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Abstract: The Newtonian gravity constant G plays a central role in gravitational theory. Researchers
have, since at least the 1980s, tried to see if the Newton gravitational constant can be expressed or
replaced with more fundamental units, such as the Planck units. However, it was already pointed out
in 1987 that this led to a circular problem; namely, that one must know G to find the Planck units, and
that it is therefore of little or no use to express G through the Planck units. This is a view repeated in
the literature in recent years, and is held by the physics’ community. However, we will claim that
the circular problem was solved a few years ago. In addition, when one expresses the mass from the
Compton wavelength formula, this leads to the conclusion that the three universal constants of G, h,
and c now can be replaced with only lp and c to predict observable gravitational phenomena. While
there have been several review papers on the Newton gravitational constant, for example, about how
to measure it, we have not found a single review paper on the composite view of the gravitational
constant. This paper will review the history of, as well as recent progress in, the composite view of
the gravitational constant. This should hopefully be a useful supplement in the ongoing research for
understanding and discussion of Newton’s gravitational constant.

Keywords: Newton gravitational constant; Planck units; composite constant; gravity; mass; quantum
gravity; cosmology

1. Short History on the Newton Gravitational Constant and the Planck Units

Newton’s gravitational constant plays an important role in almost any gravity calcula-
tion. However, Newton actually never introduced or used a gravitational constant [1] in his
gravitational force formula. His formula was stated by words in Principia [2] as F = M̄m̄

R2 .
This is equivalent to today’s gravitational force formula without the gravitational constant.
Well, almost so, as we are, on purpose, using the notation M̄ and m̄ for the two masses,
rather than M and m. This is because Newton had a quite different view of mass than the
view held today. Even without a gravity constant, Newton was able to do many predictions,
such as finding the relative mass between planets and the sun, see also Cohen [3]. He also
found the relative density of Earth relative to the sun to be a value very close to what is
known today. What he tried but failed to do was to find the density of Earth relative to a
known substance, such as water, lead, or gold.

Modern physicists often consider Cavendish [4] in 1798 to be the first to measure the
gravitational constant. However, Cavendish, in his paper, did not describe a gravitational
constant or use one as also pointed out by Clotfelter [5]. What Cavendish did was to
measure the density of Earth relative to the density of a known substance, which Newton
had tried but failed to do. Cavendish succeeded by using a torsion balance, also known
today as a Cavendish apparatus. The main point of using such an apparatus is to measure
the gravity effects from a human-sized object; that is, due to the balls in the Cavendish
apparatus, one can easily control what kind of substance the mass (the large spheres in the
apparatus) are made of, for example, lead. Then by next comparing the gravitational effect
measured in the apparatus with the gravitational effect of Earth, one can find the density of
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Earth relative to the density of a known substance. Such an apparatus can also be used to
extract the gravitational constant.

The so-called Newton gravitational constant was first introduced in 1873 by the two
French physicists Cornu and Baille [6]. In their paper, they gave the formula as:

F = f
Mm
R2 (1)

where f is the gravitational constant. Big G as the notation of the gravity constant was
likely first introduced by Boys [7] in 1894. It took many years before the notation G became
standard in the international physics’ community; for example, Max Planck [8] used f for
the gravitational constant as late as 1928, and Einstein used notation k in 1916. Naturally,
whether one uses f , k or G as a symbol for the gravitational constant is purely cosmetic.
What is important to bear in mind is that the gravitational constant is relatively new (at
least compared to Newton’s Principia) and that it also came into existence at about the
same time that the kilogram became the international standard mass. For a more in-depth
historical perspective on the Newton gravitational constant, see [9].

In 1899, a few years after the invention of the Newtonian gravitational constant,
Max Planck [10,11] introduced the Planck units. He assumed there were three important
universal constants: G, c, and h, and then used dimensional analysis to derive a unique

length lp =
√

Gh̄
c3 , time tp =

√
Gh̄
c5 , mass mp =

√
h̄c
G , and temperature Tp =

√
h̄c5

Gk2
b
. Today

these are known as the Planck units. In 1916, Einstein [12] already suggest that the next
step forward in gravity would be quantum gravity. Eddington [13] was, in 1918, suggesting
that quantum gravity must be linked to the Planck scale or, in his own words:

But it is evident that this length (the Planck length) must be the key to some essential
structure. It may not be an unattainable hope that someday a clearer knowledge of the
process of gravitation may be reached?

However, Eddington’s idea was criticized by Bridgeman [14] in 1931. Bridgeman (who
later received the Nobel prize in physics) thought the Planck units were more likely mathe-
matical artifacts coming out of dimensional analysis rather than something fundamental
and related to gravity. Today, most researchers working with quantum gravity theory seem
to think the Planck units will play an important role in a final unified theory; see, for exam-
ple, [15–17]. Others are more critical. Meschini [18] pointed out that the “the significance of
Planck’s natural units in a future physical theory of spacetime is only a plausible, yet by no means
certain”. The lack of certainty in the significance of the Planck units is because the Planck
scale at that time could still only be found very indirectly by dimensional analysis. For
example, Unzicker [19] still seems to hold on to the view of Bridgeman, that the Planck
units are little more than mathematical artifacts from dimensional analysis and that they
are of no use and can basically be seen as undetectable mathematical artifacts. The Planck
units are almost rather like the ether; if there are no ways to detect the Planck units then
why not simply abandon the idea that they will play a central role in physics?

These opposing views of the Planck units also play a historically important role when
it comes to the gravity constant itself. Okun [20] in 1991 pointed out that “The status of G and
its derivatives, mp, lp , tp, is at present different from that of c and h̄, because the quantum theory of
gravity is still under construction.”. So a better understanding of G can perhaps also bring
us closer to understanding the Planck scale and even closer to a unified quantum gravity
theory. Thus it is important to keep questioning the real meaning of G; something we will
look at this paper, mainly by reviewing the existing literature on how G can potentially be
linked to the Planck scale.

2. History of the Composite View of G and the Circular Problem

The gravity constant has SI units of m3 · kg−1 · s−2. It would be strange if anything
physical had units: meters cubed, divided by kilograms, and seconds squared. We can all
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imagine something that has length, for example, a cat, or something that has mass in terms
of kilograms, for example, a cat, and we all have a sense of time being related to change,
and it can also be measured with clocks. So, the output unit of Newton’s gravitational
constant is perhaps the first hint that it could be a universal composite constant that can
actually be represented by some more fundamental constants that we can physically link
more directly to something [21]. Still, as we will see, G is a composite constant has been
discussed for more than 60 years without a resolution, until perhaps very recently. We
will here review much of the important history and progress around how the gravitational
constant can be expressed in the form of Planck units.

Thüring [22], in 1961, concluded that G had been introduced somewhat ad hoc and
that it cannot be associated with a unique property of nature; see also Gillies [23]. Zee [24]
in 1982, in a paper titled “Calculation of Newton’s Gravitational Constant in Infrared-Stable
Yang-Mills Theories” wrote:

“Is Newton’s gravitational constant G a, fundamental parameter or is it calculable in
terms of other fundamental parameters? In this paper I would like to argue the latter
view and to present a calculation of G, unfortunately not in the real world, but in a toy
world, just to demonstrate that G is indeed calculable.”

