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Abstract: Placement is essential in very large-scale integration (VLSI) physical design, as it directly
affects the design cycle. Despite extensive prior research on placement, achieving fast and efficient
placement remains challenging because of the increasing design complexity. In this paper, we
comprehensively review the progress of placement optimization from the perspective of accelerating
VLSI physical design. It can help researchers systematically understand the VLSI placement problem
and the corresponding optimization means, thereby advancing modern placement optimization
research. We highlight emerging trends in modern placement-centric VLSI physical design flows,
including placement optimizers and learning-based predictors. We first define the placement problem
and review the classical placement algorithms, then discuss the application bottleneck of the classical
placement algorithms in advanced technology nodes and give corresponding solutions. After that,
we introduce the development of placement optimizers, including algorithm improvements and
computational acceleration, pointing out that these two aspects will jointly promote accelerating VLSI
physical design. We also present research working on learning-based predictors from various angles.
Finally, we discuss the common and individual challenges encountered by placement optimizers and
learning-based predictors.

Keywords: VLSI placement; large-scale optimization; physical design; machine learning; prediction;
placement challenges

1. Introduction

Moore’s law [1] has long guided the development of the semiconductor industry
as a rule of thumb. In the post-Moore era, however, the semiconductor industry faces
severe challenges due to increasing design size and complex objectives and constraints.
These challenges make the automated very-large-scale integration (VLSI) physical design
(PD) difficult and even worse, leading to longer design cycles. At the beginning of VLSI
PD, the circuit cells’ location needs to be determined. There are two critical stages called
macro (e.g., RAMs and ROMs) placement and standard cell (logic gates, such as NOR and
NAND) placement.

Getting a good placement result is essential and challenging. Poor placement quality
may cause routing failure and thus the need to re-iterate the design. Placement is a multi-
objective optimization problem and also an NP-complete problem [2]. Due to its complexity,
standard cell placement is often divided into global placement (GP), legalization (LG), and
detailed placement (DP). GP determines the approximate position of each cell, and the
result allows partial overlap. LG eliminates all the overlaps between cells and removes
all design rule violations. DP makes further adjustments to improve the final placement
quality. GP is more important than LG and DP because it determines the general location
of the circuit cells. When discussing standard cell placement, we are concerned with GP.

Given the importance and difficulty of placement, it has been extensively studied
over the past 50 years. As shown in Figure 1, various algorithms are used to solve the

Electronics 2023, 12, 337. https://doi.org/10.3390/electronics12020337 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020337
https://doi.org/10.3390/electronics12020337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9486-0970
https://orcid.org/0000-0001-7651-5287
https://orcid.org/0000-0003-4931-9664
https://orcid.org/0000-0002-2421-7621
https://doi.org/10.3390/electronics12020337
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020337?type=check_update&version=1


Electronics 2023, 12, 337 2 of 23

placement problem, including partitioning-based methods, heuristic algorithms, analytical
solvers, and learning-based algorithms. Even with all these efforts, however, the quality
and efficiency of placements still need to be fully satisfied, and further optimization is still
needed. In addition, the shrinking feature size and increasing design scale bring growing
complexity to the placement problem, making it a hot topic all the time.

Figure 1. Description of placement algorithms and the corresponding placers in academia. As the
design size increased, the dominant placement algorithms shifted from the early partitioning-based
method to heuristic algorithms. Later, the partitioning method began prevailing again due to the
application of the multi-level framework. In some recent academic contests, such as ISPD [3–7],
DAC [8], and ICCAD [9–11], the analytical methods provided better results than the previous algo-
rithms. Nowadays, the leading placers mainly use nonlinear rather than quadratic methods because
of the higher quality obtained with nonlinear methods. Furthermore, learning-based algorithms are
gaining more and more attention, and a well-known example is Google’s automatic macro placer [12].

Scholars have recently strived to achieve higher-quality placement results in less time.
Related studies have been done to organize the development of placement optimization.
G. Huang et al. [13] presented a comprehensive review of existing machine learning
(ML) techniques for electronic design automation (EDA) studies. They organized the
recent developments in placement optimization into three categories based on the degree of
automation: traditional placer enhancement, routing information prediction, and placement
decision making. Hao et al. [14] provided a review of existing ML techniques for placement
studies and categorized them as intelligent placement and kernelized placement. There
is a little discussion on accelerated placement computing in [13]. While [14] notes the
importance of accelerated computing platforms, there is less discussion of algorithms—i.e.,
only partial ML techniques are discussed.

Inspired by [13,14], we observe that recent developments in placement optimization
mostly have the ultimate goal of accelerating VLSI PD. For example, some have worked
through algorithmic improvement to obtain better placement quality (e.g., routability and
timing), which may have non-negligible overhead, but will eventually bring time benefits
due to the reduction of flow iterations. Some researchers have directly accelerated the
computation of a placer (e.g., applying a GPU-accelerated platform). Some have added
predictions of the quality of candidate placement result to avoid unnecessary flow iterations.
From this perspective, we group the placement studies into two categories: placement
optimizers and learning-based predictors. Figure 2 depicts the new trends of VLSI PD
flow. Figure 3 further classifies the optimizers and predictors, the details of which will
be presented in the subsequent section. The optimizers perform online placement opti-
mization, emphasizing algorithmic optimization and accelerated computation to get good
placement quickly. The predictors perform offline placement optimization, highlighting
using placement results to make predictions about downstream metrics and feeding back
to guide better placement. To narrow our discussion, we focus on the placement of ASICs
and exclude FPGA, analog circuits, etc. The reason is that the placement studies for these
different types of circuits are similar, with ASICs being the most studied.
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Figure 2. New trends of placement-centric VLSI physical design flow. This flow contains two key
technologies: (i) a placement optimizer, which contains algorithm improvement and computational
acceleration, and (ii) a learning-based predictor, which is used to classify postplacement results.

Figure 3. The classification of the placement optimizers and learning-based predictors. The optimizers
perform online placement optimization and the predictors perform offline placement optimization.
The details will be introduced in the subsequent section.

