
Citation: Wang, Y.; Yu, D.-G.; Liu, Y.;

Liu, Y.-N. Progress of Electrospun

Nanofibrous Carriers for

Modifications to Drug Release

Profiles. J. Funct. Biomater. 2022, 13,

289. https://doi.org/10.3390/

jfb13040289

Academic Editor: John H. T. Luong

Received: 18 October 2022

Accepted: 7 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of 

Functional

Biomaterials

Review

Progress of Electrospun Nanofibrous Carriers for Modifications
to Drug Release Profiles
Ying Wang 1, Deng-Guang Yu 1,2,* , Yang Liu 3 and Ya-Nan Liu 1,*

1 School of Materials and Chemistry, University of Shanghai for Science and Technology,
Shanghai 200093, China

2 Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials,
Shanghai 200093, China

3 School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng
Road, Shanghai 201620, China

* Correspondence: ydg017@usst.edu.cn (D.-G.Y.); yananliu@usst.edu.cn (Y.-N.L.)

Abstract: Electrospinning is an advanced technology for the preparation of drug-carrying nanofibers
that has demonstrated great advantages in the biomedical field. Electrospun nanofiber membranes
are widely used in the field of drug administration due to their advantages such as their large specific
surface area and similarity to the extracellular matrix. Different electrospinning technologies can
be used to prepare nanofibers of different structures, such as those with a monolithic structure, a
core–shell structure, a Janus structure, or a porous structure. It is also possible to prepare nanofibers
with different controlled-release functions, such as sustained release, delayed release, biphasic release,
and targeted release. This paper elaborates on the preparation of drug-loaded nanofibers using
various electrospinning technologies and concludes the mechanisms behind the controlled release
of drugs.

Keywords: electrospinning; medicated nanofibers; drug delivery; controlled release; functional
biomaterials

1. Introduction

Because the body’s self-healing function is limited, when the human body is injured,
it is often necessary to use drugs to speed up the repair process. Drugs can inhibit internal
and external factors that are not conducive to human health, thereby promoting self-
repair. The most common modes of administration are injectable and oral administration.
Injectable drug delivery includes intravenous injection, arterial injection, intramuscular
injection, and subcutaneous injection; although it has the advantages of being applied to a
large number of agents, high bioavailability, and low toxicity, there are shortcomings such
as the necessity of frequent administration, difficulties in administering the drugs, and
large-dose administration easily causing adverse reactions. Oral drug delivery includes
tablets, capsules, and granules, which have the advantages of ease of use, high patient
compliance, and easy storage and transportation, but also have the disadvantages of low
utilization, slow absorption rates, and the concentration of drugs reaching the target area
being low, resulting in poor treatment effectiveness [1–5]. Compared with this systematic
system of systemic administration, topical administration shows huge advantages. Topical
therapy has the advantages of high local drug concentration, low systemic blood drug
concentration, few adverse reactions, and few toxic side effects [6,7]. The most ideal mode
of administration is to modify the drug to attain a controlled release function of the drug
delivery mode, that is, the drug delivery system (DDS).

The DDS is a technical system that comprehensively regulates the distribution of
drugs in organisms in terms of space, time, and dosage, and its main goal is to deliver the
appropriate amount of drugs at the appropriate time according to medical conditions so as
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to maximize the effectiveness of the drugs, improve their efficacy, reduce costs, and reduce
toxic side effects [8,9]. The research objects include the drug itself, the carrier materials and
devices carrying the drug, and the related technologies for physicochemical modification
and modification of drugs or carriers [10]. Modified drug release (modulation release) is
compared to regular release, i.e., the rate or timing of drug release, including sustained
release, delayed release, controlled release, targeted release, and biphasic release [11–13].
Constant release refers to the release of the drug without deliberate modification. Sustained
release means that the absorption rate of drugs entering the body is reduced, and the release
time is relatively long, which is a non-constant rate of release [14]. Late release means that
the drug is not released immediately after administration. Biphasic release refers to the
phased release of the drug, the rapid release of the drug in the early stage, and the slow
release of the drug in the later stage. Targeted release refers to the targeted delivery of
active ingredients to the identified sites for precise drug release, which can control the time,
place, and rate of drug release [15].

With the discovery and development of nanotechnology, nano DDSs have attracted
increasing attention because of their huge potential. The overall goal of drug delivery
using nanocarriers is to effectively treat the disease with minimal side effects, controlling
drug release through passive or active targeting in a time-dependent manner at a specific
location level [16,17]. At present, electrohydrodynamic jet printing technology, electro-
spraying technology, and electrospinning technology are all advanced technologies for
the preparation of nano-sized to micron-sized materials, which have received widespread
attention in the biomedical field [18–22]. Among these, electrospinning technology is the
most popular technology. Electrospinning technology is well suited to preparing polymer
fibers from the nano to the micron range [23]. It is a technology that uses natural and
synthetic polymers to produce nanofiber membranes with diameters ranging from 2 nm to
several micrometers [24].

2. Electrospinning Technology

The basic principle of electrospinning is to spray the electrospinnable liquid into
a strong electric field to form a continuous fiber that involves an electrohydrodynamic
process. The basic device of electrospinning consists of four parts [25]: (a) a high-voltage
source, (b) a syringe pump, (c) a spinneret, and (d) a collector. In solution electrospinning,
in the case of a strong electric field, first due to the surface tension of the solution, droplets
are formed on the nozzle of a spinneret, and the surface of the droplets carries an inductive
charge [26]. When the electrostatic force is the same as the surface tension of the solution,
the shape of the droplet changes from a hemispherical shape to a cone, which is called a
Taylor cone [27]. When the electrostatic force is larger than the surface tension, the solution
overcomes the surface tension and forms a jet [28,29]. The jet initially extends in a straight
line and then undergoes a violent whiplash movement due to bending instability. During
the process of reaching the collection unit, only solid fibers are left due to jet stretching and
solvent evaporation [30–32].

In general, the electrospinning process can be divided into four consecutive steps:
(i) charging of droplets and formation of a Taylor-conical jet, (ii) a charged jet extending in a
straight line, (iii) thinning of the jet and growth of electrical bending instability (also known
as whipping instability) in the presence of an electric field, and (iv) solidification and
collection of the jet as a solid fiber on a ground collector [33,34]. According to the principle
of electrospinning, the electrospinning process can be adjusted by system parameters,
process parameters, and environmental parameters to change the morphology and size
of the nanofibers [35–37]. The system parameters include the type of polymer in the
spinning fluid, molecular weight, viscosity, solution conductivity, and surface tension.
The process parameters include power supply type (direct current (DC) or alternating
current (AC)), receiving distance, collector type [38–40], voltage, spinneret type, and flow
rate. The environmental parameters include humidity and temperature. Figure 1 shows
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the basic equipment diagram of electrospinning and the influencing factors of its process
parameters [41].
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Electrospinning technology can be exploited to treat a wide variety of polymer-based
working fluids, including polymeric solutions, emulsions, suspensions, and also polymeric
melts [42,43]. Different with a homogeneous solution, an emulsion is a heterogeneous
fluid containing two or more immiscible solutions. One exists in the form of a continuous
phase, and the other as tiny or ultramicro-sized droplets distributed throughout the contin-
uous phase. Suspensions are mixtures of liquids and suspended solid particles [44]. The
treated solutions, emulsions and suspensions can be solidified into fibers through solvent
evaporation during the electrospinning processes. However, the polymer melt during a
melt electrospinning is non-conductive, and the viscosity is much greater than that of the
solution. Unlike the solution electrospinning jet, in-evaporative solidification plays its role
and the melt jet is cured by cooling [45,46].

