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Abstract

The concept of chemical space is a cornerstone in chemoinformatics, and it has broad conceptual and practical applicability 

in many areas of chemistry, including drug design and discovery. One of the most considerable impacts is in the study of 

structure–property relationships where the property can be a biological activity or any other characteristic of interest to a 

particular chemistry discipline. The chemical space is highly dependent on the molecular representation that is also a cor-

nerstone concept in computational chemistry. Herein, we discuss the recent progress on chemoinformatic tools developed 

to expand and characterize the chemical space of compound data sets using different types of molecular representations, 

generate visual representations of such spaces, and explore structure–property relationships in the context of chemical 

spaces. We emphasize the development of methods and freely available tools focusing on drug discovery applications. We 

also comment on the general advantages and shortcomings of using freely available and easy-to-use tools and discuss the 

value of using such open resources for research, education, and scientific dissemination.
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Introduction

Chemical space is a cornerstone concept in chemoinformat-

ics. It serves as a framework to study the chemical com-

pounds that populate or might do so, the "chemical uni-

verse" i.e., all compounds that can exist. Although it seems 

a straightforward idea (in particular, if one associates the 

idea of the chemical space with the chemical universe), it 

is not easy to define uniquely. Other subjective and general 

notions frequently used in chemoinformatics are "similarity" 

[1], or "diversity,” "molecular or structural complexity" [2], 

"chemical beauty" [3], "descriptors’ usefulness", to name a 

few examples.

The notion of chemical space has numerous practical 

applications. In drug discovery, chemical space has provided 

a solid conceptual framework to guide diversity analysis, 

structure classification, library design, compound selection, 

and assessment of structure–property and structure–activity 

relationships (SPR, SAR or SP(A)R) that is a fundamental 

practice in drug discovery [4]. As commented hereunder, 

the notion of chemical space is also related to computational 

chemogenomics, where one aims to predict (and then vali-

date experimentally) the intersection between the chemical 

and biologically relevant space. Indeed, in the early ’60 s, 

the quantitative analysis of the SAR marked a significant 

milestone in the history of chemoinformatics and computer-

aided drug design [5].

This Perspective aims to discuss advances in the devel-

opment of chemoinformatic resources to characterize the 

chemical space of compound data sets using different types 

of molecular representations, generate visual representations 

of such spaces, and explore SP(A)R in the context of chem-

ical spaces. In addition to analyzing the currently known 

chemical space, we comment on recent trends to augment the 

number of molecules that could be made. We emphasize the 

development of open tools focused on applications relevant 
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to drug discovery. As part of the discussion, we comment 

briefly on the advantages and shortcomings of using freely 

available and user-friendly tools and comment on the value 

of using such tools in research, education, teaching, and 

scientific dissemination. This manuscript is organized into 

six main sections. After this introduction, Sect. 2 presents 

an overview of the concept of chemical space, providing 

examples of different definitions proposed in the literature. 

Section 3 covers advances on open resources to expand and 

describe the chemical space, e.g., augmenting the number 

of compounds either on-stock or virtually available and cal-

culating chemical descriptors. Section 4 presents advances 

on the concept, methods for the visual representation of the 

chemical space, including free web servers. The section 

after that discusses progress on the exploration of SP(A)R 

in the context of chemical space, including the exploration 

of "StARs" (Structure–Activity Relationships) in chemi-

cal space. Section 6 presents the conclusions and future 

directions.

The concept of chemical space

Chemical space is a subjective concept and different defini-

tions have been proposed, which has been reviewed else-

where [4, 6]. For instance, Virshup et al. define chemical 

space as "An M-dimensional cartesian space in which com-

pounds are located by a set of M physicochemical and/or 

chemoinformatic descriptors" [7]. Along the same lines, 

Arús-Pous et al. describe it as "a concept to organize molec-

ular diversity by postulating that different molecules occupy 

different regions of a mathematical space where the position 

of each molecule is defined by its properties" [8]. Based on 

these notions, Fig. 1 shows what can be considered a "chem-

ical space table," where the rows are the N number of chemi-

cal compounds themselves (identified by, for instance, a text 

identifier). The columns are an M number of descriptors 

that describe the compounds, defining the "M-dimensional 

cartesian space" of Virshup’s definition.