Cahill [25,26] in 1984 was likely the first to suggest that instead of calculating the
Planck mass from G, h̄, and c, that perhaps G can be calculated from the Planck mass and
suggested that G is given by:

G =
h̄c
m2

p
(2)

This is nothing more than solving the Planck mass formula, mp =
√

h̄c
G , with respect

to G. Chaill commented:

“The actual distribution of energy throughout space-time causes the tetrads to assume
vacuum expected values of the order of the Planck mass, mp. Thus the gravitational
constant, G = h̄c

m2
p

, may be viewed not as a fundamental constant, but as a mass scale

that is dynamically determined by the large-scale structure of the Universe.”

Cohen [27] suggested the same formula in 1987, and that he correctly pointed out also
can be found from dimensional analysis or, in his own words,

“Dimensional analysis let us write G = hc/m2
pl , where mpl is the Planck mass

21.77× 10−9 kg, but this is of no help of determining G since there are no independent
determination of mpl .” (Page 74. Note that we will use notation mp for the Planck
mass, while several papers also use notation mpl)

This insight is of great importance and is what we will call the circular problem of
the composite view of the Newton gravitational constant. Namely, this is the view that to
express G from Planck units is of little or no use if one needs G to find the Planck units in
the first place. Independently, a series [20,28–31] of researchers also later on suggested the
same formula for G, likely without knowing about the paper of Cahill or Cohen, but none
of these solved the circular problem. McCuloch [32] in 2016 again pointed out the circular
problem with expressing the gravity constant from the Planck mass with the same formula
as introduced by Cahill and Cohen or, in his own words,

“In the above gravitational derivation, the correct value for the gravitational constant
G can only be obtained when it is assumed that the gravitational interaction occurs
between whole multiples of the Planck mass, but this last part of the derivation involves
some circular reasoning, since the Planck mass is defined using the value for G.”
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Again, this demonstrates that the circular problem of expressing G in the form of
Planck units has existed for a very long time, and this is, in our view, directly linked to
the problem that, in quantum gravity, there has been little or no progress in detecting the
Planck scale, and therefore limited progress, as we soon will discuss.

Clark [33] in 2003 suggested the gravitational constant is given by:

G =
ag h̄c
u2 (3)

where ag
u2 = 1

m2
p
, so this is in many ways just an indirect way of writing the Cahill and Cohen

formula, as we have G =
ag h̄c
u2 = h̄c

mp
. Independently, Zwiebach [34] and Nastasenko [35]

both, in 2004, described the following formula to express G from the Planck units:

G =
l3
p

t2
pmp

(4)

Zwiebach described this as a “Planckian system of units” but gives no indications that the
Planck units can be found independently of G. Bruneton [36] suggested the same formula
in 2013, and also his view that instead of G, h̄, and c being the fundamental universal
constants, they are just composites, and the Planck units are much more fundamental; see
also [37,38]. This formula for G can, for example, be derived from dimensional analysis
of G. The dimensions of G are [G] = L3M−1T−2; then simply replace L with lp, and M

with mp, and T with tp, and we get the formula G =
l3
p

t2
pmp

. However, if one needs to find

G first to find the Planck units then one can naturally question the usefulness of this. The
same formula was later used by, for example, Mercier [39] and Humpherys [40]. In 2013,

Zivlak [41] suggested the formula of G =
c2lp
mp

, but without any suggestions for how to
find lp or mp independent of G, thus leading one back to the circular problem, see also
Eldred [42] 2019 that basically suggested the same formula.

In natural units, when first setting c = h = 1, we must have G = 1/m2
p, as pointed out

by Kiritsis [43] in 1997 as well as by Cerdeno and Munoz [44] in 1998 and later mentioned
by, for example, [36,45–50]. We find others like Peebles [51] who in 1989 already pointed out
that mp = G−1/2 when h̄ = c = 1, so one could claim he then also pointed out G = 1/m2

p,
as it is naturally trivial to turn the equation around. Still, writing G = 1/m2

p rather than
mp = G−1/2 gives a hint or even a strong indication that perhaps we should think that
the gravity constant is a function of the Planck units, and not only the Planck units can
be a function of G as first suggested by Max Planck; this idea is what this paper focuses
on. Further, in the natural units system, when h̄ = c = 1 we will then have G = l2

p as

pointed out by Schwarzschild [52] in 2000 and also [48,50,53]. In addition, since tp =
lp
c ,

we must naturally also have G = t2
p when h̄ = c = 1. When only c = 1 must we then have

h̄ = mplp and we get G =
lp

mp
as pointed out by Casadio [54] in 2009, and also discussed

by [36,55–60].
We also have:

G =
t2

pc5

h̄
=

c5

h̄ f 2
p

(5)

where vp is the Planck frequency fp = c
lp

; this was likely first mentioned by Nastasenko [61]
in 2013. Haug, in 2016, refs. [21,62,63] suggested that G is a universal composite gravita-
tional constant of the form:

G =
l2
pc3

h̄
(6)

This he arrived at from dimensional analysis by assuming the more fundamental
constants are lp, h̄, and c and that the gravitational constant is simply a composite constant.
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His argument is that the complex output units of G indicate it is a composite constant and,
further, that the gravity constant coming before the Planck length does not mean the gravity
constant is more fundamental than the Planck length. It is natural that we first understand
the world more from the surface, before we understand the deeper aspects of it. Further,
he shows how many of the Planck units can be simplified when one assumes G is such a
composite. Still, none of the above-mentioned papers has solved the circular problem, so
they are at best hypotheses that perhaps G can be expressed in the form of Planck units,
but that there are unsolved problems to do so.

As we have seen, a series of ways to express the G in the form of Planck units have
been expressed in the literature. Some authors have done this because they think G is a
composite constant and that the Planck units are more real and fundamental, while others
have mentioned G as a function of Planck units just so as to use in some calculations they
have been done to achieve other results not directly related to the view that G is a composite
constant.

Table 1 shows a series of ways to write G from Planck units and that we have found
in the literature, and there are also many more additional ways. All these ways are valid
mathematically, but again it is assumed one needs to know G to find the Planck units. A
series of the formulas are marked as being presented first in this paper; we do not do this
to indicate we have made any important new inventions simply by this, but simply to
demonstrate that there are many ways to express G from Planck units. Basically, any Planck
unit-related formula can be simply solved with respect to G. This is trivial mathematically;
the big question is if it can lead to some significant new insight or not?

Table 1. The table shows various ways we can express the gravity constant from Planck units.