Electrospinning technology can be divided into the following types: single-fluid elec-
trospinning, bi-fluid electrospinning, and multi-fluid electrospinning according to the
simultaneously treated number of different kinds of working fluids [47]. Among them,
most blended electrospinning and emulsion electrospinning belong to single-fluid elec-
trospinning. Coaxial electrospinning and side-by-side electrospinning are typical bi-fluid
electrospinning. Multiple-layer coaxial electrospinnings are often referred to the tri-fluid
coaxial electrospinning and four-fluid coaxial process [48,49].

Electrospinning technology can also be divided into needleless electrospinning, single-
needle electrospinning, and multi-needle electrospinning according to the different spin-
nerets. Among these, coaxial electrospinning, parallel electrospinning, and triaxial electro-
spinning are multi-needle electrostatic spinning modes [50].

Electrospun fibers have different types of structures, such as a uniaxial structure, a
core shell structure, a Janus structure, a multi-layer structure, or a porous structure. They
have the advantages of a large specific surface area and porosity naturally. Meanwhile, the
surface functionalization and performance can be facilely tailored [24,51–54], thus, it is no
strange that electrospinning has been widely explored in the fields of biomedicine [55,56],
filtration [57–59], catalysis [60,61], energy [62], sensing [63,64], and optoelectronics [65], and
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particularly in the biomedical field [66,67]. The frequently reported medical devices include
DDS [68–70], antimicrobial systems [71–74], therapeutic systems [75], and tissue engineer-
ing [76,77]. Additionally, because of their typical high biocompatibility and the fact that
their morphology resembles the extracellular matrix of the human body [24,51–53,78–80],
this means that they may be well suited for use in wound dressings [81–84], tissue engineer-
ing [85], and, especially, in vivo administration [86]. Most recently, Ding et al. reviewed
the series of interesting applications of electrospun fibrous architectures for drug delivery,
tissue engineering cancer therapy and pointed out that many electrospun medical fibers are
approaching their real clinic applications as commercial products [86]. For drug delivery
applications, electrospun nanofibers are typical intermediate dosage forms [87–90]. Electro-
spinning technology has almost no limitations in the selection of polymeric matrices and
the encapsulated active pharmaceutical ingredients [91–93]. The reported drugs include but
not limited to water-insoluble, water-soluble, anticancer, and antibacterial drugs; growth
factors; and genetic material [94–100]. In addition, multi-drug-loaded electrospinning
nanofiber membranes can also reduce the number of dosing times, thereby improving
patient compliance [101–104]. Figure 2 shows the advantages, structure, and applications
of electrospun fibers.
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3. Preparation of Drug Nanofibers

Due to the certain particularity of nanofibers in drug transportation, most research in
the field of drug carriers gives preference to nanofibers. The most important thing in the
preparation of drug-carrying nanofibers is the choice of drug carriers. At present, the carrier
materials used for drug delivery in the biomedical field include lipid materials, polymers,
inorganic materials, nanoemulsions, and nanocrystals [17,105–111]. Table 1 shows the size
of the drug carrier and its advantages. Among all the nanoscale materials, nanofibers
produced from biodegradable and biocompatible polymers have received widespread
attention for their flexibility, effectiveness, and unique physicochemical properties [87].
Other popular nanocarriers are mainly nanoparticles and liposomes. Among them, solid
lipid nanoparticles are further divided into seven types: monoglycerides, diglycerides,
triglycerides, free fatty acids, free fatty alcohols, waxy, and steroids [112].
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Table 1. Size and advantages of drug carrier materials.

Name Diameter/Aperture Advantage References

Solid lipid nanoparticles 100–1000 nm
Low toxicity, highly effective drug targeting,

controlled-release drugs, high drug loads (especially
lipophilic drugs), prevents degradation and has versatility

[112–114]

Lipidosome 50–200 nm Biocompatible, biodegradable, non-toxic
and non-immunogenic [115]

Dendritic polymer 1.5–14.5 nm Spherical homogeneous structure, high biocompatibility,
lipophilic, variable composition [116]

Nanocapsule 10–1000 nm Improves efficacy and bioavailability, prevents drug
degradation, and provides controlled-release delivery [117]

Polymeric micelle 10–100 nm Improves bioavailability, alters drug release curves, and
improves patient compliance [118]

Mesoporous silica material 2–50 nm
Good biocompatibility, large specific surface area, large
porosity, high drug carrying capacity, good thermal and

chemical stability, can carry hydrophilic and lipophilic drugs
[119–121]

Carbon nano tube
0.4–2 nm Water solubility, biocompatibility, low toxicity, high drug

load, intrinsic stability, high specific surface area [122–124]
2–100 nm

Nano-emulsion Submicron order High stability, high load capacity, improved solubility
and bioavailability [125]

Nanocrystal 1–1000 nm

Stabilized by surfactants or stabilizers, no need for carrier
materials, drug nanocrystals can enhance the adhesion to
biofilms, increases the saturation solubility of drugs, large

specific surface area, high bioavailability, high stability, high
drug loading capacity, stable dissolution, sustained release

drugs and safety

[126–128]

Currently, a large amount of polymers are successfully being used in electrospinning
for the preparation of drug carriers [129–132]. Polymers can be divided into natural poly-
mers and synthetic polymers according to the source, among which natural polymers are
mainly derived from animals and plants [133,134]. According to the different characteristics
of the polymers, they can be converted into nanofibers for providing controlled release,
sustained release, delayed release, and other kinds of modified release profiles. Table 2
shows the different types of polymers.

Table 2. Different types of polymer carriers.

Natural Polymers Water-Soluble Water-Insoluble Degradable Small Molecule

Botany
Alginate Cellulose Glucan CD

Zein NR
Pectin

Animal Gelatin (soluble in hot water) Collagen PASP
CS

Microorganism PGlu
Synthetic polymers Water-soluble Water-insoluble Degradable Small molecule

HPMC PVC Polyanhydride PE
Polyacrylate EVA PGA PS

PEG PMMA Polynitrile alkyl acrylate PEI
PVA PE polyorthoester PEG
MC CA PHB

PAM PAN PLLA
PEO PS PLGA
PVP PPy PHAS

PVDF PBS
EC PLA
PA PCL
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Within the nanofibers, a drug can co-exist with a polymer in several manners and
in different physical state [135–139]. These cases mainly include: (a) the drug is homoge-
neously distributed all over the polymeric nanofibers, and most frequently in an amorphous
state; (b) the drug distributes on the surface of polymeric nanofibers in a crystal format; and
(c) the drug can be firstly encapsulated into the nanoparticles, and then the nanoparticles
are loaded into the fiber. They are shown in Figure 3.
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4. Drug Carrier Technology and Its Controlled Release