A common pitfall is that chemical space itself is fre-

quently taken as equivalent to an image, aka, a visual rep-

resentation. Although in many practical uses of chemical 

space, data visualization plays a major role, the chemical 

space itself is a subjective and general notion that depends 

primarily on the choice of the number and type of the 

descriptors that define the M-dimensional space. When a 

visualization method is not well suited to analyze a particu-

lar set of compounds and descriptors, it is always possible 

to analyze and extract information (and knowledge) from 

the chemical space using the full set (or relevant subsets) of 

the initial M-dimensions. Unless there are only two or three 

descriptors that define the M-dimensions in Fig. 1 (M = 2 or 

3, in which case the chemical space could be represented 

visually with a scatter plot), it is required a method to por-

tray the M-dimensional space into two- or three-dimensions 

(2D/3D). Advances on the approaches to generate a visual 

representation of the chemical space, including the chemical 

space networks (that are coordinate-free) are addressed and 

cited in Sect. 4.

Suppose one adds one or more columns to the table in 

Fig. 1, representing the values of biological activity evalua-

tions. In that case, one can produce a data format to perform 

Fig. 1  Schematic representation of the chemical space concept as an M-dimensional descriptor space
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SAR studies, reminiscent of a QSAR table or SAR matrix. 

In light of the concept of polypharmacology and multi-tar-

get drug design, it is possible to explore structure multiple-

activity Relationships, e.g., "get SmARt" [9]. The "QSAR 

tables" have been the starting points to perform from sim-

ple QSAR linear regression studies to complex multivariate 

models used now in machine learning. Furthermore, QSAR 

tables are the basis of computational chemogenomics that is 

a strategy to navigate the chemical and biologically relevant 

chemical space [10, 11].

Type of molecules

The molecules (e.g., rows in the chemical space table in 

Fig. 1) typically used in drug discovery projects are small 

organic molecules (loosely defined with a molecular weight 

below 1,000 Da although could be bigger). These include 

natural products that have a significant impact on drug dis-

covery [12] and semi-synthetic compounds. However, other 

types of molecules are also of interest in drug discovery, 

such as therapeutic peptides and proteins [13, 14], antibod-

ies, and metallodrugs [15, 16]. The representation of these 

types of compounds, particularly metallodrug and organo-

metallic molecules, is a major challenge in chemoinformat-

ics. The representation and descriptors for (short) peptides 

and proteins are borderline between chemoinformatics 

and bioinformatics. For this Perspective, we will focus on 

the efforts to visualize the chemical space of mostly small 

organic molecules.

Type of descriptors

The descriptors (columns in the chemical space table in 

Fig. 1) can be any set of numbers that defines the space in an 

orderly (logical and rational manner). The type of descrip-

tors can be suited to define the desired space and apply the 

concept for an array of applications, depending on the pro-

ject’s goals. Molecular description and the type of descrip-

tors are distinctive of the different informatic disciplines in 

such a way that they somehow contribute to shape disci-

plines such as bioinformatics, chemoinformatics, biomedical 

informatics, etc. [17]. As commented in detail elsewhere 

in chemoinformatics common descriptors are calculated 

based on linear notations that are well-suited to manage 

many chemical compounds. It is also well-known that there 

is no single or a set of "best" descriptors as they should be 

selected based on their performance on a specific task [18]. 

This is associated with the inductive learning process used 

in chemoinformatics (as opposed to deductive learning used 

predominantly in quantum mechanics) [19].

Common types of descriptors that have been used to 

define the chemical space of small organic molecules include 

whole molecular properties that are aimed at encoding the 

so-called "drug-like," "lead-like," ADME (absorption, dis-

tribution, metabolism, and Excretion), toxicity, and other 

pharmaceutical-relevant characteristics. Other major molec-

ular representations are fingerprint-based descriptors of dif-

ferent designs (dependent and independent of the molecule 

[20], and descriptors associated with sub-structures. Also, it 

has been approached using combined representations (e. g., 

hybrid fingerprints or combined molecular representations 

in general).

Beyond drug discovery, a recent application of physico-

chemical properties and molecular fingerprints to explore 

SPRs is to generate models that predict the smell of odorant 

molecules [21].

As further commented below, a novel type of descriptors 

that have been used to explore chemical spaces is the ISIDA 

descriptors, used to navigate the chemical space of natural 

products [22, 23].

Capecchi et al. recently proposed the molecular finger-

print MAP4 (MinHashed atom-pair fingerprint up to a diam-

eter of four bonds). MAP4 has shown good performance in 

similarity searching and visual representation of the chemi-

cal space for small molecules and larger molecules such as 

peptides [24]. Reymond et al. recently used the MAP4 fin-

gerprint to visualize the chemical space of natural products 

and [25] and peptides libraries in the public domain [26].

Recently the in silico acid-based profile of small mol-

ecules has been used to explore the chemical space of small 

molecules with epigenetic activity [27] and natural products 

from different sources [28].