The characteristics of this paper are listed in the following:

1. We provide a comprehensive overview of placement optimization from the perspec-
tive of accelerating VLSI PD. Problem definition, classical placement algorithms,
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computational acceleration, learning techniques, new trends, and new challenges are
all well organized and discussed. The above are essential for understanding placement
and advancing research but may have been simplified or ignored in previous reviews.

2. We observe a new trend of placement-centric VLSI PD flow and classify the place-
ment development into optimizers and predictors. We discuss the deficiencies of
classical placement algorithms in advanced technology nodes and point out future
development directions for placement to consider accelerating VLSI PD.

This paper is organized as follows. Section 2 defines the placement problem. Section 3
reviews classical placement algorithms and discusses their application bottlenecks in
advanced technology nodes. Sections 4 and 5 detail the placement optimizer and the
learning-based predictor. Section 6 outlines placement challenges for accelerating VLSI
physical design, and Section 7 summarizes the work of this survey.

2. Problem Definition

Placement is a multi-objective optimization problem that requires a rational deter-
mination of the locations of macros or standard cells. The problem can be described as
follows [15]: Given the placement region P, the input netlist G = (V, E) (V denotes the
macros or standard cells to be placed; E denotes the connections between circuit cells),
and the objective function F = (V, E), find the location (xi, yi) of each vi ∈ V such that (1)
the objective function F = (V, E) is minimized and (2) the design constraints are satisfied.
The objectives are usually one or more of these: wirelength [3], routability [8], timing [10],
power [16], thermal [17], and manufacturability [18]. The design constraints typically
include cells not overlapping, cells being placed within the placement region, placement
density being less than a threshold, fence region constraints [7], and so on. The visualization
of the placement process is given in Figure 4.

Figure 4. Description of the placement process. The placement region is usually rectangular and
can be divided into several bins. The blue rectangles form the placement region. The orange, milk-
white, and green rectangles represent fixed-position macros, movable macros, and movable standard
cells, respectively.

Previous placement studies focused on optimizing the algorithm itself and less on
both accelerated computation and ML-aided to accelerate VLSI PD. We attribute these
studies to classical placement algorithms. As they are essential for understanding the
development of placement and advancing research, classical placement algorithms are
presented in Section 3.

3. Classical Placement Algorithms

This section reviews classical placement algorithms, including partitioning-based
algorithms, heuristic algorithms, and analytical methods. Table 1 summarizes the core
ideas, strengths, and weaknesses of the three types of algorithms and the corresponding
typical placers.
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Table 1. The core ideas (*), strengths (+), and weaknesses (−) of the three types of algorithms and the
corresponding typical placers ($).

Type Description

Partitioning-
based

Algorithms

(*) Divide and conquer
(+) Efficient and scalable, can be used to solve large-scale circuits
(−) Poor placement quality due to lack of global or local information
(−) Harder to handle multiple objectives simultaneously
($) Capo [19] and FengShui [20]

Heuristic
Algorithms

(*) Stochastic/hill-climbing methods
(+) Simple to implement, high quality for small designs
(+) Easier to handle multiple objectives simultaneously
(−) Slower and less scalable for large-scale circuits
($) Dragon [21] and TimberWolf [22]

Analytical
Methods

(*) Mathematical programming
(+) More efficient and scalable
(+) Better quality for even large-scale designs
(+) Easier to consider multiple objectives simultaneously
(−) Harder to optimize macro orientations
($) Quadratic: FastPlace [23], Polar [24], SimPL [25]
($) Nonlinear: NTUplace [26], ePlace [27], RePlAce [28]

3.1. Partitioning-Based Algorithms

The partitioning-based algorithm uses the divide-and-conquer strategy to recursively
partition the input netlist and placement region, and then assigns smaller subnetlists to
subregions in a top-down fashion. The partitioning of the netlist is usually based on a cost
function that minimizes the number of cut edges that pass between adjacent subregions, so
the partitioning method is also often referred to as the min-cut algorithm.

According to the different underlying computational methods, the partitioning meth-
ods can be divided into four categories [29], which are move-based methods, geometric
representation-based methods, combinatorial formulations, and clustering methods. Move-
based algorithms improve the initial feasible solution by repeated local perturbations, such
as swapping two cells, and the relevant typical algorithms are Kernighan–Lin (KL) [30] and
Fiduccia–Mattheyses (FM) [31]. Geometric-representation-based methods use geometric
embedding of circuits to improve the clustering quality and runtime [32]. Combinato-
rial formulations can capture complex objective functions and constraints, and related
techniques include network flow and mixed-integer linear programming [33]. Clustering
algorithms use a multilevel paradigm [34], usually categorized as bottom-up or top-down.

The partitioning-based algorithm is efficient and scalable. However, the minimum
cut-based algorithm does not take wirelength as the optimization objective, and the mini-
mum cut is not equal to the minimum wirelength. Its independent optimization of each
subproblem leads to an inadequate grasp of the overall problem, which can easily lead
to routing congestion. The above two factors make the final placement quality obtained
by the method poor. In addition, the optimization objective of the partitioning method is
the number of cut edges between sub-regions, which leads to the limited ability to solve
multi-objective optimization problems. Currently, the partitioning method is seldom used
for placement directly but is often used in the preprocessing of placement to reduce the
problem size.

Typical partitioning-based placers are Capo [19] and FengShui [20].

3.2. Heuristic Algorithms

The heuristic algorithms used to solve the placement problem are simulated anneal-
ing (SA) [35], the genetic algorithm [36], particle swarm algorithm [37], the bee colony
algorithm [38], etc., among which, SA is more widely used because of its simplicity.
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SA randomly perturbs the macro or standard cell and iterates several times to get
an optimized placement result. The algorithm first needs to generate an initial solution
and then randomly swap the positions of circuit cells to accept a better solution while
accepting a worse solution with a certain probability. The algorithm iterates this process
until the temperature drops to a minimum, at which point the objective function converges
to the optimal solution. The probability of accepting a worse solution decreases as the
temperature decreases.