In the literature, several drug controlled release mechanisms have been reported,
which are manly based on the properties of the drug carriers. These mechanisms include a
diffusion mechanism, a swelling mechanism, an erosion mechanism, an erosion mechanism
combined with a diffusion and swelling mechanism, an osmotic pressure mechanism, and
an ion exchange mechanism. Among them, Fickian diffusion belongs to simple diffusion;
swelling control is a physical trigger, caused by factors such as temperature and light,
causing the fibers loaded with the drug to swell or degrade, thereby releasing the drug;
dissolution control is a chemical trigger, which is highlighted by factors such as degradation
and hydrolysis, resulting in the surface erosion of the drug-carrying fibers to achieve drug
controlled release [140]. The osmotic pressure mechanism is the use of osmotic pressure
so that the drug evenly penetrates outward. The ion exchange mechanism operates by
water-insoluble cross-linked polymer resin; when the drug-carrying resin containing the
appropriate charge ions comes into contact with the solution, the drug molecules are
exchanged and diffused into the solution. The most important drug release mechanisms
are the diffusion and erosion mechanisms. Three other major mechanism for controlling
drug release are the following: networking, matrix embedding, and coating [9]. Different
drug-carrier fibers prepared by different drug-loading techniques have different release
mechanisms. In the following, controlled drug release and its controlling factors are
discussed in detail in relation to electrospinning using a number of fluids.

4.1. Uniaxial Electrospinning Drug Carrier
4.1.1. Solution Electrospinning

Solution electrospinning requires a solvent or a solvent mixture, in which both the
filament-forming polymer and the drug can reach a certain concentration for an electro-
spinnable property of the solution and the therapeutic effect of the drug after administra-
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tion [141]. In addition, because various types of materials and drugs can be processed by
electrospinning in solutions, they are not limited to the use of polymers and drugs and
require only simple equipment. Solution electrospinning is the most researched and applied
technology for loading drugs in electrospinning fibers [142]. Solutions in electrospinning
are usually mixed solutions.

Blend-solution electrospinning was developed on the basis of traditional electrospin-
ning; a variety of drugs can be encapsulated into electrospinning nanofiber membranes, and
it is the simplest method, belonging to uniaxial electrospinning. According to relevant re-
ports, the electrospinning process has no effect on the biological activity of antibiotics [143]
and polyphenols [144]. However, due to high permeability and shear stress, the structure
of the liposomes is destroyed during the electrospinning of the mixed solution [145]. In
general, there is an initial explosion phenomenon in the process of the electrospinning of
blends, which is mainly due to the distribution of the drugs on the surface of the fibers
during the electrospinning process, and the surface volume of the electrospinning nanofiber
membrane is relatively high [146].

Electrospinning mixed solutions can load drugs with different properties into the
same membrane, and a nanofiber membrane with biphasic drug release is prepared by the
properties of the drug itself to achieve controlled release of the drug. Biphasic drug release
is manifested by rapid release first and sustained release later, reducing the time required to
administer the drug [147,148]. The initial dissolution of the drug is due to the appearance
of the drug on the surface in an amorphous form, determined by the solubilizing effect and
leaching action. Stable releases are due to longer diffusion paths [149]. In the solvent system
of acetone and DMF, Li et al. [150] mixed the hydrophilic drug GTP and the hydrophobic
drug DEX with PLGA to prepare an electrospun nanofiber membrane with biphasic release.
This experiment confirmed that DEX molecules can successfully be released from channels
formed by early-release GTP molecules. The release mechanism is shown in Figure 4A, and
the two mechanisms involved in GTP and DEX release are the diffusion of drug molecules
and the degradation of polymers. The study used the pro-hydrophobicity of the drug to
achieve biphasic release of the drug.

Solution electrospinning can also be used to prepare nano drug-loaded fiber mem-
branes with a local drug delivery function, which can control drug release due to the
properties of the polymer. Topical administration is an accurate means of administration
that can better reduce the toxic side effects to the whole body and also has a more conve-
nient frequency of administration, which is conducive to the sustained release of drugs
and improving patient compliance. Andreadis et al. [151] prepared an in situ gelatinous
nanofiber film containing PVA and Poloxamer 407 by electrospinning for ocular delivery of
TM. This experiment studied the in vitro release curve of TM from electrospun nanofibers,
as shown in Figure 4B. Due to the hydrophilic nature of PVA nanofibers, the fibers belong
to Fickian diffusion control, allowing the drug to be released quickly. To this end, the con-
trolled release of the drug was achieved due to the hydrophilic and hydrophobic properties
of the polymer.

Different drugs can change the internal structure of polymeric substrates by solution
electrospinning. The electrospun nanofiber membrane prepared by the same solution
will have different drug release effects by loading different drugs and using different
encapsulation forms. Hall Barrientos et al. [152] used chloroform and DMF as solvents
to prepare PCL electrospun fiber membranes loaded with irgasan and levofloxacin by
electrospinning. In vitro drug release studies have shown that PCL-IRG fiber-released
irgasan exhibits sustained release behavior, indicating that the drug is released through
molecular diffusion, possibly due to the hydrophobicity of the drug, so its membrane
also has some degree of hydrophobicity. The release of levofloxacin by PCL-LEVO fibers
exhibited explosive release behavior, possibly due to the hydrophilicity of levofloxacin and
the way the drug adsorbs on the surface of the polymer. The AFM image and release curve
are shown in Figure 4C.
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buffered aqueous solution at 37 ◦C (reprinted with permission from [150]. Copyright©2014, Springer
Science Business Media New York). (B) At 35 ◦C (n = 3; AFM images of PCL-IRG fibers and PCL-
LEVO fibers at STF pH 7.4 at mean ± SD) (reprinted with permission from [151]. Copyright©2022,
American Chemical Society). (C) (a–c) PCL-IRG fibers and PCL-LEVO fibers at STF pH 7.4; percentage
of cumulative drug release released by IRG and LEVO in phosphate-buffered saline media (reprinted
with permission from [152]. Copyright©2019 Elsevier B.V. All rights reserved). (D) (a) Release
mechanism of thermally triggered electrospinning membranes with switching function. (b) In vitro
pulsating release curve of RhB of F3 composite nanofibers during heating (45 ◦C)/off (37 ◦C) cy-
cle while taking the release curve at 37 ◦C for comparison (reprinted with permission from [149].
Copyright©2019 Elsevier B.V. All rights reserved.).

Blended electrospinning can also be used to produce other novel “smart” drug-loaded
nanofiber membranes that vary in temperature, allowing pulsatile drug release on demand.
Amarjargal et al. [149] used RhB as a drug model, added different proportions of PMMA
and ERS to the blend polymer, changed its glass transition temperature (Tg), and suc-
cessfully prepared a new type of easily processed heat-sensitive ERS/PMMA membrane.
Thus, the best drug release effect can be obtained under physiological temperature- and
heat-triggered drug release conditions. The drug release mechanism of the thermally trig-
gered electrospinning membrane with a switching function is shown in Figure 4D(a). By
studying the pulsating drug release behavior of composite nanofiber F3 under the action
of a reversible glass–rubber transition mechanism, the on/off switching release of this
drug was preserved in four repeated temperature-driven cycles, confirming the realization
of on-demand pulsation release; the in vitro release curve is shown in Figure 4D(b). All
the above-mentioned electrospinning processes were conducted by treating only a single
solution as the working fluid. The chemical and physical properties of filament-forming
polymeric matrices were exploited to modify the loaded drugs’ release behaviors.

