applied to the Whole Body

Impulse Control (WBIC) (Kim et al., 2019) to obtain the joint

torques. Unlike the conventional whole-body controller, WBIC

prioritizes the GRF generation by penalizing the deviation of

GRF from the planned GRF.We increase the penalty for the GRF

by 1e4 times in the original WBIC, so the GRF merely deviates

from the planned one.

We first apply a step signal in yaw rate. Then we add a step

signal in x motion in the robot frame, and the yaw rate

becomes a sinusoidal signal. The reference is presented in

Figure 12 and the snapshots of the experiments are in

Figure 11. We find that ours and the VBL-MPC can better

track the yaw rate than the Euler angles-based MPC, as

expected. As the orientation and position tracking errors

are small because every step is integrated from the current
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state, it is reasonable that all controllers perform well in

position tracking. The result can be seen in Figure 12.

5 Equivariant representation learning:
Augmenting geometry with learning

Learning equivariant representation of geometric data can

provide efficiency and generalizability in challenging robot

perception tasks. Loosely speaking, equivariance is a property

for a map such that given a transformation in the input, the

output changes in a predictable way determined by the input

transformation. Mathematically the equivariance is represented

as commutativity: a function f : X → X is equivariant to a set of

transformations G, if for any g ∈ G, g · f(x) = f(g · x), ∀x ∈ X. For

example, applying a translation on a 2D image and then going

through a convolution layer is identical to processing the original

image with a convolution layer and then shifting the output

feature map. Therefore convolution layers are translation-

equivariant.

An equivariant network captures the inherent symmetry of

data, disentangling the information dependent on and

FIGURE 9
Reference signal for roll and yaw angle tracking. From 1 to 11 s, the robot roll changes from0 to -57.3° and yaw changes from0 to 28.5°. Then the
robot leans to the opposite side for 10 s.

FIGURE 10
Error convergence for roll and yaw tracking. When a new step signal is applied, our controller converges faster than the baseline methods and
has a smaller steady-state error. The Euler angle-based MPC has a larger steady-state error as both roll and yaw signals are applied.
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independent of the transformations. As an analogy, this is akin to

the notion of coordinates-free calculations on manifolds in

modern mathematrics. In a coordinates-free setup, one can

distinguish the intrinsic properties of the problem from those

of a particular choice of coordinates (Tu, 2011). We mainly focus

on the rigid body transformations, decoupling the poses and the

FIGURE 11
Snapshots of the experiments on reference tracking in Mini Cheetah trotting. The time corresponds to the reference signal in Figure 12.

FIGURE 12
Reference tracking for quadrupedal robot trotting. Each controller is tested three times. The responses are too noisy; thus, the results are
smoothed using the moving average filter.
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pose-independent information, e.g., shapes and semantics, from

the geometric data by leveraging equivariant feature learning.

5.1 Point cloud registration with SO(3)-
equivariant implicit shape representations

We proposed an initialization-independent rotation

registration method for point clouds by leveraging a SO(3)-

equivariant feature learner (Zhu et al., 2022b). An overview of

the network structure is depicted in Figure 13. A point cloud is

mapped to a feature space equipped with SO(3) rotations

represented as 3 × 3 matrix multiplications, consistent with

the input Euclidean space. Therefore, the rotational

registration can be approached by solving the Orthogonal

Procrustes problem in the feature space. Our method achieved

accurate rotation registration regardless of initial estimation

error. It also implies that our method falls in the

correspondence-free category, where the step of data

association, i.e., matching corresponding points in two point

clouds, is not needed.

The SO(3)-equivariant feature learning is realized through a

backbone network called Vector Neuron (Deng et al., 2021). The

key idea is to augment the scalar feature in each feature

dimension to a vector in R3. In Vector Neuron networks, the

feature matrix with feature dimension C corresponding to a set of

N points is V ∈ RN×C×3. The mapping between layers can be

written as f: RN×Cl×3 → RN×Cl+1×3, where l is the layer index.

Following this design, the representation of SO(3) rotations in

feature space is straightforward: g(R) ·V≔VR, where g(R) denotes
the rotation operation in the feature space, parameterized by the

3 × 3 rotation matrix R ∈ SO(3). Here we ignore the first

dimension N of V for simplicity, and the SO(3)-equivariance

of the linear layer: flin(V) =WV, whereW ∈ RCl+1×Cl , can be easily

verified as follows.

g R( ) · flin V( ) � WVR � flin g R( ) · V( ). (12)

For further discussions beyond the linear layers, see the work of

Deng et al. (2021).

We design an encoder-decoder structure to learn the features.

We also improve the robustness to noise in sampled points by

decoding an implicit shape representation following the

Occupancy network (Mescheder et al., 2019). Our method is

tested on the synthetic object-wise data set ModelNet40 (Wu

et al., 2015), shown in Table 5. For further experiments using

real-world indoor RGB-D data set 7Scenes (Shotton et al., 2013),

see the work of (Zhu et al., 2022b).