SA is straightforward, has high solution quality, can solve different optimization
problems with only slight modifications to the cost function, and is generally for modeling
various circuit problems. However, when the chip size becomes larger, the search space of
SA increases dramatically, resulting in unacceptable runtime.

Typical placers based on heuristics are Dragon [21] and TimberWolf [22].

3.3. Analytical Methods

The current leading placers are based on analytical methods. This approach models
the placement problem with mathematical programming and uses optimization methods
to minimize the cost function. The analytical methods can be divided into quadratic and
nonlinear placement, depending on the cost function. The following is a review of the
quadratic and nonlinear methods, using wirelength-driven placement as an example, as
wirelength has the advantage of correlating with other vital metrics, such as power and
timing. The wirelength is usually defined as the total half-perimeter wirelength (HPWL):

HPWL(x, y) = ∑
e∈E

{
max
i,j∈e

∣∣xi − xj
∣∣+ max

i,j∈e

∣∣yi − yj
∣∣} (1)

Since HPWL is not everywhere differentiable, the quadratic placers require a quadratic
approximation of HPWL using various net models, such as Bound2Bound [39]. After the
approximation, the wirelength of the quadratic placers can be defined as follows.

W(x, y) =
1
2

xTQxx + cT
x x +

1
2

yTQyy + cT
y y + const. (2)

where both Qx and Qy in the equations are symmetric and positive-definite, so minimizing
the wirelength is equivalent to solving the following system of two linear equations, which
can be solved quickly by various Krylov-subspace methods [40]:

Qxx = −cx

Qyy = −cy
(3)

However, if only wirelength optimization is considered, eventually, all cells overlap.
Based on the method of reducing cell overlap, quadratic placers can be classified into three
categories [39]: partitioning-based, force-directed, and warping-based. Partitioning-based
quadratic placers are based on a divide-and-conquer approach that minimizes the cost
at each level [41,42]. The force-directed method uses forces to disperse the individual
cells [23], and the warping-based approach deforms the chip area and indirectly moves the
cells [43].

The quadratic method is quite efficient, mainly due to the simplicity of the wirelength
model and the speed of the quadratic programming solution. However, its placement
quality is often worse compared to the nonlinear method.

Typical quadratic placers are FastPlace [23], Polar [24], and SimPL [25].
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The nonlinear placer uses a smooth wirelength model to approximate HPWL and
computes the gradients analytically. The common wirelength models used are Log-Sum-Exp
(LSE) [44] and Weighted-Average (WA) [45], denoted, respectively, as follows.

WLSE(e) = γ

(
ln ∑

i∈e
exp

(
xi
γ

)
+ ln ∑

i∈e
exp

(
−xi

γ

))
(4)

WWA(e) =
(

∑i∈e xi exp(xi/γ)

∑i∈e exp(xi/γ)
− ∑i∈e xi exp(−xi/γ)

∑i∈e exp(−xi/γ)

)
(5)

where γ is the smoothing parameter used to control the model’s accuracy. Here, we take
the horizontal part of the wirelength smoothing model as an example, and the vertical part
can be obtained similarly.

In nonlinear placement, the density constraint can be defined as:

Db(x, y) = ∑
v∈V

Px(b, v)Py(b, v) (6)

where Db(x, y) is the total area of movable cells in bin b, Px and Py are the overlap functions
of bin b and cell v along the x and y directions, respectively. As Db(x, y) is neither smooth
nor differentiable, there are various models used to smooth it, such as the Bell-shaped
function [44], the sigmoid model [46], the Helmholtz function [47], and the eDensity
model [48].

Then, the density constraint is merged into the objective function by the Lagrangian
penalty function or the relaxation method:

min W(x, y) + λ ∑
b
(Db(x, y)−Mb)

2 (7)

where Mb is the maximum allowable area of movable cells in bin b. This unconstrained
problem can subsequently be solved by convex optimization, e.g., with the conjugate
gradient method [49] or Nesterov method [48].

We use RePlAce [28] as an example to introduce the design parameters that determine
the placement and how nonlinear algorithms work towards resolving it. Many design
parameters determine the placement, including the bin granularity, the maximum target
density, and the overflow threshold. In the initial stage, all standard cells are placed in
the chip center. In this case, some bins’ density is much higher than the maximum target
density, thereby failing the requirement. Subsequently, standard cells are slowly dispersed
under a force similar to the attraction and repulsion in the electric field under multiple
iterations of the Nesterov algorithm so that the density of each bin tends to be uniform.
As the iteration progresses, the parameter λ becomes larger and larger, and the primary
optimization goal of Equation (7) will shift from the total wirelength to the density. The
algorithm stops when the density overflow is less than the overflow threshold, such as
0.1. The smaller the bin granularity setting, the finer the placement, but the longer the
runtime. The higher the maximum target density setting, the more concentrated the final
cell distribution will be, resulting in a smaller total wirelength, though other metrics, such
as routability, may be worse.

Nonlinear placers provide a more accurate representation of wirelength and thus
achieve better placement quality. It can be well suited for solving multi-objective op-
timization problems by simply modifying the constraints [50]. However, the nonlinear
optimization solution is very time-consuming compared with quadratic optimization. Thus,
the nonlinear placer often uses a multilevel approach to reduce complexity, which in turn
may degrade placement quality.

Typical nonlinear placers are NTUplace [26], ePlace [27], and RePlAce [28].
In general, analytical methods are more efficient and scalable. They can achieve better

quality for even large-scale designs, and they more easily consider multiple objectives
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simultaneously. However, due to the nature of mathematical programming, analytical
methods struggle to optimize macro orientations. When comparing the quadratic method
and the nonlinear method, the conclusion is that the quadratic method solves quickly but
sacrifices part of the solution’s quality, and the nonlinear solution has higher quality but
takes more time to solve the problem. The jury is still out on which analytical method is
best. An applied intuition is to use the quadratic method if runtime is more important and
the nonlinear method if solution quality is more essential. RePlAce [28] gives an application
example: use the quadratic method to obtain the initial placement quickly, and then use
the nonlinear method to obtain more excellent solution quality.