Open resources to expand and describe 
the chemical space

There are reviews of open chemoinformatics resources for 

numerous applications [29, 30]. For instance, Singh et al. 

recently reviewed online web servers to perform virtual 

screening of small molecules and docking [31]. The authors 

reported 68 web applications in that review and classified 

them into target-fishing, ligand-based, and structure-based 

virtual screening. The review also covered compound data-

bases that provide different information relevant to drug 

discovery, such as approved drugs, patented molecules or 

small molecules commercially available. Wu et al. surveyed 

databases and software commonly used to predict ADME/

Tox-related properties [32].

Regarding the use of free web servers, Table 1 outlines 

the advantages and disadvantages of using open-source pro-

grams and freely accessible web servers. Overall, a clear 

benefit and advantage over commercial software are that 

they provide resources for research groups with a limited 

budget [33] and support open science. Also, the correct use 

of open-source programs advocates data reproducibility 
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and facilitates cross-comparisons. A general disadvantage 

or caution of free web servers and "easily accessible" soft-

ware is that they can be used as black boxes if they are used 

with no knowledge of the limitations of the tools and might 

lead to poor interpretation. Also, "easy-to-use" software has 

the associated risk of being used to generate only data and 

not knowledge and might promote the practice of irrational 

use of computers for drug discovery. Herein, we not aimed 

to fully discuss these points that are beyond the main goal 

of this manuscript that is focused on the chemical space. 

Instead, we want to give a brief comment about this topic 

that has been discussed openly in more detail elsewhere [34].

Resources for generating and organizing chemical 
structures

In the last few years, the chemical space has been grow-

ing rapidly: the number of compounds available in stock or 

that could be synthesized increases. Based on the Virshups’ 

concept of chemical space (vide supra), generating com-

pounds could be graphically represented as incrementing 

the number of rows in the "chemical space table" of Fig. 1. 

Chemical databases systematically organize the information 

of chemical compounds, and such databases have played a 

key role in drug discovery [35]. Progress on the develop-

ment of compound databases in the public domain for drug 

discovery applications has been reviewed recently, and the 

interested reader is directed to these publications [36, 37].

In‑stock and on‑demand libraries

Virtual and make-on-demand libraries are having a signifi-

cant impact on drug discovery. As pointed out by Walters, 

progress on the computer capabilities for generating and 

storing chemical compounds has increased the number of 

organic molecules that potentially could be synthesized 

[38].

A prominent example of a freely available and large 

library is the Generated Databases (GDB) developed in the 

group of Reymond et al. [39]. The most recent version is 

GDB-17 that contains 166.4 billion compounds up to 17 

non-hydrogen atoms that include molecules not seen in the 

traditional medicinally relevant chemical space but have 

promising features to identify novel hit molecules [40].

Another recent development of an open resource to access 

purchasable or on-demand chemical libraries is ZINC20 that 

contains more than 9 million in-stock molecules and bil-

lions of new on-demand molecules [41]. Large-scale virtual 

screening of make-on-demand collections has led to discov-

ering compounds with novel chemical scaffolds and submi-

cromolar bioactivity [42]. Notably, the newest version of 

ZINC20 includes resources to generate a visual representa-

tion of the chemical space of the so-called "ultra large-scale 

chemical database [41].

Interestingly, the collection of compounds, so-called 

"dark chemical matter," represents a particular region of the 

chemical space that is mostly inactive [43].

Another recent development is the increase in the avail-

ability of natural product collections in the public domain 

that surpasses the half-million molecules [44]. A notable 

advance in this area is the assembly of the public database 

COCONUT (COlleCtion of Open NatUral producTs) [45]. 

In response to the COVID-19 pandemic, large and small 

collections and data sets of natural products have been vir-

tually screened to identify potential compounds active in a 

number of molecular targets of SARS-CoV2. In most cases, 

however, experimental validation of the computational hits 

has to be performed as many publications were the result 

Table 1  Overview of advantages and disadvantages of using open tools, including web servers

Advantages Disadvantages

Web servers Increased accessibility

Budget, cost-effective

Experts and non-experts in chemoinformatics 

can use them

They are good resources for the education of 

beginners and teaching

They are convenient tools for distance learning 

(provided the servers are correctly used)

They contribute to the generation of multi- and 

transdisciplinary science

They could be used as black boxes

Limited access to parameters

Potential issues of intellectual property

Sensitive to proprietary data

They are usually limited to a given (relatively short) number 

of compounds to analyze

Stand alone software No need for programming or previous experi-

ence in programming is not mandatory

Ready to use and apply to a research project

No sensitivity to proprietary data

It might depend on the operating system

Cost–benefit increases

Scripts and programs Broadly widely customizable

It can be implemented onto web servers

Faster data processing speed

Experience in programming required

Support might not be easily accessible. Depend on the experts

The learning curve can be steep, not necessarily read to use
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of a "hype" and easy access to resources to conduct virtual 

screening.

