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Abstract

Multiscale gas flows appear in many fields and have received particular attention in

recent years. It is challenging to model and simulate such processes due to the large

span of temporal and spatial scales. The discrete unified gas kinetic scheme (DUGKS) is

a recently developed numerical approach for simulating multiscale flows based on

kinetic models. The finite-volume DUGKS differs from the classical kinetic methods in

the modeling of gas evolution and the reconstruction of interface flux. Particularly, the

distribution function at a cell interface is reconstructed from the characteristic solution

of the kinetic equation in space and time, such that the particle transport and collision

effects are coupled, accumulated, and evaluated in a numerical time step scale.

Consequently, the cell size and time step of DUGKS are not passively limited by the

particle mean-free-path and relaxation time. As a result, the DUGKS can capture the

flow behaviors in all regimes without resolving the kinetic scale. Particularly, with the

variation of the ratio between numerical mesh size scale and kinetic mean free path

scale, the DUGKS can serve as a self-adaptive multiscale method. The DUGKS has been

successfully applied to a number of flow problems with multiple flow regimes. This

paper presents a brief review of the progress of this method.

Keywords: Multiscale flows, Boltzmann equation, Kinetic scheme, Lattice Boltzmann

method, Finite volume method

1 Introduction

Multiscale gas flows appear in many natural and industrial systems, such as nano/micro

devices, aerospace vehicles, vacuum techniques, and unconventional natural gas exploita-

tion. Such systems usually involve a large span of length and time scales, which brings

challenges in modelling and simulations to capture the flow physics in different scales

under a unified framework.

Physically, the transport behaviors are determined by the microscopic dynamics of the

underlying gas molecules, which can be further modelled efficiently at different scales.

It is well understood that each molecule in a gas system undergoes free streaming and

collision (or scattering) dynamics, and a straightforward tracking of these two processes

leads to the molecular dynamic (MD) model at the microscopic (molecular) scale. On the

other hand, the collective behaviors of the gas molecules at large length (l0) and time (t0)

scales can be described macroscopically through phenomenological models, such as the
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Euler or Navier-Stokes equations. In between the molecular scale and the macroscopic

(hydrodynamic) scale, the gas evolution can be described by the Boltzmann equation that

models the evolution of velocity distribution function of gas molecules on kinetic scales,

i.e., mean-free-path λ and mean collision time τ = λ/c0, with c0 being a typical molecular

velocity which is of the order of sound speed [1, 2]. The MD simulation tracks the motion

of individual molecule in the system and thus is quite computationally intensive, which

limits its application to short time dynamics of systems with the resolution of molecular

diameter. On the other hand, the macroscopic models, although relatively easier to han-

dle, are limited to large scale systems under the assumptions of continuum mechanics

and local thermodynamic equilibrium. Therefore, both the microscopic and macroscopic

models are inadequate for modelling the multiscale transport due to the existence of

multiple length and time scales.

It is well understood that the Boltzmann equation can lead to hydrodynamic equations

in the asymptotic limits via perturbation analysis in terms of the Knudsen number

Kn = λ/l0 (Note that if we choose t0 as the acoustic time scale t0 = l0/c0, Kn can

also be expressed as Kn = τ/t0 [2]). Therefore, the Boltzmann equation provides a solid

basis for developing uniformly accurate and stable numerical schemes for gas flows in

all regimes from kinetic (Kn ≫ 1) to hydrodynamic ones (Kn ≪ 1). Actually, a large

number of numerical methods for kinetic equations have been developed from different

points of view, such as the direct simulation Monte-Carlo (DSMC) [1], discrete veloc-

ity method (DVM) [3, 4], lattice Boltzmann equation (LBE) [5], gas-kinetic scheme [6],

semi-Lagrange method [7], and implicit-explicit (IMEX) method [8]. The progress of the

numerical schemes based on kinetic equations can be found in several review papers

[9–11].

For a kinetic scheme, its capability of simulating multiscale flows closely depends on its

asymptotic behavior at small Knudsen numbers, i.e., whether it can capture the hydrody-

namic behaviors without resolving the kinetic scale. A schemewith this property is usually

called as an “asymptotic preserving” (AP) one [11], which was originally defined for the

Euler limit (Kn → 0) and later was used to analyze schemes in the Navier-Stokes limit. A

more elaborate concept, unified preserving (UP), was proposed recently [12], with which

the detailed asymptotic order of a kinetic scheme can be assessed. In the past years, a

number of kinetic schemes with Euler or Navier-Stokes asymptotics have been developed,

e.g., [13–19].

Generally, for a multiscale kinetic scheme it is necessary to preserve the Navier-Stokes

asymptotics with a numerical resolution (mesh cell size �x and time step �t) much

larger than kinetic scale, or, it should be at least second-order UP. In the continuum flow

regime, the UP schemes should keep the same properties as the shock capturing schemes

designed for the Navier-Stokes equations directly in the calculation of hydrodynamic

wave structure, such as the boundary layer with the resolution of a fewmesh points. From

this perspective, the DSMC and classical explicit DVM are not good choices formultiscale

flows in that the cell size and/or time step are required to be smaller than the mean-free-

path and relaxation time, respectively, which is a severe limitation for near-continuum

flow computation. Indeed, both methods are mainly used to simulate rarefied gas flows.

On the other hand, the LBE andGKS, with implicit and explicit Chapman-Enskog approx-

imations, respectively, are designed mainly for continuum flows, and therefore are also

inadequate for multiscale flow simulations. Some UP schemes, which aim to capture flow
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behaviors in all regimes, have also been developed in the past decade [18–24]. Particularly,

the finite-volume unified gas-kinetic scheme (UGKS) [18] has gained much attention due

to its special reconstruction of cell-interface flux, in which the analytical time evolved

integral solution of the kinetic equation is adopted to approximate the distribution func-

tion at cell-interface. With similar principle, the discrete UGKS (DUGKS) was developed

later [19], in which a simpler numerical characteristic solution of the kinetic equation is

employed to reconstruct the cell-interface flux. The discrete evolution of the cell-interface

distribution function along the characteristic line resembles that of the LBE, and thus the

DUGKS can be viewed as a combination of the LBE and GKS methods.

With the consideration of both free streaming and collision physics in the flux recon-

struction, it can be shown that the DUGKS actually solves the collision-less Boltzmann

equation as Kn → ∞, and the Navier-Stokes equations as Kn ≪ 1 even as �x ≫
λ0 and �t ≫ τ0 [12]. The transition between flow regimes is realized automatically

based on the local flow physics accumulated from the particle transport and collision

within a time step, and therefore the DUGKS can be regarded as a self-adaptive multi-

scale method, which is critical for simulating different regime flow behavior in a single

computation. Furthermore, the full temporal-spatial coupling also makes the DUGKS a

numerical method respecting the conservation-dissipation mechanics, which is a fun-

damental requirement for irreversible processes [25]. Even in continuum regime, the

finite-volume formulation and the release of tight coupling between time step and mesh

size make the DUGKS a competitive tool in comparison with LBE. With these nice

properties, the DUGKS has been successfully applied to a variety of flow problems in dif-

ferent flow regimes, such as turbulent flows [26–28], micro flows [29–32], compressible

flows [33–35], multiphase flows[36, 37], gas-solid flows[38, 39], and gas mixture systems

[40, 41]. Besides flow problems, the DUGKS was also extended to multiscale transport

problems such as phonon heat transfer [42–44] and radiation of photons [45, 46].

In this paper, we will give a brief review on the recent progress of the DUGKS. The

rest of the paper is organized as follows. In Section 2, the basic structure of DUGKS is

presented, together with a brief discussion on its fundamental properties. Section 3 shows

a comparison between the DUGKS and LBE for continuum flows, where the DUGKS can

be viewed as a special FV-LBE in this regime. In Section 4, a comparison between the

DUGKS and UGKS is presented, focusing on the structure of the time averaged interface

distribution functions reconstructed in both methods. A number of sample applications

of DUGKS to single-phase gas flows in different flow regimes are demonstrated in Section

5, and some extensions of DUGKS to more complex fluid flows are reported in Section

6. In Section 7, some extensions of DUGKS to multiscale transport problems beyond gas

flows will be shown. Finally, a brief summary and outlook of the DUGKS are given in

Section 8.

2 Principle of the DUGKS

2.1 Formulation

The DUGKS solves the Boltzmann equation with relaxation models. Without loss of gen-

erality, here we take the BGK model for monatomic gases as an example to illustrate the

basic idea. The BGK model reads [47],

∂f

∂t
+ ξ · ∇f = Q ≡ −1

τ

(

f − f (eq)
)

, (1)
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where f = f (x, ξ , t) is the velocity distribution function for molecules moving with

velocity ξ at position x and time t, τ is the relaxation time, and f (eq) is the equilibrium

distribution function given by,

f (eq) (ξ , ρ,u,T) = ρ

(2πRT)D/2
exp

(

−|ξ − u|2
2RT

)

, (2)

where ρ, u, and T are the density, velocity, and temperature of the gas, respectively, D is

the spatial dimension, and R = kB/m is the gas constant with kB the Boltzmann constant

andm the molecular mass. The conservative flow variablesW = (ρ, ρu, ρE)T are defined

as the moments of the distribution function,

W =
∫

ψ (ξ) f dξ (3)

where ψ =
(

1, ξ , ξ2/2
)T

is the vector of the elementary collision invariants, and ρE =
ρ

(

u2 + DRT
)

/2 is the total energy. The viscous stress τ and heat flux q can be defined as

τ = −
∫

cc
(

f − f (eq)
)

dξ , q = 1

2

∫

cc2fdξ . (4)

The DUGKS is a finite-volume discretization of Eq. (1). First, the flow domain is divided

into a set of control volumes or cells. Integrating Eq. (1) on a control volume Vj centered

at xj from time tn to tn+1 = tn + �t with a time step �t, one can obtain that

f n+1
j − f nj + �t

∣

∣Vj

∣

∣

F
n+1/2
j = �t

2

[

Qn+1
j + Qn

j

]

, (5)

where the midpoint rule for the time integration of the convection term and trape-

zoidal rule for the collision term are used, respectively; f nj is the cell-averaged distribution

function,

f nj = 1
∣

∣Vj

∣

∣

∫

Vj

f (x, ξ , tn) dx, (6)

with |Vj| being the volume of cell Vj. The flux F
n+1/2
j is evaluated via the midpoint rule

for the surface integration, i.e.,

F
n+1/2
j (ξ) =

∫

∂Vj

(ξ · n)f
(

x, ξ , tn+1/2

)

dS =
∑

k

(

ξ · njk
)

f
(

xjk , ξ , tn+1/2

)

Sjk , (7)

where ∂Vj is the surface of cell Vj and n is the outward unit vector normal to the sur-

face, Sjk is the surface area of the interface between cell Vj and its k-th neighboring cell

Vk , xjk and njk are the corresponding face center and unit normal vector of Sjk , respec-

tively, as shown in Fig. 1. It is noted that in the volume-average collision term, Qj, the

averaged equilibrium distribution function is approximated as f
(eq)
j = f (eq)

(

ξ , ρj,uj,Tj

)

,

where ρj, uj, and Tj are the cell-averaged density, velocity, and temperature, respectively.

This approximation guarantees the conservative properties of the average collision term.

The key feature of DUGKS lies in the reconstruction of the interface flux, which is

determined by the distribution function f
(

xjk , ξ , tn+1/2

)

. As shown in Fig. 1, the interme-

diate interface distribution function f
(

xjk , ξ , tn+1/2

)

is obtained by integrating the kinetic

Eq. (1) along its characteristic line dx/dt = ξ from x′ = xjk − ξh to xjk with a half time

step h = �t/2,

f
(

xjk , ξ , tn + h
)

− f
(

x′, ξ , tn
)

= h

2

[

Q
(

xjk , ξ , tn + h
)

+ Q
(

x′, ξ , tn
)]

, (8)
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Fig. 1 Schematic of a cell interface between two neighboring cells

where the trapezoidal rule is again applied to the collision term. Equation (8) can be

rewritten in an explicit form,

f̄
(

xjk , ξ , tn + h
)

= f̄ + (

x′, ξ , tn
)

, (9)

where

f̄ = f − h

2
Q, f̄ + = f + h

2
Q. (10)

Note that Eq. (9) is just the same as the collision-streaming process in the lattice

Boltzmann equation, except that the time step is �t/2 now. f̄ + represents the post-

collision state at the starting point x′ of the characteristic line, and then it moves to the

face center xjk with a half time step.

In Eq. (9), f̄ + (

x′, ξ , tn
)

is reconstructed from the cell-averaged values of the neighboring

cells. For smooth flows, it can be approximated as a linear function around xjk , i.e.,

f̄ + (

x′, ξ , tn
)

= f̄ + (

xjk , ξ , tn
)

− ξh · σjk , (11)

where f̄ + (

xjk
)

and the slope σ jk = ∇f̄ + (

xjk
)

are approximated by linear interpolations.

On the other hand, for flows with discontinuities, f̄ + is assumed to be piecewise linear in

each cell, and thus f̄ + (

x′, ξ , tn
)

is determined from the upstream cell,

f̄ + (

x′, ξ , tn
)

=
{

φ̄+ (

xj, ξ , tn
)

+
(

xjk − ξh − xj
)

σ j, ξ · njk > 0,

φ̄+ (xk , ξ , tn) +
(

xjk − ξh − xk
)

σ k , ξ · njk < 0,
(12)

where σ i is the slope of φ̄+ in cell Vi (i = j or k), which can be reconstructed from the

cell-averaged values using certain numerical limiters [48].