From Gravity Constant Formula Likely First Described1

Planck mass mp =
√

h̄c
G G = h̄c

m2
p

Cahill [25] 1984 and Cohen2 [27] 1987

Planck time tp =
√

Gh̄
c5 G =

t2
pc5

h̄ Nastasenko [61] 2013

Planck length lp =
√

Gh̄
c3 G =

l2pc3

h̄ Haug [21] 2016

Planck energy Ep =
√

h̄c5
G G = h̄c5

E2
p

this paper Haug [64] 2020

Planck temperature Tp =

√
h̄c5

Gk2
b

G = h̄c5

T2
p kb

this paper

Planck mass ag = m2

m2
p

G =
ag h̄c
u2 = h̄c

m2
p

Clark [33] 2003

Planck frequency fp =
√

c5

Gh̄ G = c5

f 2
p h̄

Nastasenko [61] 2013

Planck acceleration ap =
√

c7

Gh̄ G = c7

a2
p h̄

this paper

Planck density ρp = c5

h̄G2 G =
√

c5

ρp h̄ this paper

Planck momentum pp =
√

h̄c3
G G = h̄c3

p2
p

this paper

Planck force Fp =
Ep
lp

G = c4

Fp
this paper

Planck length, time and mass G =
l3p

mp t2
p

Zwiebach [34] 2004 and Nastasenko [35] 2004

Planck length and Planck time G =
lpc2

mp
Zivlak [41] 2013

Planck mass and Planck time G =
tpc3

mp
Eldred [42] 2019

Planck length, time and Planck energy G =
l3pc2

Ep t2
p

this paper

Planck time and Planck length G =
tp lpc4

h̄ this paper
Planck frequency Planck mass G = c3

fpmp
this paper

Planck acceleration and mass G = c4

apmp
this paper

Planck charge and Planck length G =
l2pc2107

q2
p

this paper

Planck charge and Planck mass G = 107

m2
pq2

p
this paper

Planck charge and Planck time G =
t2
pc4107

q2
p

this paper
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Table 2 shows how to write G from Planck units when h = c = 1 and when c = 1 and
h̄ = mplp. So these formulas are simplified cases of the formulas in Table 1.

Table 2. The table shows various ways we can express the gravity constant from Planck units.

From Gravity Constant Formula Likely First Described

when h̄ = c = 1 G = 1/m2
p

Kiritsis 1997 [43] and Cerdeno and
Munoz 1998 [44]

when h̄ = c = 1 G = l2
p Schwarzschild 2000 [52]

when h̄ = c = 1 G = t2
p this paper

when h̄ = c = 1 G = 1/a2
p this paper

when h̄ = c = 1 G = 1/E2
p this paper

when h̄ = c = 1 G = 1/p2
p this paper

when c = 1 G = lp/mp Casadio 2009 [54]
when c = 1 G = tp/mp this paper
when c = 1 G = lp/Ep this paper
when c = 1 G = tp/Ep this paper
when c = 1 G = lp/ap this paper
when c = 1 G = tp/ap this paper

3. The Breakthrough in the Circular Problem

We have just looked at a long series of ways to express G in the form of Planck units.
However, as long as one needs to know G to find the Planck units, this just leads to a
circular problem as has been pointed out by a series of researchers, so at first glance this
does not seem to help us understand G better. Still, we will claim that in recent years there
has been a breakthrough in the circular problem. In 2017, Haug [65] showed a reliable way
of find the Planck length independent of G, but still dependent on knowledge of h̄ and c.
This was done by using a Cavendish apparatus as described in the appendix of that paper.
That one needs to use a Cavendish apparatus has nothing to do with one needing to know
G. Haug derived the formula:

lp =

√
h̄2π2Lr2θ

MT2c3 (7)

where r is the distance between the centers of the large and small balls (when the balance
is deflected), further, L is the distance between the small balls in the apparatus. M is the
kilogram mass of the large ball in the apparatus that can be found, for example, with a
standard letter weight as compared to the one-kilogram prototype mass. θ is the angle of
deflection measured and T is the measured period of oscillation of the torsion balance. In
other words, this way of finding the Planck length is only dependent on h̄ and c, and not
on prior knowledge of G. The formula above can be simplified further so we also get rid
of the Planck constant, and then only depend on knowledge of c; this point we will soon
return to.

In 2020, Haug [66,67] showed it is possible to find the Planck length and the Planck
time without knowledge of both G and h̄, but that to find the Planck mass (in kilograms)
one needs to know h̄ and c. Further, in 2021 Haug [66] showed an approach combined with
a long list of gravity phenomena that can be used to find the Planck length independent
of G and h̄. In another paper [68], his main focus was on how to find the Planck time
independent of G and h̄. In 2022, Haug showed a way to find the Planck length and the
Planck time without knowledge off G, h̄, and c; see [69,70]. If one knows how to find the
Planck length independent of G and h̄, one naturally knows how to find the Planck time
independent on G and h̄ as the Planck time is simply the Planck length divided by the
speed of light. However, the Planck time is also the Planck length divided by the speed of
gravity, so if we can extract the speed of gravity from observable gravity phenomena only
with no prior knowledge off c, then this must be the speed of gravity, and we have recently
demonstrated that this is practically possible.
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That the Planck units can be found without any knowledge of G means the gravity
constant can indeed be expressed in the form of Planck units. This alone is a breakthrough,
in our view. Still, what does it mean? This we will look more closely at in the next sections.

4. Putting the Pieces Together

We now know that the Planck units can be found without any knowledge of G. Table 3
shows a series of predictions from Newton and Einstein gravity simply re-written when we
replace G with G = h̄c

m2
p
. For example, the gravitational acceleration that can be predicted

by g = GM
R2 can now be re-written as:

g =
GM
R2 =

h̄c
m2

p

M
R2 (8)

This, in our view, gives little if any new insight or important results; one could even
argue the formula is now even less intuitive than before. We can claim that this shows that
gravity is related to the Planck mass and that it therefore gives some new insight, but it is
not obvious why this should be the case. Still, G is replaced with an expression containing
the Planck mass, and the Plank mass can be found independently of G, so this is a big step
forward from the view held during the time of Max Planck and up until recently when
researchers thought the Planck units could not be found without knowing G first. We could
argue that this approach replaces three universal constants G, h̄, and c with three new
ones, namely mp, h̄, and c. Still, so far it seems that even after we have solved the circular
problem in this composite view of G, this simply means we can replace G with another
constant; namely mp. This could be interesting on its own, as it indeed could indicate G is
more of a human construct than something representing directly physical aspects of the
depth of reality. The many formulas in Table 3, when re-written G = h̄c

m2
p
, do not seem to

make things more intuitive or, we could argue, it looks perhaps even less intuitive. It looks
as though we still need three constants, but we have replaced G with mp.

Table 3. The table shows the standard gravitational prediction formulas re-written when we assume
G = h̄c

m2
p
. We can see that the end results are likely even less intuitive than the existing results, and

that we basically only have swapped one constant for a new one (G for mp).