De novo design and structure generation

Beyond the significant increase of chemical compounds that 

can be accessed (either in-stock or readily accessible after 

synthesis) a common trend now is the generation of chemi-

cal compounds designed de novo using machine learning. 

This has been reviewed recently in excellent review papers 

[8, 46].

There have also been advances in the automated gen-

eration of short peptides for drug discovery applications. A 

recent example in this area is the development of the free 

web server D-Peptide Builder that enumerates linear and 

cyclic combinatorial peptide libraries (Fig. 2) [47]. The 

server computes physicochemical properties of the newly 

enumerated peptides and provides tools to perform quanti-

tative analysis of the structural diversity. D-Peptide builder 

also enables a visual representation of the chemical space 

of the libraries and compares it with the chemical space of 

five preloaded compound data sets (including small mol-

ecules and peptides approved for clinical use, natural prod-

ucts, macrolides and non peptide protein- protein interaction 

modulators).

PepCoGen is also a free web server for generating pep-

tides with a specific physicochemical profile [48]. In par-

ticular, the server generates all possible combinations of 

peptides by modifying the amino acids having a comparable 

physicochemical property profile at a given position.

On a separate work, the code of the Peptide Design 

Genetic Algorithm (PDGA) was made publicly available. 

PDGA is designed to generate peptide sequences of different 

topologies so that the generated sequences are similar to a 

given reference molecule (as measured considering macro-

molecule extended atom-pair fingerprint (MXFP) (an atom-

based fingerprint that considers the shape and pharmacoph-

ore features of the molecules [49]. The research group of 

Reymond has reviewed computational methods to design, 

generate and visualize the chemical space of peptides [26].

In order to support teaching in chemoinformatics, a tuto-

rial that describes how to enumerate virtual libraries was 

published recently [50]. The tutorial describes a step-by-step 

procedure for anyone interested in designing and building 

chemical libraries with or without experience in using com-

putational tools.

Resources for calculating descriptors freely 
available

In parallel to recent developments to enumerate, gener-

ate (synthesize), and make available chemical compounds 

(e.g., increase the number of rows in the "chemical space 

table" of Fig. 1 (vide supra), there has been a lot of pro-

gress in the development of descriptors, e.g., augment the 

number of M-dimensions or "columns" in Fig. 1. Of note, 

depending on the project’s goals, one can generate a given 

Fig. 2  The graphical user interface of D-Peptide builder: an example of a recent free webserver to generate compounds. D-Peptide builder enu-

merates combinatorial peptide libraries
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finite set of descriptors to define the chemical space of 

the compounds under study. Thus, one can develop "dif-

ferent types of chemical spaces," e.g., defined by different 

sets of M-descriptors (Fig. 1). Arguably, it has been com-

mented that "different chemical spaces" are associated by 

different types of molecules (small molecules, biologics, 

polymers, materials, etc. [46]). Under the later notion, 

molecules with different nature (like polymers, materi-

als, etc.) would require a particular set of M-descriptors.

To define or generate the M-descriptors and define the 

chemical space using open-source and freely available 

software, there are several tools that have been avail-

able in the public domain for several years now. Typical 

examples include MayaChemTools (chemistry toolkit) 

[51], PaDEL-Descriptors [52], and the 3D descriptors 

implemented in QuBiLs-MIDAS [53], which was updated 

recently [54]. Additional free resources recently devel-

oped are briefly commented on hereunder.

PyDescriptors is a set of freely available 11,145 molec-

ular descriptors easily interpretable and thus appropriate 

for QSAR studies [55]. PyDescriptors include 1D, 2D, 

and 3D descriptors that encode atomic fragments, phar-

macophoric patterns, and diverse fingerprints. The PyDe-

scriptors is a Python-based plugin that is implemented in 

PyMOL.

Mordred package for Python contains 1,800 2D and 3D 

descriptors freely available and promising for chemoin-

formatic studies and SPR analysis [56]. The descriptors 

can be used for large molecules (e.g., maitotoxin, a large 

non-polymer natural product with a molecular weight of 

3,422). The Python package can be installed and used 

on different platforms (Linux, Windows, macOS). In the 

original publication [56] the Mordred descriptors were 

compared with the PaDEL-Descriptors [52] and turned 

out to be faster.