After determining f̄ + (

x′, ξ , tn
)

, the half-time distribution functions f̄
(

xjk , ξ , tn + h
)

can

be obtained from Eq. (9), from which we can then get the conservative variables based on

Eq. (10),

W
(

xjk , tn + h
)

=
∫

ψ f̄
(

xjk , ξ , tn + h
)

dξ , (13)
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where we have used the conservative properties of the collision term. Then, the original

distribution function can be obtained from Eq. (10),

f
(

xjk , ξ , tn + h
)

= 2τ

2τ + h
f̄
(

xjk , ξ , tn + h
)

+ h

2τ + h
f (eq)

[

ξ ,W
(

xjk , tn + h
)]

, (14)

and then the interface flux F
n+1/2
j can be determined based on Eq. (7).

After obtaining the flux, we can update the cell-averaged distribution function fj. Note

that Eq. (5) is implicit due to the involvement of Qn+1
j . Two approaches can be employed

to implement Eq. (5) explicitly. The first approach is to introduce two new distribution

functions [19, 33],

f̃ = f − �t

2
Q, f̃ + = f + �t

2
Q. (15)

Then the evolution Eq. (5) can be rewritten as

f̃ n+1
j = f̃ +,n

j − �t
∣

∣Vj

∣

∣

F
n+1/2
j . (16)

In practical simulations, we can just track f̃ instead of the original one since the

hydrodynamic variables can be obtained from f̃ , i.e.,

W =
∫

ψ(ξ)f̃ dξ , τ = −β

∫

cc
(

f̃ − f eq
)

dξ , q = β

2

∫

cc2 f̃ dξ , (17)

where β = τ/(τ + �t/2).

Another approach for explicit implementation of Eq. (5) is similar with that used in

the IMEX [8] and UGKS [18] methods, which is realized by first taking the conservative

moments of Eq. (5) to obtain

W n+1
j = W n

j − �t
∣

∣Vj

∣

∣

∫

ψ(ξ)F
n+1/2
j (ξ)dξ , (18)

and then the updated distribution function can be calculated as

f n+1
j = β

[

f nj − �t

|Vj|
F
n+1/2
j + �t

2τ
f (eq)

(

ξ ,W n+1
j

)

+ �t

2
Qn
j

]

. (19)

This approach was also adopted in some later conserved DUGKS methods [49, 50]. An

advantage of this approach is that macroscopic conservation (in terms of W ) from the

discrete collision term is satisfied exactly, regardless of the quadrature rule for the integral

in velocity space. However, it should be pointed out that the microscopic conservation in

terms of f is not necessarily satisfied, as discussed in Section 2.2.

In summary, the numerical procedure of each time step in DUGKS can be executed as

follows:

(1) Reconstructing f̄ + (

x′, ξ , tn
)

from cell-averaged distribution functions for each cell

interface Sjk and velocity ξ ;

(2) Moving f̄ + (

xjk − ξh, ξ , tn
)

to the face center along the characteristic line to obtain

f̄
(

xjk , ξ , tn + h
)

;

(3) CalculatingW
n+1/2
jk

from f̄
(

xjk , ξ , tn + h
)

, and then obtaining f
(

xjk , ξ , tn + h
)

to

give the flux Fj;

(4) Updating f̃j or fj from tn to tn+1 for each cell.

The above procedure for one-dimensional case can be illustrated in Fig. 2, where the first

approach for updating the distribution function is used.
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Fig. 2 Evolution procedure of the DUGKS

It is noted that the BGK model gives a fixed Prandtl number (Pr = 1). Some other

relaxation models, such as the ellipsoidal statistical model [51] and the Shakhov model

[52], can overcome this deficiency. Later the DUGKS was generalized to variable Prandtl

number problems based on the Shakhov model [33], which has a similar structure as the

above algorithm.

2.2 Velocity discretization

In the above derivation we focus on space and time discretizations. In practical com-

putations, the molecular velocity space should be discretized into a finite set of discrete

velocities
{

ξ i|i = 1, 2, · · · ,N
}

, like the classical discrete velocity methods. Generally,

two types of discrete velocities are used. The first one chooses the abscissas of certain

Gaussian quadratures, such as the full or half-range [53] Gauss-Hermite rules [54], as the

discrete velocity set, which spans the continuous velocity space nonuniformly; Another

type uses a Cartesian velocity grid with a bounded range dependent on temperature

and flow velocity. Unstructured velocity mesh was also developed recently [50], and

some locally adaptive techniques were proposed to enhance memory and computational

efficiency [55, 56].

With the discrete velocity space, the velocity moments of the distribution function will

be replaced by the corresponding discrete ones, e.g.,

W =
N

∑

i=1

wiψ
(

ξ i
)

f
(

ξ i
)

=
N

∑

i=1

wiψ
(

ξ i
)

f̃
(

ξ i
)

, (20)

where wi (i = 1, 2, · · · ,N) are the weights of the quadrature. Provided the number of

discrete velocities is large enough, the numerical quadrature can be quite accurate. It

should be noted that, however, the discrete collision operator is generally not conser-

vative strictly, i.e.,
∑

k ψ
(

ξ k
)

Q
(

ξ k
)

	= 0. This inconsistency comes from the discrete

equilibrium distribution function with the original conservative hydrodynamic variables

W , because generally
∑

i

wiψ
(

ξ i
)

f (eq)
(

ξ i,W
)

	= W . (21)

This inconsistency is reasonable, since a discrete velocity model evolving in a discrete

phase space may have its own equilibrium state that is different from the continu-

ous counterpart. A way is to find the discrete equilibrium based on discrete version of
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entropy minimization [4], i.e., the regularized discrete equilibrium distribution is defined

as f
(eq)
R = f (eq)

(

ξ i,W
′), in whichW ′ are undetermined parameters satisfying

∑

i

wiψ
(

ξ i
)

f (eq)
(

ξ i,W
′) = W . (22)

This nonlinear equation can be solved using the Newton iteration method. It has been

shown that with the discrete equilibrium distribution defined above, the required number

of discrete velocities for DVM can be much reduced to obtain the same accuracy [57].

However, additional computational cost is needed for solving Eq. (22).

For low speed or small Mach number flows, a simpler equilibrium can be obtained by

means of the Hermite expansion [5, 58]. First, the continuous Maxwellian equilibrium

distribution is projected onto the space spanned by the Hermite polynomials,

f (eq) ≈ f
(eq)
K (ξ ,W ) = ω

(

ξ̂
)

K
∑

k=0

1

n!
a(k)(x, t)H(k)

(

ξ̂
)

= ω
(

ξ̂
)

PK

(

ξ̂
)

, (23)

where ω
(

ξ̂
)

= e−ξ̂2/2/(2πRT0)
D/2, ξ̂ = ξ/(RT0)

1/2 with T0 being a reference tempera-

ture,H(k) (k = 0, 1, · · · ) are the Hermite polynomials, and PK is a K-th order polynomial

of ξ̂ . The expansion coefficients are given by

a(k) =
∫

f (eq) (ξ)H(k)
(

ξ̂
)

dξ . (24)

For instance, up to third-order, the expanded equilibrium distribution can be written as

f
(eq)
3 (ξ ,W ) = ρω

(

ξ̂
)

{

1 + ξ̂ · û + 1

2

[

(

ξ̂ · û
)2

− û2 +
(

θ̂ − 1
) (

ξ̂2 − D
)

]

+ ξ̂ · û
6

[

(

ξ̂ · û
)2

− 3û2 + 3
(

θ̂ − 1
) (

ξ̂2 − D − 2
)

]

}

≡ ρω
(

ξ̂
)

P3

(

ξ̂
)

, (25)

where û = u/(RT0)
1/2 and θ̂ = T/T0. Since PK is a K-th order polynomial of ξ̂ , if

we choose a Gauss-Hermite quadrature [with weight function ω
(

ξ̂
)

] of order higher

than K + 2, the conservative moments of this expanded equilibrium distribution can be

evaluated exactly,

W = ρ

N
∑

i=1

Wiψ
(

ξ i
)

PK
(

ξ i
)

=
∑

i

wiψ
(

ξ i
)

f (eq)
(

ξ i
)

, (26)

where Wi and ξ i/(RT0)
1/2 (i = 1 ∼ N) are the corresponding weights and abscissas of

the Gauss-Hermite quadrature, respectively, and wi = Wi/ω
(

ξ̂ i

)

(i = 1 ∼ N) are the

weight for evaluating the discrete moments (20). The expanded equilibrium distribution

is very similar to that used in the LBE, but for the DUGKS off-lattice discrete veloci-

ties can be employed naturally, which brings much freedom for the choice of quadrature

rules. It should be noticed that although the expanded formulation of equilibrium distri-

bution f
(eq)
K can ensure the microscopic conservation of the collision operator, it may take

negative values and does not minimize any entropies.

2.3 Boundary conditions

For flows with solid walls, appropriate boundary conditions should be specified for the

discrete distribution functions at the wall surface in the evolution of DUGKS. A general
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boundary condition is the diffuse-scattering rule, which assumes the distribution function

for the reflected molecules follows the Maxwellian one with the wall temperature and

velocity. Specifically, at the half-time step t∗ = tn+h, the unknown distribution functions

are given by

f
(

xw, ξ i, t
∗) = f (eq)

(

ξ i, ρw,uw,Tw

)

, ci · n > 0, (27)

where xw is the center of the cell interface located at the wall, n is the unit vector normal

to the wall pointing to the cell, uw and Tw are the velocity and temperature specified at the

wall, ci = ξ −uw, and ρw is the gas density determined by the condition that no molecules

can go through the wall, i.e.,
∑

ci·n>0

(ci · n)wif
(eq)

(

ξ i, ρw,uw,Tw

)

+
∑

ci·n<0

(ci · n)wi f
(

xw, ξ i, t
∗) = 0, (28)

where the distribution functions f
(

xw, ξ i, t
∗) with ci · n < 0, i.e., for molecules moving

towards the wall, can be constructed following the procedure described in Section 2.1.

Equation (28) gives that

ρw = −

⎡

⎣

∑

ci·n>0

(ci · n)wif
(eq)

(

ξ i, 1,uw,Tw

)

⎤

⎦

−1

×
∑

ci·n<0

(ci · n)wif
(

xw, ξ i, t
∗) . (29)

[Note that there is a typo for the diffuse boundary condition in Ref. [19], although it is

correctly implemented in the code: the weight wi appearing in each summation in Eqs.

(28) and (29) is missing there].

The above diffuse-scattering boundary condition can also be extended to partially

diffusive walls with an accommodation coefficient 0 ≤ σ ≤ 1,

f
(

xw, ξ i, t
∗) = σ f (eq)

(

ξ i, ρw,uw,Tw

)

+ (1 − σ)f
(

xw, ξ
′
i, t

∗) , ξ i · n > 0, (30)

where ξ ′
i = ξ i − 2n(ci · n) + uw is the velocity of the specularly reflected molecules with

incident velocity ξ − uw.

For low speed and isothermal flows, the bounce-back method can be employed to real-

ize no-slip velocity boundary condition, which just reverses the molecular velocity after

hitting the wall moving with velocity uw,

f
(

xw, ξ i, t
∗) = f

(

xw,−ξ i, t
∗) + 2ρw

Wi

wi

ξ i · uw
RT0

, ξ i · n > 0, (31)

where the weightsWi satisfy
∑

iWi = 1 and
∑

iWiξ iξ i = RT0I, and ρw is given by

ρw =

⎡

⎣1 − 2

RT

∑

ξ i·n>0

Wiξ i · uw

⎤

⎦

−1

×

⎡

⎣

∑

ξ i·n=0

wif
(

ξ i
)

+ 2
∑

ξ i·n<0

wif
(

ξ i
)

⎤

⎦ . (32)

2.4 Basic properties of the DUGKS

We now discuss some fundamental properties of the DUGKS, including the consistency,

accuracy, and uniform stability in terms of the relaxation time. Particularly, the asymp-

totic behaviors of DUGKS for small Knudsen number, which is critical for capturing the

correct hydrodynamic physics without resolving the kinetic scale, will also be analyzed.

The use of the midpoint and trapezoidal rules in Eqs. (5) and (8) for the time integra-

tion, as well as the linear spatial reconstruction of the distribution function at the cell

interface, ensures the second-order accuracy in both space and time of the DUGKS. This

is more evident from the modified equation. For simplicity without loss of generality,
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we consider one-dimensional case and assume the flow is smooth. Then by applying the

Taylor expansion to Eqs. (5) and (8), we can obtain the modified equation of the DUGKS

[12],

∂f

∂t
+ ξ∂xf + �t2

6
B + �x2

6
ξ∂3x f = Q + O

(

�t3
)

+ O
(

�t�x2
)

, (33)

where

B = ∂3t f + 3

4

(

ξ∂x∂tQ − ξ2∂2xQ − 2∂2t Q
)

. (34)

This confirms the DUGKS is a consistent second-order scheme for the BGK equation in

both time and space for a fixed τ .

Regarding the uniform stability of DUGKS, we can see that the collision term is treated

semi-implicitly in Eqs. (5) and (8). Therefore, it is expected that the time step �t should

not be limited by the relaxation time τ . But the convection term is still treated explicitly,

and thus �t should satisfy the Courant-Friedrichs-Lewy (CFL) condition,

�t = η�x

|ξ |max + |u|max
, (35)

where 0 < η ≤ η0 is the CFL number with η0 being some constant, |ξ |max and |u|max are

the maximum values of the discrete velocities and flow speed, respectively. The time step

not only influences numerical stability, but also contributes to numerical dissipation in

kinetic schemes, such as the gas-kinetic scheme [6]. The numerical dissipation from the

time integration was also analyzed in [59].