4.1.2. Emulsion Electrospinning

Emulsion electrospinning is a uniaxial electrospinning technique, but nanofibers with
a core–shell structure can be prepared [153]. The electrospun nanofiber membrane pre-
pared by emulsion electrospinning is released faster in the shell than in the core layer. It
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plays a role in protecting bioactive substances and allows the sustained release of mul-
tiple drugs [154,155]. When two drugs are simultaneously located in the core layer of
nanofibers, the release of one drug is affected by the release of another drug [156]. Emul-
sion electrospinning fibers are less toxic and contribute to the adhesion and proliferation of
fibroblasts [157]. In the electrospinning process for emulsions, the drug is usually dissolved
in the aqueous phase and then dispersed in an organic polymer solution containing a
suitable surfactant, i.e., the oil phase, because the evaporation rate of the oil phase is faster
than that of the aqueous phase, resulting in a higher viscosity of the oil phase, and then
the aqueous phase moves inside, while the oil phase moves to the edge of the nanofibers
due to the viscosity gradient, i.e., stretching and evaporation-induced demulsification
occurs, nanofibers with a core–shell structure are prepared, and most of the drugs are
encapsulated in the fibers [158,159]. In the emulsification process, hydrophilic drugs are
dissolved in water (aqueous phase), while hydrophobic polymers are dissolved in solvents
(oil phase), so this process can effectively alleviate or even avoid the phenomenon of drug
explosion. In addition, the process can produce good-quality nanofibers from diluted
polymer solutions [160,161]. A schematic diagram of the mechanism of the formation of
nanofibers in the core–shell structure using the electrospinning process for emulsions is
shown in Figure 5A.

Emulsion electrospinning provides a green method that can be used to prepare drugs
using simple equipment to control the release of nucleus–shell nanofibers, which is a kind
of “green electrospinning”. The so-called “green electrospinning” process involves elec-
trospinning polymers in an aqueous solution to avoid harmful organic solvents [162,163].
Since the interactions between polymer chains affect drug release to a certain extent, differ-
ent polymers exhibit different controlled-release effects. Hameed et al. [164] blended PVA
with CS, CMC, CMS, HPC, and other biopolymers, respectively, and prepared cephalexin-
loaded nanofibers with a core–shell structure using emulsion electrospinning. Due to the
differences in the interactions between the PVA chains, the release of cephalexin was in the
following order: PCS < PCMS < PHPC < PCMC, and they were all controlled by Fickian
diffusion, as shown in Figure 5B.

Solution electrospinning has some defects in the burst release of loaded drugs. Emul-
sion electrospinning can be used to prepare electrospun fibers with continuous and sus-
tained release functions to alleviate the burst release of drugs. By adding emulsion droplets,
various lipophilic components can be easily loaded into the hydrophilic polymer matrix
of the fibers to avoid bursting phenomena [165]. Basar et al. [166] prepared KET-loaded
PCL and PCL/gelatin electrospun fibers using solution electrospinning and emulsion
electrospinning. After crosslinking, the drug release property was compared. In vitro drug
release studies showed that binary PCL/gelatin electrospun fibers completely inhibited the
burst release of KET and exhibited continuous and sustained drug release for up to 4 days,
as shown in Figure 5C. This is due to the fact that the drug release from the PCL fibers
belongs to Fickian diffusion, while the drug release from the PCL/gelatin fibers belongs
to non-Fickian diffusion. Therefore, the drug controlled-release effect can be achieved
by adding polymers. The role of gelatin, for example, is to provide a function through
cross-linking and then act as an effective barrier against the diffusion of drugs. Similarly,
Koosha et al. [167] showed that the sustained release of drugs can be effectively achieved
through crosslinking.

Emulsions can be converted into a nanofiber-based solid dispersion through electro-
spinning. The solid dispersion is a dispersed mixture of one or more APIs in a solid inert
carrier [105,168]. Solid dispersions are a versatile strategy that can be used to develop
oral solid dosage forms of poorly soluble drugs and also to increase the rate of in vitro
dissolution of poorly water-soluble drugs [169]. Shibata et al. [170] used an oil/water
(O/W) emulsion consisting of PBC dissolved in ethyl acetate and PVP aqueous solution for
electrospinning to improve the solubility of the PBC. In this study, the surface PVA grade,
PBC content, O/W emulsifying solvent, and added surfactant content were found to affect
solubility and other properties, and the release curve is shown in Figure 5D. The fiber was
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controlled release by swelling, and the drug was encapsulated in the fiber in an amorphous
form, which improved the solubility of the drug to a certain extent. Gelb et al. [171] also
investigated the effects of polymer type, polymer molecular weight, solution concentration,
and incorporation of the model drug Cip HCl on the delivery properties of electrospun
nanofibers. Therefore, the controlled-release effect and drug dissolution enhancement can
be achieved through polymer properties (such as degree of polymerization and degree of
hydrolysis), drug content, and by adding different concentrations of surfactant.
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process should be shorter because when the heating time is longer, the polymer tempera-
ture is higher, that is, the polymer viscosity is lower, and the long-term drawing makes 
the jet unstable [175]. 

Unlike solution electrospinning devices, melt spinners require more complex equip-
ment, often with higher rotational voltages and heating systems including temperature 
sensors. In the melt electrospinning process, one electrode is connected to the spinning 
melt and the other electrode is connected to a metal collector. When electrostatic power 
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Figure 5. Emulsion electrospinning. (A) Schematic diagram of the mechanism of core–shell fiber
formation during emulsion electrospinning (reprinted with permission from [158]. Copyright©2006,
WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim). (B) (a) In vitro drug release of PVA/biopolymer
mixtures and (b) intermolecular interactions between PVA and different biopolymers (reprinted with
permission from [164]. Rights managed by Taylor & Francis). (C) In vitro drug release curve of PCL
fibers containing KET and PCL/gelatin crosslinked fibers (reprinted with permission from [166].
Copyright©2017, Elsevier B.V. All rights reserved.). (D) (a–d) Release curves of PVA grade, PBC
content, use of different solvents, effect of P80 concentration on PBC dissolution of PPA nanofibers
(reprinted with permission from [170]. Copyright©2021, Elsevier B.V. All rights reserved).

4.1.3. Melt Electrospinning

Melt electrospinning is a solvent-free method that involves the direct mixing of drugs
in polymer melts [172]. However, most biomolecules such as proteins, polysaccharides,
nucleic acids, and thermal polymers cannot be electrospun by melt electrospinning. Fibers
prepared from melt electrospinning are typically micron sized or larger in diameter and
require no downstream processes such as screening [173,174]. This process has the advan-
tages of no solvent residue or release, good biomedical safety, and a large drug load [142].
In general, during the uniaxial elongation of the molten polymer, the jet is unstable with a
decrease in the viscosity of the polymer, so the heating time during the drawing process
should be shorter because when the heating time is longer, the polymer temperature is
higher, that is, the polymer viscosity is lower, and the long-term drawing makes the jet
unstable [175].
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Unlike solution electrospinning devices, melt spinners require more complex equip-
ment, often with higher rotational voltages and heating systems including temperature
sensors. In the melt electrospinning process, one electrode is connected to the spinning
melt and the other electrode is connected to a metal collector. When electrostatic power
overcomes the surface tension of the polymer melt, the discharge jet erupts and elongates
in the electrostatic field, where it then cools and is deposited on the collector [176].

