Comput Optim Appl (2007) 37: 49-65
DOI 10.1007/s10589-007-9022-3

Progress in the dual simplex method for large scale LP
problems: practical dual phase 1 algorithms

Achim Koberstein - Uwe H. Suhl

Received: 3 November 2004 / Revised: 16 February 2006 /
Published online: 14 March 2007
© Springer Science+Business Media, LLC 2007

Abstract The dual simplex algorithm has become a strong contender in solving large
scale LP problems. One key problem of any dual simplex algorithm is to obtain a
dual feasible basis as a starting point. We give an overview of methods which have
been proposed in the literature and present new stable and efficient ways to combine
them within a state-of-the-art optimization system for solving real world linear and
mixed integer programs. Furthermore, we address implementation aspects and the
connection between dual feasibility and LP-preprocessing. Computational results are
given for a large set of large scale LP problems, which show our dual simplex im-
plementation to be superior to the best existing research and open-source codes and
competitive to the leading commercial code on many of our most difficult problem
Instances.

Keywords Dual simplex algorithm - Mathematical optimization system (MOPS) -
Linear programming

1 Introduction

Lemke [18] developed the dual simplex method in 1954 but it was not found to be
an alternative to the primal simplex method for nearly forty years. This changed in
the early Nineties mainly due to the contributions of Forrest and Goldfarb [7] and
Fourer [8]. During the last decade commercial solvers have made great progress in

A. Koberstein ()

Decision Support & Operations Research Lab, International Graduate School of Dynamic
Intelligent Systems, University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
e-mail: akober@upb.de

U.H. Suhl

Institut fiir Produktion, Wirtschaftsinformatik und Operations Research, Freie Universitit Berlin,
Garystrale 21, 14195 Berlin, Germany

e-mail: suhl @wiwiss.fu-berlin.de

@ Springer

50 A. Koberstein, U.H. Suhl

establishing the dual simplex as a general solver for large-scale LP problems [1].
Nowadays, large scale LP problems can be solved either by an interior point, primal
simplex or dual simplex algorithm or a combination of such algorithms. In practice,
there are often LP-models, for which one of the three methods clearly outperforms
the others. Despite of its success there are still only few publications in the research
literature which evaluate the mathematical techniques proposed for the dual simplex
algorithm within a state-of-the-art LP-system. In this paper, we investigate the task of
obtaining a dual feasible basis as a starting point for the dual simplex algorithm from
a computational perspective. Our analysis is based on the Mathematical OPtimization
System (MOPS) (see [32, 33]), which has been deployed in numerous practical ap-
plications. It features efficient and stable implementations of the primal and the dual
simplex algorithm, an interior point method, powerful LP and IP preprocessing and
a branch-and-cut framework to solve linear and mixed-integer programs.

At first, we introduce a general version of the algorithm in Sect. 2, which incor-
porates the relatively new concept of a bound flipping ratio test. Then, we present
practical versions of dual phase 1 methods, which have been proposed in the litera-
ture in Sect. 3. In Sect. 4 we address some aspects of LP preprocessing, which can
drastically reduce the amount of dual infeasibility of a given starting bases. In Sect. 5
we mention some important implementation details to obtain a code which is both
numerically stable and efficient on large scale problems. We give numerical results
and analyse the performance of the different phase 1 methods and the overall per-
formance of our code in Sect. 6. There, we also discuss the application of the dual
simplex in a branch-and-bound framework to solve mixed-integer programs. Finally,
we give a short conclusion in Sect. 7.

2 The dual simplex method for general linear programs

We consider linear programming problems (LP) of the form

minz =cTx
st. Ax=b, (D
I<x<u

where A is a real m x n matrix of rank m and m < n. The entries of the vectors [
and # may be minus or plus infinity, respectively. Let J = {1, ..., n} be the set of
column indices. We denote by 7/ ={j | j € J, [j = —o00 and u; = oo} the set of
free primal variables, by J* ={j | j € J, |; = —oo and u; < oo} and T =1
Jj€J, lj >—o0and u; = oo} sets of primal variables with one finite bound and by
Jb = {jljeJ, lj =—o0andu; = oo} the set of primal variables with finite lower
and upper bound. We call variables in J? boxed. If for a variable [j=uj=a for
some a € N, we call it fixed.

@ Springer

Progress in the dual simplex method for large scale LP problems 51

Using these definitions the dual problem associated with (1) can be stated as fol-
lows:

max Z=b"mw+ 3 i livi+ 2 jeuum tjo,
st. ATn+v+w=c,

vj =0, wj=0 forall jeJ/,

v; >0, ;=0 forall jeJ,

v; =0, w; <0 forall j € J",

v; >0, ;<0 foralljeJ?

(@)

where the real vectors 7, v and w have appropriate dimensions.

A basis B=1{ky,...,ky} is an ordered subset of 7, such that the submatrix B =
Ap is nonsingular. The set of nonbasic column indices is denoted by N' = J\B.
A primal basic solution for a basis B is constructed by setting every primal nonbasic
variable x;, j € N, to one of its finite bounds (or to zero if it is free) and computing
the primal basic variables as x5 = B~!(b — Anrxn). B is called primal feasible if
all primal basic variables are within their bounds, i.e., [; < x; <u; forall j € B.
A dual basic solution for a basis B is constructed by computing dual multipliers
7 =cgB~! and reduced costs dyr = cpr — AJT\/JT and settingv; =0, w; =0if j € B,
vj =dj,wj =0if j ENWithXj =lj,and 5 =0,a)j =dj if j ENWithXj =uj.
If jeN and j € J/ (the associated primal variable is nonbasic and free) we set
vij=dj,w;j=0ifd; >0and v; =0,w; =d; if dj <0. B is called dual feasible
if the dual slack variables v and @ do not violate their respective zero bounds, i.e.,
dj EOiijNWithXj =lj,dj <0ifj ENWithXj =u; and dj =Oiij is
free. Note, that from the perspective of the primal problem dual infeasibilities can
only occur at column indices associated with nonbasic primal variables. In particular,
the dual slack variables associated with a nonbasic free primal variable can only be
feasible if the corresponding reduced cost value is zero. The dual slack variables
associated with a nonbasic fixed primal variable are always feasible. Infeasible dual
slack variables associated with a nonbasic boxed primal variable x; can always be
made feasible by setting x; to its other bound. Clearly, if such a bound switch is
performed, the basic primal variables have to be updated.

