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ABSTRACT In order to alleviate adverse impacts of haze on high-level vision tasks, image dehazing attracts

great attention from computer vision research field in recent years. Most of existingmethods are grouped into

physical prior based and non-physical data-driven based categories. However, image dehazing is a challeng-

ing ill-conditioned and inherently ambiguous problem. Due to random distribution and concentration of haze,

color distortion and excessive brightness often happen in physical prior based methods. Defects on high-

frequency details’ recovery are not solved well in non-physical data-driven methods. Therefore, to overcome

these obstacles, in this paper, we have proposed an effective progressive back-traced dehazing network

based on multi-resolution recurrent reconstruction strategies. A kind of irregular multi-scale convolution

module is proposed to extract fine-grain local structures. And a kind of multi-resolution residual fusion

module is proposed to progressively reconstruct intermediate haze-free images. We have compared our

method with several popular state-of-the-art methods on public RESIDE and 2018 NTIRE Dehazing

datasets. The experiment results demonstrate that our method could restore satisfactory high-frequency

textures and high-fidelity colors. Related source code and parameters will be distributed on Github for

further study.

INDEX TERMS Image dehaze, image enhancement, multiscale fusion, haze removal, image restoration.

I. INTRODUCTION

Due to absorption and scattering of light by small floating par-

ticles like dust and smoke, the visibility of scene in hazy envi-

ronment is severely degraded. Low quality images with color

distortion, low contrast, and scene attenuation are inevitably

suffered. Since many vision algorithm can only work on clear

image, high-level vision tasks such as video surveillance,

remote sensing, autonomous driving, object detection etc can

not work well under hazy condition. In order to alleviate the

adverse impacts of haze on high-level vision tasks, in this

paper, we are committed to developing an effective image

dehazing algorithm.

Image dehazing is a challenging ill-conditioned and inher-

ently ambiguous problem. Most of existing dehazing algo-

rithms are based on atmospheric scattering model proposed

byMcCartney and Hall [1]. The physical model is formulated
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as (1).

Iλ(x) = Jλ(x)t(x) + Aλ(1 − t(x)) (1)

where, x is image pixel, and λ is image color channel, such as

λ ∈ {red, green, blue}. Iλ (x) is a hazy observation. Jλ (x) is

the haze-free ground-truth. Aλ represents global atmospheric

light. t is a transmission map which represents the propor-

tion of light reaching camera after the attenuation of haze.

Under the assumption that haze distribution is uniform, t is

expressed as (2)

t(x) = e−βd(x) (2)

where, β is the attenuation coefficient and d(x) is the scene

depth.

Generally, image dehazing methods are divided into

physical prior based and non-physical data-driven based.

Typically, as an outstanding representative, He et al. [2]

proposed a dark channel prior (DCP) method to effectively
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FIGURE 1. Performance comparison in real world scene. (1) Compared
with algorithms based on the atmospheric scattering model. It can be
seen that the algorithms using the atmospheric scattering model has a
poor effect in the sky. But our proposed network can better remove haze
from the sky. (2) Compared with algorithms based on the CNN. It can be
seen that the other three models are not as good as ours in the details.

estimate transmission map. However, its performance on

wild areas isn’t good. Through analyzing the difference

of color distribution between clear image and hazy image,

Berman et al. [3] proposed a non-local image dehazing

(NLD) method. In recent, with popularity of convolution

neural network, Zhang and Patel [4] proposed a densely con-

nected pyramid dehazing network (DCPDN) to jointly esti-

mateAλ and t for the atmospheric scatteringmodel. However,

though simple and effective the atmospheric scattering model

is, due to the random distribution and concentration of haze in

reality, methods based on physical prior cannot get satisfac-

tory results. Color distortion and excessive brightness often

happen, as shown in Figure 1(1).

With popularity of deep learning, end-to-end network was

employed to regress final haze-free image. Representatively,

as a pioneering work, Cai et al. [5] proposed a DehazeNet

to directly remove haze from hazy images. In most recent,

gated fusion network (GFN) [6], enhanced Pix2pix dehazing

network (EPDN) [7] and gated context aggregation network

(GCANet) [8] are successively proposed to directly restore

haze-free image. Although the current non-physical data-

driven basedmethods have greatly improved dehazing perfor-

mance, there are still some defects on high-frequency details’

recovery, as shown in Figure 1 (2).

In this paper, we focus on solving the above mentioned

obstacles. The proposed network is inspired from super-

resolution and recurrent residual learning. It adopts progres-

sive back-traced dehazing strategy, and recurrently recovers

haze-free image from low-resolution to high-resolution. For

maximumly preservation of hazy content details, a kind

of irregular multi-scale convolution module is proposed to

extract feature maps in cascade scales. For maximumly fea-

ture reuse during the back-traced dehazing process, a kind

of residual fusion module is proposed integrate cascade con-

volution features of different resolutions. We have evaluated

the proposed network on several public dehazing bench-

marks. The experiments demonstrate that compared with

popular state-of-the-art methods, our method could satisfac-

torily recover high-frequency details with highly preservation

of realistic colors.