3.4. Discussions

In advanced technology nodes, VLSI PD faces a large design scale, and complex
optimization objectives and constraints (such as signal integrity, power consumption, and
timing) must be considered. In this case, classical placement algorithms face application
bottlenecks, mainly as follows:

1. Classical placement algorithms have unsatisfactory solution quality. Limited by the
huge solution space due to the large design scale, classical placement algorithms often
have to compromise between runtime and solution quality, which brings subopti-
mal solutions.

2. Classical placement algorithms such as heuristics and nonlinear methods are very
time-consuming when solving large-scale netlists. The vast time overhead does not
help to complete VLSI PD quickly.

3. Classical placement algorithms lack foresight. Classical algorithms become complex
or powerless when more optimization objectives and constraints are considered. Most
classical algorithms in academic research only use wirelength as a metric for placement
quality, which is far from predictive for downstream metrics. A poorly foresighted
placement can lead to routing failures, costing time for design-flow iterations.

Through research on placement-related work in recent years, we believe that the
future of placement in advanced technology nodes considering accelerating VLSI PD can
be summarized in the following directions:

1. Algorithm improvements, including the improvement of classical placement algo-
rithms and the newly proposed learning-based algorithms.

2. Computational acceleration, including the application of multi-threaded CPUs and
GPUs to accelerate the placement-solution finding.

3. Learning-based predictors: application of ML or deep learning (DL) methods for
predicting downstream metrics.

The new trend of placement-centric VLSI PD flow is shown in Figure 2. As depicted
in Figure 3, we attribute directions 1 and 2 to the placement optimizer, which is introduced
in Section 4. We present direction 3 in Section 5.

4. Placement Optimizer

The progress related to the placement optimizer includes algorithm improvements
and computational acceleration. We present each of them in this section.

4.1. Algorithm Improvements

We divide the improvement directions of placement algorithms into classical and
learning-based, as shown in Figure 3. The significant difference between them is whether
they can learn, i.e., optimize a new problem using prior knowledge or experience. Classical
algorithms do not have an explicit training or testing process, and they must solve a new
issue from scratch each time. Learning-based algorithms, in contrast, introduce ML/DL
to complete a placement. Learning algorithms are expected to reduce the design cycle
further [12,51]. Due to their learning capability, only the trained models need to be fine-
tuned and can be applied to solve a new problem.
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4.1.1. Classical

Continuous optimization of classical placement algorithms is still essential for acceler-
ating VLSI PD. The new developments of classical placement algorithms are summarized
in Table 2.

Table 2. Recent developments in classical placement algorithms.

Type Description

Partitioning-based
Algorithms

Improve the existing multilevel framework [52,53]
Identify placement relevant cell clusters [29]

Heuristic
Algorithms

Narrow the search space [54,55]
Design new heuristic algorithms [56–58]

Analytical
Methods

Optimize mathematical models [27,28,48,50,59,60]
Consider more new objectives and constraints [18,28,61–69]

Partitioning-based algorithms use divide-and-conquer to reduce the problem’s com-
plexity, but the lack of local or global information decreases placement quality.
Chang et al. [52] proposed a damped-wave multilevel framework that uses macro-
clustering to improve scalability and constructive unclustering of macros to assist a
standard-cell placer to get better solutions. This new framework permits a more effective
optimization processes due to considering both local and global information at an early
stage. Another novel multilevel framework for macro placement has also been proposed
in [53]. Aside from improving the multilevel approach, Fogaca et al. [29] explored the use
of modularity-driven clustering to identify natural clusters in a given graph without the
parameter tuning and size balancing constraints typically required by VLSI CAD partition-
ing methods. They showed that modularity-based clustering correlates better with actual
netlist placements than traditional partitioning methods (hMETIS [70]).

Heuristic algorithms can get high placement quality, but when the problem size
becomes large, the solution is time-consuming and thus not applicable. Narrowing the
search space helps reduce the runtime. In [54,55], the authors proposed a simulated
evolution algorithm that perturbs a solution according to the quality of macro placement,
and only partial macros need to be repositioned in each iteration, which facilitates its
fast convergence to a good solution. Aside from the SA algorithm, other heuristics are
also effective at solving placement problems, such as improved discrete particle swarm
algorithms [57], improved genetic algorithms [56], and some hybrid heuristics [58].

As for analytical methods, we summarize their development in two directions, which
are optimizing mathematical models [27,28,48,50,59,60] and considering new optimization
objectives and constraints [18,28,61–69].

The mathematical model is optimized in three aspects: wirelength model, density
function, and optimization algorithm. A novel wirelength model called BiG is proposed
in [59], which combines the advantages and avoids the disadvantages of existing wirelength
models to improve the placement quality. Lu et al. [27,48] developed a nonlinear placer
called ePlace, which builds a new density function called eDensity and uses the Nesterov
method to achieve faster convergence. Based on [48], Zhu et al. [60] proposed Pplace, which
uses an analytical method to calculate the potential energy of electrostatic systems and
achieve a lower wirelength than ePlace. Later, Cheng et al. [28] developed RePlAce, which
further modifies the density function and extends the global placer to address routability.
Another work in [50] proposed a new optimization algorithm, namely, the generalized
augmented Lagrangian method, to solve nonlinear placement, and they showed that the
method achieves good quality and is robust for handling different objectives.