The dual simplex method starts with a dual feasible basis and keeps changing the
basis while the dual objective function can be improved and the problem does not
turn out to be dual unbounded. We can state the algorithm as follows:

1. (Factor) Compute a factored representation of B~ L,
xp=B (b —Anxxn), T =cgB L dy=cpn — AJT\/n.
2. (Pricing) Determine p € B with p =k, and x,, infeasible.
Ifx, <lp,setd=x, —1p. lfxp >up,setd=x, —up.
If xp is feasible, then optimal. Go to 9.
3.(BTran) Compute p, =e! B~
4. (Pivot row) Compute o" = prAps.
5. (Ratio test) If x, </, seta” =—a",ow.seta” =a’.
Let F ={j € N: (j free and &} # 0) or (x; =1/; and
g;. >0)or(xj=u; andg; < 0)}.

@ Springer

52 A. Koberstein, U.H. Suhl

If F =@, then dual unbounded. Go to 9.
Determine g = argmin{j € F: |dj/a;|} and 6P = dg /oy
6. (FTran) Compute oy = B_laq.
7. (Basis change) Update Z: Z := Z + 6P5.
Update x: Compute 8 = 8/og.
Setxp :=xB — Gpqu and x; := x4 +6F.
Update dy: dj :=d; — 0P’ for j € Nand d), := =6,
Update B, N: B:= (B\{p}) U{q} and NV := (M\{¢}) U {p}.
(LU-Update) Update the factored representation of B!,
8. If factor is requested, go to 1 otherwise go to 2.
9. End.

In step 1 the Basis is (re-)factorized. We use an improved version of the LU-facto-
rization described in [34]. Also, the values of the primal basic variables and the re-
duced costs are (re-)computed. In step 2, which we call dual pricing, we determine
an infeasible basic primal variable with index p that will leave the basis. Here, we
use dual steepest edge pricing (see [7]). In steps 3 and 4 we compute the transformed
pivot row o, which is used to determine an entering variable ¢ in step 5. In step 6 we
compute the transformed pivot column e, which is used to update the primal basic
variables in step 7. The reduced costs, the objective function value, the basis and the
LU-factorization is updated. For the FTran, BTran and LU-Update operations we use
improved versions of the routines described in [35].

In our implementation we replace the simple ratio test in step 5 by a generalized
version, which we call bound flipping ratio test (see [8, 9, 17, 19, 21]):

50. Ifxp, <lp,seta” =—a”,ow.seta” =a’.
Let F={jeN:(j freeandg; #0)or (x;=I; andg; > 0) or
(xj=ujand’; <0)}and S =4¥.
5.2. If 7 =@, then dual unbounded. Go to 9.
Determine ¢ = argmin{j € F: |dj/a;|}.
5.3. If g not boxed, go to 5.5
Else, if x, =1, set 0 =ug —1g. I xy =ug set 0F =1, —ug.
Set§:=68—6a.
5.4. If § did not change sign, set S :=S U {g} and F := F\{q}. Goto 5.2.
5.5. Else, flip bounds of variables in & and update xj3:

xg:=xg—B~'a witha= Z@;’aj.
jeS

The idea of this ratio test is to pass by breakpoints associated with boxed primal
variables and flip their bounds to keep the associated dual slack variables feasible.
This is done while the updated primal leaving variable is still infeasible.

3 Dual phase 1 methods

We refer to a technique or an algorithm which produces a dual feasible basis for an
arbitrary LP (1) as a dual phase 1 method. The dual simplex method of the previous

@ Springer

Progress in the dual simplex method for large scale LP problems 53

section is called dual phase 2 because the basis remains dual feasible. The simplest
method to provide a dual feasible basis that is long known (see for example [28]) for
LPs in standard form (no upper bounds, nonnegative variables only) is to introduce
an additional dual slack variable and punish its use in the dual objective function
by some sufficiently large cost coefficient M. This is equivalent to adding an addi-
tional constraint of the form) x; < M to the primal problem. To apply this method
to the general formulation (1) one could convert it to a problem in standard form
by introducing additional variables and constraints. This would increase the size of
the problem considerably. The other reason why this method is usually not used in
practice is that a high value of M can lead to numerical problems and high iteration
counts whereas a too small value might not produce a primal feasible solution. In the
following, we only consider methods, which do not increase the size of the problem.

3.1 Artificial bounds

The artificial bounds method is a dual version of the composite simplex method which
was originally developed for the primal simplex [36]. It can be seen as a one phase
approach where infeasible dual slack variables are penalized in the dual objective
function by a high cost coefficient M. From the perspective of the primal problem
this means that infinite bounds of primal variables are replaced by artificial finite
bounds.