The contributions of this paper are as followings:

1) We have proposed an end-to-end progressive back-

traced dehazing network based on multi-resolution

recurrent reconstruction strategies. The proposed net-

work is inspired from super-resolution, and could

restore satisfactory high-frequency details and high-

fidelity colors. For highly preservation of hazy content

textures, we have proposed multi-scale convolution

module with irregular kernel shapes to extract fine-

grain local structures for image restoration. For effi-

cient reuse of hierarchical informations, we have

proposed a multi-resolution residual fusion module

to progressively reconstruct intermediate haze-free

images, ensuring that the network could well dehaze

at different resolutions.

2) We have evaluated our method on public dehaz-

ing benchmarks. Compared with latest state-of-the-

art methods, our method achieves more superior

performance.

II. RELATED WORK

Image dehazing is a challenge ill-posed computer vision

problem. In the past, various methods have been developed

to solve the problem. Most of them depend on an ele-

gant physical atmospheric scattering model. In these years,

with the rising up of deep learning, data-driven end-to-end

learning methods become popular. Experiences from image

generation inspire researchers exploring non-physical new

solutions. In this section, we focus on reviewing a por-

tion of representative dehazing methods and its most recent

developments. More comprehensive surveys can be referred

to [9], [10].

A. PHYSICAL PRIOR-BASED DEHAZING METHODS

Among the prior-based algorithms, atmospheric scattering

model was commonly accepted as the physical basis of haze

removal. Great efforts were paid on estimating global atmo-

spheric light Aλ and transmission map t .

Fattal [11] assumed that the surface reflectance of object

was uncorrelated with transmission map. They removed haze

through estimating scene reflectivity by using independent

component analysis. He et al. [2] discovered that patches of

outdoor haze-free images often had low-intensity values in at
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least one channel. Based on the observation, they proposed

a dark channel prior for estimation of haze concentration

and transmission map. Zhu et al. [12] observed that the

concentration of haze is positively related to the difference

between brightness and saturation. They proposed a linear

regression model on depth-map estimation for transmission

map, and proposed a color attenuation prior for haze removal.

Berman et al. [3] observed that colors of a haze-free image

could be well approximated by hundreds of distinct color

clusters in RGB space. These clusters formed haze-lines in

hazy case. Based on the observation, they proposed a dehaz-

ing model to recover both distance map and haze-free image.

B. PHYSICAL LEARNING-BASED DEHAZING METHODS

With great success of convolutional neural network in com-

puter vision, recent dehazing methods proposed to learn

transmission map fully from data to avoid inaccurate estima-

tion of physical parameters from a single image.

Cai et al. [5] proposed to construct a convolution neural

network for transmission map estimation. Ren et al. [13] pro-

posed to use a coarse-scale net for holistic transmission map

prediction and a fine-scale net for results’ local refinement.

Li et al. [14] proposed to learn a newly defined transmission

variable that integrates both classic transmission map and

atmospheric light. Ren et al. [6] proposed a gated fusion net-

work to learn intermediate confidence maps through which

different handcrafted feature maps were fused to restore clear

image from corresponding hazy one.

C. NON-PHYSICAL DATA-DRIVEN DEHAZING METHODS

Considering existing uncertain concentration of haze, phys-

ical scattering model is not always satisfied in practice.

Directly exploring nonlinear regression between hazy image

and its clear ground-truth is becoming a dominant trend,

achieving superior performance through big-data learning.

Mei et al. [15] proposed an end-to-end self-encode dehaz-

ing network to directly replace the atmospheric scattering

model. Chen et al. [8] proposed a gated context aggregation

network to directly restore haze-free image. It could reduce

grid artifacts by using a new smoothed dilation technique

with negligible extra parameters. Xu et al. [16] proposed an

encoder-decoder dehazing architecture with skip connections

and instance normalization.

Due to similarities existing between image dehazing and

image generation task, many researchers utilized generative

adversarial networks to generate haze-free image. Zhang and

Patel [4] proposed an end-to-end densely connected pyramid

dehazing network based on adversarial learning. Qu et al. [7]

proposed a generative adversarial network followed by a

well-designed enhancer for direct dehazing.

III. OUR PROPOSED DEHAZING NETWORK

As we know, lower-level features have higher resolution

and contain more details with less semantics, while higher-

level features have more semantic information with lower

resolution and poorer detail perceptions. In many existing

state-of-the-art methods, though cascade convolution blocks

were employed for usage of multi-scale information, how-

ever, their commonly accepted strategies for haze removal

haven’t explicitly considered the problem on hazy details’

recovery. Therefore, to highly preserve structural details and

avoid color distortion on semantic objects, we propose an

effective recurrent dehazing network with progressive fusion

on hierarchical resolution informations.

In this section, we describe the proposed dehazing net-

work in details. The idea is inspired from super-resolution

and recurrent residual learning. As shown in Figure 2, it is

roughly composed of four components: (1) multi-scale cas-

cade convolution pipeline; (2) multi-resolution progressive

back-traced dehazing pipeline; (3) intermediate-resolution

dehazing output layers; (4) multiple loss computation layers.