Another recent development in descriptors calcula-

tions is ChemDes [57]. This is a public integrated web-

based platform that calculates 2D and 3D descriptors and 

molecular fingerprints. It calculates 3,679 descriptors 

(BlueDesc, Chemopy, CDK, RDKit, and PaDEL) and 

59 types of molecular fingerprints for small (drug type) 

molecules. ChemDes is freely accessible via a previous 

registration, at http:// www. scbdd. com/ chemd es/ (accessed 

May 1st, 2021).

Overall, a critical and controversial point of chemical 

descriptors is their interpretability and physical mean-

ing. In predictive models, it is open for discussion if the 

descriptors do not only show how a good statistical asso-

ciation between the chemical structure and the property 

(e.g., biological activity) of interest but if the descriptors 

can actually explain or contribute to the causality of the 

activity as encoded by the chemical descriptors [58, 59].

Resources for the visualization of chemical 
space

Visualization of chemical space plays a key role in com-

municating and disseminating information with experts 

and non-experts within a research group, an organization, 

community, and the research community on the large. In 

practice, chemical space is commonly studied accom-

panied by a graphical representation of the descriptors, 

typically a low-dimensional graph (2D or 3D). Formally 

speaking the chemical space (Fig. 1) could be unidimen-

sional (1D), 2D, 3D and can be represented straightfor-

wardly using scatter plots. The challenge comes when 

the M-dimensions are four or more. To this end, differ-

ent mathematical approaches to reduce dimensions and 

techniques for data visualization have been applied to 

project chemical information in low dimensions and then 

map another property, such as biological activity, on that 

low-dimensional representation. In the past few years, 

progress on data visualization has been reviewed by dif-

ferent authors [6, 60, 61]. However, generating meaning-

ful, interpretable, and useful graphical representations of 

chemical space is not trivial. Visualization of the chemical 

space (in particular in light of the rapid expansion of the 

compounds that might populate the space) is an area of 

active research to develop or improve methods [62]. Rep-

resentative novel developments in the visual representation 

of the chemical space using open-source and freely avail-

able resources are discussed hereunder.

The research group of Varnek et al. generated the so-

called "Universal REACH map, and application of the Gen-

erative Topographic Mapping (GTM) [63] to visualize the 

chemical space of chemicals from the Registration Evalua-

tion Authorization and restriction of Chemicals (REACH) 

[64]. GTM produces 2D graphs on which each compound 

is represented with a data point. Ecotoxicological properties 

were mapped onto the 2D graph. The Universal REACH 

map was then used to classify and evaluate the property 

of new chemicals projected onto the map with a balanced 

accuracy from 0.60 to 0.78. In independent work, GTM was 

used to visualize a large library of 40 million fragment-like 

molecules [65] and the entire ZINC database of purchasable 

compounds, relative to 1.6 million biologically relevant mol-

ecules in ChEMBL [66]. A similar chemography approach 

using GTM was implemented to navigate the chemical space 

of 800 million organic molecules and identify "anti-CoV" 

regions [67]. More recently, GTM was used as a frame-

work to visualize interactively the chemical space of a large 

database of natural products (COCONUT, vide supra) and 

ChEMBL [22]. The GTM maps were implemented into a 

freely available intuitive online tool called Natural Products 

Navigator (vide infra).

http://www.scbdd.com/chemdes/


347Journal of Computer-Aided Molecular Design (2022) 36:341–354 

1 3

ChemMaps is a methodology for the visual representation 

of chemical space. It is based on the similarity matrix of 

compound data sets generated with the similarity computed 

with fingerprints and a similarity coefficient. ChemMaps is 

based on a reference or satellite approach implemented in 

ChemGPS [68] with the working hypothesis that satellites 

are, in principle, molecules whose similarity to the rest of 

the molecules in the database provides sufficient information 

for generating a visualization of the chemical space. The 

code to generate ChemMaps is freely available [69].

Another methodological advance in the visualization of 

chemical space is given by virtual reality. Probst and Rey-

mond developed a virtual reality chemical space of Drug-

Bank where the user can interactively explore the contents of 

this database. The source code of the application is publicly 

available [70].

Chemical space networks (CSNs) represent another major 

conceptual advance to generate visual representations of 

the chemical space, as discussed in detail by Maggiora and 

Bajorath [71, 72]. A major feature of CSNs is that they are 

coordinate-free representations of the chemical space. An 

algorithm to transform a multidimensional chemical space 

into CSNs readily has been developed that is further use-

ful to explore SARs [73]. CSNs have been used in many 

applications, including the assessment of the molecules from 

patents [74].