Suppose some starting basis B is given and N'= J\ . We can make dual slack
variables associated with nonbasic boxed primal variables feasible by flipping primal
bounds. Suppose, that the dual slack variables of the jth dual constraint (j € N) are
infeasible, i.e., d; < 0, x; at its lower bound and u; = oo. In this case an artificial
bound u =M is introduced and x; is set to u j (d; is not changed by this operation
so the dual slack variables are now feasible). In the case d; > 0, x; at upper bound
and [; = —o0, an artificial bound lj = —M is introduced and x; is set to éj. B is dual
feasible now, so we start dual phase 2 with one modification: when a variable with an
artificial bound enters the basis, its original bounds are restored. If the dual phase 2
terminates with an optimal solution and no nonbasic variable is at an artificial bound,
we are done. If there is a nonbasic primal variable x; at an artificial bound, there
are two possibilities: either M was chosen too small to remove all dual infeasibilities
in the final basis or the problem is primal unbounded. To find out, we increase M
(by multiplying with some constant) and start over. If M exceeds a certain threshold,
we declare primal unboundedness. Our first implementation of the dual simplex was
based on this approach. One disadvantage of this method is that we do not know how
large to choose M. The right value for M depends strongly on the problem character-
istic. If we choose it too small we risk many rounds of increasing and starting over.
If we choose it too big we might encounter numerical problems. For this reason we
decided not to include this method in our code.

3.2 Cost modifications, dual phase 2 and primal simplex

The basic idea of this method is similar to that of the artificial bounds method: making
the starting basis dual feasible by modifying the problem formulation and restoring it

@ Springer

54 A. Koberstein, U.H. Suhl

while executing dual phase 2. Here, additionally, we may need to deploy the primal
simplex method at the end.

Given a starting basis B with N' = J\B, dual slack variables associated with
boxed primal variables are made feasible by flipping primal bounds. Then, for each
remaining infeasible dual slack variable we shift the cost coefficient of the corre-
sponding primal variable x; with j € N by —d;, i.e., we set ¢j =cj —dj. This
leads to a new reduced cost value Qj =c;— rrTaj =cj—dj— nTaj =0, which is
feasible for the dual. Note that by each cost shifting at the start of the method an ad-
ditional dual degenerate position is created. Therefore, in order to reduce the danger
of stalling during the further course of the algorithm, we perturb the cost values by a
small margin &, which is randomly generated in the interval [10’6, 105 1. However,
as our computational results will show, this procedure can only lessen the effects of
the inherent additional degeneracy caused by this method, but not completely elimi-
nate them. When the dual phase 2 terminates with a primal feasible basis, the original
costs are restored. If the basis goes dual infeasible by this operation, we switch to the
primal simplex method (primal phase 2).

This method is implemented in the LP code SoPlex, which was developed by
Wunderling [37]. He reports that it yields good iteration counts and that for many
problems it is not necessary to call the primal method at the end. This was not con-
firmed in our numerical tests though, where it was clearly outperformed by the other
methods.

3.3 Pan’s method

Pan proposed this method in [29] and further examined it computationally in [30].
The basic idea is to remove at least one dual infeasibility at every iteration with-
out giving any guarantee that no new infeasibilities are created. This risk is mini-
mized only by a proper, geometrically motivated selection of the leaving variable.
We give the first description of the method for general linear programs (containing
upper bounds). Before calling Pan’s method we make dual slack variables associ-
ated with nonbasic boxed primal variables feasible by flipping primal bounds and do
not consider them anymore in the further course of the algorithm. Then, the method
proceeds as follows:

1. Let the set of indices associated with infeasible dual slack variables Q = {j |
jeN (dj<0andx;=1;)or(d; >0and x; =u;) or (|d;| > 0 and j free with
x; =0)}.If O is empty, the basis is dual feasible, go to 5. Select an entering index
q € Q by some primal pricing rule. We use Dantzig’s rule: ¢ = argmax{|d;| :
Jj €}

2. Compute the transformed pivot column ¢y = B_laq. Ifdy <0, set oy := —ay.

3. Determine a leaving index p € B, such that pth dual slack variables will be fea-
sible after the basis change. Let Z ={i |i € {1,...,m}, j =k; and (/; > —00
and &, < 0) or (u; < oo and &, > 0)}. If Z is empty, the problem is dual in-
feasible, stop. Otherwise, select p = arg max{|ozfi| | i € I} and k. = p. Compute
0P =dy /o).

@ Springer

Progress in the dual simplex method for large scale LP problems 55

4. Perform basis change as in step 7 of dual phase 2. To update das, the transformed
pivot row has to be computed in advance as in steps 3 and 4 of dual phase 2.
Goto 1.

5. Call dual phase 2.

Note, that no ratio test is performed in this method, so we neither can guarantee
a monotone reduction of the sum of dual infeasibilities nor of the number of dual
infeasibilities. Also, there is no proof of convergence for this method. However, in
our computational experiments it converges with a low iteration count on the vast
majority of the tested instances. In that sense we can confirm Pan’s results in [30]. On
very few, mostly numerically difficult, instances it did not converge in an acceptable
number of iterations. In that case, we switch to one of the other methods.

3.4 Minimizing the sum of dual infeasibilities

Although the basic idea of this method is long known it was recently reinvestigated in
the literature by Fourer [8] and Maros [20]. The task of finding a basis with a minimal
sum of dual infeasibilities can be formulated as an auxiliary LP problem, which both
of the authors solve by a dual simplex type algorithm. They only differ in the way
the bound flipping ratio test is applied: while Fourer only allows flips from dual
infeasible to dual feasible Maros also allows the contrary, both under the precondition
that the sum of dual infeasibilities decreases. To put it differently: Fourer’s algorithm
is monotone both in the sum and in the number of dual infeasibilities, while Maros’s
algorithm is monotone only in the sum of dual infeasibilities. Our version of the
method is similar to the approach described in [17]. The basic idea is to directly
apply the dual phase 2 to the auxiliary problem, which leads us to a dual phase 1
method that is equivalent to Maros’ algorithm and allows for a more efficient and
also simpler implementation.