5.2 Efficient SE(3)-equivariant
representations learning

Our recent work (Zhu et al., 2022a) extends the SO(3)-

equivariance to SE(3)-equivariance to better deal with

arbitrary rigid body transformations of 3D point-cloud data.

We use Convolutional Neural Networks (CNNs) which inherit

translational equivariance. Existing work of equivariant

convolutional networks are mainly in two types. First is

FIGURE 13
Overview of the SO(3)-equivariant registration network (Zhu et al., 2022b). The point cloud input is of shapeRN×3, and the encoded feature is of
shape RC×3. N is the number of points, and C is the dimension of features. Occupancy field is a function v(p) ↦ [0, 1],p ∈ R3 mapping any 3D
coordinate to an occupancy value. The rotation is estimated by aligning the features using Horn’s method (Horn et al., 1988).
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regular G-CNNs (G for group) (Cohen andWelling, 2016), which

lift the domain of the feature function space from the input

Euclidean space to the group of transformations of interest.

Second is steerable G-CNNs (Thomas et al., 2018), which

leave the domain of the feature function space untouched but

design the codomain to be steerable with the stabilizer

subgroup. More detailed introductions can be found in the

work of Cohen et al. (2018). The former strategy consumes

much larger memory than a conventional CNN, while the latter

usually results in complex design and restrictions on the kernel

and convolution structure, both limiting broader applications in

practice. We propose a new strategy to lift the domain of feature

space to a proper subgroup of SE(3), and to apply a trivial

steering representation on the subgroup, which addresses both

problems mentioned above. Our proposed point-cloud

convolution network learns expressive SE(3)-equivariant

features with a much smaller footprint than existing methods.

See Table 6 for a comparison between our method and a baseline

regular G-CNN method, EPN (Chen et al., 2021).

To be more specific, our convolution structure is built upon

KPConv (Thomas et al., 2019). We choose SO(2) as the stabilizer

and work with feature maps defined on the domain ~X �
SE(3)/SO(2) which is homeomorphic to the Cartesian

product S2 × R3. We extend the KPConv from R3 to S2 × R3.

We discretize SO(3) into the icosahedral rotation group I with

60 elements, following EPN by Chen et al. (2021), containing all

rotational symmetries of an icosahedron. SO(2) is discretized as

the group of multiples of 72° planar rotations, which is a cyclic

group of degree 5. Then we obtain a discretization of the sphere

S2 � SO(3)/SO(2) of size 12 corresponding to the vertices of an

icosahedron, where�· (a top bar) denotes the discretized space. As
a result, the domain of feature maps in our network is S2 × R3. It

turns out that we can design an SE(3)-equivariant convolution in

this space in a simple and efficient form while maintaining

expressiveness. The full SO(3) information can be recovered

from the S2 feature maps through a permutation layer. An

overview of the network structure is shown in Figure 14.

5.3 Place recognition via SE(3)-invariant
representation

Place recognition, also known as loop closure detection,

enables a robot to determine if it has seen a place before and

provides loop closure candidates for SLAM algorithms to

eliminate accumulated error. The widely used sensors include

RGB, Stereo, Thermal, Event-Triggered, and RGB-D, which are

in the form of 2D structured images or 3D unstructured points

(Barros et al., 2021). For general tasks with 2D images, place

recognition tasks suffer less because the training and testing

images differ trivially in roll direction during data collecting

procedures. Yet, the roll angles deviate significantly in

TABLE 5 Rotational registration error given rotated copies of point clouds. Tested using ModelNet40 (Wu et al., 2015) official test set. The best are
shown in bold. The second best are shown in italic. All values are in degrees.

Max initial rotation angle 0 30 60 90 120 150 180

Categories Global Methods Rotation error after registration

Correspondence-free N PCR-Net Sarode et al. (2019) 7.08 9.50 27.38 68.22 109.61 129.29 133.49

N FMR Huang et al. (2020) 0.00 0.45 5.29 21.95 42.26 66.39 79.43

Y Ours Zhu et al. (2022b) 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Correspondence-based N RPM-Net Yew and Lee, (2020) 0.26 0.27 0.42 1.57 2.85 3.42 4.02

Y DeepGMR Yuan et al. (2020) 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Bold values in tables show the best performance.

TABLE 6 Experiment result of pose estimation on ModelNet40 data set (Wu et al., 2015) on the plane category. Two numbers are shown for GPU
memory consumption and running speed for training/inference separately, given the same input size for two methods. Notice that the numbers
are not directly comparable to Table 5 due to different experiment settings.