Classical analytical methods in academic research often simply minimize wirelength
and satisfy density constraints. More optimization objectives and design constraints are
now to be considered for better placement quality. These optimization objectives mainly
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include routability [28,61,63,67,69], timing [62,68], manufacturability [18], and thermal [66];
and the constraints mainly include technology and fence region constraints [61,64] and
3D-IC constraints [65]. We discuss this topic with a recent work [69] on routability-driven
placement. The authors of [69] applied an analytical method and a multilevel framework
to address global and local routing congestion. To remove global routing congestion,
they represented each net as a movable soft module and proposed a congestion-aware
net penalty model integrated into the optimization objectives. To reduce local routing
congestion, previous works relied on the accuracy of a congestion map. However, the
congestion map is inaccurate at a high level of the multilevel framework due to the simple
net connectivity between clusters. To this end, they proposed an inflation technique to
expand each cluster according to the congestion value occupied by the cluster and its
internal connectivity intensity. Experimental results on industrial datasets described that
their method could obtain better routability and wirelength than other methods such as
RePlAce [28] and NTUplace4h [26].

4.1.2. Learning-Based

Learning-based algorithms have been a hot topic in academic research in recent years.
We categorize related studies into classical algorithm augmentation and automatic design,
depending on the degree of ML embedding. The related work is summarized in Table 3.

Table 3. Recent studies on learning-based placement optimization algorithms.

Type Description Algorithm

Classical
Algorithm

Augmentation

Guide standard cells for partitioning [71,72] K-Means
GNN

Improve heuristic placement quality [73,74] RL
Explore better heuristic rules in analysis [75] RL

Automatic parameter tuning [76–82]
RL
GNN
Bayesian Opt

Automatic
Design

Automatic macro placement [12,51,83–86]
RL
GCN
CNN

Automatic heuristic design [87] RL

Classical algorithm augmentation refers to improving classical placement algorithms
by applying learning techniques, where most work is decision guidance, such as pa-
rameter recommendation and heuristic rule exploration. We further group the classical
algorithm augmentation into four categories: learning-based partitioning [71,72], learning-
based heuristics [73,74], learning-based analytical methods [75], and automatic parameter
tuning [76–82]. The automatic design approach has deeper ML embedding than the clas-
sical algorithm augmentation. It mainly uses reinforcement learning (RL) to train an
agent end-to-end for automatic placement, which can significantly improve placement
efficiency [12,51]. However, there is less related work available.

One of the typical works for learning-based partitioning is [71,72]. The authors focused
on optimizing standard cell placement and proposed a graph-learning-based framework
called PL-GNN, which generates logical affinity-based cell clustering for commercial placers.
Graph neural networks (GNNs) and k-means clustering are used to get standard cell
clusters. First, the netlist graph and initial node features are input into the GNN for
node representation learning. K-means clustering is performed with the learned node
embedding information to generate standard cell clusters. Finally, the clustering results are
used as guidance to complete optimization via a commercial placer. Through comparative
experiments on two commercial multi-core CPU designs in the TSMC 28 nm technology
node, PL-GNN outperformed the modularity-based clustering [29] and can yield better
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wirelength (−3.9%), power (−2.8%), and performance (+85.7%) than the default placement
flow of Synopsys IC Compiler II. Since PL-GNN learns the node representation for every
design instance by optimizing an unsupervised loss function, it can be generalized to
any design.

Inspired by previous work [73], a combination of RL and heuristics [74] was proposed
for the first time for completing macro placement. The RL agent learns to generate a
sequence pair that serves as a good initialization for SA to explore the solution space further
and develop an optimal solution. They showed that RL can provide better initialization for
SA, and the macro placement is subsequently completed with better quality. The RL-driven
heuristic optimization framework is shown in Figure 5. However, they did not conduct
experiments with advanced technology node benchmarks, and the framework ignores
generalization considerations.

Figure 5. The reinforcement learning (RL)-driven heuristic optimization framework. This framework
consists of the RL agent and the heuristic optimizer. The RL agent generates the initial solution for
the heuristic optimizer. Then, the heuristic optimizer completes the execution until convergence
conditions are met and returns a new solution and reward to the RL agent for retraining.

In the nonlinear placement optimization model, a density cost weight must be chosen
to trade off the wirelength and density costs. RePlAce [28] and ePlace [65] improved
the placement solution by developing different heuristic rules to select the appropriate
density cost weight. Kirby et al. [75] proposed using RL to search for better heuristic rules
that further reduce the total wirelength. Their experimental result showed an average
improvement of 1% in final DP HPWL across academic benchmarks and more than 1%
in GP HPWL on real industry designs. Their work was the first attempt to integrate RL
into force-based global placement algorithms. Limited by open-source datasets used for
training, the RL agent cannot be generalized well.

Classical placement algorithms take much time to adjust the parameters to get a sat-
isfactory solution. Automatic parameter tuning by ML can improve placement efficiency.
A RL framework for optimizing the placement parameters of commercial EDA tools is
presented in [76,77]. The framework is shown in Figure 6. The state contains the netlist
information and the current parameter set. The agent uses the actor–critic framework
to get a new parameter set. The reward is the negative value of the HPWL output from
the commercial EDA placement tool. The method uses a GNN to generate node embed-
dings, allowing the framework to generalize well to unseen netlists. Their experimental
results under the TSMC 28nm technology node included up to 11% and 2.5% wirelength
improvements on unseen netlists compared with a human engineer and a state-of-the-art
tool auto-tuner, in just one placement iteration (20× and 50× less iterations). This work
demonstrates the potential to accelerate VLSI PD through automatic parameter tuning. In
addition, there are other efforts [78–82] for automatic-design-flow parameter tuning.
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Figure 6. An automatic parameter optimization framework based on RL. The state contains the netlist
information and the current parameter set. The agent uses the actor-critic framework to get a new
parameter set. The reward is the negative value of the HPWL output from the placement engine
environment.