Dual slack variables associated with boxed primal variables (j € J?) are made
feasible by flipping primal bounds. Then, we can state the problem of finding a basis
with a minimal sum of dual infeasibilities as follows:

max Zg= Z dj — Z dj

jeJ’UJf,dj<0 jGJ”UJf,dj>O (3)
s.t. aan—i—dj:cj forall je J'Uug* U TS,

Problem (3) is equivalent to the following formulation:

max Zo= Z wj — Z vj

jeJlugf jeguug/s
s.t. ajT7T+Uj+C()j=Cj forall je J'UT* U T/,)
v;j >0,
wj <0.

@ Springer

56 A. Koberstein, U.H. Suhl

The dual problem of problem (4) is:

min zg= Z cjx;

jeJug g/’

S.t. Z ajxj=0,
jeglugrugf (%)
—1<x;<0 forall jeJ",
0<x;<1 forall jeJ,
—1<x;<1 foralljeJ/.

Note, that problem (5) is a reduced version of our original problem (1) in the sense
that it consists of a subset of the original set of columns and that bounds and right-
hand side are changed. Since all variables of problem (5) are boxed every given start-
ing basis can be made dual feasible by flipping primal bounds and the dual phase 2
algorithm given in Sect. 2 can directly be applied. If eventually it yields zg = 0, we
have a dual feasible basis for our original problem and can start the dual phase 2 on
problem (1). If zp < 0, the original problem is dual infeasible. In more detail, our
version of the method is implemented as follows:

1. Mark indices related to boxed and fixed variables as not eligible.

2. Change the bounds of the remaining variables and the right-hand-side vector ac-
cording to problem (5).

Start with an initial basis and make it dual feasible by flipping primal bounds.
Execute dual phase 2 on auxiliary problem (5).

If zg < 0, then original problem (1) is dual infeasible, stop.

If zo = 0, the current basis is dual feasible for problem (1).

Unmark indices related to boxed and fixed variables and restore original bounds
and right-hand side.

8. Execute dual phase 2 on the original problem (1).

A

Fourer mentions in [8] that for model (3) the dual pricing step can be simplified: only
those variables need to be considered in the selection process, which will become dual
feasible after the basis change. Therefore, in our approach, only variables eligible to
leave the basis are those, which go to their zero bound (being dual feasible in the
original problem).

It is not difficult to see that applying the dual phase 2 (with bound flipping ratio
test and the modified pricing) to the auxiliary problem (5) yields exactly the same
algorithm as Maros describes in [20]. But from a computational point of view our
approach seems to be more efficient since it is not necessary to expensively compute
or update a special phase 1 pricing vector v as Maros does. It naturally corresponds to
the primal basic solution x5 in the dual phase 2. Another advantage of our approach
is, that no new code is needed to implement it besides the dual phase 2 code and every
enhancement towards greater numerical stability and efficiency in the dual phase 2
code also improves the dual phase 1.

@ Springer

Progress in the dual simplex method for large scale LP problems 57

4 Preprocessing aspects for the dual simplex algorithm

It is widely recognized that LP preprocessing is very important for solving large-scale
linear and integer optimization problems efficiently (see [4, 24]). This is true for both
interior point and simplex algorithms. Although LP software and computers have be-
come much faster, LP models have increased in size. Furthermore, LP optimizers are
used in interactive applications and in integer programming where many LPs have
to be solved. More efficient algorithms and improved implementation techniques are
therefore still very important. Furthermore all practical LP/IP models are generated
by computer programs either directly or within a modelling system. The model gen-
erator derives the computer model from the mathematical model structure and the
model data. Most model generators have very limited capabilities for data analysis.
As a consequence, there is usually a significant part of the model that is redundant.
The main goals of LP preprocessing are:

e climinate as many redundant constraints as possible

e fix as many variables as possible

e transform bounds of single structural variables (either tightening/relaxing them
during LP preprocessing or tightening bounds during IP preprocessing)

e reduce the number of variables and constraints by eliminations

We refer here to the techniques described in [24]. The standard LP-preprocessing
for LPs to be solved with an interior point or primal simplex algorithm uses bound
tightening in an early phase of the LP-preprocessing. At the end of LP-preprocessing
there is a reverse procedure where bounds are relaxed, i.e. redundant bounds are
removed from the model.

As mentioned in previous sections of the paper, boxed variables play a key role
in the dual simplex algorithm. Therefore tightened bounds are not relaxed if the dual
simplex algorithm is used in our code. In Sect. 6 we show the impact of this strategy
for some large scale LP problems.

5 Implementation aspects

In Sect. 2 we already mentioned some of the techniques we used to obtain an efficient
and numerically stable implementation of the method, such as steepest edge pricing,
bound flipping ratio test and LU-factorization and update.