Gravity with G = h̄c
m2

p
:

Mass M and m (kg)
Gravity force F = G Mm

R2 = h̄c
m2

p

Mm
R2 (kg ·m · s−2)

Gravity acceleration g = GM
R2 = h̄cM

m2
p R2

Orbital velocity vo =
√

GM
R = 1

mp

√
h̄cM

R

Orbital time T = 2πR√
GM

R

=
2πRmp√

h̄cM
R

Periodicity pendulum3 (clock) T = 2π
√

L
g = 2πR

√
L

GM = 2πRmp

√
L

h̄cM

Frequency Newton spring f = 1
2π

√
k
m = 1

2πRmp

√
h̄cM

x

Velocity ball Newton cradle4 vout =
√

2 GM
R2 H = 1

Rmp

√
2h̄cMH

Predictions from GR:
Advance of perihelion σ = 6πGM

a(1−e2)c2 = 6πh̄cM
a(1−e2)c2m2

p

Gravitational redshift z =

√
1− 2GM

R1c2√
1− 2GM

R2c2

− 1 =

√
1− 2h̄M

R1cm2
p√

1− 2h̄M
R2cm2

p

− 1

Time dilation TR = Tf

√
1−

√
2GM

R

2
/c2 =

Deflection δ = 4GM
c2 R = 4h̄M

cRm2
p

Microlensing θE =
√

4GM
c2

(dS−dL)
dSdL

=

√
4h̄M
cm2

p

(dS−dL)
dSdL
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We could choose any of the other ways to express G from Planck units as shown in

Table 1 or Table 2; for example, we could choose Haug’s formula G =
l2
pc3

h̄ . This would, at
first glance, seem to merely lead to G, h̄, and c being replaced with lp, h̄, and c. In other
words, after we know that the Planck units can be found without G, we can replace the
three universal constants G, h̄, and c with a chosen Planck unit plus c and h̄. So then, one
can question whether this is just a change of unit systems. This alone is interesting, but
obviously not a big break through; we could even claim it is trivial information.

Another important step is needed before we can discover the great utility of the
composite view of the gravitational constant. The mass in kilograms of any mass can be
described as:

m =
h̄
λ̄

1
c

(9)

where λ̄ is the reduced Compton wavelength. This expression for mass we simply get by
solving the Compton [72] wavelength formula λ̄ = h̄

mc with respect to mass. One could
claim that only elementary particles have Compton wavelength and that composite masses
do not, or at least not such large objects as planets or suns. Only elementary particles
likely have a “physical” Compton wavelength can be measured by Compton scattering,
but larger masses consist of elementary particles and the aggregated Compton wavelength
in the composite mass is given by [1,67]:

λ̄ =
1

1
λ̄1

+ 1
λ̄2

+ 1
λ̄3

+ · · · 1
λ̄n

(10)

This aggregation is fully consistent with standard mass aggregation m = m1 + m2 +
m3 + · · ·+ mn, and can even be derived from it. It is also important to understand that
one can find the Compton wavelength of any mass without knowing h̄ and G. This mass
addition formula is known to over-estimate the mass slightly, mostly due to nuclear binding
energy, see [73,74]. However, one can easily adjust for this by treating the binding energy
as mass equivalent and subtracting it.

Let us start with an electron. The Compton wavelength can be found by shooting
a photon at an electron, and by measuring the photon wavelength before and after the
impact with the electron, and also the angle between the incoming and outgoing photon,
and thus we have:

λe =
λ2 − λ1

1− cos θ
(11)

The reduced Compton wavelength of the electron is simply thus divided by 2π as is
well known. Next, we can find the reduced Compton wavelength of the proton by utilizing
the fact that the cyclotron frequency ratio is proportional to the Compton wavelength
ratio. This is because the charge on the electron and proton is the same, and the cyclotron
frequency is given by:

f =
qB

2πm
(12)

So, we must have
fe

fP
=

qB
2πme

qB
2πmP

=
λ̄P

λ̄e
≈ 1

1836.15
(13)

So, if we know the electron Compton wavelength, we know the proton Compton
wavelength as it is arrived at by taking the electron Compton wavelength and dividing
it by 1836.15. Next, we can find the Compton wavelength of any larger mass by “simply”
counting the number of atoms in the object of interest and then dividing the Compton
wavelength of the proton by this count. To count atoms in a clump of matter is not easy,
but fully possible. One way is to construct a precise silicon (28Si) sphere. As one knows the
crystal structure here very well and since it is very uniform, one can accurately calculate
the number of atoms in such a sphere. This way of counting atoms has even been one of the
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recently suggested methods to re-define the kilogram; see [75–77]. There also exist other
methods to count atoms [78,79], so this is fully possibly in practice, even if it takes some
effort.

Based on that, we can write the formula of a mass as M = h̄
λ̄

1
c and we can replace the

mass in Equation (7) with this mass and this gives us:

lp =

√
h̄2π2Lr2θ

MT2c3

lp =

√
h̄2π2Lr2θ

h̄
λ̄

1
c T2c3

lp =

√
2π2Lr2θλ̄

T2c2 (14)

That is, the two Planck constants cancel each other out to find the Planck length. In
other words, we do not need to know h̄ or G to find the Planck length. All the other pa-
rameters in the formula we can easily find without knowledge of G or h̄ using a Cavendish
apparatus. The reason we use a Cavendish apparatus is because we can deal with sizes of
matter where we can count the number of atoms, but similar methods for even much larger
masses can be used [1].

Haug [1,67] has recently shown a practically feasible way to find the Compton wave-
length independent of G and h̄ for planets, stars, galaxies and even of the whole mass of the
observable universe, see [80]. The main point here is that any mass in terms of kilograms

can be expressed by the Formula (9). Next, let us multiply the composite G =
l2
pc3

h̄ with the
composite mass M = h̄

λ̄
1
c and we get:

GM =
l2
pc3

h̄
× h̄

λ̄

1
c
= c2 l2

p

λ̄
(15)

What is important to pay attention to here is that the two Planck constants actually
cancel each other out, and we are left with two constants, c and lp, and both these can be
found without knowledge of G and h̄. Table 4 shows a series of predicted gravitational
phenomena that can actually be observed. As we see, in all the observable phenomena,
we have GM and not GMm. The small mass m in the Newton gravitational force formula
is only used in derivations of observable gravitational phenomena and then one of the
two masses always cancels out. In real two mass gravity phenomena we have the gravity

parameter µ = G(M1 + M2) = GM1 + GM1 = c2 l2
p

λ̄1
+ c2 l2

p
λ̄2

so also in real two body
gravitational phenomena, the Planck constant cancels out.

It is evident from Table 4 that a long series of observable gravity phenomena can be
predicted by knowing only two constants, namely lp and c and naturally a variable which
is linked to the mass size, namely the reduced Compton wavelength of the gravitational
object. As seen from the table, some observable gravity phenomena only needs one constant,
namely the Planck length. Again, it has, in recent years, been demonstrated how to find the
Planck length independently off G so this is a fully practical way to do gravity predictions,
and is not just a hypothesis.
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Table 4. The table shows that any observable gravity phenomena contains GM and not GMm and,
further, that when assuming G is a composite, then we end up being able to predict all observable
gravity phenomena only from lp and c.