Automatic design solves smaller-scale placement problems, especially macro placement.
Based on the graph convolutional network (GCN) and RL, Google’s method [12,51,83] trains
an agent to automatically place macros and then place the standard cells using the force-
directed method. When all the cells are placed, the reward can be computed and the
RL policy is updated. They claim their approach can leverage experience to learn rich
and transferable representations, making it applicable to placement optimization for un-
seen netlists. Their experimental results show that their well-trained agent can gener-
ate manufacturable chip floorplans in under six hours, which requires months of ef-
fort by human experts. The code is publicly available at: https://github.com/google-
research/circuit_training (4 January 2023). However, their work cannot be done with-
out the support of enormous computing power. Based on Google’s work, DeepPlace
and DeepPR were developed in [84] to optimize macro placement and to route with
two RL agents jointly. Jiang et al. [85] replaced the force-directed method used by
Google [12,51,83] with DREAMPlace [88] to place soft macros, which can quickly yield bet-
ter placement results. Lai et al. [86] observed that the hypergraph constructed by previous
work [12,51,83–85] is not scalable to comprehensively encode information of a netlist. They
developed a novel RL method, named MaskPlace, which casts placement as a problem of
pixel-level visual representation learning for circuit modules using convolutional neural
networks (CNN). Experiments on public benchmarks show that MaskPlace outperforms
existing RL approaches [12,51,83–85] in all key metrics, including wirelengh, congestion,
and density. Another work [87] explored new heuristic algorithms for macro placement
using RL. Specifically, a deep Q-Network agent was trained to walk through the search
space by selecting a candidate neighbor solution at each step, where perturbing sequence
pairs generate the neighbor solution.

It is easy to find that learning-based placement optimization algorithms mainly use
RL to explore heuristic rules, obtain better initial solutions, make placement decisions, etc.
GNNs are mainly used to generate node embeddings for netlists to allow RL agents to
perform placement on unseen netlists and ensure generalizability. The combination of RL
and GNN is expected to further promote RL as a generalized placement algorithm, like
heuristic and analytic algorithms, and to be applied to accelerate VLSI PD.

4.2. Computational Acceleration

Placement problems are enormous and are often accompanied by heavy numerical
computations. According to the new PD flow proposed in Figure 2, it is also necessary
to speed up the acquisition of the placement results needed for the predictors, thereby

https://github.com/google-research/circuit_training
https://github.com/google-research/circuit_training
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reducing the time overhead. It makes sense to use modern accelerated computing hardware,
such as multi-threaded CPUs or GPUs, to speed up these placement solvers.

There are architectural differences between CPUs and GPUs, as shown in Figure 7.
They have the same components: control units, compute units (ALU), caches, and memory.
However, their sizes and performances are different. GPUs have more control units,
computing units, and caches, yet they are simpler and smaller. This implies that a GPU
prefers parallel execution of small tasks with simple control flows [89]. Separate compute
units on GPUs may not be as powerful as those on CPUs, but because of massive parallelism,
GPUs may be faster. The related research on placement acceleration is listed in Table 4.

Figure 7. Comparison of CPU and GPU architectures. The orange, blue, green, and milk-white
rectangles represent the control unit, computing unit, cache, and memory.

Table 4. Related research on multi-threaded CPUs and GPUs accelerating VLSI placement.

Type Description

Multi-threaded
CPUs

POLAR 3.0, a quadratic placer using a multi-core system [24]
RePlace, a nonlinear placer with multi-threading support [28]

GPUs
Parallelism

GPU-accelerated implementation for the TimberWolf [90]
Exploit GPU parallelism to speed up nonlinear placement [91]
DREAMPlace, a GPU-accelerated placement framework [64,68,88,92]
An overview of GPU accelerated physical design [93]
Accelerate density accumulation on GPU [94]

Lin et al. [24] proposed a quadratic global placer called POLAR 3.0, which can fully
use a multi-core system. In POLAR 3.0, the GP iterations are divided into a series of
frames, in which partitioning is applied based on cells’ locations and the placement of
each partition is performed simultaneously. Finally, POLAR 3.0 can achieve around 5×
speedup over state-of-the-art academic placers with a typical quality degradation of 2–6%.
RePlAce [28] is also implemented with multi-threading support, and the authors describe
that this nonlinear global placer can achieve 2.4% reduction of routed wirelength on average
and consume less than 2× runtime compared to a commercial placement tool.

GPUs are getting more attention than multi-threaded CPUs because they have better
parallel potential and involved in the boom of AI applications. Related work has some on
heuristics [90], while most related work focuses on nonlinear placement [64,68,88,91–94].
In [90], the authors present a parallel CUDA-implementation of the TimberWolf [22]
placement application, achieving great speedups compared to the sequential algorithm.
Lin et al. [91] exploited GPU parallelism to speed up nonlinear placement, considering
the computation of wirelength and density, but missing the validation from real nonlin-
ear placement flows. Another recent work [94] was devoted to accelerating the density
accumulation of nonlinear placement on CPU/GPU, for which they have developed some
new kernels.

Particularly of note is the DL engine DREAMPlace, a GPU-accelerated nonlinear placer
developed by Lin et al. [64,68,88,92]. It leverages the GPU and the software framework
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Pytorch, transforming the nonlinear placement problem into a neural network training
problem. By decoupling high-level algorithm design from low-level acceleration efforts,
DREAMPlace significantly reduces development and maintenance overheads. Compared
to state-of-the-art multi-threaded CPUs placer RePlAce [28], it receives over 30× speedup
without quality degradation. A design with 10 million standard cells can be completed in
5 min with DREAMPlace, compared to 3 h with RePlAce [95].

In advanced technology nodes, algorithm improvements and computational accelera-
tion form a benign complementary relationship. Algorithm improvements allow us to get
better placement results, and computational acceleration decreases the time overhead of
the algorithm solution. Both of them jointly promote accelerating VLSI PD.

5. Learning-Based Predictor

Figure 2 reveals the roles of learning-based predictors. In the traditional VLSI PD
flow, it is necessary to wait until the final routing to know whether the placement quality
is good or bad, which inevitably leads to multiple iterations and lengthy design cycles.
Suppose the placement quality can be predicted accurately in the early design stages. In
that case, engineers can choose the best candidate placement result before proceeding to
the downstream PD flow, which will significantly accelerate VLSI PD. Learning-based
predictors use ML techniques to predict downstream outcomes in advance, allowing for
design-adaptive flows with substantially fewer iterations (even “one-pass”), albeit with
potential quality of result (QoR) degradation [96].