Considering numerical stability and the reduction of degenerate iterations the im-
plementation of the ratio test plays a key role. There, the following techniques have
to be combined in an efficient way: 1. the bound flipping ratio test, 2. Harris’ two
pass ratio test [13], 3. cost shifting and dynamic cost perturbation (see [11] and [37]).
Rather than using a priority queue to implement the bound flipping ratio test (as was
recommended by Fourer and Maros) we basically stick to the simple search scheme
given in Sect. 2. We do not explicitly keep a record of the flipped variables in the set
S in the course of the ratio test. This is done later during the update of the reduced
costs in step 7. Due to numerical inaccuracies and the use of Harris’ ratio test with a
tolerance of 10~ nonbasic indices with slightly dual infeasible reduced costs d j exist
and can in fact be chosen as entering variables which would lead to small backward

@ Springer

58 A. Koberstein, U.H. Suhl

steps in the objective function. To avoid the danger of numerical cycling and also
achieve better behaviour on degenerate problems we do not accept backward or even
zero steps and perform a small forward step in these cases by explicitly setting the
dual step length 2 = 1072, Clearly, other nonbasic indices can go dual infeasible
by this procedure so we shift their cost values such that their reduced costs are within
the feasibility tolerance. Also, we shift the cost value of the entering variable such
that its reduced cost is exactly zero.

Given a fast LU-factorization and update the exploitation of sparsity in the com-
putation of the pivot row (step 4) and in the BTran and FTran operations and the use
of proper data structures is crucial for efficiency. As pointed out earlier by other au-
thors (see e.g. [2]), por Aar should be computed row-wise to allow for skipping zero
entries in p,. We actually use a row-wise compact storage of the whole constraint-
matrix A, which turned out to be more efficient than updating a representation of A xs
in every iteration, especially for problems with many columns. Also, we switch to
column-wise computation if the density of p, exceeds a certain threshold.

In each iteration of the method we have to solve four systems of linear equa-
tions: one BTran operation in step 3 and three FTran operations (transformed pivot
column, update of x5 after bound flips, update of steepest edge weights). Using the
LU-factorization of B, each of these operations involves the solution of two triangular
systems of the form Hy = h, where H is one of the matrices L, LT, U,UT. In the
cases, where / is very sparse (between one and ten entries, independent of model
size) while y is much denser—which is the normal situation—familiar sparsity-
techniques are applied, such as row-wise and column-wise representations of H (see
[22, p. 155f]). On bigger models and on some models with special structure, a sit-
uation called hypersparsity (cf. [12]) is more likely to occur, in which y only has
a couple of additional entries compared to z. Here, we apply a technique originally
published by Gilbert and Peierls [10]: in a preceding symbolic phase a depth-first-
search on the graph representation of H (which coincides with the column- or row-
wise representation) is performed to compute an ordered list of the non-zero positions
of y. In the subsequent numerical phase, which is basically the same as in the normal
case, we loop over this list only, avoiding all the zero-tests on entries of y. Since
there is no way of knowing the number of entries of y in advance, we use simple
estimates based on averages over preceding iterations to switch between the sparse
and the hypersparse case whenever a triangular system is solved. For some models,
this technique is indispensable to be able to solve them in a viable amount of time
(see e.g. [23]).

Especially hypersparse models particularly benefit from the increased use of index
stacks, which contain the nonzero positions of their associated vectors. In our imple-
mentation we develop an index stack for p, during the BTran operation in step 3 and
for ety during the FTran operation in step 6. Thus, in the row-wise computation of the
transformed pivot row & in step 4 and in the update of the primal basic solution xg
in step 7 we can loop solely over the nonzero positions avoiding the zero-tests on the
rest of the vectors. In the case of p, we also use the stack to zero-out the array for the
next iteration. During the update of x5 we also exploit another observation: even if
ag is not very sparse, the number of positions of xj, which change their feasibility
status, is usually small. For this reason we maintain an explicit list of its primal in-
feasible positions in the following way: if a position becomes infeasible which is not

@ Springer

Progress in the dual simplex method for large scale LP problems 59

on the list yet, its index is added and the square of its infeasibility value (for steepest
edge pricing) is stored; if the position is already on the list, only its infeasibility value
is updated. If a position becomes feasible, it is not removed from the list to avoid the
linear search operation. After each refactorization the infeasibility list is recomputed.
During the pricing in step 2 we only examine the positions contained in this list which
are typically only a fraction of the total number of rows, especially towards the end
of the optimization run.

6 Computational results

The computational results presented in this section are based on a set of one hundred
test problems, which are taken from five different sources:

17 problems from the NetLib and Kennington test set [27].!

17 problems from the MipLib 2003 test set [25].2

21 problems from the Mittelmann test set [26].3

20 problems from the BPMPD test set 314

25 problems from our private collection of test problems [6].° The prob-
lems HAL_M_D, MUNI1_M_D, MUNI18_M_D and PTV15 are multi-depot bus
scheduling models described in [15]. The instances PO1-P20 are proprietary prob-
lems from various practical applications.

In general, we tried to find a composition of test problems, which mirrors the re-
quirements in practical applications. Table 1 shows problem dimensions of five large
problems from our test set, which were the most difficult w.r.t. Cplex 9.1 runtime.

Table 1 Problem dimensions of

five large problems from our test Name Source Structurals Constraints Nonzeros
o MUNI_M_D [6] 1479833 163142 3031285
MUNI18_M_D [6] 675333 62148 1379406
RAIL4284 [26] 1092610 4284 11279748
STP3D [25] 204880 159488 662128
STORMG2_1000 [26] 1259121 528185 3341696

ICRE-B, CRE-D, D2Q06C, DEGEN4, DFL001, FIT2P, GREENBEA, GREENBEB, KEN-13, KEN-18,
MAROS-R7, OSA-30, OSA-60, PDS-10, PDS-20, PILOT, PILOT87.

2L P-relaxations of the problems: AIR04, ATLANTA-IP, DANO3MIP, DS, FAST0507, MOMENTUM?2,
MOMENTUM3, MSC98-1P, MZZV11, MZZV42Z, NET12, RD-RPLUSC-21, SEYMOUR, SP97AR,
STP3D, T1717, VAN.