Roughly, the asymptotic property of the DUGKS can be demonstrated by analyzing

the reconstructed distribution function at cell interface. From Eq. (8), it can be deduced

that f
(

xjk , ξ , tn + h
)

= f
(

xjk − ξh, ξ , tn
)

as τ/�t → ∞, which is just the solution of the

collisionless BGK equation. On the other hand, in the continuum limit where τ/�t → 0,

it can be shown that [19]

f
(

xjk , ξ , tn + h
)

≈ f (eq)
(

xjk , ξ , tn
)

−τ (∂t + ξ · ∇) f (eq)
(

xjk , ξ , tn
)

+h∂tf
(eq)

(

xjk , ξ , tn
)

,

(36)

which is just the Chapman-Enskog solution at the Navier-Stokes order. These results

indicate that the DUGKS can indeed preserve the asymptotic behaviors in both contin-

uum and free molecular limits. In the transitional regime, it is also expected that the

DUGKS can give a good approximate solution to the kinetic equation since it is a consis-

tent discretization. In [12], it is shown more rigorously that as �x/λ and �t/τ are of the

order of
√
Kn, the DUGKS preserves the Navier-Stokes limit exactly. This means that the

DUGKS can yield the Navier-Stokes solutions as �x ≫ λ and �t ≫ τ for small Kn. The

above arguments suggest that the DUGKS is a self-adaptive multiscale method for flows

covering different flow regimes.

3 Comparison with LBE for continuum flows

For continuum flows, the DUGKS can be viewed as a special finite-volume lattice

Boltzmann equation (FV-LBE) method. The classical LBE can be viewed as a Lagrange

scheme based on kinetic equations using a regular lattice, which is coupled with the dis-

crete velocities and the time step is solely determined by the lattice spacing. As such, the

discrete velocity set can only be chosen as “on-lattice” ones. Although some LBE with
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“off-lattice” discrete velocity set have been developed, additional techniques such as inter-

polation must be employed. It is also noted that some FV-LBE were developed [60–65].

In the early FV-LBEmethods (e.g., [60, 61]), simple interpolations are employed to recon-

struct the distribution function at cell-interface and the collision term is treated explicitly,

such that the time-step is severely limited by the relaxation time in addition to the CFL

condition [62]. Some later FV-LBE methods improved the numerical stability by employ-

ing certain upwind interpolations [63, 64]. In most of available FV-LBE methods, the

construction of flux at cell interfaces ignores the effect of collision term, and thus could

lead to large numerical dissipation. We note that a FV-LBE similar to the DUGKS was

developed more recently [64], which employs an explicit discrete characteristic solution

of the kinetic equation in the flux reconstruction such that the collision effect is taken into

account. This FV-LBE has similar accuracy with the DUGKS, but the numerical stability

is degenerated due to the explicit treatment in the flux reconstruction [64].

Some comparative studies on the performance of DUGKS and LBE have been con-

ducted in the literature. For instance,Wang et al. made a comparison of accuracy, stability,

and efficiency of the DUGKS and two standard LBE models, i.e., the lattice BGK (LBGK)

and multiple-relaxation-time (MRT) models [66]. They simulated the two-dimensional

(2D) laminar cavity flow and the flow around a square cylinder at different Reynolds

numbers. The results showed that the two LBE models and the DUGKS could yield quali-

tatively similar results in both test cases with sufficient mesh resolutions. However, some

unphysical oscillations in pressure field were observed in the results of both LBGK and

MRTmodels, but the pressure field predicted by the DUGKSwas smooth. Furthermore, it

was found that the LBE methods could yield inaccurate vortex shedding behaviors for the

flow over a square cylinder with a blockage ratio of 1/8. Specifically, with a uniformmesh

of size 2000×320, the frequencies of vortex shedding predicted by both LBEmethods took

a single value, and the flow patterns were alternatively symmetric. But as the mesh reso-

lution increased to 5000 × 800, the vortex shedding demonstrated a multiple frequency

style and the flow pattern became asymmetric, which was in agreement with results from

a Navier-Stokes solver [67]. On the other hand, the multiple vortex shedding frequency

and asymmetric flow pattern could be captured by the DUGKS with the uniform coarse

mesh as well as a nonuniform one. The flow patterns predicted by the three methods are

shown in Fig. 3. The comparison also showed that the numerical stability of the DUGKS

and the two LBE methods could be considerably different. Generally, with a same uni-

form mesh, the DUGKS could simulate flows at much higher Reynolds numbers than

the LBE methods. The computational efficiency was also compared in [66]. It was shown

that with the same mesh resolution, the LBE methods were more efficient than DUGKS.

However, the efficiency of DUGKS could be much improved by using non-uniform

meshes.

The performance of DUGKS was also compared with a characteristics-based LBE (C-

LBE) in finite-volume formulation [59]. This C-LBE model was originally developed as

a characteristic discretization of DVM [68], and was shown to be able to overcome the

time step restriction from the relaxation time. The comparison with several other non-

standard LBE methods indicated that the C-LBE is the most stable and accurate one [69].

Zhu et al. showed that this C-LBE could be re-expressed in a finite-volume formulation,

where the collision effect was also incorporated in the flux reconstruction. Specifically,

the distribution function at a cell interface of the C-LBE is approximated as [59],
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Fig. 3 The flow patterns of the flow over a square cylinder at Re = 300. Top: MRT-LBE, mesh size 2000 × 320;

Middle: MRT-LBE, mesh size 5000 × 800; Bottom: DUGKS, mesh size 2000 × 320

f
(

xjk , ξ , tn + h
)

= f
(

x′, ξ , tn
)

+ hQ
(

x′, ξ , tn
)

. (37)

Comparing this with Eq. (8), we can see that the only difference between the DUGKS and

C-LBE lies in the evaluation of the collision term in calculating the characteristic solu-

tion at cell interfaces. The C-LBE treats the time integral of the collision term with the

explicit one-point quadrature when integrating the BGK equation along the characteris-

tic line, while the DUGKS evaluates the integral of collision term with the semi-implicit

trapezoidal quadrature. Therefore, it can be expected in principle that the DUGKS can be

more accurate and stable than the C-LBE.

Several numerical test results, including the cavity flow, laminar boundary layer flow,

and the unsteady Taylor-Green vortex flow, confirmed the above analysis. For instance,

for the Taylor-Green vortex flow, the L2 errors of DUGKS are about 1/4 times of those of

C-LBE with the same uniform meshes. The tests of the steady cavity flow and the lami-

nar boundary layer flow over a flat plate also demonstrated that the DUGKS could give

more accurate results than the C-LBE. It was found that the flat laminar boundary layer

could be captured accurately by the DUGKS and the results were insensitive to the com-

putational meshes. In particular, with a coarse mesh (�ymin = 0.1) which has only 4 cells

in the boundary layer, the results were still rather satisfactory. On the other hand, the

C-LBE could only give satisfactory results with a fine mesh (�ymin = 0.01). The C-LBE

was also found to be sensitive to grid resolution. With the coarser mesh, the thickness of

the boundary layer was over predicted, indicating that the C-LBE is more dissipative. The

standard LBE was also employed to simulate the laminar boundary layer flow, and it was

shown that the LBE could give an accurate solution with the coarse mesh (�ymin = 0.1),

but the computational time was much expensive than the DUGKS due to the use of

uniform mesh.

The numerical results also showed that the DUGKS is more stable than the C-LBE. It

was shown that the computation of the C-LBE was unstable at moderate values of �t/τ

even though η < 1, but the stability of DUGKS was almost not affected by the CFL num-

ber provided η < 1.1. The numerical efficiencies of the two methods were also measured.

It was found that the computational time of DUGKS was about twice as that of the C-LBE

with the same mesh. However, the DUGKS can achieve an accurate solution with a much

coarser mesh, and thus it would bemore efficient than C-LBE to obtain a reliable solution.

In a recent study, the numerical stability of DUGKS and another advanced FV-LBE

model were also compared by simulating the laminar boundary layer flow [65]. It was
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found the CFL number required by the FV-LBE was smaller than that of the DUGKS, and

the computational efficiency was also lower due to the smaller time step.

4 Comparison with the UGKS for multiscale flows

The DUGKS can be viewed as a simplified version of UGKS, by taking the advantages of

the LBE in the reconstruction of the interface flux. The collision and free streaming pro-

cesses are taken into account simultaneously in the flux reconstruction in both methods,

making them share the UP property for simulating multiscale flows.

The main difference between the two schemes lies in the way to obtain the distribution

function at cell interfaces f
(

xjk , t
)

. In UGKS, the distribution function takes the formal

integral solution of the kinetic equation [18],

f (x, ξ , t) = 1

τ

∫ t

tn

f (eq)
(

x′′, ξ , t′
)

e−(t−t′)/τdt′ + e−(t−tn)/τ f (x − ξ(t − tn), ξ , tn) , (38)

where x′′ = x− ξ
(

t − t′
)

. It is apparent that this solution consists of a hydrodynamic part

and a kinetic part (the first and second terms on the right hand side, respectively). The

hydrodynamic part includes the contribution from collisions, and the kinetic part is the

transport of the distribution function at time tn, which reflects the contribution from free

transport. These two parts contribute to the distribution function dynamically accord-

ing to the ratio of relaxation time to the numerical time step. With proper approximation

of f (eq)
(

x′′, ξ , t′
)

and f (x − ξ(t − tn) , ξ , tn), the distribution function at cell interface,

f
(

xjk , ξ , t
)

, can be reconstructed based on Eq. (38). Then the micro flux

Fj(ξ) =
∑

k

[

(

ξ · njk
)

f̂
(

xjk , ξ
)

]

Sjk , (39)

can be obtained, where f̂ = 1
�t

∫ tn+1

tn
f (t)dt is the time-averaged interface distribution

function.

Compared with the micro flux defined by Eq. (7) together with Eq. (14) in the DUGKS,

it can be found that the calculation of UGKS is a bit more complex. We now make an

analysis of the difference between the reconstructed time-averaged interface distribution

functions in the UGKS and DUGKS. Specifically, if physical quantities are assumed to

be linearly distributed around the cell, we can obtain the structure of f̂
(

xjk , ξ
)

in UGKS

based on the results in [70] as follows,

f̂ ugks = f (eq) − τDf (eq) + �t

2
∂tf

(eq) + a0τ
(

Df (eq) − Q
)

+ a1τ�tξ · ∇Q, (40)

where the terms on the right hand side are evaluated at
(

xjk , ξ , tn
)

, D = ∂t + ξ · ∇ , and a0

and a1 are defined as

a0 = 1

α

(

1 − e−α
)

, a1 = 1

α

(

a0 − e−α
)

, (41)

with α = �t/τ . On the other hand, the same structure of time-averaged interface

distribution function for the DUGKS can be obtained based on Eq. (8),

f̂ dugks = f
(

xjk , ξ , tn + �/2
)

= f (eq) − τDf (eq) + �t

2
∂tf

(eq)

+ a′
0τ

(

Df (eq) − Q
)

+ a′
1τ�tξ · ∇Q,

(42)

with

a′
0 = 4 − α

4 + α
, a′

1 = 1

2
a′
0, (43)



Guo and Xu Advances in Aerodynamics             (2021) 3:6 Page 14 of 42

As α ≪ 1 (i.e., free molecular regime), it can be shown that

a0 = 1 − α

2
+ O

(

α2
)

, a1 = 1

2
− α

3
+ O

(

α2
)

,

a′
0 = 1 − α

2
+ O

(

α2
)

, a′
1 = 1

2
− α

4
+ O

(

α2
)

, (44)

It is clear that the four coefficients are identical in the leading order, and the difference

between a1 and a′
1 is negligible as �t/τ ≪ 1. On the other hand, in the limit of α ≫ 1

(i.e., continuum regime), it can be shown that

a0 = 1

α
+ o

(

e−α
)

, a1 = − 1

α
+ o

(

e−α
)

,

a′
0 = −1 + 8

α
+ o

(

1

α

)

, a′
1 = −1

2
+ 4

α
+ o

(

1

α

)

, (45)

It seems that the differences between the corresponding parameters are large in this limit.

However, in this case the distribution function can be approximated by the first-order

Chapman-Enskog expansion at the Navier-Stokes level, i.e.,

f = f (eq) − τDf (eq) + O
(

τ 2
)

. (46)

With this approximation, the last two terms on the right hand side of Eq. (40) are of order

O(τ 3/�t) and O
(

τ 2
)

, respectively; while these two terms of Eq. (42) are of order O
(

τ 2
)

and O(τ�t), respectively. Although different, these terms are high-order terms and do

not appear at the Navier-Stokes level. Actually, in [70] and [19], it has been shown that

both f̂ ugks and f̂ dugks share the same formulation for continuum flows, namely,

f̂ ugks = f̂ dugks = f (eq) − τDf (eq) + �t

2
∂tf

(eq). (47)

In the intermediate regime where α ≈ 1, it is easy to estimate that a0 ≈ 0.632 and a1 ≈
0.264, while a′

0 ≈ 0.6 and a′
1 ≈ 0.3. The differences between a0 and a′

0 and between a1

and a′
1 are not large, either. Therefore, it can be expected that both the UGKS and DUGKS

will behave similarly in this regime.

Based on the above analysis, we can conclude that both the UGKS and DUGKS share

the same behaviors in the whole flow regimes. This is also confirmed by a number of

available numerical results. For instance, the shock structure of argon gas at different

Mach numbers has been simulated by both the DUGKS and UGKS, and the results (den-

sity, temperature, shear stress, and heat flux) are nearly indistinguishable [33]. The Sod’s

shock tube problem was also tested by both methods from continuum to free molecu-

lar regimes, and again nearly identical results were obtained [33]. Wang simulated the

lid-driven cavity flow at Kn = 0.1, and the flow structures predicted by both methods

were in excellent agreement [71]. Some comparisons of the DUGKS and UGKS for flows

of binary gas mixtures in different flow regimes were also provided in [40], including

the shock structure, channel flow, and cavity flow. The results confirm again the similar

behaviors of bothmethods in all flow regimes. The comparison of computational costs for

the one-dimensional shock structure problem shows that the DUGKS is approximately

10% ∼ 20% faster than the UGKS [71], which is consistent with the previous estimation.
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5 Sample applications

5.1 Turbulent flows

5.1.1 Turbulent flows in a periodic box

TheDUGKS has been applied to turbulent flows as a direct numerical simulationmethod.