Learning-based predictors have been a hot topic in academic research. Depending
on the input stage of the predictors, there are after-macro placement [97–101] and after-
standard-cell placement [67,102–115]. According to the evaluation metrics, there are routing
congestion [67,99–101,103,115], short violations [109–111], pin accessibility violations [102],
wirelength [99], crosstalk [113], etc. By the algorithms used, there are mainly traditional
supervised learning methods such as the support vector machine (SVM) [98,104,108],
regression [99,100], and RUSBoost methods [105], but also DL methods such as fully convo-
lutional network (FCNs) [67,103], CNNs [97,106], GCN [109], and generative adversarial
networks (GANs) [114]. Compared with traditional ML methods, DL-based methods are
superior at capturing the global information from a larger region of the circuit layout [116].
Compared with the analytical methods in Section 3.3, which directly optimize the total
wirelength and density, the cost functions of the learning-based predictors are closely re-
lated to the adopted learning paradigm. The usual form of the cost function is to minimize
the mean-square error of the labeled and predicted values when completing a regression
task and to minimize the cross-entropy loss function when completing a classification task.
The related work is organized in Table 5.

Table 5. Recent studies on learning-based predictors.

Input
Stage

Evaluation
Metrics Algorithms

After Macro
Placement

Timing failures [98] SVM
HPWL and routing congestion [99] Regression
Routing congestion [100] K-Means, Regression
Routing congestion and WNS/TNS [101] Ensemble learning
The number of DRVs [97] CNN

After Standard
Cell Placement

Routing congestion [67,103,115] FCN, LHNN
The number of DRVs [104–106] SVM, RUSBoost, CNN
The locations of DRVs [102,106–111] SVM, GCN, CNN
Clock tree synthesis outcomes [112] GAN, RL
Crosstalk [113] XGBoost, GNN
Coupling effect [114] GAN
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Making predictions immediately after macro placement saves the time consumed by
standard cell placement but is limited by fewer available features, resulting in lower pre-
diction accuracy. The methods used include both traditional supervised learning methods
such as SVM [98] and regression [99,100]; traditional unsupervised learning methods such
as k-means clustering [100]; and also some DL methods such as the CNN [97].

Chan et al. [98] used an SVM to predict post-P&R slack of SRAMs, given only a post-
synthesis netlist, timing constraints, and a floorplan. Using their method, SoC designers
may avoid floorplans and constraints leading to timing failures at sign-off. Other works
focus on performing routability prediction [97,99–101]. Cheng et al. [100] constructed
a dual-model architecture to predict routing congestion, which uses a combination of
supervised and unsupervised learning to improve prediction accuracy. In addition, five
ML regression algorithms were compared for their accuracy in predicting HPWL and
routing congestion after macro placement [99]. Gao et al. [101] presented the first feasibility
study of cross-design prediction on macro placement and developed a discerning ensemble
approach to provide predictions on post physical synthesis QoR metrics, including routing
congestion and WNS/TNS. Huang et al. [97] presented the first work on routability-driven
macro placement using DL. They constructed a CNN-based routability predictor to predict
design rule violations (DRVs) without standard cell placement and routing information. In
addition, they embedded the predictor into a macro placer and used the SA algorithm to
finish macro placement.

Making predictions after standard cell placement involves more research than macro
placement predictions. This phenomenon may be due to the fact that more features can be
extracted after standard cell placement, resulting in higher prediction accuracy. Such predictors
mainly use methods such as traditional supervised learning [104,105,107,108,110,111,113],
RL [112], and DL [67,102,103,106,109,111,112]. The predictors mainly perform routability
prediction, and the metrics are mainly global routing congestion [67,103,115] and detailed
routing violations [102,104–111].

Global routing congestion is one of the main causes of DRVs in detailed routing
solutions, as most DRVs are due to overcrowded wires and vias [117]. PROS [103] is a
predictor based on FCN that uses the data from standard cell-placement results to predict
global routing congestion. Another work [67] also used an FCN to predict global routing
congestion hotspots and embedded the predictor into DREAMPlace [88] to get a more
route-friendly result. Wang et al. [115] proposed a novel graph formulation for circuits
named lattice hypergraph (LH-graph) and further developed a heterogeneous graph neural
network architecture, LHNN, to predict routing congestion. Their work aimed to reserve
full netlist information during the whole learning process, fully utilize the supervision of
the routing demand map and congestion map, and facilitate more appropriate receptive
field expansion. However, there is a mismatch between the global routing congestion map
and the final DRV map due to increasingly complex design rules in advanced technology
nodes [107]. This miscorrelation is shown in Figure 8. Thus, predicting a congestion map
is neither good for evaluating design routability nor identifying potential DRVs before
detailed routing.

Most recent work has been devoted to directly predicting design rule check (DRC)
violations, since DRC violation is the most accurate, ultimate measurement of routability.
The prediction can be divided into two categories: the location (fine-grained) [102,106–111]
and number (coarse-grained) [104–106] of DRVs. Chan et al. [107] modeled the prediction
problem as a supervised classification problem to predict the locations of DRC hotspots.
Chen et al. [108] built a learning-based framework and used an SVM to train a model
for predicting violated regions and violation density. Several research efforts focused on
predicting the locations of detailed routing short violations [109–111]. In [109], a GCN was
used to establish a mapping relationship between placement features and detailed routing
short violations. Tabrizi et al. [111] built a DL framework that predicts short violations
without using a global router and treats the prediction problem as a binary classification
problem with imbalanced data. Aside from pin short, pin accessibility is also a cause
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of detailed routing violations. Liang et al. [102] proposed a customized convolutional
network architecture for general DRC hotspot prediction that emphasizes pin accessibility
and does not need global routing information. The technology has been evaluated on
several industrial designs at 7 nm technology nodes and was proven effective. For the
evaluation of routability, Chan et al. [104] use the SVM algorithm to make predictions of
the number of DRVs. Their approach does not need global routing information. In [105],
the authors chose the RUSBoost algorithm instead of the SVM for predicting the number of
short violations, demonstrating the superiority of the RUSBoost algorithm. RouteNet [106]
is the first work to use CNN for routability prediction, and it can either predict the number
of DRVs without global routing or detect the locations of DRC hotspots.