DataWarrior is a free stand-alone program that is being 

increasingly used for diverse chemoinformatics tasks, 

including data visualization [75, 76]. Datawarrior in a recent 

version (number 5.00) implemented t-SNE [77]. At the time 

of writing this manuscript (May 2021) the latest release of 

DataWarrior is 5.5.0.

Web servers

Table 2 summarizes free web applications to visualize the 

chemical space of compound collections. The table includes 

ChemGPS-NP, one of the first free web applications devel-

oped to visualize the biologically relevant chemical space 

[78]. In addition to ChemGPS-NP, some of the web serv-

ers in the table are dedicated to the browsing and visuali-

zation of the chemical space of user-supplied compounds 

(e.g., ChemMap.com [79], tMAPs [80], Natural Products 

Navigator [22]. Other websites include other functionalities 

such as D-Peptide Builder [47], and the Platform for Unified 

Molecular Analysis (PUMA) [81]. D-Peptide Builder is an 

application to enumerate chemical spaces of peptide com-

binatorial libraries and visualize chemical spaces. PUMA 

is a server that integrates the calculation of descriptors and 

visual representation of the chemical space based on those 

descriptors. Both web servers are part of D-Tools, a set of 

free web applications for chemoinformatics (https:// www. 

difac quim. com/d- tools/) [82]. The research group of Rey-

mond has developed several free web applications in Table 2 

for the interactive visualization of chemical space (https:// 

gdb. unibe. ch/ tools/).

Figure 3 shows an example of a visualization of chemi-

cal space using the free server PUMA (Table 2). The figure 

shows a principal component analysis based on six phys-

icochemical properties of pharmaceutical interest of two 

focused libraries (targeting DNMT1 and epigenetic targets). 

The libraries represent commercial synthetic compounds 

that can be acquired from chemical vendors for experimental 

screening). In PUMA, the user supplies the SMILES strings 

of curated compound libraries, and the server computes the 

Table 2  Examples of freely available web servers for the interactive visualization of chemical space

Web Server Brief description URL (accessed May 1, 2021) Ref

AtlasCBS Generates two-dimensional, dynamical representations of its 

contents in terms of Ligand Efficiency Indices

https:// www. ebi. ac. uk/ chembl/ atlas cbs/ intro. jsp [83]

ChemMaps Webserver developed to navigate throughout chemical and 

environmental chemical space

https:// sandb ox. ntp. niehs. nih. gov/ chemm aps/ [79]

ChemGPS-NP ChemGPS-NP Web is a system for computing the eight 

principal components (dimensions) describing physical–

chemical properties for a reference set of compounds

https:// chemg ps. bmc. uu. se [78]

Natural Products Navigator Visualization and navigation through the chemical space of 

NPs and NP-like molecules

https:// infoc hm. chimie. unist ra. fr/ npnav/ chema 

tlas_ users pace/

[22]

tMAP Visualization library for large, high-dimensional data sets https:// tmap. gdb. tools/ [80]

Faerun Chemical space accessible by the PDGA with an interactive 

3D map of the MXFP property space

http:// faerun. gdb. tools/ [49]

PDB Explorer Interactive visualization and similarity search of the RSCB 

Protein Databank in shape space

http:// www. chemi nfo. org/ pdbex plorer/

D-Peptide Builder Enumerate chemical spaces of peptide combinatorial librar-

ies and visualize chemical spaces

http:// dpept idebu ilder. quimi ca. unam. mx: 4000/ [47]

Platform for Unified 

Molecular Analysis

Online server to visualize the chemical space and compute 

the molecular diversity of your data sets

http:// 132. 248. 103. 152: 3838/ PUMA/ [81]

https://www.difacquim.com/d-tools/
https://www.difacquim.com/d-tools/
https://gdb.unibe.ch/tools/
https://gdb.unibe.ch/tools/
https://www.ebi.ac.uk/chembl/atlascbs/intro.jsp
https://sandbox.ntp.niehs.nih.gov/chemmaps/
https://chemgps.bmc.uu.se
https://infochm.chimie.unistra.fr/npnav/chematlas_userspace/
https://infochm.chimie.unistra.fr/npnav/chematlas_userspace/
https://tmap.gdb.tools/
http://faerun.gdb.tools/
http://www.cheminfo.org/pdbexplorer/
http://dpeptidebuilder.quimica.unam.mx:4000/
http://132.248.103.152:3838/PUMA/
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physicochemical properties internally (e.g., the descriptors) 

and then performs the principal component analysis. The 

user chooses to plot the first two or three principal compo-

nents. From the lower left part of the graphical user interface 

(Fig. 3), the user can download from the sever the raw data 

and the loadings and a summary of the analysis. Full details 

of the server are described in [81].