Wang et al first studied the decaying homogeneous isotropic turbulence (DHIT) in a peri-

odic cubic box [26]. In the study, simulations at different Taylor Reynold numbers Reλ

were performed. Some quantities characterizing the turbulent statistics were compared

with those of the standard LBE and pseudo-spectral (PS) methods. It is shown that the

instantaneous vorticity field and the spectra of the kinetic energy and dissipation rate at

Reλ = 26.06 predicted by the DUGKS with a uniform mesh of size 2563 agreed well with

those of the PS and LBE methods. The velocity derivative skewness and flatness were

also compared at different Reynolds numbers and mesh resolutions. The results showed

that the DUGKS could adequately resolve the flow when the minimum spatial resolution

parameter kmaxη > 3, where kmax is the maximum resolved wave number and η is the

flow Kolmogorov length. This resolution requirement can be compared with the require-

ments of kmaxη > 1 for the pseudo-spectral method and kmaxη > 2 for the LBE. This

indicates that the DUGKS has a relatively large numerical dissipation compared with the

LBE method, although both are of second-order accuracy in time and space. The differ-

ence can be attributed to the finite-volume formulation of the DUGKS, while LBE is a

Lagrangian scheme.

The DUGKS was also employed to simulate the Kida vortex flow with a relatively low

Reynolds number [26] with the minimum kmaxη = 3.29. The results showed that the

DUGKS could accurately predict the low-order statistics (total energy, dissipation rate,

enstrophy, and velocity correlations), and could capture the smallest Kolmogorov length

scale. The results of the pressure-velocity correlation also demonstrated that the DUGKS

could well reproduce the incompressibility behavior of the flow.

Another turbulent flow simulated by the DUGKS is the Taylor-Green vortex in a peri-

odic box [27]. The statistical properties, including the kinetic energy, dissipation rate,

skewness, and flatness, were compared with the results of PS and LBE methods as well

as a short-time analytical solution. The results confirmed the dissipation property of the

DUGKS as observed in [26].

The simulation results of the decaying turbulent flows in a periodic box suggest that the

DUGKS is less accurate than LBE, which seems to be contradictory to the findings in the

previous comparisons [59, 66]. The cause may be related to the different realizations of

the no-slip boundary condition on solid walls in the LBE and DUGKS. In LBE the bounce-

back rule is implemented at grid nodes which are not located at walls, while in DUGKS the

rule is implemented at the cell surfaces located on walls. For flows with periodic bound-

aries, there are no influences from boundary conditions, and thus reflect more clearly the

intrinsic dissipation nature of the methods. If this argument is sound, the DUGKS will

be more effective for flows involving solid walls, particularly with nonuniform meshes

clustered near boundaries.

5.1.2 Turbulent channel flows

The first attempt to apply the DUGKS to wall-bounded turbulent flows was attributed

to Bo et al. [27], in which a turbulent channel flow at Reτ = 180 was simulated with

a nonuniform mesh with minimum mesh spacing �y+ = 0.425 in wall unit, which is



Guo and Xu Advances in Aerodynamics             (2021) 3:6 Page 16 of 42

sufficient to resolve the wall layer. For comparison, the standard LBE was also applied to

this flow, but with a smaller computational domain due to the expensive computational

costs with a uniform mesh.

The time-averaged velocity and turbulent Reynolds stress predicted by the DUGKS

were compared with the PS and LBE results. It was observed that the DUGKS results

were in good agreement with the predictions of the PS and LBE methods. Particularly,

the velocity profile fits well with the standard linear viscous sublayer scaling for y+ < 5

and the inertial sublayer scaling starting at y+ > 30. The averaged Reynolds stresses pre-

dicted by the three methods were also in good agreement. However, it was reported that

for the statistic stationary mean flow speed (averaged over the whole flow domain), the

DUGKS gave a better prediction than LBE in comparison with the PS result, with rela-

tive errors 0.5% and 1.1%, respectively. The root-mean-square (rms) fluctuation velocities

were also measured. Overall, the DUGKS gave better predictions than the LBE, particu-

larly in the near-wall region. It should be noted that in the simulations the grid resolution

used in the DUGKS was rather coarse in comparison with the PS method, and the grid

cell aspect ratios near the wall were quite large. Actually, the maximum aspect ratio of

streamwise to transverse grid spacing near the wall reached 41.62. Even with this grid

ratio, the DUGKS was still numerically stable. It was also pointed out that the LBE with

a uniform cubic grid could not handle the same domain size with limited computational

resources.

Finally, it was shown that although the time step in DUGKS was small due to the use

of non-uniform grid, the reduced number of grid points made the overall computational

cost of DUGKS comparable to LBE [27]. The results also suggested while the DUGKS

was used as a direct numerical simulation (DNS) tool since the local grid spacing was

sufficiently small to adequately resolve all scales of the flow, it had the potential to be used

as an implicit large-eddy simulation (LES) tool for high-Reynolds number flows at a given

grid resolution due to its preferred numerical stability.

5.1.3 Turbulent natural convection

Besides isothermal turbulent problems, the DUGKS was also applied to turbulent flows

with heat transfer. Wang et al. studied the natural convection of air in a three-dimensional

(3D) cavity using a simplified version of the DUGKS under the Boussinesq assumption

[72], which is constructed based on two weakly coupled reduced kinetic equations for the

velocity and temperature evolutions, respectively [73].

In the study, the flow characteristics were analyzed as the Rayleigh number (Ra) ranged

from 103 to 1010. From the instantaneous velocity and temperature patterns on the sym-

metry planes for 107 � Ra � 1010, it was found that both the temperature and velocity

boundary layers near the two isothermal side walls became thinner with increasing Ra,

while no apparent boundary layers were developed near the adiabatic walls. Two flow

tunnels appeared near the center of the isothermal walls, and moved to the corners in the

joint of isothermal and adiabatic walls with increasing Ra. In addition, as Ra increased

above a critical value, the flow developed from steady to unsteady states and eventu-

ally turned to be turbulent as Ra ≈ 109. It was also found that the lateral adiabatic

walls had an inhibition effect on the temperature field, and the distribution of the local

Nusselt number on the hot wall suggested that the lateral adiabatic walls could suppress

the heat transfer. Generally, the convective intensity in the cavity center was observed to
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be stronger than that close to the adiabatic walls, while the effect of adiabatic walls on the

overall heat transfer decreases with increasing Ra.

The time-averaged characteristic quantities of interest on the symmetry plane for Ra up

to 1010 were measured, and a scaling law between the Nusselt numbers (local and overall)

and the Rayleigh number were identified, i.e.,

Num =
{

0.1522Ra0.2942, 103 � Ra < 107,

0.3533Ra0.2395, 107 � Ra � 1010,
(48)

and

Nuo =
{

0.1270Ra0.3052, 103 � Ra < 107,

0.3408Ra0.2410, 107 � Ra � 1010,
(49)

where Num and Nuo are the mean Nusselt numbers on the symmetry plane and the

overall one, respectively. These correlations were shown to agree well with the available

numerical and experimental data at several specific values of Ra.

5.2 Compressible flows

Besides nearly incompressible flows with low Mach numbers, the DUGKS has also been

used to simulate a number of high Mach number (Ma) compressible flows. For instance,

the one-dimensional shock structure of argon gas was tested by the DUGKS based on

the Shakhov model under different Mach numbers (1.2 � Ma � 8.0) [33]. It was found

that the density, temperature, shear stress, and heat flux were nearly indistinguishable

from the data of UGKS for all cases, and both were consistent with the Boltzmann solu-

tions or DSMC results for Ma = 1.2. For cases of Ma = 3 and 8, the predicted density

and stress still agreed well with the Boltzmann/DSMC solutions, but some discrepan-

cies in temperature and heat flux appeared in the upstream, although they were still in

good agreement with the benchmark data in the downstream. The inconsistency could

be attributed to the use of single relaxation time in the Shakhov model. The simula-

tion results also demonstrated that the DUGKS can serve as an effective shock-capturing

scheme as the numerical cell size is much larger than mean-free-path.

The DUGKS was also employed to simulate the standard shock tube problem under dif-

ferent mean-free-paths. It was shown that the DUGKS could give satisfactory predictions

from continuum to free molecular flow regimes. This property was also confirmed by

simulating the 2D Riemann problem by comparing the numerical results with the Euler

solution in the continuum limit and the analytical solution of the collision-less Boltzmann

equation in the free molecular limit [33].

The supersonic flow over a circular cylinder at Ma = 5 was simulated via the DUGKS

with an unstructured mesh to investigate the influence of Knudsen number [48]. At Kn =
0.1, it was found the DUGKS results, including heat flux, pressure, and shear stress along

the cylinder surface, all agreed well with those of the DSMC results overall. But some

small discrepancies in the temperature field in front of the bow shock were observed,

which was attributed again to the difference between the Shakhov model and DSMC.

For the case of Kn = 1.0, the discrepancies in the front shock were more obvious due

to the increase of non-equilibrium effects. However, the heat flux, normal pressure, and

shear stress along the cylinder surface were still quite satisfactory in comparison with the

DSMC data, which are critical quantities of interest in engineering applications.
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The flow over two side-by-side identical circular cylinders with a gap at Ma = 2 and

Kn = 0.1 was further simulated. Again the temperature and Mach number distributions

were found to be nearly identical to the DSMC results, and it was observed that the gas

could be chocked in the gap between the cylinders. The high temperature region in front

of the cylinders covered the upstream of the gap, and the temperature dropped gradually

at the downstream of the gap, where the gas was accelerated to supersonic speed. The

heat flux, pressure, and shear stress on the cylinder were measured to quantify the results,

and the results were in good agreement with the DSMC data.

A more challenging multiscale compressible flow was investigated using the DUGKS in

[48]. In this problem, two cavities (A and B) filled with gas at different pressures were con-

nected by a thin tube. Initially, a diaphragm was put at the middle of the channel, and the

gas temperatures in the two cavities were set to be 273K . The initial pressures in cavitiesA

and B were PA = 48.78Pa and PB = 0.004878Pa, respectively, such that the correspond-

ing Knudsen numbers were KnA = 0.001 and KnB = 10, respectively. At time t = 0, the

diaphragm was removed suddenly, and the gas then started to expand from cavity A to

cavity B. The dynamic behavior of the gas during the expansion process was then mea-

sured. It was found that the shock wave developed at an early stage and reached the center

of cavity B. At this stage, the gas in cavity B was still very rarefied and underwent ballisti-

cally. The pressure in cavity B increased continuously with time as the gas moved in. The

pressure ratio between the two cavities was high enough to form a supersonic jet at the

outlet of the channel. At a later time, the initial shock wave disappeared and two symmet-

ric vortexes appeared in cavity B. The detailed distributions of temperature, velocity and

pressure during the expansion process showed that the shock wave was strong in the early

stage, and became weaker gradually with time. It was also observed that the flow in cav-

ity A changed slightly in the time interval, and the temperature and pressure were nearly

uniform, but the temperature decreased with time as the international energy converted

into kinetic energy during the expansion process.

Finally, we note that some compressible turbulent flows were investigated using the

DUGKS by Wang and his colleagues [34, 35]. A 5th-order weighted essentially non-

oscillatory (WENO) scheme was incorporated into the DUGKS to better reconstruct the

distribution functions at cell interfaces, although the overall accuracy is still second order.

The new DUGKS was tested by simulating the compressible DHIT problem with low

and high initial turbulent Mach numbers and Taylor Reynolds numbers. The turbulence

properties, such as turbulent kinetic energy, rms values of the fluctuations, and the prob-

ability density function (PDF) of the local Mach number, were compared with those of

other high-order DNS results, and good agreement was observed. Particularly, the distri-

bution of the local Knudsen number was measured as a typical feature of compressible

turbulence, and some non-continuum regions were identified in the flow field. Via the

DUGKS, the influence of bulk viscosity on turbulence statistics and flow structures was

also numerically studied. Overall, the results show that the DUGKS scheme can serve as a

reliable tool for simulating compressible turbulence at low and moderate turbulent Mach

numbers.

5.3 Micro flows

For micro flows of gases, a typical feature is the flow speed is usually small and the

Knudsen number may vary in a wide range. Consequently, the DSMC method needs a
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long time averaging to lower the statistical noise, and it becomes computational expen-

sive as Kn is small due to constraints on time step and mesh size. The classical DOM is

free of statistical noise, but still suffers from expensive computational costs due to the

time-splitting treatment of the collision and streaming processes as in DSMC. It is noted

that some improved DSMC have been developed to reduce the noise, e.g., [74]. Partic-

ularly, a particle version of the DUGKS was proposed recently which can improve the

performance of particle simulation greatly [75].

Unlike the DSMC and classical DOM, the DUGKS provides an efficient tool for the

simulation of micro flows with the nice UP properties. Actually, a number of such systems

have been investigated numerically by the DUGKS. The applications can be classified into

two categories according to the devices. The first type is for devices with moving parts,

and the second type is for those without any moving parts.

5.3.1 Flows in devices withmoving parts

For problems of the first type, the micro Couette flow between two moving planar plates

and the micro lid-driven cavity flow have been investigated under isothermal condition

in the first paper of the DUGKS series [19]. It was shown the nonlinear velocity near the

walls could be successfully captured in the Couette flow at finite Knudsen numbers, and

the shear stress was in excellent agreement with the results of DSMC and Boltzmann

equation in whole flow regimes.