3BAXTER, DBIC1, FOME11, FOME20, FXM4_6, GEN4, LP22, MOD2, NSCT2, PDS-100, PDS-40,
QAP12, RAILA4284, RAIL507, SELF, SGPF5Y6, STORMG2_1000, STORMG2-125, WATSON_1, WAT-
SON_2, WORLD.

4AA3, BASILP, CO9, CQ9, DBIR1, EX3STA1, JENDRECI, LPL1, LPL3, MODEL10, NEMSPMM2,
NEMSWRLD, NUGO08, NUG12, RATS, SCFXM1-2R-256, SLPTSK, SOUTH31, T0331-4L, ULE-
VIMIN.

SFA, HAL_M_D, MUNI_M_D, MUN18_M_D, P01, P02, P03, P04, P05, P06, P07, P08, P09, P10, P11,
P12, P13, P14, P15, P16, P17, P18, P19, P20, PTV15.

@ Springer

60 A. Koberstein, U.H. Suhl

For the other problems, dimensions and detailed individual benchmarking results can
be found in [16]. In the following we will analyse and interpret our benchmarking
data by means of the performance measures sum, geometric mean and performance
profiles (cf. [5]).

From the dual phase 1 methods presented in Sect. 3, we implemented the subprob-
lem approach of minimizing the sum of the dual infeasibilities (SP), the method by
cost modification (CM) and Pan’s method. As mentioned before Pan’s method does
not provide a theoretical convergence guarantee, which turned out to pose a problem
on a handful of mostly numerically difficult problems. Therefore we provided our
Pan code with a simple checking rule, which switches to the subproblem phase 1, if
the number of dual infeasibilities does not decrease adequately. This variant will be
denoted by Pan + SP.

We also tried two versions of the CM method: in the first version we restored the
original cost coefficients after each refactorization, if the corresponding reduced cost
values stay dual feasible, in the second version we do not touch the modified cost
vector until the end of the dual phase 2. Here, we will present results only for the first
variant, since it worked clearly better (as expected) than the second one.

In our first experiment we conducted benchmarks for the four different methods
on those 46 problems® of our test set, for which the starting (all-logical) basis is dual
infeasible and cannot be made dual feasible by pure bound flipping. These test runs
were conducted under Windows XP Professional on a standard Intel Pentium IV PC
with 3.2 GHz and 1 GB of main memory. Our code was compiled with Compaq
Visual Fortran Compiler V6.6. Table 2 summarizes the results by listing sums and
geometric means (where appropriate) for runtime and iteration counts. Pan’s method
is not included since it failed on three problems to achieve a dual feasible basis.
Figure 1 shows a performance profile over runtime for all of the four methods.

Each of the four algorithms performs quite well on about two thirds of the test
instances compared to the respective best method, with a slight edge for Pan + SP.

Table 2 Summary of

benchmark results for dual Pan +-SP SP M
phase 1 methods
Sum CPU time (sec) 8521.1 9254.9 11625.8
Geom. mean CPU time 30.1 31.3 32.7
4We consider an iteration as Sum total iters 2093129 2160389 2183591
degenerate, if 7 < 1077, Geom. mean total iters 18602.6 18910.7 19729.6
PThe primal simplex is Sum degen iters® 260277 308879 649566
generally used at the end of the Sum phase 1 iters 432107 461127 -
dual phase 2 to remove dual
infeasibilities caused by Geom. mean phase 1 Iters 164.9 195.1 -
restoring the original cost vector ~ Sum dual iters 2079179 2146392 1676332
after cost perturbation and Sum primal iters? 13950 13997 507259

shiftings.

6C09, CQ9, CRE-B, CRE-D, D2Q06C, DBICI, DEGEN4, DFL001, EX3STA1, FOME11, FOMEI2,
FOMEI13, FXM4_6, GREENBEB, JENDREC1, MOD2, MODEL10, MZZV11, NEMSPMM?2, NET12,
P02, P04, P05, P06, PO7, P09, P10, P11, P12, P13, P14, P19, P20, PILOT, PILOT87, RD-RPLUSC-21,
SEYMOUR, SGPF5Y6, SLPTSK, SOUTH31, STORMG2_1000, STORMG2-125, ULEVIMIN, WAT-
SON_1, WATSON_2, WORLD.

@ Springer

Progress in the dual simplex method for large scale LP problems 61

S — ——
)
c
Vi
n
Wi
—
-
Vi
“a
‘_Q.
=
8) Pan+SP
2 021 — — —5P
o —_-—.CM
= = = =Pan
0 T
0.0 1.0 2.0 3.0

T

Fig. 1 Performance profile over phase 1 test set: solution time using four different dual phase 1 methods

On roughly 20% of the problems the original Pan method and the CM method show
significant difficulties. For the CM method these are mainly those problems, which
need a large proportion of primal simplex’ iterations (WATSON_1, WATSON_2,
DEGEN4, ULEVIMIN). An exception is the problem DBICI1, on which the primal
simplex seems to be superior to the dual simplex. It can be seen as a fundamental
drawback of this method, that it is basically unpredictable how many iterations are
performed by the dual simplex and how many are performed by the primal simplex
method for a given problem. For our test set, almost 25% of the iterations were in
primal simplex. This makes it almost impossible for the user to choose the right solu-
tion algorithm for his LP model. Furthermore, this method has an inherent tendency
to increase the number of degenerate iterations. Pan has problems on numerically dif-
ficult instances like P13, P14, P19 and P20. On these problems, the SP method works
significantly better. To summarize we can say, that the combined method Pan 4 SP
has the best overall performance, with a slight edge compared to SP. Therefore the
Pan 4 SP method is used by default in our dual simplex code and was also deployed
in the remaining computational studies of this section.