Exploring for structure–activity 
relationships (StARs) in chemical space

As commend above, since chemical space is defined by 

a set of M descriptors (Fig. 1), that encode the structural 

or other characteristics of the molecules, it can serve as 

a basis to analyze SPRs and SmARTs if one adds one or 

more dimensions that describe the property (e.g., biologi-

cal activity) of the compounds (i.e., the biological profile). 

Visually, the property (including the biological "activity") 

is usually mapped in the chemical space using a color (con-

tinuous color scale or categorical scheme) (Fig. 1) but could 

be visually represented in different forms (e.g., shapes for 

categorical variables). The visualization of SP(A)R and 

"STaRs in chemical space) has been commented on in the 

literature [61, 84]. Herein we emphasize exemplary most 

recent advances in this area.

Activity landscapes

Prof. Gerald Maggiora was one of the first investigators 

that kicked off the research on a general concept with high 

relevance in drug discovery: activity landscape modeling 

with his founding Editorial on activity cliffs [85]: pair of 

compounds with high structure similarity but unexpectedly 

large potency differences. Over the past few years, the con-

cept, interpretation, and applications of activity cliffs have 

evolved, as reviewed by Bajorath et al. [86–88]. One of the 

most recent developments in the activity landscape concept 

has been the extension to model other properties of general 

interest beyond drug discovery [89].

To illustrate this point, Fig. 4a shows the Structure–Prop-

erty Similarity (SPS) map for tubulin inhibitors generated 

with the free website Activity Landscape Plotter [90]. Each 

data point represents a pairwise comparison that shows the 

relationship between the difference in Topological Surface 

Area (TPSA) and the molecular similarity. The data points 

are further distinguished by the SALI value [91], using a 

continuous color scale from a low value (green) to a high 

value (red). In this context, higher SALI values represent 

a higher relationship between TPSA values and similarity 

between each pair of compounds. In contrast, Fig. 4b shows 

a Dual-Property Difference (DPD) map, plotting all pairwise 

activity differences of tubulin inhibitors with A-549 cell-line 

Fig. 3  Visual representation of the chemical space of user-supplied 

chemical structures using the free server Platform for Unified Molec-

ular Analysis (PUMA). The figure shows the visual representation of 

the chemical space of two synthetic commercial libraries targeted for 

epigenetic targets (709 compounds in total). The principal component 

analysis is based on six physicochemical properties of pharmaceutical 

interest as described in [81]. On the free web server, the 2D or 3D 

plot is interactive
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(X-axis) and HeLa cell-line (Y-axis). Therefore, DPD maps 

facilitate the identification of compounds with selective and 

dual activity.

Using SPR graphs allows us to relate chemical structures 

with their properties, bioactivities, or other characteristics. 

For example, Fig. 4 shows a property and dual activity 

cliffs (13P and 11FF) pair. These compounds are structur-

ally similar (0.470—using ECFP6 and the Tanimoto coef-

ficient). However, their TPSA is different (property cliff). 

It is well documented that TPSA values > 140 (like that of 

compound 11FF in Fig. 4C) lose their ability to cross mem-

branes, unlike compounds with TPSA values < 140 (like 

that of compound 13P) that retain this ability [92]. This is 

a case study that illustrates the similarity-property-activity 

relationship.

Constellation plots

Constellation plots were developed to combine a substruc-

ture-based representation and classification of compounds 

with a coordinate-based representation of chemical space 

[93]. Constellation plots are 2D graphs that combine sub-

structure-based clustering of compounds with a fingerprint-

based similarity classification of the chemical scaffolds. 

The substructure-based clustering of the molecules is based 

on the concept of analog series-based scaffolds [94, 95]. 

Since the biological activity data (or any other property) 

can be mapped into a Constellation plot, these 2D repre-

sentations of the chemical space enable identifying whole 

regions in chemical space rich in SPR annotations: groups 

of molecules, aka "constellations" in chemical space. The 

groups of molecules rich in biological activity would be light 

"bright StARs" in chemical space and be different from ’dark 

regions’: groups of molecules with no biological activity 

[61].

Additionally, in the constellation plots, the analog 

series with similar chemical structures are closely ordered 

because they share similar X and Y coordinates in the 

2D plots. In contrast, analog series with more different 

structures are far apart. Recently, López-López E. et al. 

proposed a methodology to navigate interactively/dynami-

cally in the chemical space using constellation plots [96] 

Fig. 4  Property Landscapes 

of compounds with activ-

ity against Tubulin using 

cell-based inhibition data. a 

Structure–Property Similar-

ity (SPS) map of 188 tubulin 

inhibitors that correspond to 

17,578 pairwise comparisons. 