For the cavity flow, a typical feature is that the distribution function can be highly irreg-

ular with discontinuities induced by the walls, particularly around the corners, and the

deviation from the local equilibrium increases with the Knudsen number. In the sim-

ulations, it was found that the DUGKS could yield satisfactory predictions that agreed

excellently with the DSMC solutions as Kn changes from 0.1 to 8, and the slip velocity

on the walls approached a finite value at each wall. However, vortex center was found to

be close to the vertical center line of the cavity in all cases, and moved downward with

increasing Kn. The micro cavity flow with the consideration of thermal effects was inves-

tigated later by the DUGKS based on the Shakhov model [48]. The flow characteristics

ranging from continuum to free molecular regimes were analyzed and compared to the

DSMC or Navier-Stokes results. It was observed the heat flux was not consistent with the

Fourier law for noncontinuum flows, even as Kn = 0.075. This observation is interesting,

since generally it is believed that the Navier-Stokes-Fourier equations can still be used for

simulating micro flows provided suitable slip and temperature jump boundary conditions

are imposed. This test case clearly demonstrates this is not necessarily the case in some

problems and we must be careful to use such an approach in the study of micro flows. A

3D micro cavity flow was also simulated with the DUGKS and compared with the DSMC

results [76], which confirmed again the advantages of the DUGKS in simulating low speed

micro flows.

Some unsteady micro flows in devices with moving parts were also investigated by the

DUGKS. For instance, Wang and his colleagues conducted a number of studies on oscil-

lating flows. In [77], the unsteady flow in a 2D rectangular cavity with an oscillating top

lid was numerically investigated. To demonstrate the general flow characteristics of this

problem, a number of simulations were performed under different conditions. Specifi-

cally, a wide range of parameters, including the aspect ratio of cavity width to length (A),

the oscillation Mach number, the Strouhal number (St), and the Knudsen number, were
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considered. It was found that the flow properties, including the flow velocity, temperature,

shear stress, and heat flux, were symmetrical about the vertical centerline of the cavity

for Ma = 0.01 as Kn changed from 0.001 to 10. Actually, in this case the magnitude of

the oscillation was so small that the system was nearly linear. On the contrary, these flow

properties became asymmetric at Ma = 1.2 when the system was fully nonlinear, and the

strength of shear stress near the top-right corner of the cavity could be much larger than

that at the top-left corner, while the temperature at the top-right corner could be signif-

icantly higher than the wall temperature. An interesting phenomenon was reported that

the heat transfer behavior could be altered by the oscillation. Previously, it was shown

that heat could be transferred from the cold to hot regions for low speed cavity flow with

constant driven velocity in non-continuum regimes [48]. However, as the oscillation fre-

quency was above a certain value, it was found that heat was still transferred from hot

to cold regions for both Ma = 0.01 and 1.2, although the heat flux could be non-parallel

to the temperature gradient. The damping force exerted on the oscillating lid was found

to depend on the Strouhal number non-monotonously generally, which was attributed to

the anti-resonance and resonance of rarefied gas flows, respectively. Then scaling laws for

the anti-resonance frequency and the inverse aspect ratio of the cavity were established

for cases from near continuum to highly rarefied regimes.

The study of 2D oscillating cavity flow was later extended to 3D case with a small Mach

number [78], focusing on the confinement effects of the additional lateral walls on the

damping force on the lid. It was found the damping force in a 3D cavity could even be

smaller than that in a 2D one for highly rarefied flows with a low oscillation frequency.

Furthermore, the damping force was found to increase with decreasing depth of the cavity

due to the effect of gas anti-resonance as the frequency was high for highly rarefied flow.

It was also shown that the gas resonance and anti-resonance phenomena appeared in 2D

cavity also occurred in 3D case, but the presence of the lateral walls tended to suppress

their formation. Similar to the 2D cavity case, linear scaling laws for the anti-resonance

and resonance frequencies were also obtained for flows from near continuum to free

molecular regimes, which suggested that reducing the Knudsen number and increasing

the aspect ratio of the cavity could enhance the 3D effects on formation of gas resonance

and anti-resonance.

Further study on the effects of oscillation on heat transfer in a 2D square cavity was

conducted [79]. It was found that the thermal convection could be dramatically enhanced

under oscillation conditions even at moderate Knudsen numbers, which played a dom-

inant role in the heat transfer. The average Nusselt number on the lid was found to

decrease with increasing Kn, and could vary non-monotonically with the oscillation

frequency, with the maximum occurring at nearly the anti-resonance frequency.

5.3.2 Flows in devices withoutmoving parts

For micro flows in devices without moving parts, Zhu and his colleagues studied a

number of micro flows driven by temperature difference [29, 30, 32]. Under rarefied

conditions, gas flows can be induced by nonuniform temperature fields or temperature

changes at solid boundaries. Generally, different types of such flows can be identified,

e.g., thermal creep (or thermal transpiration) flow in a channel as the temperature gradi-

ent is applied along the channel walls, radiometric flow around a solid plate with different

surface temperatures immersed in a vacuum, flow between a heated cantilever next to
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a cold substrate inside a vacuum enclosure, and flow induced by temperature disconti-

nuity. Although the flow velocity of such flows is usually very low, they have potential

applications such as Knudsen pump and mesosphere flight vehicle. Zhu and Guo [32]

explored these four types of thermally induced flows in 2D geometries for a wide range of

Knudsen numbers. Specifically, the thermal creep flow in a closed channel at a length-to-

width ratio of 5 was simulated, where the temperatures at two ends were maintained at

two different constants while the temperatures on the two lateral side walls were both lin-

early distributed between the two end ones. It was observed that the flow patterns could

be quite different at different Knudsen numbers (0.01 � Kn � 10).

The flow induced by a hot micro beam with square cross section immersed in a square

cavity was further numerically studied [32]. It is known that a flow would develop around

a heated object as the separation between it and a cold substrate is comparable to the

mean free path of the gas, and hence a net force (Knudsen force) will be exerted on the

object. Therefore, as the micro beam and the outer cavity wall serve as the heated object

and the cold substrate, respectively, a flow will also be induced. Such flow is fundamen-

tally different from the thermal creep flow. It is actually caused by the combined effects of

thermal stress flow and thermal edge flow due to the inhomogeneity of the temperature

gradient and the sharp corners of the micro beam. Three cases, i.e., Kn = 0.1, 1, and 10,

were considered in the study. It was found that some complicated vortexes were devel-

oped at the corners of the micro beam in each case, and the non-uniformities of both

the normal stress and the shear stress along the micro beam surface tended to be more

obvious as the Knudsen number decreased, and the stresses were accumulated near the

corners of the micro beam.

Another thermally induced flow considered in [32] was the radiometric flow generated

by a small fixed plate with differentially heated sides placed in a chamber with cold walls.

Two Knudsen numbers were considered, i.e., Kn = 0.1 and 1. It was found four vortexes

appeared at the corners of the plate in each case, and the strength and sizes of the vortex

were nearly the same at Kn = 1. But at Kn = 0.1, the sizes of the two vortexes near the

cold surface of the plate were smaller than the two ones near the hot surface. The pressure

(normal stress) difference between the hot and cold surfaces of the plate along the vertical

direction, which is the main contribution to the radiometric force, was also measured. It

was shown that the pressure difference was nearly uniform along the plate surface in the

vertical direction at Kn = 1, but was nonuniform and became larger near the top and

bottom surfaces of the plate at Kn = 0.1, and the smallest pressure difference was still

larger than that in the case of Kn = 1.

The micro flow in a fixed square cavity induced by temperature discontinuities was also

investigated in [32]. In this problem, the top wall maintained at a higher temperature (Th),

and the other walls maintained at a lower one (Tc). The temperature discontinuities at the

two upper corners could induce a flow in the cavity. The flow and heat transfer behaviors

from continuum to free molecular regimes were analyzed. It was observed that in the

continuum limit (Kn = 0.001), the velocity was rather weak and no vortex appeared,

and the temperature could be well described by the heat conduction equation as (Th −
Tc)/Tc ≪ 1, which has an analytical solution. For the slip (Kn = 0.1) and transitional

(Kn = 1) cases, two pairs of vortexes appeared symmetrically along the vertical center

line of the cavity. As Kn = 10, a number of secondary vortexes appeared and the flow

pattern became more complicated.
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Some of the DUGKS results for the four cases were confirmed by DSMC [32]. It was

shown that generally the predictions of both methods were in good agreement. But some

discrepancies could be observed for large Kn, which could be attributed to the differences

between the relaxation model employed in the DUGKS and the collision model in DSMC.

However, some statistical noises were observed in the DSMC results as expected.

Recently, the DUGKS, together with the DSMC, was employed to study the flow and

heat transfer behaviors in three categories of radiometric pumps consisting of channels

with bottom or top surfaces periodically patterned with different structures [80]. The

dominant mechanism in the radiometric force production was analyzed and operational

performance of the devices was evaluated based on the numerical results. The analy-

sis showed that the zigzag channel could generate maximum velocity with a parabolic

profile, but the net radiometric force was rather weak in this case. For other con-

figurations, the flow exhibited a linear profile in the open section of the channel. It

was revealed that the radiometric force was produced due to the difference in parti-

cle momentum on both sides of the fins, and the mechanism was different from the

standard Crookes radiometer due to the presence of the bottom surfaces. The mass

flux was found to be a nonlinear function of the temperature difference, and its depen-

dence on Kn was mainly caused by the structures of temperature field under different

configurations.

5.3.3 Flows in devices withmoving parts and temperature differences

Micro flows in devices with both moving parts and temperature differences were

also studied, e.g., [30]. In such problems the overall flow was generated by both the

forced motion of the moving part and the inhomogeneity of temperature. In [30], the

nonequilibrium gas flow in a two-dimensional microchannel with a fixed hot ratchet

surface and a moving cold wall was investigated via the DUGKS. With the periodic asym-

metrical ratchet structures on the bottom wall and the temperature difference between

the channel walls, a flow could be induced and a tangential propelling force could be

generated on the wall.

Such thermally induced propelling mechanism could be utilized as a model heat engine.

In the study, the flow field and propelling force were measured under different wall veloc-

ities and Knudsen numbers. Particularly, the flow fields at the critical wall velocity, at

which the thermally induced force just balanced the drag force due to the active motion

of the top wall, were analyzed. It was found the force changed linearly with the wall veloc-

ity, and the forces on the static wall and the top wall velocity at shear-free state achieved

their maximum values as 0.1 ≤ Kn ≤ 1. The magnitude of the force was linearly depen-

dent on the wall temperature difference, while the relative height of the ratchet structures

affected the thermal driving effect significantly. A counter-intuitive relation between the

flow direction and the shear force was also observed in highly rarefied conditions.

The output power and thermal efficiency of the system working as a model heat engine

were also analyzed based on the momentum and energy transfer between the walls. The

effects of Knudsen number, temperature difference, and geometric configurations were

investigated. It was shown that the power output and the thermal efficiency achieved the

maximum values in the early transition regime and were significantly larger than those

in the free molecular regime. These results were helpful for improving the mechanical

performance of the device.
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In summary, the available results show that the DUGKS can be faithfully used for low-

speed micro flows, and the deterministic nature of the DUGKS makes it much more

efficient than DSMC for such systems.

6 Extensions to complex fluid flows

6.1 Two-phase flows

The DUGKS has been extended to isothermal two-phase flows based on some phase-filed

models. In such cases, the DUGKS can be viewed as a special finite-volume counterpart

of the LBE method. In phase-field theory for a binary fluid system, the thermodynamic

behavior is described by a free-energy function related to an order parameter φ and its

spatial derivatives. The order parameter is used to distinguish the fluid phase and varies

continuously from one phase to the other, and the thickness of the fluid interface is finite.

A widely used model in phase-field theory is the Landau free-energy function defined as

F(φ) =
∫

V

[

ψ(φ) + κ

2
|∇φ|2

]

dV , (50)

whereψ(φ) is the bulk free-energy density, which usually takes a double-well formulation;

κ is a parameter related to surface tension, and V is the system volume. When coupled

with a flow field, the evolution of order parameter can be described by certain convection-

diffusion equations, such as the Cahn-Hilliard equation and the Allen-Cahn equation.

The first DUGKS for immiscible two-phase flows was developed by Zhang et al. based

on a quasi-incompressible Navier-Stokes equations and the Cahn-Hilliard equation [36],

in which the governing equations read

∇ · u = −γ∇ ·
(

λ∇μφ

)

,

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ ·
[

ρν
(

∇u + (∇u)T
)]

+ F ,

∂φ

∂t
+ ∇ · (uφ) = ∇ ·

(

λ∇μφ

)

,

(51)

where the parameter γ is related to the density ratio of the two fluids, λ is the mobility for

the order parameter, and F s = −φ∇μφ is the interfacial force withμφ = δF/δφ being the

chemical potential. The DUGKS was constructed based on two discrete velocity kinetic

equations,

∂fi

∂t
+ ξ i · ∇fi = − 1

τf

(

fi − f
(eq)
i

)

+ Fi,

∂gi

∂t
+ ξ i · ∇gi = − 1

τg

(

gi − g
(eq)
i

)

+ Si,

(52)

where f
(eq)
i (p,u) and g

(eq)
i (φ) are the equilibrium distribution functions for the flow and

phase fields, respectively, and τf and τg are the corresponding relaxation times. With

well-defined f
(eq)
i (p,u) and g

(eq)
i (φ) as well as Fi and Si, it can be shown that the discrete

velocity Eq. (52) can reproduce the hydrodynamic Eq. (51) in the limit of small Knudsen

number via the Chapman-Enskog analysis.

Zhang et al. then solved the kinetic Eq. (52) following the DUGKS framework, and

simulated a number of two-phase fluid systems. For the problem of a stationary droplet

immersed in another fluid, it was demonstrated that the DUGKS could predict the

Laplace law correctly, and showed better conservation property than the correspond-

ing LBE. A layered two-fluid flow in a channel with large viscosity ratio (up to 103) was
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also investigated, and the velocity profiles were well predicted. Particularly, by taking the

advantage of nonuniformmesh, the numerical accuracy near the fluid interface was much

improved. The test of a rising bubble under gravity showed that the shapes and positions

of the bubble in the time history were well captured at different density ratios, and the

numerical stability of DUGKS at large density ratio seemed to be better than the corre-

sponding LBE. The Rayleigh-Taylor instability phenomenon of two fluids under gravity

was further simulated. The results at different Atwood and Reynolds numbers showed

that the positions of both bubble front and spike tip, as well as the interface growth

amplitude, agreed well quantitatively with the previous numerical results and existing

experimental data.