The drug loading of electrospun nanofibers is often limited by drug solubility and
solvent concentration in mixed-solvent systems, while melt electrospinning is a solvent-free
method, so new drug delivery systems can be developed through the melt electrospin-
ning method to solve the solvent limitation problem. Melt electrospinning can use its
filamentation principle to cause polymer molecular chains to rearrange themselves and
thus carry out the controlled release of drugs. Lian et al. [177] dispersed the hydrophilic
drug daunorubicin hydrochloride in a PCL fused electrospun fiber membrane in a clustered
state. In the process of melt electrospinning, the PCL molecular chain is rearranged to form
crystals, which inhibit the penetration of water and the diffusion of drugs due to the high
crystallization and hydrophobicity of its fiber membrane, thus avoiding the sudden release
of drugs. After a period of time, the molecular chains are loosely arranged, and the water
is able to diffuse within the fibers through amorphous areas, releasing a large amount of
the drug. For this reason, the fiber has a slow release rate and a long-term release period.
The release curve is shown in Figure 6A.

J. Funct. Biomater. 2022, 13, x FOR PEER REVIEW 13 of 33 
 

 

 
Figure 6. Melt electrospinning. (A) Drug release curve of PCL melt electrospun fibers containing 
daunorubicin hydrochloride: (a–c) 1wt%, 5wt%, and 10 wt% (reprinted with permission from [177]. 
Copyright©2017, the authors. Production and hosting by Elsevier B.V. on behalf of KeAi Commu-
nications Co., Ltd.). (B) (a) Kinetic characteristics of drug release of PLLA/PHB pads and (b) effect 
of diffusion on controlled drug release (reprinted with permission from [178]. Copyright©2017, 
Controlled Release Society). (C) Dissolution rate of Draconis Sanguis in vitro (reprinted with per-
mission from [179]. Copyright©2019, Wiley Periodicals, Inc.). 

4.2. Coaxial Electrospinning Drug Carrier 
In simple electrospun fiber membranes, the distribution of drugs on the surface of 

nanofibers, the large surface area of the nanofibers, and the amorphous state of the drugs 
in the nanofibers all lead to an initial explosive release, which is not ideal for the continu-
ous release of drugs [180]. In order to eliminate the explosive release, post-processing such 
as cross-linking or chemical modifications of nanofiber membranes is needed. However, 
these types of post-treatments may lead to a decrease in toxicity and biocompatibility 
[181]. Coaxial electrospinning is another method by which to eliminate explosive release 
that is superior to post-processing [182]. Core–shell nanofibers can be formed by the sim-
ultaneous delivery of two different fluids through coaxial electrospinning, where one pol-
ymer is coated by another polymer, thereby improving the performance of both polymers 
at the same time [50,183,184]. Hollow fibers with different internal and external compo-
nents and functional fibers with possible coatings can also be obtained [185,186]. In addi-
tion, a small amount of non-spinnable material can be electrospun into core–shell fibers 
[187]. 

Coaxial electrospinning has a controlled-release effect to a certain extent due to the 
nanofibers produced by the nucleus–shell structure. Its use in controlled drug release can 
also be extended to polymers and drugs with low compatibility. Controlled release is 
achieved by changing the thickness of the shell because the shell acts as a barrier to diffu-
sion. Zahida et al. [188] prepared PCL nanofibers loaded with the hydrophilic drug am-
picillin with shell fluid that could not be fully electrospun and core liquid that was fully 
electrospinnable. By changing the flow rate of the shell liquid, it was found that samples 
with a larger shell flow rate showed a slower initial release, possibly due to the thicker 
fibrous shell layer produced by the larger flow rate. PCL is non-expandable and has a very 

Figure 6. Melt electrospinning. (A) Drug release curve of PCL melt electrospun fibers containing
daunorubicin hydrochloride: (a–c) 1wt%, 5wt%, and 10 wt% (reprinted with permission from [177].
Copyright©2017, the authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communi-
cations Co., Ltd.). (B) (a) Kinetic characteristics of drug release of PLLA/PHB pads and (b) effect of
diffusion on controlled drug release (reprinted with permission from [178]. Copyright©2017, Con-
trolled Release Society). (C) Dissolution rate of Draconis Sanguis in vitro (reprinted with permission
from [179]. Copyright©2019, Wiley Periodicals, Inc.).

Melt electrospinning can carry the drug into polymer fibers with biodegradability, and
the drug is controlled by hydrolysis reactions. Gao et al. [178] prepared PLLA/PHB fibers
with different concentrations of the DPD drug using fused electrospinning. Figure 6B shows
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the release curve. During hydrolysis, encapsulated drugs enter the aqueous environment
through diffusion mechanisms and surface degradation. The 9:1 PLLA/PHB system was
more resistant to polymer hydrolysis than the 7:3 system. The diffusion transfer rate of
7:3 PLLA/PHB fibers was about two times higher than that of the 9:1 system, which was
related to its crystallinity. Therefore, the release of the drug can be controlled by the content
component ratio of the two polymers.

Melt electrospinning can load poorly water-soluble drugs onto the fibers, thereby
increasing the dissolution rate of the drug and the delivery rate of the drug. The higher
the viscosity of the melt, the greater the adhesion of the produced fibers and the greater
the diameter. However, when the fiber diameter is too large, it is not conducive to the
dissolution of drugs with poor water solubility. Controlled release of the drug can also
be performed by obtaining the diameter of the fiber according to the viscosity of the melt.
Xu et al. [179] prepared different proportions of ultrafine black gypsum fibers and black
gypsum/PEG composite fibers using a novel upward melting electrospinning technique.
The in vitro drug dissolution results showed that the solubility of Draconis Sanguis, which
has poor water solubility, was significantly improved, and the structure of the microfibers
and the incorporation of PEG promoted the in vitro release of insoluble drugs in black
plaster. The drug release curve is shown in Figure 6C. The mechanism involved in the
release of this fiber drug is the degradation of polymers and the diffusion of drug molecules.
Therefore, the controlled-release effect of the drug was achieved by changing the polymer
concentration.

4.2. Coaxial Electrospinning Drug Carrier

In simple electrospun fiber membranes, the distribution of drugs on the surface of
nanofibers, the large surface area of the nanofibers, and the amorphous state of the drugs in
the nanofibers all lead to an initial explosive release, which is not ideal for the continuous
release of drugs [180]. In order to eliminate the explosive release, post-processing such
as cross-linking or chemical modifications of nanofiber membranes is needed. However,
these types of post-treatments may lead to a decrease in toxicity and biocompatibility [181].
Coaxial electrospinning is another method by which to eliminate explosive release that is
superior to post-processing [182]. Core–shell nanofibers can be formed by the simultaneous
delivery of two different fluids through coaxial electrospinning, where one polymer is
coated by another polymer, thereby improving the performance of both polymers at the
same time [50,183,184]. Hollow fibers with different internal and external components and
functional fibers with possible coatings can also be obtained [185,186]. In addition, a small
amount of non-spinnable material can be electrospun into core–shell fibers [187].