Mass M = h̄
λ̄M

1
c (kg)

Non observable (contains GMm)

Gravitational constant G,
(

G =
l2
pc3

h̄

)
Gravity force F = G Mm

R2 (kg ·m · s−2)

Observable predictions: (contains only GM)

Gravity acceleration g = GM
R2 = c2

R2
l2
p

λ̄M

Orbital velocity vo =
√

GM
R = clp

√
1

Rλ̄M

Orbital time T = 2πR√
GM

R

=
2π
√

λ̄M R3

clp

Periodicity pendulum5 (clock) T = 2π
√

L
g = 2πR

√
L

GM = 2πR
clp

√
Lλ̄M

Frequency Newton spring f = 1
2π

√
k
m = 1

2πR

√
GM

x =
clp

2πR

√
1

λ̄M x

Velocity ball Newton cradle6 vout =
√

2 GM
R2 H =

clp
R

√
2H
λ̄M

Observable predictions (from GR): (contain only GM)

Advance of perihelion σ = 6πGM
a(1−e2)c2 = 6π

a(1−e2)

l2
p

λ̄M

Gravitational redshift z =

√
1− 2GM

R1c2√
1− 2GM

R2c2

− 1 =

√
1−

2l2p
R1 λ̄M√

1−
2l2p

R2 λ̄M

− 1

Time dilation TR = Tf

√
1−

√
2GM

R

2
/c2 = Tf

√
1− 2l2

p

Rλ̄M

Deflection δ = 4GM
c2R = 4

R
l2
p

λ̄M

Microlensing θE =
√

4GM
c2

(dS−dL)
dSdL

= 2lp

√
dS−dL

λ̄M(dSdL)

As all predictions of observable gravity phenomena contain GM, this leads to GM =

c3 lp
c

lp
λ̄

. Haug has, in a series of papers, suggested that c3 can be used as a gravity constant

and that real gravity mass should be re-defined as m̄ =
lp
c

lp
λ̄

; something we will soon
get back to. This view is shown in Table 5, which gives all the exact same predictions as
the standard gravity formulas, but without any G and also without any need for h̄. One
exception is for the gravity force itself, but the gravity force cannot be measured directly;
we can only observe the consequences from it. Our new way of representing the gravity
force formula gives the same predictions for observable phenomena, and is only linked
to the Planck length and the speed of light. The speed of light is, in this context, the same
as the speed of gravity (“gravitons”?). For example, Abbot et al. [81] in 2017 constrained
“the difference between the speed of gravity and the speed of light to be between −3× 10−15 and
+7× 10−16 times the speed of light. ”.
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Table 5. The table shows that we can write the gravitational constant as c3 when using, in our view, a
more complete mass definition, m̄ =

lp
c

lp

λ̄
. That is, mass is related to time, or what Haug has called

collision-time. Different mass sizes then only differ in different Compton wavelengths. Writing the
gravitational force formula this way yields the same predictions as standard Newton gravity except
we only rely on two constants, lp and c, to describe mass and any observable gravity phenomena. In
addition, in general relativity predictions, we can replace the mass with this mass definition if we
replace G with c3. The reason we can do this is that c3 M̄ = GM. This is clear when we understand
that G is a composite constant and, in addition, understand that the kilogram mass can be written by
simply solving the Compton wavelength formula with respect to m.

Mass M = h̄
λ̄M

1
c (kg)

Non observable :
Gravitational constant c3

Gravity force F = c3 M̄m̄
R2 (kg ·m · s−2)

Observable predictions:

Gravity acceleration g = c3 M̄
R2 = c2

R2
l2
p

λ̄M

Orbital velocity vo =
√

c3 M̄
R = clp

√
1

Rλ̄M

Orbital time T = 2πR√
c3 M̄

R

=
2π
√

λ̄M R3

clp

Periodicity pendulum7 (clock) T = 2π
√

L
g = 2πR

√
L

c3 M̄ = 2πR
clp

√
Lλ̄M

Frequency Newton spring f = 1
2π

√
k
M̄ = 1

2πR

√
c3 M̄

x =
clp

2πR

√
1

λ̄M x

Velocity ball Newton cradle8 vout =
√

2 c3 M̄
R2 H =

clp
R

√
2H
λ̄M

Observable predictions (from GR):

Advance of perihelion σ = 6πc3 M̄
a(1−e2)c2 = 6π

a(1−e2)

l2
p

λ̄M

Gravitational redshift z =

√
1− 2c3 M̄

R1c2√
1− 2c3 M̄

R2c2

− 1 =

√
1−

2l2p
R1 λ̄M√

1−
2l2p

R2 λ̄M

− 1

Time dilation TR = Tf

√
1−

√
2c3 M̄

R

2
/c2 = Tf

√
1− 2l2

p

Rλ̄M

Deflection δ = 4c3 M̄
c2R = 4

R
l2
p

λ̄M

Microlensing θE =
√

4c3 M̄
c2

(dS−dL)
dSdL

= 2lp

√
dS−dL

λ̄M(dSdL)

5. Is the Inertial Mass Really Identical to the Gravitational Mass?

As shown for all the observational gravitational phenomena reported in Tables 4 and 5,

we have GM and not GMm. Again, GM =
l2
pc3

h̄
h̄
λ̄

1
c = c3tp

lp
λ̄

, where Haug has claimed in

a series of papers [67,82] that c3 can then be seen as a gravitational constant and tp
lp
λ̄

as a
more complete mass definition. This mass definition he has coined collision-time, which
again can be seen as the gravitational mass. Yes, this mass definition has dimensions of
simply time. This mass is already indirectly embedded in standard gravity theory since one
is multiplying the kilogram mass with the gravitational constant. But here the traditional
view is that this is a gravity constant multiplied by a mass, and that they are two separate
things. No one has yet figured out exactly, from a deeper perspective, why this must be
done. Well, what is a gravitational mass and what is an inertial mass? A gravitational mass
is linked to the mass caused by, and acted on, by a body by the force of gravity, so it has
always been assumed that both the masses in Newton’s formula represent gravitational
masses. However, we will challenge that view here. This is because if the small mass m
has insignificant impact on M then it cancels out in all derivations of direct observable
gravitational phenomena, so we could even write:

ya = G
My
R2 (16)
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and we would still get the correct predictions about measurable gravitational phenomena
from this equation; that is, y on both sides of the equation could be replaced with basically
anything. We could even define y as money. Money has naturally nothing to do with
gravity, but since y is on both sides of the equation we can divide by y on both sides and
we get a = GM/R2, and we can measure both a and the gravitational acceleration. Our
point is that even when putting in a completely wrong mass definition for m on both sides
of ma = G Mm

R2 , these two m masses will cancel out in the derivation of anything observable.
This is the case for derivation of any observable gravity phenomena, except for real two-
body problems where one has GM1 + GM2, not GMm. The reminding kilogram mass M
is always multiplied by the gravity constant. We will claim this is done (unknowingly)
to correct an incomplete mass definition (the kilogram mass) into a more complete mass
definition, so the real gravitational mass is G

c3 M =
lp
c

lp
λ̄
= M̄. This was discussed in detail

by Haug [67,82]. Newton naturally did not have this in mind when he developed his
gravity theory and, as we have pointed out, he also never used a gravity constant. The
gravity constant is a missing value constant simply found by calibration to observable
gravitational phenomena when one has decided upon using the kilogram definition of
mass. This is also at least part of the reason why the gravity constant came into existence
about the same time as the kilogram mass became popular in Europe.