Chen et al. later employed the above DUGKS to study [37] the 3D Rayleigh-Taylor

instability and two-phase homogeneous isotropic decaying turbulence. The results from

the DUGKS were compared to those of the corresponding LBE and/or ARCHER code

based on the Coupled Level Set-Volume of Fluid (CLSVOF) method [81]. The results

demonstrated the reliability of DUGKS. For the Rayleigh-Taylor instability problem, a

quantitative comparison was performed by tracking the position of the bubble, spike, and

saddle points in the time history. It was found that the bubble front and saddle loca-

tions predicted by both DUGKS and ARCHER were in excellent agreement. For the spike,

the results from both DUGKS and ARCHER were also in excellent agreement at early

times. While at later times, the DUGKS predicted a lower spike location, which could

be attributed to the numerical dissipation in both methods. For the two-phase decay-

ing homogeneous isotropic turbulence, a droplet was initially positioned in a turbulent

flow field. A key issue of this problem is to set up a consistent initial velocity field across

the droplet interface. In [37], a forced homogeneous isotropic turbulence was first run

using the ARCHER code to create a developed single phase turbulent velocity field. Then

a solid particle, which was treated by an immersed boundary method, was put into the

flow field. After several large eddy turnover times, the velocity field was used to ini-

tialize the two-phase flow by replacing the solid particle by the droplet with the same

size. The time evolutions of the velocity and vorticity fields predicted by both DUGKS

and ARCHER were compared, and it was observed that the complexity of the inter-

face topology increased with time, and the results of both methods were in excellent

agreement.

To further improve the capability in simulating two fluid flows with large density ratio,

a DUGKS based on the incompressible Navier-Stokes equations coupled with a con-

servative Allen-Cahn phase-field model was developed in [82]. Two discrete-velocity

kinetic equations in the formulation of (52) were again adopted as the starting point, but

with different definitions of equilibrium distribution functions and source terms. The

method was then employed to simulate a number of stationary and dynamic problems

with density ratio up to 1000, and reliable solutions were obtained. But in comparison

with the corresponding LBE, it was found that the numerical dissipation of DUGKS

was relatively large and could destroy the interface structures, which suggested that

a high-order DUGKS is preferred for two-phase systems involving complex interface

changes.

The DUGKS method was also applied to solid-liquid phase change problems [83]. The

flow field is governed by the Navier-Stokes equations, and the energy field is described by

an equation for the enthalpy,
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∂H

∂t
+ ∇ ·

(

uCpT
)

= ∇ ·
(

αe∇
(

CpT
))

, (53)

where H is the total enthalpy. Two discrete velocity kinetic equations with the for-

mulation of (52) were designed in which the equilibrium distribution functions and

source terms were chosen such that the governing equations could be recovered in the

Champan-Enskog analysis. Then the two kinetic equations were discretized following the

DUGKS procedure. A number of phase change problems, including the two-region phase

change, phase change under constant heat flux and natural convection with phase change,

were simulated. The results predicted by the DUGKS were compared with benchmark

solutions and satisfactory agreement was observed. The dynamic movement of the solid-

liquid interface during phase change processes was accurately captured. Particularly, for

the natural convection problem, it was found that the temperature field near the interface

could be predicted by the DUGKS and was more accurate than LBE.

6.2 Gas-solid flows

Flows with solid particles are another type of two-phase system. A number of direct

numerical simulation methods for continuum particulate systems with resolved particle

shapes have been developed, such as LBE, immersed-boundary method (IBM) [84], and

fictitious domain method (FDM) [85]. Recently, the DUGKS was applied to particulate

flows by treating the solid body with the immersed-boundary (IB) technique [86–88].

In the IB-DUGKS method for isothermal particulate flows [86], the entire domain,

including the interior of solid particles, is assumed to be filled with fluid, and the surface

of a particle is discretized into a set of Lagrangian points X l (l = 1, 2, · · · ,NL). The inter-

action between fluid and solid body is realized by adding an immersed boundary force

to the fluid, which is distributed from the Lagrangian points to the Eulerian mesh with

cell centers xj (j = 1, 2, · · · ,NE) employed by the DUGKS. The acceleration due to the IB

force, al at the Lagrangian point X l is determined by the velocity difference between the

fluid and solid body at the point,

al = U l − ul

�t/2
, (54)

where U l and ul are the desired velocity and the intermediate fluid velocity (without IB

force) at X l, respectively. For a solid particle, U l = up + ωp ×
(

X l − xp
)

, with up and ωp

the translational and rotational velocities of the particle, and xp the position of particle

center. The intermediate fluid velocity ul is interpolated from the fluid field using certain

local weight functions such as the smoothed Dirac δ function. The calculated force al

is then distributed back to the Eulerian points using the same interpolation function to

obtain the body force a for the fluid. This procedure can be iterated to ensure the no-slip

boundary condition accurately [86].

Once the IB force is determined, the fluid can feel the existence of immersed boundary

of the solid particle, and the BGK equation for the fluid can be written as

∂f

∂t
+ ξ · ∇f = Q ≡ −1

τ

(

f − f (eq)
)

+ F , (55)

where the forcing term is F = −a · ∇ξ f , with a being the acceleration due to the IB force,

can be simplified for continuum flows,

F ≈ −a · ∇ξ f
(eq) = a · (ξ − u)

RT
f (eq). (56)
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In order to solve Eq. (55) with the DUGKS, the Strang splitting scheme is employed in the

IB-DUGKS, where the evolution of the distribution function at time step tn follows three

steps,

(1) Pre-forcing step: Advance f n in each cell to obtain the first intermediate value,

f̃ ∗ = f̃ n + 0.5�tF
(

ρn,un
)

; (57)

(2) DUGKS step without force: Advance f̃ ∗ following the standard DUGKS without

forcing term to obtain the second intermediate value f̃ ∗∗;

(3) Post-forcing step: Advance f ∗∗ to obtain the distribution function at next step,

f̃ n+1 = f̃ ∗∗ + 0.5�tF
(

ρ∗∗,u∗∗) . (58)

The dynamic of the solid particle in the IB-DUGKS follows the Newton’s law,

Mp
dup

dt
= Fp, Ip

dωp

dt
= Tp, (59)

where Mp and Ip are the mass and moment of inertia of the particle, respectively, Fp

is the total force on the particle including the counter-acting IB force, and Tp is the

corresponding total torque.

The accuracy of the IB-DUGKS was tested by simulating several 2D and 3D particulate

flows, including the sedimentation of a particle and the drafting-kissing-tumbling (DKT)

dynamics of two particles in a channel, and a group of particles settling in an enclosure.

The numerical results predicted by the IB-DUGKS were found to be in good agreement

with benchmark data.

Recently, the IB-DUGKS was further extended to systems with heat transfer between

fluid and solid bodies with fixed temperature following similar idea [87, 88], in which

the energy equation was solved by another BGK equation for temperature distribution

function. Specifically, a non-iterative technique was proposed to realize the exact velocity

and temperature boundary conditions on the solid surface in the method reported in [87].

Both IB-DUGKS methods were tested by several thermal flows involving stationary solid

bodies, but no results were reported for flow problems with moving bodies.

6.3 Gas-mixture flows

Multiscale flows of gas mixtures are widely encountered in many industrial and natural

processes, and the transport of each gas species can be described by a Boltzmann equation

with inter-molecular collisions between the same and different species. A number of sim-

plified kinetic models have been proposed, among which the McCormack model [89]

and the Andries-Aoki-Perthame (AAP) [90] model are widely used. The former is a

model with a linearized collision operator under the assumption of slight deviation from

equilibrium, while the AAP model uses a single BGK operator in which both self and

cross-collision effects are incorporated.

Zhang et al. developed a DUGKS for multiscale binary mixture flows based on the

following AAP model [40],

∂fα

∂t
+ ξ · ∇fα = − 1

τα

(

fα − f ∗
α

)

, (60)
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where fα is the distribution function for species α, and the equilibrium distribution

function is defined as

f ∗
α = ρα

(

mα

2πkBT∗
α

)
3
2

exp

[

− mα

2kBT∗
α

(

ξ − u∗
α

)2
]

, (61)

where mα and ρα are the molecular mass and density of species α, u∗
α and T∗

α are

two parameters related to the hydrodynamic variables W α = (ρα , ραuα , ραEα) for each

species, which are defined as the moments of fα similar to that for a single gas given by

Eq. (3). Specifically, u∗
α and T∗

α are defined such that the total mass, momentum, and

energy are conserved [90]. Generally, u∗
α(W ) and T∗

α(W ) are nonlinear functions and

depend on interaction potential between molecules, which can be simplified for Maxwell

molecules.

The DUGKS can then be constructed based on Eq. (60), similar to that for the single gas

BGK Eq. (1). But a nonlinear system must be solved to determine u∗
α(W ) and T∗

α(W ) in

the calculation of equilibrium distribution functions, which appear in both the update of

cell-averaged variables and flux evaluation at cell interfaces.

The above AAP-DUGKS was applied to several 1D and 2D flows of binary mixtures

with different mass ratios at different regimes, including the shock structure problem,

the channel flows driven by a small pressure, temperature, or concentration gradient,

the 2D plane Couette flow, and the cavity flow. Overall the DUGKS results agreed well

with benchmark data obtained by the UGKS, DSMC, and/or the linearized Boltzmann

equation. However, it was found that there existed some deviations for the light species

as the difference in molecular masses was large, particularly at large Knudsen numbers.

The discrepancies could be attributed to the limitations of the AAP model such as the

incompatible transport coefficients.

In order to overcome the deficiency of the AAP-based DUGKS, a DUGKS based on

the linear McCormack model was later developed [41]. In the McCormack model, it is

assumed that the perturbations in concentration, pressure, and/or temperature are small

(and thus the velocity is also small), then the system deviates slightly from the global

equilibrium such that the collision term in the Boltzmann equation can be linearized [89].

The velocity moments of the collision term of the McCormack model match those of the

Boltzmann equation up to third order, thus leading to the same transport coefficients as

the latter.

The McCormack model can be expressed as

∂hα

∂t
+ ξ · ∇hα =

∑

β

Lαβ (hα) , (62)

where hα is the perturbation defined by fα = f
(0)
α (1 + hǫ), with ǫ being the perturbation

and

f (0)
α = ρα0

(

mα

2πkBT0

)
3
2

exp

[

−
mαξ2

2kBT0

]

. (63)

Here ρα0 and T0 are the reference density of species α and reference temperature,

respectively. The linearized collision operator can be expressed explicitly [41, 89].

Based on Eq. (62), the DUGKS was constructed for solving the perturbation distri-

bution functions hα following the same idea as the original DUGKS [40]. A number of

low-speed binary mixture flows covering a wide range of flow regimes were simulated to
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test the DUGKS. Since the McCormack model can reproduce all transport coefficients,

it is not surprising that the results of the McCormack-DUGKS were in better agreement

with those of the linearized and full Boltzmann equations than the AAP-DUGKS, partic-

ularly in the transitional and near-continuum regimes for systems with large molecular

mass difference. However, it should be noted that the McCormack-DUGKS can only be

applied to the low speed flows that slightly deviate from equilibrium and is unsuitable

for nonlinear problems. Therefore, there is still much room to improve DUGKS for more

general multiscale mixture flows.

6.4 Strongly inhomogeneous flows

As a fluid is confined in a nanoscale structure, the solid-fluid interaction is significant

and fluid properties may become strongly inhomogeneous. For such systems, the molec-

ular size σ may be comparable to the device size L, and the confinement effect cannot be

ignored. Therefore, besides the Knudsen number, the ratio σ/L is also a key dimensionless

parameter, which is usually taken to be zero in the classical kinetic theories for homoge-

neous or weak inhomogeneous fluids. Consequently, the classical Boltzmann equation for

ideal gases and Enskog equation for dense gases, are not adequate to describe such sys-

tems. Some modified kinetic models have been developed and employed to study static

or dynamic behaviors of nano-confined fluids. For instance, a tractable kinetic model

was proposed based on the local average density approximation and density-functional

theory [91]. Based on this model, a DUGKS was developed for nano-confined strongly

inhomogeneous fluid systems recently [92].

The tractable inhomogeneous kinetic model reads [91],

∂f

∂t
+ ξ · ∇f − ∇ (φe + φm) · ∇ξ f = −1

τ

[

f − f (eq)
]

+ Jex, (64)

where φe is the external potential such as gravity or that exerted by the confined walls,

φm(n) is the mean field potential induced by other fluid molecules dependent on the local

number density n, and Jex (n, n̄) is the excess part of the collision beyond the hard-core

Boltzmann one, with n̄ being a weighted average number density. The detailed expres-

sions of Jex and n̄ can be found in [91]. The relaxation time τ also depends on both n and

n̄ to account for the inhomogeneity, i.e., τ = μ(n̄)/nkBT , where μ(n̄) is the viscosity for a

dense gas with number density n̄ derived from the Enskog theory for homogeneous fluids.

The kinetic Eq. (64) can be regrouped as

∂f

∂t
+ ξ · ∇f = −1

τ

[

f − f (eq)
]

+ G, (65)

where G is the collection of the potential term and Jex. Then the DUGKS can be con-

structed to solve Eq. (65) by employing the Strang splitting technique as shown in

Section 6.2. Note that significant density oscillations may occur in a strongly inhomo-

geneous fluid system, so the van Leer limiter was employed in the flux reconstruction

during the DUGKS step without force.

The static structures and dynamic behaviors of dense fluids in slits were simulated

by the DUGKS. The effects of fluid density, slit size, fluid-fluid and fluid-wall interac-

tions, were investigated. The DUGKS results were in good agreement with those of the

Monte Carlo and/or molecular dynamic simulations. Particularly, the layered structures

due to the competition between fluid-fluid and fluid-wall interactions were successfully
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captured. Furthermore, in order to evaluate the local nonequilibrium effects, the local

effective Knudsen number Kne was measured, which is defined as

Kne = λ

n/∇n
, λ = 1√

2nπσ 2χ
, (66)

where χ(n̄) is the radial distribution function evaluated with the average number density.