Coaxial electrospinning has a controlled-release effect to a certain extent due to the
nanofibers produced by the nucleus–shell structure. Its use in controlled drug release
can also be extended to polymers and drugs with low compatibility. Controlled release
is achieved by changing the thickness of the shell because the shell acts as a barrier to
diffusion. Zahida et al. [188] prepared PCL nanofibers loaded with the hydrophilic drug
ampicillin with shell fluid that could not be fully electrospun and core liquid that was fully
electrospinnable. By changing the flow rate of the shell liquid, it was found that samples
with a larger shell flow rate showed a slower initial release, possibly due to the thicker
fibrous shell layer produced by the larger flow rate. PCL is non-expandable and has a
very slow degradation rate within PBS, so the fiber has a Fickian diffusion mechanism,
and its release curve is shown in Figure 7A. In addition, this process has the advantage of
smaller fiber diameters and less clogging of the needle tip. Therefore, the fiber thickness
can be adjusted by changing the housing flow rate, which can be exploited to modify
the the drug release profiles. Liu et al. [189] also confirmed this case using a modified
tri-axial electrospinning.

As previously mentioned, coaxial electrospinning can alleviate the explosive release of
drugs, but coaxial porous nanofibers and uniaxial electrospun nanofibers also exhibit certain
phenomena of the explosive release of drugs. Coaxial porous nanofibers can effectively
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alleviate the problem of drugs’ explosive release and achieve a sustained release of the
drugs [190]. The drug release performance of porous microfibers was found to be better
than that of non-porous microfibers [8,191], and the release of the drugs was regulated
by porosity, so the porous structure increased the dissolution of drugs. Chen et al. [192]
prepared ROX-loaded PCL/PLA porous core–shell nanofibers using coaxial electrospinning
technology and non-solvent-induced phase separation and compared them with porous
core–shell nanofibers and uniaxial porous nanofibers. The results showed that the porous
core–shell nanofibers not only slowed down the burst of the drug, but also increased the
dissolution of hydrophobic drugs, as shown in the release curve in Figure 7B.

Coaxial electrospinning can also be used to achieve drug-loaded nanofiber membranes
with a duplex drug release function [193]. Unlike the previously mentioned solution
electrospinning that uses the pro-hydrophobicity of the drug to achieve biphasic release,
coaxial electrospinning is achieved using its special structure. He et al. [194] used an
improved coaxial electrospinning method to prepare a hybrid material with a PEG small-
molecule solution as the sheath solution and an EC solution as the core liquid, and both
contained an IBU nanofiber structure hybrid material, that is, engineering spindles-on-a-
string (SOS) products. SOS products have a typical biphasic drug release curve, and their
formation principle and biphasic release profile of typical drugs are shown in Figure 7C;
additionally, the main mechanism of drug release is the Fickian diffusion mechanism. An
in vitro dissolution test confirmed that SOS products can provide a typical two-stage release
mode; the first stage is due to the solubility of PEG, immediately releasing 40% of the load
of IBU within 1 hour, and, in the second stage, the drug is continuously released by the
remaining loads encapsulated in the insoluble EC.
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curve (full range and first 4 h) (reprinted with permission from [188]. Copyright©2016, Elsevier
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release of typical drugs, (c) percentage of drug release curve vs. time, (d) time required to release a
certain amount of the loaded drug from an EHDA product (reprinted with permission from [194].
Copyright©2021, Donghua University, Shanghai, China).
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4.3. Side-by-Side Electrospinning Drug Carrier

Janus nanofibers can be prepared using side-by-side electrospinning. They can be
prepared by electrospinning using side-by-side needles, but this method is not easy to carry
out. Because the two working fluids in side-by-side electrospinning are simultaneously
located under an electric field with the same negative or positive charge, this makes it easy
for them to repel and separate from each other [195]. Side-by-side electrospinning has
traditionally been performed under conditions where the bifurcate has a certain viscosity
and conductivity [196–198].

Side-by-side electrospinning is a useful tool to combine different polymeric matrices
for providing biphasic drug release. For example, the drug can be encapsulated into
both sides of the fibers with one side of a water-soluble polymer and the other side of a
water-insoluble polymer. The side of soluble polymer can release the drug in an erosion
mechanism, and the side of insoluble polymer can manipulate the drug release behavior in
an extended manner, and thereby a typical biphasic release can be ensured. Along this way,
many novel combinations can be conceived for furnishing multiple-phase release profiles
of one drug.

Wang et al. [199] prepared a biphasic advanced drug delivery fiber that released FA
by loading the drug FA on both sides of the Janus nanofiber formed by the combination of
food polymer corn protein and PVP using side-by-side electrospinning. The drug release
curve and biphasic drug release mechanism are shown in Figure 8A. The first stage is the
rapid release of FA from the PVP side through the erosion mechanism. The amount of
release from the PVP side can be adjusted by adjusting the FA concentration in the working
fluid prior to manufacturing. The second stage is the continuous release of FA from the
zein side through the diffusion mechanism. Since zein is an insoluble macromolecule, the
water molecule penetrates the skeleton of the zeatin, causing the FA molecule to be released
from the hydrogen bond with the zeatin molecular group. Then, the free FA molecules
penetrate outward into the bulk solution in the fibers.

Li et al. [200] used side-by-side electrospinning to combine PVP K90 with EC to pro-
duce Janus bead string products using KET and MB as model drugs. In vitro dissolution
tests showed that Janus beaded products also offer a typical dual-drug controlled-release
curve as compared to Janus nanofibers, providing the immediate release of MB and sus-
tained release of KET. Figure 8B is a schematic diagram of the drug release mechanism. As
with the drug release mechanism described above, the hydrophilic side is a typical erosion
mechanism that releases all drugs. The hydrophobic side provides a sustained release of
the drug for a typical diffusion mechanism. Additionally, the study also demonstrated that
by varying the polymer concentration, Janus beads with different particle distributions and
diameters can be obtained. Similarly, Yang et al. [201] combined PVP K90 and EC into Janus
fibers using side-by-side electrospinning. The difference was that what they prepared was
not biphasic release fibers, but fibers with the immediate release of the drugs. Figure 8C
shows the in vitro release curve of the Janus fibers co-loaded with CIP and AgNPs.

Yu et al. [202] prepared a nanofiber membrane with a biphasic drug release function
and an adjustable release rate in the second stage using Teflon-coated parallel spinnerets.
This is the same as the combination of PVP K60 and EC, but the difference is that PVP
K10 was added on the EC side to accelerate the release of the second stage. Studies have
shown that doped hydrophilic PVP K10 can easily manipulate the rate of drug release of
the EC matrix. The drug release curve and fiber release mechanism of the second stage
are shown in Figure 8D. Later, Yu et al. [203] developed a structured spinneret for the
three-fluid electrospinning process, but still no application reports about the electrospun
complicated nanostructures.
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Figure 8. Side-by-side electrospinning. (A) (a) In vitro drug release curve and (b) mechanism by
which Janus fibers provide a biphasic release curve (reprinted with permission from [199]. Copy-
right©2020, Elsevier). (B) Drug release mechanism diagram (reprinted with permission from [200]).
(C) In vitro release curve of CIP from drug−-loaded fibers and pure drug granules (reprinted with
permission from [201]. Copyright©2020, Elsevier B.V. All rights reserved.). (D) (a) Phase II drug
release curve and (b) Janus fiber release drug mechanism (reprinted with permission from [202].
Copyright©2015, Elsevier B.V. All rights reserved.).