In a second experiment we investigate the impact of the treatment of the primal
bounds after LP preprocessing. Two variants are compared on the complete problem
test set: the first one keeps the reduced bounds, the second expands the bounds after
LP preprocessing. As above the test runs were conducted under Windows XP Profes-
sional on a standard Intel Pentium IV PC with 3.2 GHz and 1 GB of main memory,
but here we use an executable generated by the Intel Visual Fortran Compiler V8.0,
which turned out to be superior to the Compaq version. The results are summarized
in Table 3 and the performance profile in Fig. 2.

TThe primal simplex code in MOPS is inferior to the dual simplex code in particular on large problems,
since it still lacks some important implementation techniques (e.g. hypersparsity). But even with an im-
proved primal code the dual simplex is generally seen as superior to the primal simplex (cf. [1]).

@ Springer

62 A. Koberstein, U.H. Suhl

Table 3 Summary of benchmark results with reduced and expanded bounds after LP

preprocessing
Reduced bounds Expanded bounds

Sum CPU time (sec) 38816.5 39643.8
Geom. mean CPU time 23.0 25.6

Sum total iters 3816302 3971111

Sum degen. iters 446812 460097

Sum dual phase 1 iters 433351 497465

Number of problems with dual phase 1 46 52

w
Vi /
A\ i
- y
Vi 04
“a
=t
=
o
o 0.2)
E— reduced bounds after preprocessing
= == = expanded bounds after preprocessing
0 -
0.0 1.0 2.0 3.0

T

Fig. 2 Performance profile over all test models: solution time with reduced and expanded bounds after
LP preprocessing

The performance profile shows, that keeping the reduced bounds after LP pre-
processing clearly improves the overall performance of the dual simplex method. The
number of dual phase 1 iterations is significantly reduced for many models, for some
of the models the execution of a dual phase 1 method even becomes superfluous.
This is not surprising, since additional finite bounds tend to increase the number of
boxed variables, which are made dual feasible by feasibility correction. Furthermore,
the number of degenerate iterations decreases compared to the variant with expanded
bounds. Tighter bounds probably increase the impact of the bound flipping ratio test,
which can be seen as an anti-degeneracy technique.

To evaluate the performance of the MOPS dual simplex implementation we com-
pared it to the dual simplex codes of the LP-systems Soplex 1.2.1 [31],® COIN LP

8For Soplex, we used the entering algorithm, which conceptually can be seen as the primal simplex method
using the dual simplex method to achieve primal feasibility at the start. In practice however, three fourths of

@ Springer

Progress in the dual simplex method for large scale LP problems 63

T

— -
o "

=

i

w

i

—

5

i

&

=

o MOPS

g — e — Cplex

o — - — - COINLP
— = = = Soplex

5.0 6.0 7.0 8.0 9.0 10.0

Fig. 3 Performance profile comparing dual simplex codes of four different LP systems

Table 4 Solution times (seconds CPU time) for five problems from our test set, which were the most
difficult w.r.t. Cplex 9.1 runtime (cf. Table 1)

Problem MOPS 7.9 Soplex 1.2.1 Clp 1.02.02 Cplex 9.1
CPU time CPU time CPU time CPU time
MUNI_M_D 15720.8 >72000 12940.0 14295.8
MUNI18_M_D 3142.3 >72000 3309.2 5469.3
RAILA4284 5944.9 10058.1 7417.0 4019.8
STP3D 2769.1 6726.7 1253.0 1021.2
STORMG2_1000 3464.4 15550.5 1747.4 537.9

(CLP) 1.02.02 and Cplex 9.1 [14] with default settings and the respective system-
specific LP preprocessing. The test runs were conducted under Windows XP Profes-
sional on a standard Intel Pentium IV PC with 3.2 GHz and 1 GB of main memory.

The MOPS executable was built by the Intel Visual Fortran Compiler V8.0, the So-
plex and CLP code was compiled using Microsoft Visual C++ V6.0. Figure 3 shows
the resulting performance profile over solution time and Table 4 contains individual
results for five of the most difficult test problems.

MOPS clearly outperforms Soplex, which fails on two of the largest problems
(MUNI_M_D and MUN18_M_D).9 On about 20% of the test models, MOPS
achieves the best solution time. However, on this benchmark, Cplex 9.1 clearly yields
the best overall performance. We want to emphasise again, that neither the techniques

the iterations (average, may vary tremendously on different problems) are performed by the dual simplex
part of the code.

9Soplex exceeds the 12 hour time limit.

@ Springer

64 A. Koberstein, U.H. Suhl

used in the COIN LP code nor the internals of the Cplex code are documented in the
research literature.

7 Conclusion

In this paper we addressed the problem of finding a dual feasible basic solution for a
general LP problem from a computational point of view. We presented practical ver-
sions of dual phase 1 methods that have been proposed in the literature and showed
how to implement them efficiently. The algorithm of Pan combined with other tech-
niques showed the best overall results. Furthermore, we demonstrated the impact of
LP preprocessing and a simple bound tightening technique on dual feasibility and
the overall performance of the dual simplex algorithm. Computational results were
given on a large set of large scale LP problems, which showed our dual simplex im-
plementation to be superior to the best existing research and open-source codes and
competitive to the leading commercial code on many of our most difficult problem
instances.