It was found that Kne could vary from 10−4 to the order of 100 in the system. The simu-

lation results also showed that the velocity profiles of the Couette flow and the Poiseuille

flow deviated from the Navier-Stokes solutions clearly, as a result of the inhomogeneous

nature of the dense fluids in nano confined geometries.

7 Multiscale transports beyond fluid flows

Besides gas molecules, other energy carriers such as phonons, photons, electrons, and

plasma, can also undergo multiscale transports. The Boltzmann equations with different

equilibrium statistics can also be employed to describe the transports of such particles

[93]. Based on certain kinetic models, the DUGKS has been extended to such systems

recently. A few examples will be given briefly in this section.

7.1 Phonon heat transfer

A phonon is a quantum of lattice vibrational energy in crystalline solids and has particle-

like properties [94]. Phonon transport is the main mechanism for heat transfer in

semiconductors and dielectrics. Heat transfer process in nanostructures of such materi-

als usually involves multiple temporal and spatial scales, characterized by the Knudsen

number defined as the ratio of phonon mean free path and typical length of the material.

The Boltzmann equation can be used to describe the phonon transport when the phase

coherence effects are negligible, which can be expressed as

∂fp

∂t
+ vp · ∇fp = Qp, (67)

where fp = fp(x, kp, s, t) = fp(x,ωp, s, t) is the distribution function for phonons of

polarization branch p with wave number kp (or frequency ωp) at position x and time t;

vp = ∂ωp/∂kp = vps is the group velocity with which the phonon travels along the unit

direction s, and Qp represents the rate of change due to phonon scatterings.

The scattering between phonons is quite complicated, and a widely used model is the

BGK-like one,

Qp = − 1

τp

[

fp − f
(eq)
p (T∗)

]

, (68)

where f
(eq)
p (T∗) is the equilibrium distribution following the Bose-Einstein statistics,

f
(eq)
p (T∗) = 1

exp
(

�ωp/kBT∗) − 1
, (69)

where � is the Planck’s constant divided by 2π , and T∗ is a local pseudo-temperature

which is introduced to ensure the energy conservation of the scattering term, and may be

different from the thermodynamic temperature T defined below. The effective relaxation

time τp(ωp,T) reflects the combination effects of all scattering processes and is usually

estimated using the Matthiessen’s rule if the individual scattering processes are indepen-

dent of each other [94]. The mean free path of phonons is related to the relaxation time,

i.e., λ = τpv0, with v0 being a typical value of the phonon group velocity. It should be noted
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that the mean free path depends on the frequency, polarization, and temperature, and

can change over several orders of magnitude. Therefore, the phonon transport exhibits

an intrinsic multiscale nature.

The energy and heat flux carried by phonons are defined from the distribution function,

E =
∑

p

∫

4π

∫

�ωpfpDp(ωp)dωpd�, (70a)

q =
∑

p

∫

4π

∫

�ωpvpfpDp(ωp)dωpd�, (70b)

where Dp(ω) is the density of state and � is the solid angle. The thermodynamic tem-

perature T and pseudo-temperature T∗ are defined from the following constraints,

∑

p

∫

4π

∫

�ωp

[

fp − f
(eq)
p (T)

]

Dp(ωp)dωpd� = 0, (71a)

∑

p

∫

4π

∫

�ωp

[(

fp − f
(eq)
p

(

T∗)
)

/τp
(

ωp,T
)

]

Dp(ωp)dωpd� = 0. (71b)

It is noted that as τp is frequency- and polarization-independent, the above two con-

straints are identical andT = T∗. The temperatureT is related to the energy asT = E/Cv,

with Cv being the volume specific heat capacity.

Even with the relaxation time approximation, the kinetic equation for phonon transport

is still difficult to solve due to the dependence of frequency and polarization. Some further

simplified models have been proposed to reduce the complicity [94]. For instance, the

gray model assumes phonons of all polarizations and frequencies are same and the group

speed v = vgs, with vg a constant. In this case we can introduce an energy distribution

function independent of frequency and polarization,

e′′(x, s, t) =
∑

p

∫

�ωfp(ωp)Dp(ωp)dωp. (72)

Then the total phonon energy E and heat flux q can be determined from e′′,

E =
∫

4π
e′′(x, s, t)d�, q =

∫

4π
ve′′(x, s, t)d�. (73)

The transport equation for the energy distribution function can be written as

∂e′′

∂t
+ vgs · ∇e′′ = −1

τ

[

e′′ − e(eq)
]

, (74)

where τ is now a singlet frequency-independent relaxation time, but it may still depend

on temperature. The equilibrium energy distribution e(eq) is given by

e(eq)(x, t) =
∑

p

∫

�ωf
(eq)
p Dp(ωp)dωp = 1

4π

∫

4π
e′′(x, s, t)d� = E

4π
, (75)

which is just the angular average of the total energy. Apparently, the scattering term in the

gray model defined above conserves the total energy.

The gray model (74) has the same formulation as the BGK Eq. (1) for gas molecules,

and a DUGKS could be constructed straightforwardly, which was reported in [42]. It

was proved rigorously that the DUGKS is a Lax-Wendroff discretization of the kinetic

equation without the scattering term, while becomes a finite-volume scheme for the dif-

fusion equation in diffusive limit. This analysis suggests that the DUGKS has the unified
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preserving properties [12] and can serve as an ideal method for multiscale phonon trans-

port problems. The property was also numerically verified by simulating several steady

and unsteady heat transfer problems at different regimes. Particularly, a multiscale heat

transfer across an inhomogeneous film with Kn changes from 10−4 to 10 was investigated,

and the multiscale transient heat transfer behaviors were successfully captured even with

a coarse mesh and large time step. On the contrary, the classical DOM failed to capture

the behaviors unless a very finemeshwas employed. Consequently, the DUGKSwasmuch

more computational efficient than DOM for this multiscale problem.

Although the gray model is simple and can provide some insightful predictions on

the phonon transport behaviors, the energy exchange between different modes can-

not be clearly identified in this model. Consequently, the DUGKS based on the gray

model is limited to systems where the phonon relaxation mechanisms are unimportant.

A DUGKS for phonon transport with the consideration of dispersion and polarization

effects was later proposed [44]. The model was based on the assumption that the tem-

perature difference in the system is small enough, i.e., �T = |T − T0| ≪ T0 (T0 is

the reference temperature). Under this assumption, the relaxation time and specific heat

can be regarded as temperature-independent, and the thermodynamic temperature T

and pseudo-temperature in f
(eq)
p can be regarded to be indifferentiable. Then the kinetic

equation can be linearized and can be written in terms of the deviational distribution

function gp = �ωpDp(ω)
[

fp − f
(eq)
p (T0)

]

, which reads

∂gp

∂t
+ vp(ω) · ∇gp = − 1

τp

[

gp − g
(eq)
p

]

, (76)

where

g
(eq)
p = �ωpDp(ω)

[

f
(eq)
p (T) − f

(eq)
p (T0)

]

≈ Cp(ω)�T ,

with Cp(ω) = �ωpDp(ω)∂ f
(eq)
p /∂T being the mode specific heat capacity. The DUGKS

was then constructed based on Eq. (76), and was verified by simulating several phonon-

mediated heat conduction problems from ballistic to diffusive regimes [44].

Although the frequency and polarization effects are considered in the above improved

DUGKS, it is limited to systems with small temperature difference and thus linear phonon

transports. A DUGKS for multiscale heat transfer with arbitrary temperature difference

was developed recently [43], which was based on the nonlinear relaxation model (67)

together with (68). Different from the two DUGKS methods based on the gray model

and the linear relaxation model in which only one temperature (T) is involved, two tem-

peratures (T and T∗) appeared in the nonlinear DUGKS, which must be computed in

the evolution. This was achieved by solving the nonlinear system Eq. (71) by the Newton

iteration procedure. The numerical results of some steady and transient heat trans-

fer problems showed that this nonlinear DUGKS could capture the multiscale phonon

transport accurately for systems with both large and small temperature differences. Par-

ticularly, it was observed that the thermal transport phenomena with large temperature

differences could behave quite differently from those with small ones, owing to the

temperature-dependent relaxation time. Generally, the average temperature increased in

ballistic regime but decreased in diffusive regime with the increase of temperature differ-

ence. Therefore, it is necessary to simultaneously consider the multiscale effects in both

spatial and frequency spaces for problems with large temperature differences.
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Overall, the DUGKS’s based on different kinetic models for phonon transport provide

efficient tools for predicting multiscale heat transfer problems. It is also noted that some

special techniques were developed to accelerate the convergence for steady problems

[95, 96].

7.2 Radiation heat transfer

Radiative heat transfer caused by electromagnetic waves (or photons) is another type of

transport phenomena, which can undergo multiscale behaviors with the change of optical

thickness of the medium. The transport of photons can be described by the Boltzmann

equation for the distribution function of photons f (x, s, ν, t), where s is the unit direc-

tion vector of photon propagation and ν is the photon frequency. However, radiative heat

transfer is usually described in terms of the radiative intensity I = hνcf , where c is the

light speed and h is the Planck constant. For gray media where the frequency dependence

is ignored, the radiative heat transfer equation (RTE) can be written as

1

c

∂I

∂t
+ s · ∇I = Q, (77)

where Q is the collision operator accounting for the interactions between photons and

surrounding matter, which can be expressed as

Q = −βI(x, s, t) + β(1 − ω)Ib(x, s, t) + βω

4π

∫

4π
I
(

x, s′, t
)

�
(

s′, s
)

d�′, (78)

where β is the extinction coefficient that is the inverse of the local mean free path of pho-

tos, ω is the scattering albedo, Ib is the blackbody intensity, and �
(

s′, s
)

is the scattering

phase function which describes the fraction of the radiative energy scattered into the out-

going direction s from the incoming direction s, with �′ being the corresponding solid

angle.

The scattering phase function �
(

s′, s
)

satisfies the normalization condition, i.e.,

1

4π

∫

4π
�

(

s′, s
)

d�′ = 1. (79)

For isotropic scattering problems, � = 1; while for anisotropic radiation, � depends

on the scattering angle and can be approximated by a finite series of Legendre poly-

nomials. For equilibrium radiation, the blackbody intensity Ib is determined by energy

conservation, i.e.,

Ib(x, t) = 1

4π

∫

4π
I(x, s, t)d�, (80)

while for nonequilibrium systems, it is given by the Stefan-Boltzmann law,

Ib(x, t) = σT4(x, t)

π
, (81)

where σ is the Stefan-Boltzmann constant and T is the local temperature of the medium.

The radiative energy G and heat flux q are defined as the moments of I,

G =
∫

4π
I(x, s, t)d�, q =

∫

4π
sI(x, s, t)d�. (82)

The RTE (77) can also be written in other formulations. For example, in order to reduce

the ray effect from boundaries, the RTE can be rewritten in a splitting formulation [97],

1

c

∂Ic

∂t
+ s · ∇Ic = −βIc, (83a)
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1

d

∂Id

∂t
+ s · ∇Id = −βId(x, s, t) + β(1 − ω)Ib(x, s, t) + βω

4π

∫

4π
I
(

x, s′, t
)

�
(

s′, s
)

d�′,

(83b)

where I = Ic + Id, Ic(x, s, t) is the direct intensity from boundaries and Id(x, s, t) is the

diffuse one resulting from emission within the medium. The solution of Ic can be given

analytically with prescribed boundary conditions, and Id can be obtained numerically by

solving Eq. (83b).

Based on Eq. (83), Luo et al. developed the first DUGKS for isotropic radiative

heat transfer problems [45]. Equation (83b), together with the analytical solution of

Ic, is solved with the procedure of DUGKS. The method was validated by simu-

lating a number of transient and steady problems, including the transient radiative

transfer in a plane-parallel slab filled with an absorbing-scattering medium, the equi-

librium and nonequilibrium steady-state radiative heat transfer in a two-dimensional

square medium, and a three-dimensional multiscale radiative transfer problem in a

cube filled with an inhomogeneous absorbing-scattering medium. It was confirmed

that the DUGKS exhibited the asymptotic preserving property such that it could

give accurate solutions for systems with different optical thicknesses with relatively

coarse meshes. Particularly, the DUGKS was found to be more computational effi-

cient than conventional numerical methods in the optically thick regime. Furthermore,

the results also demonstrated the good capability of the DUGKS in capturing the

sharp spatial discontinuities in the radiation field and modeling multiscale radiative

transfer.

The DUGKS developed in [45] is for isotropic media with � = 1. Recently, a DUGKS

for anisotropic radiative heat transfer was developed based on the RTE (77) directly [46].

A difficulty in this DUGKS arises in the relations between the original radiation intensity

and the transformed ones due to the nonlinear anisotropic phase function �. In isotropic

case, the transformations are explicit, but for anisotropic media the relations are implicit.

A simple iterative method was suggested in the calculations, which was shown to be able

to give satisfied predictions [46]. But more efficient methods are desirable to improve

the computational efficiency. The DUGKS was tested by simulating several 1D and 2D

anisotropic radiative transfer problemswith different optical thicknesses. The results con-

firmed the DUGKS exhibited the nice unified preserving properties and could serve as an

efficient and accurate tool for radiative heat transfer in multiscale anisotropic media.

7.3 Plasma

A plasma is a partially or fully ionized gas containing electrons, ions, and neutral atoms

or molecules [98]. The transport of different particles in a plasma can be modelled at dif-

ferent scales. Particularly, certain kinetic models of Boltzmann type have been developed

to describe the evolution of a plasma at the kinetic scale, such as the Vlasov equation,

the Bhatnagar-Gross-Krook equation, and the Fokker-Planck equation, coupled with the

Poisson equation for electric potential, or more generally with the Maxwell equations to

include magnetic and electromagnetic effects.