4.4. Triaxial Electrospinning Drug Carrier

The three-layer coaxial electrospinning (triaxial electrospinning) system mainly in-
cludes a high-voltage power supply, a spinneret, a collector, and a fluid drive pump [204,205].
The products prepared by triaxial electrospinning technology are three-layer nanofibers.
Triaxial electrospinning uses three concentric needles of the spinneret, and the three fluids
driven by the different drive pumps are external liquid, intermediate liquid, and core liquid,
which meet at the tip of the spinneret; the working principle of this process is the same
as that of other electrohydrodynamic atomization methods such as coaxial electrospin-
ning [206,207]. Triaxial electrospinning technology has been developed in various forms,
with core polymers surrounded by two different layers of polymers and core polymers
surrounded by two layers of the same polymer; there are also core polymers surrounded by
an outer layer and a layer of void areas. Liu et al. [208] prepared biodegradable nanofibers
with a multilayer structure of gelatin/PEG/gelatin using triaxial electrospinning technol-
ogy. Growth factors or drugs are incorporated into the core and are released by diffusion
and degradation. The three layers of nanofibers can control drug release by containing
different types of drugs in each layer.

Triaxial electrospinning technology is a simple method that enables the preparation of
functional nanofibers with complex structural features [209]. The use of triaxial electrospin-
ning can be prepared for the linear release or zero-level release of drug-carrying nanofibers,
thereby eliminating the phenomenon of drug burst release; additionally, for a long time
after administration, the drug can be maintained within a specific therapeutic concentration
so as to improve patient compliance and achieve treatment effects with minimal side effects.

Yu et al. [122,210] used triaxial electrospinning to fabricate three layers of nanofibers
containing EC in each layer, but the KET concentration content in each layer was different,
and it gradually increased from the outer layer to the inner layer, showing a drug gradient
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distribution. Since EC is insoluble in water, its release mechanism is diffusion release.
Figure 9A shows the drug release principle and release curve. As the surface area of the
fiber from the nucleus layer to the shell gradually increases (Si < Sm < So), the distance of
the drug molecules from the dissolving medium through diffusion also increases gradually
(Ri > Rm > Ro). These two factors tend to lead to an initial burst, but with the gradual
increase in drug concentration, the effects on the sustained release of the nanofibers can be
counteracted, thus achieving the desired release effect. Therefore, controlled release can be
achieved by changing the content of the drug.

Liu et al. [211] prepared high-quality three-layer nanofibers using two non-spinnable
solutions, i.e., acetone and acetic acid, as the external solution; CA as the intermediate
solution; and FA and gliadin as the core solution. The thickness of the CA coating can be
precisely adjusted by the flow rate of the intermediate working fluid. Figure 9B shows that
the thickness of the CA coating itself is closely related to the flow rate of the intermediate
fluid. The CA coating eliminates the initial burst release of the single FA-gliadin fibers
and also results in a near-zero-order release curve that can be progressively adjusted by
changing the thickness of the coating. In addition, Yang et al. [212] also prepared a three-
layer core–shell nanofiber with a CA intermediate solution and FA as a model drug through
triaxial electrospinning. The fiber was able to provide near-zero-order release within 36 h
without an initial burst release.
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Figure 9. Triaxial electrospinning. (A) (a) Drug gradient distribution yield linear release curve
and (b) in vitro dissolution test results (reprinted with permission from [210]. Copyright©2015,
American Chemical Society). (B) Flow rate, coating thickness, and release time of the intermediate
fluid (reprinted with permission from [211]. Copyright©2018, Elsevier B.V. All rights reserved).
(C) Drug release performance in vitro: (a) cumulative aspirin release as a function of drug release
time points and (b) time required to achieve a certain percentage of aspirin loading in the prepared
nanofibers (reprinted with permission from [213]).

In addition to the above, triaxial electrospinning can also be used to prepare drug-
loaded nanofiber membranes with targeted drug release functions. Targeted drug release
involves targeting the drug to the lesion site, with little impact on non-target organs, tissues,
and cells, which not only improves the efficacy but also reduces the toxicity and side effects
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of the drug. Ding et al. [213] used a new and improved triaxial electrospinning technology
to prepare a core–shell nanofiber (CSF) based on ES100, which was loaded with aspirin. It
was compared with the monolithic composite nanofiber (MCF) prepared using traditional
single-fluid electrospinning. The aspirin release curves of the MCF and CSF nanofibers
are shown in Figure 9C. In vitro dissolution assays showed that CSF prolonged the release
time of aspirin, protected the first 2 h of gastric membrane under acidic conditions, and
prolonged the sustained release time of aspirin in a posterior neutral environment, thereby
avoiding excessive cytotoxicity to the circulatory system. Both nanofibers are part of
an erosion mechanism that releases drugs. Compared with the double-layer core–shell
nanofibers, the tri-layer core–shell nanofibers can support more possibilities for developing
novel functional nanoproducts.

4.5. Other Drug-Carrier Technologies

In addition to the above preparation methods of electrospun nanofibers, more ideal
controlled drug release systems can be achieved using a combination of electrospinning
and other fabrication techniques. Table 3 shows these combinations, in which drug release
mechanisms and their highlights are explained in detail. Among these combined techniques,
physical methods such as electrospraying and 3D printing are popular [214–224].

Liu et al. [224] prepared a drug-loaded double-layer mixed film with biphasic con-
trolled release by combining the hybrid electrospinning and flow film method. The mem-
brane releases the drug in a pulsating manner in the first stage, which belongs to the control
of the erosion mechanism. In the second stage, it releases residual drugs in an extended
manner through a typical Fickian diffusion mechanism. There are no limitations for these
combinations [225]. As an interdisciplinary field, pharmaceutics shows a strong trend in
that new excipients and advanced techniques are continuously being drawn upon for the
creation of functional medicated materials to modify drug release profiles [226,227]. All
the introduced techniques and excipients may have the potential to be combined with
electrospinning for the development of brand-new functional nanomaterials. Particularly,
some new materials such as hydrogels [228–230] and even inorganic nanoparticles may
enrich the electrospun nanofiber-based functional biomaterials, and thereby provide novel
strategies for resolving the challenges of treating difficult miscellaneous diseases [231–233].
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Table 3. Electrospinning combined with other techniques.

Technologies Drugs Carrier Release Mechanism Highlights Literature

Hybrid electrospinning +
electrospray FLU/RHB PLGA

Drug diffusion mechanism
Polymer degradation

mechanism

The superhydrophobic layer can inhibit the
release of FLU and RHB. After 720 h, FLU

was released at a rate of about 16.5%, 25.9%,
and 37.5%, and RHB was released at a rate

of about 21.7%, 29.2%, and 34.6%,
respectively, and the deposition times were
5, 10, and 15 min, respectively. It controls the

rate of drug release by adjusting the
thickness of the superhydrophobic coating.