Methods Memory (GB) ↓ Speed (fps) ↑ Mean error (°) ↓ Median error (°) ↓ Max error (°) ↓

EPN Chen et al. (2021) 22.2/16.9 1.1/1.6 1.25 1.11 6.63

Ours Zhu et al. (2022a) 4.3/2.8 6.7/11.1 1.17 1.08 5.90

Bold values in tables show the best performance.
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challenging scenarios like surgery (Song et al., 2021), underwater

robot (Li et al., 2015) or special camera setup in general cases.

Orientational differences widely exist and pose great difficulty to

place recognition with 3D unstructured point cloud perception.

Therefore, place recognition methods can benefit from a

representation that is robust to arbitrary transformations of

3D point cloud data.

The image-based localization can be categorized as

constructing hand-crafted rotation-invariant descriptors in 2D

(Cummins and Newman, 2008; Gálvez-López and Tardos, 2012),

learning the global descriptor (Kendall et al., 2015; Sünderhauf

et al., 2015; Kim et al., 2017) or a combination of both (Tian et al.,

2020; Song et al., 2022). Although learning-based methods

achieve better accuracy and robustness, Lowry et al. (2015)

suggested that place-recognition scenarios with large

orientation differences still rely on hand-crafted descriptors

which are designed for robust feature matching. This is

especially true for 3D point clouds suffering more from

orientation differences. Existing point cloud-based place

recognition methods improve the transformation robustness

by extracting 3D hand-crafted rotation-invariant descriptors

(Kim and Kim, 2018; Wang et al., 2019; Yin et al., 2019; Kim

et al., 2021) and randomly rotating them during training (Uy and

Lee, 2018; Cattaneo et al., 2021). However, hand-crafted features

can lose structural information and these methods do not take

translation into consideration.

To avoid an exhaustive data augmentation with all possible

transformations and improve generalizability, we propose an

SE(3)-invariant place recognition representation network for the

3D point cloud. An overview of the network structure is shown in

Figure 15. We use EPN (Chen et al., 2021) to extract SE(3)-

invariant local features. NetVLAD (Arandjelovic et al., 2016) is

applied to aggregate local features and construct SE(3)-invariant

global descriptors.

We evaluate the proposed place representation using the

Oxford RobotCar (Maddern et al., 2017) benchmark created by

FIGURE 14
A high-level illustration of our efficient SE(3)-equivariant network. We lift the convolution to S2 × R3, which is a rare choice for SE(3)-equivariant
feature learning. The different colors represent channels in S2.

FIGURE 15
Overview of the SE(3)-invariant place recognition network. In this network, SE(3)-invariant features are learned from input point clouds. The
local feature extraction consist of SE(3) point convolution, SE(3) group convolution, batch normalization followed by leaky ReLU activation, and
pooling layer whichmakes equivariant features invariant. Global descriptors are computed by aggregating local features using NetVLAD. The output
descriptors can perform place recognition tasks.
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Uy and Lee (2018). The precision-recall curves of the proposed

method and other baseline methods are shown in Figure 16. The

proposed network EPN-NetVLAD outperforms the baselines. To

show the generlizability of the proposed method, we experiment

with three in-house data sets of a university sector (U.S.), a

residential area (R.A.) and a business district (B.D.) (Uy and Lee,

2018). The result is shown in Table 7 and our method performs

better in all the data sets that we did not train on.

6 Closing remarks and future
opportunities

Autonomy via computational intelligence is a multifaceted

research domain that nicely integrates mathematics, computer

science, and engineering and can have enormous impacts on our

future and improve our quality of life. Robotics plays a unique

role by connecting the real world to AI, i.e., embodied AI. Many

challenges in robotics are natural problems in AI because they

show what it takes to develop an autonomous system capable of

operating in the wild. We reviewed some of the recent efforts in

symmetry-preserving robot perception and control methods. In

particular, by symmetry, we refer to invariance or equivariance

properties under a group action enabled by Lie groups or their

discrete subgroups.

The RKHS registration framework presented in Section 2

provides a unified model for registration that jointly integrates

geometric and semantic measurements and does not require

explicit data association. This framework is intimately connected

with deep learning models. The inner product of the functions

viewed as cross-correlation can be modeled as a network layer to

combine the power of functional modeling with feature and

kernel learning. Moreover, since the framework is equivariant, it

can be directly combined with equivariant feature learners, e.g.,

via deep kernel learning (Wilson et al., 2016). An important open

problem is a relationship among our framework, discrete-

continuous smoothing and mapping (Doherty et al., 2022),

dynamic scene graphs (Rosinol et al., 2021), and learning-

aided smoothing and mapping (Huang et al., 2021) for robot

perception and navigation. These are attractive research

directions that we will explore in the future.