Like the usual gas systems, plasma dynamics is characterized by a wide range of spatial

and temporal scales. Furthermore, in addition to the mean free path λ and collision time,
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two additional typical length and time scales are involved in a plasma, i.e., the Debye

length λDk and plasma oscillation period ω−1
pk for particles of type k, where

λDk =
(

ε0kBTk

q2knk

)1/2

, ωpk =
(

nkq
2
k

ε0mk

)1/2

, (84)

with species particle mass mk , number density nk , vacuum permittivity ε0, and electric

charge qk . The overall Debye length λD, which is defined by λ−2
D =

∑

k λ−2
Dk , characterizes

the range over which long-range electric interactions are screened out. As the parameter

ǫD = λD/l0 ≪ 1.0, the plasma is quasi neutral, while as ǫD ∼ O(1), the system should be

recognized as non-quasi neutral. Therefore, the dynamics of a plasma gas is characterized

by two parameters (Kn and ǫD), and the flow can be classified into four regimes in the

Kn−ǫD plan, namely, hydrodynamic (Kn ≪ 1), kinetic (finite Kn), quasi-neutral (ǫD ≪ 1),

and non-quasi-neutral (finite ǫD) regimes.

Due to the complex multiscale nature of plasma flows, it is a challenging task to develop

efficient numerical schemes for plasma flows with a wide range of Kn and ǫD. Recently, Liu

et al. developed a DUGKS for plasma systems where electrons can move freely while ions

form a uniform static background [99]. The plasma dynamic of such systems is governed

by the BGK-Vlasov-Poisson equations (BGK-VPE),

∂f

∂t
+ ξ · ∇f + q

m
∇φ · ∇ξ f = −1

τ

(

f − f (eq)
)

, (85a)

−�φ = q

ε0
(ni − n) , (85b)

where f is the electron distribution function, q andm are the elementary charge and mass

of electrons, n =
∫

fdξ and ni are the number densities of electrons and ions, respectively,

and φ is the electric potential. The DUGKSwas developed based on the following splitting

form of Eq. (85a),

∂f

∂t
+ ξ · ∇f = −1

τ

(

f − f (eq)
)

, (86a)

∂f

∂t
+ q

m
∇φ · ∇ξ f = 0. (86b)

The standard DUGKS procedure was then applied to Eq. (86a), followed by a semi-

Lagrangian discretization of Eq. (86b) in velocity space. A particular feature of the

developed DUGKS is that a fourth-order compact MUSCL scheme with a positivity

preserving limiter was employed in the interface reconstruction, which ensures the con-

servative property and positivity of the distribution function. Furthermore, combined

with the MUSCL interpolation, the semi-Lagrangian scheme for the particle transport in

velocity space could remove the CFL restriction induced by electric force. In the imple-

mentation, the Poisson Eq. (85b) was solved by a finite-element method to obtain the

electric potential.

The DUGKSwas tested by simulating several plasma flows including the plasma sheath,

linear Landau damping, collisional nonlinear Landau damping, and plasma ion acceler-

ation. Comparisons with the widely used particle in cell (PIC) method were also made.

The numerical results showed that the developed DUGKS had advantages for warm

plasma flows involving small electrostatic perturbation and strong collisions, while the

PIC method was a better choice for the field-dominated problems where the particle
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velocities span a wide range. This reflects the common limitations of discrete velocity

methods for problems involving a wide velocity space.

Very recently, Liu et al. further developed an improved DUGKS which has the asymp-

totic properties in terms of both Kn and ǫD, based on the BGK-Vlasov equation and a

reformulated Poisson equation (RPE) [100]. The RPE reads in dimensionless form as,

∇ ·
[(

ǫ2D∂2t + n
)

∇φ
]

= ∇∇ : �, (87)

where � =
∫

ξξ f dξ . It can be shown the above RPE (87) is equivalent to the Pois-

son Eq. (85b). Unlike the previous DUGKS based on the splitting transport Eq. (86), the

improved DUGKS solves the un-splitting BGK-Vlasov Eq. (85a), such that the particle

transport, collision, and acceleration are considered simultaneously in the reconstruction

of numerical flux. For the RPE, a second order discretization was applied to the time

derivative, and a Poisson equation for the potential at the new time step was obtained

with the incorporation of momentum equation,

∇ ·
((

ǫ2D + �t2nk+1/2
)

∇φk+1
)

= nk+1/2 −1−�t∇ · (nu)k +�t2∇∇ : �k+1/2, (88)

which was then solved by a finite-element method. It was shown that this DUGKS based

on the BGK-Vlasov and RPE equations could preserve the hydrodynamic and quasi-

neutral limits as Kn → 0 and ǫD → 0, which was also confirmed by a number of

numerical simulations.

8 Summary and outlook

It is a challenging task for developing efficient and robust numerical methods for multi-

scale flows due to the involved large span of spatial and temporal scales. Kinetic schemes

based on the Boltzmann or model equations have the potential to serve this purpose,

but it is non-trivial to design a kinetic scheme which can capture the hydrodynamics

without resolving the kinetic scale, i.e., exhibit the UP properties. The DUGKS is one

such kinetic scheme with the desired properties, and its merit lies in the reconstruction

of the numerical flux at cell interfaces, which is based on the numerical solution of the

kinetic equation itself. This means that the spatial-temporal coupling dynamics is taken

into account simultaneously, which is necessary for developing reliable numerical meth-

ods [101]. Furthermore, with the coupling of collision and free transport, the underlying

physics of the kinetic equation is respected by the DUGKS, and thus it exhibits some

nice properties, such as low numerical dissipation and robustness, that distinguish it from

other kinetic schemes.

It is interesting to note that the standard LBE could also be viewed as spatial-temporal

coupling method if one tracks the transformed distribution function f̃ on a regular lat-

tice [102], which follows the simple collision-streaming procedure, although it is generally

considered as a decoupling scheme. The LBEmethod has shownmany distinguish advan-

tages in simulating complex flow problems, mainly lying in continuum regimes. However,

some intrinsic limitations still exist in LBE, as pointed out in the recent perspective arti-

cle [103]. Specifically, four inconveniences were identified: the use of uniform mesh, slow

convergence for steady flows, limitation of Mach number, and difficulties in actual coding

for the implementation of complex boundary conditions. In addition to these points, it is

also a non-trivial task to design a LBEmodel for strong non-equilibrium flows which usu-

ally requires a large number of discrete velocities coupled with a regular lattice. Although
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some progresses on these subjects have been achieved separately, some special techniques

are usually involved and the advantages of LBE will be lost more or less. On the other

hand, the DUGKS does not suffer from these limitations and provides a unified numerical

tool. Actually, an open source code is available to be used to simulate low and high Mach

number flows in different regimes with unstructured meshes [76].

Indeed, after years of development the DUGKS has demonstrated its advantages in sim-

ulating multiscale flows, including turbulent flows, particulate flows, two-phase flows,

flows of gas mixtures, and micro/nano flows. It has also been extended to study transport

phenomena of other energy carriers, such as phonon, photon, and plasmon. The available

results present a clear evidence that the DUGKS can serve as an appealing numerical tool

for the calculation of multiscale transport problems. Despite the success of DUGKS, there

is still much space for improvements. Specifically, the following critical problems should

be considered to improve the performance of DUGKS.

8.1 Memory reduction

As a deterministic discrete velocity method, a large number of discrete velocities may

be required, particularly for 3D highly compressible or highly rarefied flows, to capture

the irregular distribution function. For such problems, the memory requirement and

computational cost will be quite demanding. Therefore, developing memory reduction

techniques is critical for DUGKS in simulating such flows. One natural choice is using the

velocity adaption technique, which has been employed in some discrete velocity meth-

ods (e.g., [55, 56]). In this method, fine and coarse velocity grids are used adaptively in

different flow regions, depending on the regularity of the distribution function. How-

ever, conservation property should be carefully addressed during the particle transport

on different velocity grids.

Another more elaborate memory-reduction technique, i.e., reduced-order-modeling

(ROM), was introduced into DUGKS recently [104]. With the ROM, a reduced discrete

velocity space can be selected from the original discrete velocity space to represent impor-

tant dynamical characteristics. Consequently, a large number of grid points in the original

discrete velocity space, which contribute little to the dynamics, can be removed in prac-

tical computations. The numerical tests showed that the memory in the ROM DUGKS

could be significantly reduced and the computational efficiency could be greatly improved

[104].

Beside the above two deterministic memory reduction techniques, stochastic particle

methods can also be combined into discrete velocity methods. A successful example is

the recent unified gas-kinetic wave-particle (UGKWP) method [23]. In this method, both

the distribution function and simulated particles are used to describe flow physics, where

the particles are sampled only for capturing the local non-equilibrium part caused by

free transport. In each control volume, the evolution of kinetic equation is coupled with

the macroscopic conservation equations. With the introduction of particles, the velocity

space can be sampled adequately such that the memory requirement as well as computa-

tional cost could be reduced significantly. This technique could also be incorporated into

the framework of DUGKS in principle, but the detailed implementation needs further

investigation.

It is also noted that a very efficient memory reduction technique was developed for

solving stationary kinetic model equations [105], in which velocity distribution function
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was reconstructed from macroscopic variables. Therefore, only the macroscopic quanti-

ties appearing in the collision term are stored, and thememory requirement for enormous

discrete velocities is totally relieved. Furthermore, with the introduction of a prediction

step to estimate the equilibrium state by solving themacroscopic governing equations, the

efficiency and accuracy of this method were greatly improved in the near continuum and

continuum regimes [106]. This technique may also be employed in DUGKS. However, it

is still not clear how to apply this technique to transient kinetic models.

Finally, it is remarked that for continuum flow the memory can be greatly reduced

by removing the evolution of discrete distribution functions, since in this case the dis-

tribution functions can be approximated with the Chapman-Enskog solution at the

Navier-Stokes equations, which depends only on the equilibrium distribution function

and its gradient. As such, only the conserved variables are required to evolve, and the

memory requirement can be much reduced. This idea was originally developed in the

lattice Boltzmann flux solver [107, 108], and can be used to improve the memory and

computational efficiency of DUGKS for continuum flows.

8.2 Implicit schemes

With the memory reduction technique, the computational efficiency could be improved.

However, as an semi-implicit time-marching method, the time step of the standard

DUGKS is limited by the CFL number, which may be rather small and thus controls the

overall computational efficiency. In this regard, many techniques widely used in classi-

cal computational fluid dynamics (CFD) can be employed to release this restriction. For

instance, an implicit DUGKS was designed for steady flows [109], in which the macro-

scopic equations for the conservative variables were solved iteratively as a prediction

step for the iteration procedure of the kinetic equation. The delta formulations of the

conservative variables and distribution function were employed in the iterations and the

matrix free Lower-Upper Symmetric Gauss Seidel (LU-SGS) was used to solve the implicit

equations. Furthermore, a pseudo time step with a large CFL number was adopted to

accelerate the convergence. Some numerical tests of (nearly) incompressible and com-

pressible flows under different Knudsen numbers were performed. The results showed

that the computational efficiency could be improved by one or two orders of magnitude

in comparison with the explicit DUGKS.

The implicit DUGKS developed in [109] was based on the transient kinetic equation,

although a large pseudo time step could be used. Recently, a DUGKS was developed to

solve directly the steady linear kinetic equation for neutron transport [110], where the dis-

tribution function at a cell interface is obtained by integrating the steady kinetic equation

along the neutron transport direction. This idea could also be used to design implicit

DUGKS for steady flow problems.

The above two schemes were designed for steady problems. More efficient DUGKS

algorithms for unsteady problems are still desired. The strategies used in CFD, such as

dual time stepping, multi-grid, and temporal adaption techniques, could be adopted to

this end. We note particularly that an implicit UGKS for unsteady flows was developed

recently [111], which solves the macroscopic conservative equations in delta form itera-

tively with a large numerical time step. The flux for macroscopic equations is obtained

from a local time-averaged one given by the distribution function, which is calculated

iteratively from the kinetic equation also in delta form. The cell size effect is incorporated



Guo and Xu Advances in Aerodynamics             (2021) 3:6 Page 38 of 42

into the local time averaged flux in this method, such that the numerical time step is not

restricted by the CFL condition. It is expected that the techniques used in this implicit

UGKS could also be employed to design implicit DUGKS for unsteady flows.

8.3 High-order schemes

The available DUGKS is of second-order accuracy in both space and time. In some cases,

higher order accuracy would be necessary (e.g., [82]). Some efforts have been made to

design high-order DUGKS’s. For instance, a third-order DUGKS has been developed

based on a two-stage time-stepping scheme and a third-order flux reconstruction [112].

Numerical results demonstrated that the scheme is of third order accuracy in both space

and time. On the other hand, it was claimed that it was difficult to design a DUGKS of

order higher than three in time if the trapezoidal rule is employed in determining the

interface distribution function along the characteristic line.

It is noted that even in the second-order DUGKS, some partially high-order tech-

niques could also be employed. For example, one can use high-order interpolations (such

as weighted essentially non-oscillatory schemes) to construct the distribution function

f̄ + (

x′) at the starting point of the characteristic line in (9). As such, although the overall

accuracy is still of second-order, the absolute error can be reduced.

Another appealing technique for improving the accuracy is the two-stage Lax-Wendroff

time stepping method [101], which has been applied to the gas-kinetic scheme [113]. It is

worthwhile to try this technique in developing high-order DUGKSmethods in the future.

In summary, the DUGKS has gained much success in simulating multiscale flows and

demonstrated great potentials in simulating other transport phenomena, but it is still far

from maturity and needs further improvement in many aspects such as memory reduc-

tion, implicit discretization, convergence acceleration, and high-order spatial/temporal

discretizations. Further applications of DUGKS to multiscale flow physics are also

desired.
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