The mass linked to non-gravitational acceleration is often thought of as the inertial
mass, and since it has been shown experimentally that the following relation seems to hold

mia = G
Mm
R2 (17)

we assume that the inertial mass mi must be equal to the gravitational mass m since it
seems to be an equivalence between standard acceleration (for example, in an elevator) and
in a gravitational acceleration field, and we do not doubt this, we simply claim the mass m
is not used directly for any predictions of any observable gravitational phenomena. That
is, one is not measuring ma or G Mm

R2 , but is observing a and g = a = G M
R2 ; in other words,

after the two small masses have cancelled each other out in derivations for predictions
of observable phenomena. In our view, there is only one type of mass and we have just
defined it as M̄ = G

c3 M. Inputting this mass definition in all parts in the Newton formula
would lead to:

G
c3 ma = c3

G
c3 M G

c3 m
R2 (18)

and we would also now end up with a = GM
R2 , since G

c3 m is on both sides and cancels out.
And since M̄ = G

c3 M and m̄ = G
c3 m we can write this as:

m̄a = c3 M̄m̄
R2 (19)

Our point is that in the standard Newton gravity formula, in its modern form invented
in 1873, one is likely unknowingly using two different masses: the standard kilogram
mass multiplied by G; that is, GM which combined can be seen as the gravitational mass
(collision-time mass) multiplied by c3; that is, GM = c3M̄ and the other non-gravitational
mass m is an incomplete kilogram mass that says nothing about gravity. When we want to
just know, for example, the relation between mass and energy, then the standard kilogram
mass will have enough information to do so. So, we can still use m, that is the kilogram
mass definition without adjustments, in relations such as E = mc2 or in E = mc2γ, but the
same mass definition cannot be used for calculating gravity effects from that mass without
multiplying it with G or, better, by understanding that GM actually represents the real
gravitational mass (divided by c3). There is only one mass, but to describe gravity requires
additional information that is lacking in the kilogram mass definition. The kilogram mass is
incomplete, but good enough for calculations related to just energy and mass (the kilogram
definition), but it is incomplete when also taking into account gravity. We can then either
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fix this mass ad hoc by using G or we can understand that G is a composite constant and,
when combined with M, it gives a deeper insight into mass also related to gravity.

So the real gravitational mass even of the small mass is m̄ = G
c3 m = tp

lp
λ̄
=

lp
c

lp
λ̄

, while
the kilogram mass is given by m = h̄

λ̄
1
c . Since the Planck length, the speed of light, and the

Planck constants are constants, and the only thing changing is the Compton wavelength
(mass size) in both the gravitational mass (collision-time mass) and in the kilogram mass,
they are proportional. So, the weak equivalence principle holds also under this view. This
view does not change the output from predictions of observable phenomena, but it shows
us how the Planck scale is already directly linked to gravity. Detection of gravity is, in
our view, detection of the Planck scale. This view is new and controversial, but we think
it should be taken seriously enough to also be carefully investigated by other researchers
before being rejected prematurely.

At the same time, one is incorporating important aspects of mass linked to the Planck
length. The same can easily be done with energy, as has been demonstrated in the papers
referred to. We naturally do not ask other researchers to take this for granted, but simply
suggest that, in our view, this looks like a promising path that we think requires further
investigation.

We have, in this paper, claimed that it looks as though all observable gravity phe-
nomena can be predicted by using the two constants: the speed of light and the Planck
length, without dependence on G or h̄. One could think such a view is wrong, as c and lp
only contain length and time, so how could this ever represent energy, which is normally
presented as joule? This at first seems inconsistent. However, we have recently shown how
energy can indeed be represented as a length (collision-length) and that mass can be repre-
sented as time (collision-time); see [82,83]. Energy is most often expressed as joule which
again, in SI units, represents kg ·m2 · s−2. That is, energy contains kilogram. Kilogram
is an arbitrary amount of matter that came into use in science around 1870, a few years
before the introduction of the gravitational constant in 1873. Our recent research indicates
this is an unnecessarily complex way to express energy and that it can be expressed as
collision-length. One can easily move from the collision-length energy and back to the
joule energy, simply by multiplying the collision-length energy with c4

G = h̄
l2
p
c or, the other

way around, multiplying the joule energy with G
c4 =

l2
p

h̄c . This is discussed in great detail
in [67,82]. The main point is that kilogram and joule both contain information about the
kilogram, and the kilogram is an arbitrary, human-chosen clump of matter that gravity
does not care about. Our new suggested way to look at mass and energy, that is already
embedded in standard gravity theory through the use of G, strips the standard mass of
unnecessary information about the kilogram.

When going from the collision-length energy, Ē, to the joule energy, E, or from the
joule energy to the collision-length energy, it seems (from the paragraph above) that we
need to know the Planck constant. However, one can easely find the collision-length energy
more directly; for example, from the gravitational acceleration field of the Earth that simply
given by:

Ē =
gR2

c2 = lp
lp

λ̄
(20)

So the only constant one needs to know to find the gravitational energy9 is the speed of

light (in gR2

c2 ). Neither the gravity constant nor the Planck constant are needed. To estimate
the gravitational acceleration, one has g = GM

R2 , so one could mistakenly think one needs to
know G to find Ē. This is only if one wants to predict g from standard theory. One can also
measure g without any knowledge of G; for example, by dropping a ball. The gravitational
acceleration is then simply given by g = 2H

T2 , where H is the height from which the ball is
dropped, and T is the time it took for the ball to fall to the ground.

To find this energy for smaller masses, we can use a Cavendish apparatus; see [67,84]
that provides a detailed discussion of the topic. Or alternatively, we can find the gravita-
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tional energy by first finding the Planck length and the reduced Compton wavelength of
the mass in question without knowledge off G and h̄, as we have demonstrated, in this and
other papers, is fully possible.

The Planck constant is normally associated with the concept that energy comes in
quanta, something that has been clearly demonstrated in experimental research. One
might therefore think that a theory without the Planck constant must be incomplete with
respect to describing energy. To our own surprise, even without h̄ in the gravitational
energy (collision-length), this is actually a quantum energy that comes in quanta. The
collision-length energy comes in quanta of the Planck length. The quantity are given by
lp
λ̄

. This is the quanta of the gravitational energy in a Planck time observational window
that we easily can find indirectly. For a Planck mass it is one, for a mass larger than a
Planck mass it is a quantity larger than one. Here, the integer part will be the number of
full Planck events, and the reminding fractional part is the probability for an additional one
such event. For particles smaller than the Planck mass, this factor is always smaller than
one and then represents the probability for the particle to be in a particular state that we, in
previous papers. have called collision-state inside the Planck time window see [67,82]. It is
not necessary to measure anything at the Planck time to measure this indirectly, as we have
demonstrated in the papers just mentioned. The term lp

λ̄
embedded in the collision-length

energy (quantum gravitational energy) can simply be seen as an aggregate of probabilities
for Planck events, as is discussed in-depth in the papers just referred to.

6. The Gravity Constant Calculated from Cosmological Entities

Another line of thought in relation to the composite view of G has been that the
Newtonian gravitational constant can perhaps be calculated from cosmological entities or
constants. Already, in 1936, Milne [85] explicitly suggested that:

G =
c3TH
Mu

(21)

where TH is one divided by the Hubble constant, and Mu is the mass of the universe or
what Milne called the fictional mass of the universe, as he thought the universe was infinite,
but that this was the mass inside the Hubble sphere. Unzicker [86] pointed out that such
a relation indirectly and ad hoc was already hinted at by Einstein [87] in 1917 but at best
obliquely so, and further that Schrödinger [88] in 1925, according to Unzicker, must have
suspected this relation based on numerical calculations. Bleksley [89] suggested that the
gravitational constant can be expressed as:

G =
Ruc2

Mu
(22)

where Ru is the radius of the observable universe and Mu is the mass of the observable
universe. So this is basically the same as the Milne formula since: Ru = c

H0
= cTH .