References

1. Bixby, R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res. 50(1),
3-15 (2002)

2. Bixby, R.E., Martin, A.: Parallelizing the dual simplex method. Informs J. Comput. 12(1), 45-56
(2000)

3. BPMPD test problems. http://www.sztaki.hu/~meszaros/bpmpd/

4. Brearley, A.L., Mitra, G., Williams, H.P.: Analysis of mathematical programming problems prior to
applying the simplex algorithm. Math. Program. 15, 54-83 (1975)

5. Dolan, E.D., More, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201-213 (2002)

6. DSOR test problems. http://dsor.upb.de/koberstein/Iptestset/

7. Forrest, J.J., Goldfarb, D.: Steepest edge simplex algorithms for linear programming. Math. Program.
57(3), 341-374 (1992)

8. Fourer, R.: Notes on the dual simplex method. Draft report (1994)

9. Gabasov, R., Kirillova, EM., Kostyukova, O.I.: A method of solving general linear programming prob-
lems. Doklady AN BSSR 23(3), 197-200 (1979) (in Russian)

10. Gilbert, J.R., Peierls, T.: Sparse partial pivoting in time proportional to arithmetic operations. SIAM
J. Sci. Stat. Comput. 9, 862-874 (1988)

11. Gill, P., Murray, W., Saunders, M., Wright, M.: A practical anti-cycling procedure for linearly con-
strained optimization. Math. Program. 45, 437-474 (1989)

12. Hall, J.A.J., Mc Kinnon, K..M.: Hyper-sparsity in the revised simplex method and how to exploit it.
Comput. Math. Appl. (2005, to appear)

13. Harris, P.: Pivot selection method of the Devex LP code. Math. Program. 5, 1-28 (1973)

14. ILOG: Cplex 9.0 reference manual (2003)

15. Kliewer, N.: Optimierung des Fahrzeugeinsatzes im Offentlichen Personennahverkehr: Modelle,
Methoden und praktische Anwendungen. Dissertation at the University of Paderborn II, Fakultit fiir
Wirtschaftswissenschaften, Department Wirtschaftsinformatik (2005), http://ubdata.uni- paderborn.de/
ediss/05/2005/kliewer/

16. Koberstein, A.: The Dual Simplex Method: Techniques for a fast and stable implementation.
Dissertation at the University of Paderborn II, Fakultit fiir Wirtschaftswissenschaften, Department
Wirtschaftsinformatik (2005)

17. Kostina, E.: The long step rule in the bounded-variable dual simplex method: numerical experiments.
Math. Methods Oper. Res. 55, 413-429 (2002)

@ Springer

Progress in the dual simplex method for large scale LP problems 65

18. Lemke, C.E.: The dual method of solving the linear programming problem. Nav. Res. Log. Q. 1,
36-47 (1954)

19. Maros, L.: A piecewise linear dual procedure in mixed integer programming. In: Giannesi et al. (eds.)
New Trends in Mathematical Programming, pp. 159-170. Kluwer, Dordrecht (1998)

20. Maros, 1.: A piecewise linear dual phase-1 algorithm for the simplex method with all types of vari-
ables. Comput. Optim. Appl. 26, 63-81 (2003)

21. Maros, L.: A generalized dual phase-2 simplex algorithm. Eur. J. Oper. Res. 149(1), 1-16 (2003)

22. Maros, I.: Computational Techniques of the Simplex Method. Kluwer International Series. Kluwer,
Dordrecht (2003) ISBN 1-4020-7332-1

23. McBride, R.D., Mamer, J.W.: Solving multicommodity flow problems with a primal embedded net-
work simplex algorithm. INFORMS J. Comput. 9(2), 154-163 (1997)

24. Mészéros, C., Suhl, U.H.: Advanced preprocessing techniques for linear and quadratic programming.
OR Spectrum 25(4), 575-595 (2003)

25. MipLib 2003 test problems. http://miplib.zib.de/

26. Mittelmann test problems. ftp://plato.asu.edu/pub/lpfree.html/

27. NetLib test problems. http://www.netlib.org/lp/data/

28. Padberg, M.W.: Linear Optimization and Extensions. Springer, Berlin (1995)

29. Pan, P.Q.: Practical finite pivoting rules for the simplex method. OR Spektrum 12, 219-225 (1990)

30. Pan, P.Q.: The most-obtuse-angle row pivot rule for achieving dual feasibility: a computational study.
Eur. J. Oper. Res. 101(1), 167-176 (1997)

31. Sequential object-oriented simplex. http://www.zib.de/Optimization/Software/Soplex/

32. Suhl, U.H.: MOPS—Mathematical optimization system. Eur. J. Oper. Res. 72, 312-322 (1994)

33. Suhl, U.H.: MOPS home page. World Wide Web, http://www.mops-optimizer.com/ (1999)

34. Suhl, U.H., Suhl, L.M.: Computing sparse LU factorizations for large-scale linear programming bases.
ORSA J. Comput. 2, 325-335 (1990)

35. Suhl, L.M., Suhl, U.H.: A fast LU-update for linear programming. Ann. Oper. Res. 43, 33-47 (1993)

36. Wolfe, P.: The composite simplex algorithm. SIAM Rev. 7(1), 42-54 (1965)

37. Wunderling, R.: Paralleler und objektorientierter simplex. Techniqual report TR-96-09, Konrad-Zuse-
Zentrum fiir Informationstechnik, Berlin (1996)

@ Springer

	Progress in the dual simplex method for large scale LP problems: practical dual phase 1 algorithms
	Abstract
	Introduction
	The dual simplex method for general linear programs
	Dual phase 1 methods
	Artificial bounds
	Cost modifications, dual phase 2 and primal simplex
	Pan's method
	Minimizing the sum of dual infeasibilities

	Preprocessing aspects for the dual simplex algorithm
	Implementation aspects
	Computational results
	Conclusion
	References