[214]

Hydrothermal treatment
co-precipitation +
electrospinning

AMOX LDH/DMSN/PCL Diffusion mechanism
The drug release rate of complex membrane

A was 87.81%. The drug release rate of
complex membrane B was 94.65%.

[215]

Coaxial electrospinning +
electrospray AMPs/Curcumin PLA/PVP/PEG Diffusion mechanism

Shell-controlled-release AMPs reached
about 70% within 24 h and more than 90%

within 72 h for pre-treatment; in the middle
and late stages of treatment, the sustained
release of curcumin from the core layer can

be extended to about 5 days.

[216]

Hybrid electrospinning +
solvent steam annealing SPL PCL Diffusion mechanism

Slower SPL release (more than 360 h) can be
observed from annealed fibers and a

decrease in the final percentage of SPL
release (~50–60%).

[217]

Side-by-side
electrospinning +
electrodeposition

bFGF/NGF PPy/PVDF Ion exchange mechanism

Release curves of different growth factors
(NGF and bFGF) showed electrically

sensitive release behavior, which remained
biologically active after release.

[218]

Solution extrusion 3D
printing + coaxial
electrospinning

Lidocaine/Estradiol/MTZ/CTGF PCL/PLGA
Drug diffusion mechanism

Polymer degradation
mechanism

The duration of sustainable release of
metronidazole, lidocaine, and estradiol was

4, 25, and 30 days, respectively.
[219]

Hybrid electrospinning +
electrospray CPGs/TRP2/Dox/hpDNA/fBSA PVA/PEI/PVP/SF Diffusion mechanism

fBSA and hpDNA were effectively released
into the skin, and the cumulative release
percentage of DNA was higher than that

of BSA.

[220]
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Table 3. Cont.

Technologies Drugs Carrier Release Mechanism Highlights Literature

Electrospinning +
electrospray

CPGs/TRP2/DNATrp2@ETHMC/
DNATrp2

MC/PVP/HA Diffusion mechanism

Cumulative transdermal drug release
DNATrp2@ETHMC loaded patch within 36 h

was 35.4%, significantly higher than the
release of free DNATrp2.

[221]

Redox amination +
electrospinning IBU SA/PVA

Mechanisms of polymer
swelling and degradation

Diffusion mechanism

Adjusts the drug release rate by adjusting
the RAOA/PVA volume ratio. RAOA can

effectively encapsulate hydrophobic
ibuprofen, thereby slowing the spread rate

of the drug.

[222]

Electrospinning +
crosslinking

post-processing
Dex SA/PVA Diffusion mechanism

The release of Dex from the nanofibers was
controlled by the chemical potential

gradient and expansion penetration. Coaxial
nanofibers protected the drug molecule in
the core and also supported its sustained

release curve.

[223]

Blended electrospinning +
casting IBU EC/PVP K60 Diffusion mechanism

The first stage exhibited a biphasic
controlled release for the pulsating mode,

and the residue was released in an extended
manner in the second stage.

[224]
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5. Conclusions and Prospective

In recent decades, with the development of electrospinning technologies such as
solution electrospinning, emulsion electrospinning, melt electrospinning, coaxial electro-
spinning, triaxial electrospinning, and side-by-side electrospinning, electrospun nanofibers
have shown great advantages as drug carriers and are widely used in the field of drug
delivery systems. By choosing different electrospinning methods, nanofibers of different
structures can be prepared, drugs of similar properties can also be loaded, and drugs of
different properties can also be loaded at the same time. By combining electrospinning
with other preparation techniques, nanofibers with different properties can be prepared.
In addition, by combining the properties of the drug itself, the post-treatment process, the
polymer properties, the drug-carrying technology, and changes in the process parameters,
the release of the drug can be quick, continuous, or continuously adjusted to achieve tar-
geted release, bidirectional release, controlled release, pulse release, sustained release, and
other types of drug release; the preparation of nanofibers with linear release or zero-level
release functions is also possible.

At present, the research on drug release and drug delivery systems in relation to
electrospinning methods almost all concerns the release of drugs in vitro; the release of
drugs in a complex in vivo micro-environment is not clear but can be explored in combina-
tion with animal experiments. Electrospun nanofibers have good development prospects
in amplification technology. Most electrospun nanofibers exist only in laboratories; how
to produce electrospun nanofiber products on a large scale, and whether there are good
prospects for their development on the industrial scale remain questions to be answered. In
addition, degradable electrospun nanofiber materials have relatively few practical clinical
applications. How to match the degradation characteristics of electrospun nanofiber mem-
branes with tissue repair remains a huge challenge, so there is great potential in clinical
applications. However, with the rapid development of science and technology, all of these
problems are expected to be solved in the future.
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Abbreviations

AgNPs Ag nano-particles
AMOX amoxicillin sodium
AMPs antimicrobial peptides
bFGF basic fibroblast growth factor
CA cellulose acetate
CD cyclodextrin
CIP ciprofloxacin
Cip HCL ciprofloxacin hydrochloride
CMC carboxymethyl cellulose
CMS carboxymethyl starch
CPGs CpG motifs
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CS chitosan
CTGF connective tissue growth factor
DEX dexamethasone
Dex dexpanthenol
DMSN dendritic mesoporous silica nanoparticles
Dox doxorubicin
DPD dipyridamole
EC ethyecellulose
ERS100 Eudragit RS100
ES100 Eudragit S100
ETHMC mannosylated-chitosan (MC) modified Ethosome
EVA ethyl vinyl acetate
FA ferulic acid
fBSA FITC-labeled BSA
FLU fluorescein
GTP green tea polyphenol
HA hyaluronic acid
HPC hydroxy propyl cellulose
hpDNA plasmid DNA
HPMC hydroxypropyl methyl cellulose
IBU ibuprofen
KET ketoprofen
LDH layered double hydroxides
MB methylene blue
MC methyl cellulose
MTZ metronidazole
NGF nerve growth factor
NR nature rubber
PAM polyacrylamide
PAN polyacrylonitrile
PASP polyaspartic acid
PBC probucol
PBS poly butylenes succinate
PEG polyethylene glycol
PEI polyethyleneimine
PEO polyethylene oxide
PE polyethylene
PGA polyglycolic acid
PGlu polyglutamic acid
PHAS Poly-hydroxyalkanoates
PHB polyhydroxybutyrate
PLA polylactic acid
PLGA polylacticcoglycollic acid
PLLA poly-l-lactic acid
PMMA polymethyl methacrylate
PPy polypyrrole
PS polystyrene
PVA polyvinyl alcohol
PVC polyvinyl chloride
PVDF polyvinylidene fluoride
PVP polyvinylpyrrolidone
RhB rhodamine B
ROX roxithromycin
SA sodium alginate
SF silk fibroin
SOS spindles-on-a-string
SPL spironolactone
TM timolol maleate
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TRP2 tyrosinase-related protein-2
Trp2 tyrosinase-related protein 2
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