The property cliffs are displayed 

in the upper-right zone. Each 

data point was colored using a 

SALI value scale from green 

(low) to red (high); b Dual 

Property Difference (DPD) map 

of tubulin inhibitors. The dual 

active compounds are displayed 

in the upper right zone. Each 

data point was colored using 

a selectivity score from green 

(low) to red (high); c Example 

of a property and dual activity 

cliff
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by implementing the DataWarrior software [76]. All this 

allows applying filters for compounds, analogous series, 

biological activity, and other properties of pharmaceuti-

cal interest using an intuitive platform that is well suited 

for all users (expert or non-experts on chemoinformatics 

tools). Figure 5 illustrates an example of a Constellation 

plot for a series of tubulin inhibitors. The plot shows 147 

data points, each one representing an analog series. The 

size of the data point indicates the relative number of com-

pounds in each analog series, and the color is the average 

activity of the compound in the series so that green-to-red 

colored dots point to analog series enriched with active 

molecules, hence more promising for further development. 

In contrast, cyan-to-blue colored dots indicate analog 

series with mostly inactive molecules. Full details of the 

study are described elsewhere [96].

Constellation plots have been used to navigate the chemi-

cal space of high‐throughput screening data of compounds 

consistently tested against the same panel of cell lines. In 

that work, Naveja et al. proposed a proof‐of‐concept of a 

method for finding a consistent cell-selective analog series 

of chemical compounds and identified the so-called "lumi-

naries in chemical space" [97].

Conclusions and perspectives

For years the subjective but fundamental notion of chemi-

cal space has assisted drug discovery projects. Chemical 

space is also a cornerstone concept in chemoinformatics. 

In the past few years, we have witnessed an expansion of 

the chemical space regarding the number of compounds 

that are known or can be synthesized in principle. As com-

mented on this Perspective, it is growing how the chemical 

compounds can be represented and the number of public 

tools to compute descriptors. Open-source codes can be 

implemented in other public web servers, chemoinformat-

ics suits, and desktop programs. In any case, the ready 

availability of compound libraries that are expanding the 

chemical space and the ready availability of tools to con-

duct virtual screening: e.g., in silico bioactivity profiling 

(or computer-assisted compound selection of the chemical 

Fig. 5  Constellation plot of compounds with activity against Tubulin 

using cell-based inhibition data. The plot shows 147 data points, each 

one representing an analog series. The size of the data point indicates 

the relative number of compounds in each analog series, and the color 

is the average activity of the compound in the series. Linking lines 

represent shared molecules between two analog series. Figure was  

adapted from López-López E. et al. [96]
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space), favor the potential identification of small mole-

cules with therapeutically relevant targets.

Similar to the expansion of the chemical space (more 

compounds and more descriptors, e.g., enlarge the table in 

Fig. 1)), novel free applications and open-source methods 

to generate visual representations of the chemical space 

are emerging and evolving. Recent developments include 

CSNs, TMAPs, GTMs, Constellation plots, and Chem-

Maps. Virtual reality has started to facilitate the interac-

tive exploration of chemical spaces. Some of these visu-

alization tools have been implemented in freely available 

websites that enable the browsing of chemical spaces. Sev-

eral methodologies aim to assist the analysis of SP(A)Rs 

and identity promising regions or clusters of compounds 

in chemical space.

Despite numerous open-source and easily accessible 

ways to calculate molecule descriptors, the user has to pay 

close attention (rational use) by preparing -curating—the 

compounds and then generating appropriate descriptors 

relevant to the problem in question. Considering the large 

chemical databases and large sets of descriptors avail-

able: one of the first and critical questions is defining the 

chemical space to be explored by focusing on the type of 

compounds of interest and the type of descriptors. In sev-

eral drug discovery applications, the choice of compounds 

and descriptors is dynamic: an iterative process where one 

explores different compounds and various descriptors that 

best suit the work goals.

We also want to encourage students, newcomers to the 

field, and users of free and easy-to-use tools and web-

sites to properly use and interpret the concept of chemical 

space. Based on the topics discussed from this Perspec-

tive, chemical space is a subjective and complex notion 

and goes beyond nice and colorful graphs. Along these 

lines, we encourage that the newcomers to the field select 

the methods for the right reasons and not because they are 

"popular." Instead, because the methods are thoroughly 

validated and properly documented. The interested reader 

is referred to the Opinion manuscript "Rationality over 

fashion and hype in drug design," where this and related 

points are discussed in more detail, and it is open for dis-

cussion with the scientific community [34].
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