As the mass of the universe from the Friedmann equation published in 1922 (general
relativity theory) requires knowledge of G, Bleksley could not use this mass to find G, but
instead came up with his own way to calculate the universe mass, a way we think looks
a bit like numerology or at least is very speculative. For example, he suggested that the
number of protons in the universe must be R2

u/(4ρ2) where ρ is the diameter of the proton.
It is far from clear how he got to this formula, so we are questioning the validity of this
approach. But G = Ruc2

Mu
is still, at best, only a rough approximation for the Friedmann

model. The correct formula in the Friedmann model is Mc =
c3

2GH0
, where Mc is the critical

mass of the universe, so this leads to G = Ruc2

2Mc
and not G = Ruc2

Mc
, as suggested by Milne

and Bleksley. Mercier [39] in 2020 basically gave the same formula for G as Milne and
Bleksley. He used a universe mass rooted in a paper by Carvalho [90]. Carvalho started
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with a relation between mass density and the Hubble constant that he claimed is given by
Weinberg [91]

Gρ0 = H2
0 (23)

And, from this, got

Mu ≈
c3

GH
(24)

Carvalho, in addition, derived a universe mass to be the same as given by this formula,
but independently from G by some assumptions of π mesons. However, his derivation
here seems quite speculative. Carvalho further claimed “This is identical to expression derived
in the context of Friedmann’s cosmological model.”. This claim is not fully correct or, at least, not
precise enough. Both the formula he presented, the one he claimed is from the Friedman
model and the other universe mass he derived from π mesons, are both actually twice
what one gets from the Friedmann model. The universe mass one gets from the Friedmann
model is:

Mc =
1
2

c3

H0G
(25)

as one also finds indirectly in the book of Weinberg as well as in a series of other indepen-
dent sources (see, for example, [92,93]). Several authors (for example, Cook in 2011 [94]
and Mercier [39]) have suggested that G can be expressed as:

G =
c3

HMu
=

THc2

Mu
(26)

This is identical to the Milne 1936 formula and is naturally equal to G = RHc2

Mu
, as

the Hubble radius is given by RH = c
H0

, and TH = RH
c = 1

H0
. Again, this formula is not

fully consistent with the Friedmann model, as that would require G = c3

2HMu
and, since

the Hubble time is given by TH = 1
H0

, this is naturally the same as G = THc2

2Mu
, but the

Equation (26) is consistent when using the Haug [95] universe mass, which is predicted to
be twice that of the Friedmann critical mass of the universe.

None of these authors have shown how to find the universe mass without already
knowing G, except from what we would call relatively speculative approaches which we
think lack a solid foundation, even if this naturally can be discussed further. Still, there is,
as we will see, a way to find this critical mass of the universe without knowing G. First, if
we solve the Friedmann critical mass equation (Equation (25)) with respect to H0, then this
gives the formula:

H0 =
1
2

c3

McG
(27)

And since any mass in kilogram can be written as m = h̄
λ̄

1
c , and also because G can be

written as G =
l2
pc3

h̄ , this means we have:

H0 =
1
2

c3

h̄
λ̄c

1
c

l2
pc3

h̄

=
λ̄c
2l2

p
(28)

where λ̄c is the reduced Compton wavelength of the critical mass in the Friedmann universe
(the critical universe). This also means we must have:

G =
λ̄cc4

2H0h̄
(29)

The Hubble constant can be found with no knowledge of G as also the Compton
wavelength of the universe mass can be found without this knowledge of G as we [80]
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recently demonstrated. Further, as H0 = cλ̄c
2l2

p
, this means the Equation (29) can be simplified

further to:

G =
λ̄cc4

2H0h̄
=

l2
pc3

h̄
(30)

which is the same composite formula for G that one gets by solving Max Planck’s Planck

length formula; lp =
√

Gh̄
c3 , with respect to G.

For G times the critical mass of the universe (the gravitational parameter of the
universe), we must have:

µc = GMc =
l2
pc4

h̄
h̄
λ̄c

1
c
= c2 l2

p

λ̄c
(31)

where λ̄c is the reduced Compton wavelength of the mass in the critical universe. To predict
gravitational phenomena related to the mass of the critical universe, all we need is the
Planck length and the speed of light; that is, two constants, and the reduced Compton
wavelength of the critical mass of the universe. All these can be found with no knowledge
off G or even h̄; see [80]. Actually, the Hubble constant is given by:

H0 =
1

lp
c

lp
λ̄u

=
1

tp
lp
λ̄u

(32)

where λu is the reduced Compton wavelength of the mass in the Haug universe. Pay
attention to how tp

lp
λ̄c

is identical to what we call the collision-time mass. So, the Hubble
constant, in this view, is nothing more than one divided by the collision-time mass of the
observable universe [83].

If one knows the collision-time mass of the universe, then there is no need to multiply it
with G to do gravitational predictions. This is why cosmological red-shift can be predicted
simply by:

Z =
Hd
c

=
d

cM̄c
(33)

where M̄c = tp
lp
λ̄

is the collision-time of the observable universe. If we use the critical mass
of the universe in terms of kilogram, then we need to multiply it with G divided by c3 to
convert it into the real gravitational mass, so we have:

Z =
d

c G
c3 Mc

=
d

cM̄c
=

H0d
c

(34)

This means we can also predict cosmological phenomena from the Planck length and
the speed of light. This strongly indicates there is a link between the largest and the smallest
scales of the universe. This is not a very big surprise as the largest scales are built from
the smallest. The rules of the smallest (quantum) somehow give us the rules for even the
cosmic scales. Our view is that the Planck scale is actually indirectly detected in any (or at
least most) gravitational observation, including also cosmological red-shift.

Table 6 shows some ways to express the gravity constant in the form of cosmological

entities. All these are at the deepest level nothing else than G =
l2
pc3

h̄ . In addition, pay
attention to how closely the formulas linked to the Hubble scale are linked to the formulas
presented that are linked to the Schwarzschild radius and Haug radius. The reason for
this is that the Hubble radius is identical to the Schwarzschild radius for the observable
universe, and this is why in papers it has been considered whether the Hubble sphere is
actually a gigantic black hole; see, for example, [96,97].
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Table 6. The table shows various ways we can express the gravity constant from cosmological units,
as well as from units related to black holes.