The learning-aided state estimation framework, presented in

Section 3, can be extended to multi-task networks (Liu et al., 2019;

Maninis et al., 2019; Hu and Singh, 2021) for tasks such as slip

detection and friction coefficient estimation (Focchi et al., 2018;

Romeo and Zollo, 2020), terrain classification (Hoepflinger et al.,

2010; Walas et al., 2016; Wu et al., 2016; Ahmadi et al., 2021),

covariance estimation (Brossard et al., 2020), sensor calibration and

integration (Liu et al., 2020; Brossard et al., 2022; Ji et al., 2022), and

motion mode detection (Brossard et al., 2019). A high-frequency

implementation of these works on robots can significantly improve

their capabilities for navigating challenging environments.

Moreover, the work of Hwangbo et al. (2019) designs a learning-

based controller using a policy network that maps kinematic

observations and the joint state history to the joint position

targets. Then an actuator network takes the joint velocity history

and joint position error history to learn the joint torque. The success

of Hwangbo et al. (2019) suggests that our multimodal approach to

learning can improve the controller performance while further

optimization of the contact estimation network size is possible.

In Section 4, we developed a new error-state MPC

approach on connected matrix Lie groups for robot control.

FIGURE 16
Experimental results of proposed method (EPN-NetVLAD, blue line), state-of-the-art approaches PointNetVLAD (Uy and Lee, 2018), Scan
Context (Kim and Kim, 2018), and M2DP (He et al., 2016) on Oxford RobotCar benchmark.

TABLE 7 Experiment result showing the average recall (%) at top 1% for
each of the models. Both methods are only trained on Oxford
(Maddern et al., 2017) and tested on other different data sets (Uy and
Lee, 2018).

Datasets Oxford U.S. R.A. B.D.

PointNetVLAD Uy and Lee, (2018) 84.94% 80.79% 73.86% 69.29%

EPN-NetVLAD (Ours) 89.17% 87.82% 81.98% 76.91%

Bold values in tables show the best performance.
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By exploiting the existing symmetry of the pose control

problem on Lie groups, we showed that the linearized

tracking error dynamics and equations of motion in the Lie

algebra are globally valid and evolve independently of the

system trajectory. In addition, we formulated a convex MPC

program for solving the problem efficiently using QP solvers.

A Lyapunov function expressed in Lie algebra is introduced to

verify the exponential stability of the proposed controller. The

experimental results confirm that the proposed approach

provides faster convergence when rotation and position are

controlled simultaneously. Future work will implement the

trajectory optimization using this geometric control

framework proposed by Teng et al. (2022b) for robot

control. Another interesting research direction is to

incorporate learning into this framework (Shi et al., 2019;

Li et al., 2022; Ma et al., 2022; O’Connell et al., 2022; Power

and Berenson, 2022; Rodriguez et al., 2022). In addition, the

IIG algorithm (Ghaffari Jadidi et al., 2019), combined with an

MPC (Teng et al., 2021a), can provide an integrated

kinodynamic planner that takes the robot stability, control

constraints, and the value of information from sensory data

into account. Gan et al. (2022) show that the value of

information can be learned from multimodal sensory input

via learning from demonstrations and self-supervised

trajectory ranking to deal with sub-optimal demonstrations.

In Section 5, we showed how equivariant neural networks

can serve as powerful feature learners to improve data

efficiency and generalizability across different tasks. In

particular, we provided results on registration and place

recognition tasks. We argue that our efficient SE(3)-

equivariant network (Zhu et al., 2022a) can be a reliable

feature learner for a variety of robot perception and control

problems, including those mentioned in this article.

Furthermore, this symmetry-preserving representation can

be an answer to the long-standing question of a “good”

representation for robot mapping.

In addition to the point cloud-based SE(3)-invariant place

recognition, it is of great interest to investigate the image-based

version in challenging scenarios ranging from unstructured

outdoors to endoscopy and colonoscopy (Song et al., 2021).

Cohen and Welling (2016), Cohen et al. (2018) provide

valuable insights on equipping the existing learning-based

algorithms with group-invariant feature extraction ability.

Traditional hand-crafted descriptors can be substituted with

learnable deep SE(3)-invariant image descriptors. More

importantly, we believe a natural future direction for robotics

is towards developing structure-preserving and correct-by-

construction computational models, such as our SE(3)-

equivariant network, to enable efficient and generalizable

multimodal learning.

Finally, this article aims to serve as an invitation to

developing algorithms that respect the geometry of problems

in robotics, preserve structures such as symmetry, and use

modern computation methods such as deep learning. We

presented methods ranging from purely geometric to end-to-

end learning. As such, the central message of this paper is not

about outperforming a particular framework, but it lies in the

combined power of geometry and learning and the possibility of

modeling traditional geometric problems using geometric

networks such as equivariant deep networks. The latter will

lead to explainable large-scale computational models for

robotics and autonomous systems.
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