Figure 8. The mismatch between global routing congestion map and final design rule violations
(DRVs) in advanced technology nodes. (a) Routing hotspots are predicted by global routing. (b) Ac-
tual routing hotspots.

Aside from routability, other aspects can also be predicted. Liang et al. [113] developed
a crosstalk prediction model without routing by employing several ML algorithms, such as
XGBoost, GraphSage, and graph attention networks. The framework allows designers to
modify placement to minimize crosstalk in advance. Lu et al. [112] used conditional GAN
and RL algorithms to build a framework that can predict and optimize clock tree synthesis
(CTS) results. They used transfer learning to extract design features from placement images
to ensure that the framework can be applied to different netlists. The method in [114]
predicts the coupling effect based on a GAN model at global placement and integrates the
model into the objective of DREAMPlace [88] to guide placement.

6. Open Challenges

As the technology nodes advance, many new challenges have emerged for placement
optimization. We provide an overview of placement challenges from the perspective of
accelerating VLSI PD. Specifically, we discuss the common challenge encountered by place-
ment optimizers and learning-based predictors and then present the respective challenges.

The common challenge is the application of learning algorithms. These challenges
include a lack of datasets, difficulty integrating the placer, poor generalization of trained
models, and expensive training. As data-driven algorithms, learning algorithms most
critically require a large amount of data, which is usually lacking in VLSI designs. Some
work on data generation [12,51,67,118] was mainly based on existing several datasets and
then modified the parameter settings with the help of EDA tools to get more datasets with
different qualities. However, this is insufficient to achieve true design-level or netlist-level
generalization. These two works [119,120] are worth mentioning for better generalization.
The first study [119] proposes an artificial netlist generator which does not rely on real
netlist data and can generate numerous netlists for ML training, promising models with
netlist-level generalization capability. The second study [120] proposes federated learning
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to address data silos existing in academic research and industry research, promising design-
level generalization while preserving commercial privacy. With the model size of recent
learning algorithms continuously increasing, the efficient integration of the learning model
into existing VLSI PD flow becomes difficult. Existing integration work has made such
efforts: [67,97,103,107]. In the future, more new benchmarks, models, and metrics still be
needed to drive placement research.

In addition to the common challenge mentioned above, placement optimizers also
require attention on the following:

1. Classical placement algorithms do not require large amounts of data for training
compared to learning algorithms. However, the solution time may be too long to
apply to increasingly complex designs. Keeping the classical placement algorithms
feasible is a crucial challenge. It may be necessary to revisit the process of classical
placement algorithms, rebalance solution time and algorithm quality, use learning
algorithms to circumvent drawbacks, and so on.

2. Advanced challenges of GPU acceleration. These challenges include a lack of paral-
lelism and irregular computation patterns, high expectations for quality and inevitable
quality degradation, a lack of available baseline implementations, and high devel-
opment cost. Future efforts on GPU acceleration include algorithmic innovation,
pushing the speed limit on very hard kernels, and generating universal frameworks
or programming models [93].

Similarly, learning-based predictors require additional attention on the following:

1. What information needs to be predicted in different technology nodes. Each process-
ing technology has its own rules. As a result, prediction for different technology nodes
may require different methods and ML models. Taking routability prediction as an
example, there is a large discrepancy between routing congestion and final detailed
routing violations in advanced technology nodes, as shown in Figure 8. If routing
congestion is predicted and placement is done under its guidance, it may lead to more
modification work and a lengthy VLSI PD cycle.

2. Prediction needs to be more profound while maintaining accuracy. Prediction should
increase its span across multiple design steps [121]. The authors of [122] also depicted
that predicting post-route design quality during placement is preferred to predicting
wirelength and congestion only. More profound predictions can help designers see
further and avoid unnecessary iterations, thereby improving VLSI PD efficiency.
However, the earlier the design, the fewer the features that can be extracted, which
inevitably leads to a decline in model accuracy.

Placement optimization must be high quality and fast for accelerating VLSI PD. Pur-
suing high quality, with a focus on closing the sub-optimal gap, necessitates revisiting
the classical placement optimization flow, and can use these approaches such as con-
structing artificial netlists, using accelerated computing platforms, improving the research
infrastructure, and exploring learning algorithms. Achieving speed relates to placement-
predictability research, which improves efficiency by predicting the output of current and
downstream design optimization steps. As expected, the exploration of modern (multi-core,
GPU) computing substrates and the application of learning algorithms are indispensable to
achieving high-quality and fast placement.

7. Conclusions

In this paper, we comprehensively reviewed the progress of placement optimiza-
tion from the perspective of accelerating VLSI physical design. After introducing the
background of placement optimization research, we highlighted emerging trends in mod-
ern placement-centric VLSI physical design flows, including placement optimizers and
learning-based predictors. We first defined the placement problem and reviewed the
classical placement algorithms, then discussed the application bottleneck of the classical
placement algorithms in advanced technology nodes and gave corresponding solutions.
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After that, we introduced the development of placement optimizers from algorithm im-
provements and computational acceleration, pointing out that these two aspects will jointly
promote accelerating VLSI physical design. We also presented research on learning-based
predictors from various angles. Finally, we discussed the common and individual chal-
lenges encountered by placement optimizers and learning-based predictors.

Effective and fast placement remains a challenging problem. Although learning
algorithms are becoming mainstream research, we should continue to maintain research on
classical placement algorithms. There is still significant research space for learning-based
placement algorithms. The construction of infrastructure, especially datasets, will become
increasingly crucial for advancing learning-assisted placement research. RL and GNN
deserve further research, which promises to deepen the automation of solving placement
problems and accelerate VLSI physical design.
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