From Gravity Formula Comments

From universe mass and Hubble time G = c3TH
Mu

Milne 1936 [85]

From universe mass and Hubble radius G = Ruc2

Mu
Bleksley 1951 [89]

From universe mass and universe radius G = Ruc2

6Mu
Unzicker 2020 [19]

Hubble constant, Friedmann critical mass G = c3

2H0 Mc

Hubble radius, Friedmann critical mass G = RH c2

2Mc

Hubble constant, Friedmann critical mass G = TH c3

2Mc

Hubble time, Friedmann critical mass G = c3

2H0 Mc

Hubble radius, Hubble time, and Friedmann critical mass G =
R3

H
2McT2

H

Hubble constant, Haug universe mass, G = c3

H0 Mu

Hubble radius Hubble time and Haug universe mass G = RH c2

Mu

Hubble radius, Haug universe mass, G = TH c3

Mu

Hubble time, Hubble time, and Haug universe mass G = TH c3

MuT2
H

Hubble constant, Friedmann critical mass, G = c3

2H0 Mc

Hubble time and Haug universe mass G = TH c3

Mu

Schwarzschild radius, mass, G = Rsc2

2M Rs =
2GM

c2

Schwarzschild time, mass, G = Tsc3

2M Ts =
Rs
c

Haug escape velocity radius, mass, G = Rhc2

M Rh = GM
c2

Haug radius time, mass, G = Thc3

M Th = Rh
c

7. The Composite View of G with Respect to Alternative Gravitational Theories

An interesting question is naturally how well or not the composite view of G also fits
into alternative gravitational theories. There exist a long series of alternative or modified
gravitational theories so it is outside the scope of this paper to discuss all of them or go
in depth about them. Still, we can say something about a few of these theories. One set
of modified gravitational theories are minimum acceleration theories. They try to explain
galaxy rotation without dark matter by incorporating a minimum acceleration. The most
well-known of these is modified Newton dynamics (MOND) introduced by Milgrom [98]

in 1983. Here, we suspect it would just be to replace G with G =
l2
pc3

h̄ and M with M = h̄
λ̄

1
c

without any issues. Whether this can give deeper insight into the Milgrom model would
need to be investigated. Another minimum acceleration modified gravitational theory is
the so-called quantized inertia [30,32,99]. Here the composite view of G falls nicely together
with this model, as it has even been suggested by McCulloch that G is a composite and
that the Planck units are perhaps a deeper and more important level. However, back then
he was then not able to find the Planck units without knowledge of G, as pointed out
earlier in his paper. To be able to find the Planck units without first knowing G has been
solved in recent years and strengthens the view of McCulloch that one can indeed write
G as a composite constant from Planck units. This alone naturally does not give credit to
his model. In most alternative gravity models, where G is considered constant, then the
composite view of G should in general cause no problems, but likely only helps us to get
deeper insight into these models. This naturally must be carefully investigated for each
alternative gravitational model before any conclusions are made, and to do so is beyond
this paper’s scope. The recent collision space-time gravitational theory [67,83] is another
alternative gravitational theory we already have mentioned and that fits very well with the
composite view off G.

Several researchers have discussed and suggested gravity theories in which the gravity
constant can vary. The suggestion that G is not a constant goes back at least to Milne [85]
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in 1936. In modern times, for example, Zee [100], Adler [101], and Smolin [102] discuss
symmetry breaking in relation to gravity where it seems G needs to vary. Davis [103],
Pollock [104], Raychaudhuri and Bagch [105], and Masood-ul-Alam [106] discusses gravity
theories where G has to vary. If G is simply a composite constant that can be expressed

on the form G =
l2
pc3

h̄ , then either the Planck length, or the speed of light, or the Planck
constant has to vary for G to vary, or alternatively there are other, still- missing parts in
gravity that our models do not take into account, and which these models have tried to
express through varying G. Could c, or lp, or h̄ vary? The constancy and isotropic futures
of the speed of light is one of the corner stones in special relativity theory. The round-trip
speed of light has, through a long series of experiments, been tested to be constant and
invariant (in vacuum). However, there are, to this day, discussions about how to measure
the one-way speed of light and if it truly is invariant. It was Poincaré [107] that first pointed
out that to measure the one-way speed of light, one has to have two clocks synchronized
over distance, and to synchronize these clocks one has to know the one-way speed of light,
so it led to a circular problem that seemed impossible to solve. Poincaré therefore suggested
that, for continuity, one could also assume the one-way speed of light was constant for
synchronization purposes.

Einstein went one step further and abandoned the ether, as detecting the ether is
directly related to detecting anisotropy in the one-way speed of light, and since it could not
be done, why not simply abandon something that adds complexity to the theory? However,
if the one-way speed of light can somehow be measured, and whether it is invariant, is
actually still an ongoing discussion, as is clear from recent publications; see, for example,
Spavieri [108,109] and Kipreos and Balachandran [110,111].

There are also researchers discussing whether the Planck constant even could vary;
see, for example, Masood-ul-Alam [106]. However, as we have shown, the Planck constant
seems to cancel out between the embedded h̄ in the gravity constant and in the mass, so
this would likely not be helpful for gravitational theories needing variable gravitational
constant.

The Planck length has been less investigated since until recently we have only been able
to derive it from dimensional analysis. The possibility cannot be excluded that the Planck
length can be variable; this could be due to relativistic effects such as length contraction,
but several researchers think the Planck scale (Planck length and Planck time in particular)
will break with Lorentz symmetry and that the Planck length is invariant. This despite
Lorentz symmetry being a foundational principle in general relativity and the standard
model; however, many expect new physics to be discovered at the Planck scale, which again
is often linked to quantum gravity; see for example, Tasson [112], so there are questions
clearly still open for debate. A possible explanation for why the Planck length can be
invariant was suggested by Haug [69,82]. All we can say is that our composite view of the
gravitational constant does not yet exclude the view that the gravitational constant could
be variable and that further research is needed before any “final” conclusion is made.

8. Conclusions

The idea that the gravitational constant can be a composite constant, which is related to
more fundamental Planck units, goes back to at least 1984. However, in 1987 it was already
pointed out that expressing the gravitational constant through Planck units led to a circular
problem; namely, that one had to know the gravity constant to find the Planck units. This
view has been repeated by researchers as recently as 2016. However, in more recent years, a
series of papers have shown how one can clearly find the Planck units without knowledge
of G, and even without knowledge of G and h̄, so the circular problem regarding G and
the Planck units has been solved. An in-depth study showed that this leads to a reduction
in universal constants from G, h̄, and c to only c and lp and, in addition, one needs other
constants like the fine structure constants when describing electromagnetic phenomena, but
the traditional three universal constants that Max Planck used can be reduced from three to
two. To predict all observable gravity phenomena, one only needs knowledge of lp and c,
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and both can be found without knowledge of G and h̄. This paper has given an overview
of much of what has been done in relation to the composite view of the gravitational
constant, but we have also tried to tie it nicely together. The implications of this should be
worth studying further as this seems to open doors of insight into relationships between
macroscopic gravity phenomena and the Planck scale.
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Notes
1 It is impossible for anyone today to know the full literature on physics, so there could be other authors already publishing these

formulas; however, we have made a very serious attempt to search and find anyone who might have published these results first.
2 See also McCulloch [30,32].
3 The formula is a very good approximation when the angle of the pendulum is small, as it is in most pendulum clocks. It is not

accurate for large angles, but is again exact for an angle of 360; that is to say, for full circle, see [71].
4 Where H is the height of the ball drop.
5 The formula is a very good approximation when the angle of the pendulum is small, as it is in most pendulum clocks. It is not

accurate for large angles, but is again exact for an angle of 360; that is to say, for a full circle; see [71].
6 Where H is the height of the ball drop.
7 The formula is a very good approximation when the angle of the pendulum is small, as it is in most pendulum clocks. It is not

accurate for large angles, but is again exact for an angle of 360; that is to say, for a full circle, see [71].
8 Where H is the height of the ball drop.
9 That not should be confused with gravitational potential energy.
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