For convenience of description, without explicitly stated, all

convolutions in this work contain ReLU activation by default

and doesn’t change spatial size of its input feature map

through padding.

A. MULTI-SCALE CASCADE CONVOLUTION PIPELINE

The cascade convolution pipeline is employed to generate

multiple feature maps of different scales. It contains an initial

convolution module, successive irregular multi-scale convo-

lutional modules and downscale-sampling modules.

The initial convolutional module consists of two convolu-

tion layers with kernel size 3×3 and stride 2. They aggregate

informative features from observed hazy image and raise

feature channels up to 16.

Since the existing random concentration of haze in real-

ity, in order to highly preserve structural characteristics for

semantic objects, a kind of irregular multi-scale convolution

module is proposed by following ideas from ResNet [17] and

Inception_v3 [18]. The structure of multiscale convolution

module with irregular kernel shapes is as shown in Figure 3.

Specifically, two convolutions are first used for feature trans-

formation. Then multiple irregular convolutional kernels are

employed in parallel to intently learn fine-grain informa-

tion that might be smoothed by haze. Skip-connections are

accepted for sufficient feature reuse. Considering that there

might exist redundancy among different scale features, a con-

volution with kernel size 1× 1 is further applied for compre-

hensive integration on the learned multi-scale features.

We denote an irregular multi-scale convolution module at

level k = {1, 2, 3, 4, 5} as ‘‘Mk ’’. The output channel size at

level k is set 16 × 2k−1 in this paper. Later, we will conduct

ablation studies to verify the effectiveness of the proposed

irregular convolution module.

B. MULTI-RESOLUTION PROGRESSIVE BACK-TRACED

DEHAZING PIPELINE

The back-traced dehazing pipeline aims to progressively

restore haze-free image through recurrently constructing

intermediate results from low-resolution to high-resolution.

At the highest-level (lowest resolution), feature maps are

transformed to learn initial dehazing result independently.
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FIGURE 2. The architecture of the proposed multi-resolution progressive back-traced dehazing network.

FIGURE 3. The structure of the proposed multi-scale convolution module
with irregular kernel shapes.

FIGURE 4. The structure of residual block (RB) and channel attention
block (CA).

The ‘‘FT’’ block contains a channel attention (CA) block [19]

and four following residual blocks. Their structures are

described in Figure 4.

Multi-resolution residual fusion block (RF) is then pro-

posed to recurrently integrate convolutional features of cas-

cade scales with intermediate dehazed results. The structure

of ‘‘RF’’ block is demonstrated in Figure 5.

FIGURE 5. The structure of multi-resolution residual fusion module. ‘‘DS’’
represents downscale sampling operation by using a convolution kernel
of 3 × 3 and step size of 2. ‘‘US’’ represents upscale sampling operation
by using a deconvolution kernel of 3 × 3 and step size of 2. ‘‘CA’’
represents channel attention block.

At each level n, informations from three branches are fused

in the RF block. Convolutional feature maps of adjacent

levels Mn and Mn+1 are fused for multi-resolution informa-

tion reuse. Channel attention on Mn is applied for semantic

attention. It adaptively gives different importances on feature

channels. The recurrent usage of intermediate Fn+1 is to

redundantly fuse higher-level dehazing result for lower-level

fine-grain resolution processing. Information summed from

these three branches are further learned by a residual block

and output its integration Zn. The channel size of Zn is kept

the same as channel size ofMn.
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C. INTERMEDIATE-RESOLUTION DEHAZING OUTPUTS

In many dehazing methods, haze-removal results are often

either smoothed or unclear. We argue that training dehazing

network with single-scale output can not sufficiently ensure

preservation of structural details.

In spired of ideas from super-resolution, we adopt mul-

tiple resolution training strategy. Specifically, at level n =

{2, 3, 4, 5}, a haze-free result On is obtained by transforming

feature map Zn through two successive convolution layers.

At the first level, since the channel size of Z1 is relative small,

one convolution layer is sufficient to output its dehazing

result. These intermediate dehazing results of different reso-

lutions are output for training, ensuring our network adaptive

to various resolutions.

D. MULTIPLE TRAINING LOSSES

During the multiple resolution training, haze-free ground-

truth yi, i = {1, 2, 3, 4, 5} of different resolutions are

obtained through downsampling original clear image to suit

for outputs from intermediate stages. Mean square errors

(MSE) between restored clear images and haze-free ground-

truths are then computed as training loss. As a result, the final

loss is formulated as Equation 3.

L =

i=5∑

i=1

(MSELoss(Oi, yi)) (3)

IV. EXPERIMENT

In order to demonstrate the effectiveness of our pro-

posed model, in this section, we conduct comprehensive

experiments on widely accepted public dehazing datasets.

Metrics such as PSNR(Peak Signal to Noise Ratio) and SSIM

(Structural Similarity Index) are adopted for performance

evaluation. ADAM [20] is employed as the optimizer. Our

experiments are implemented by PyTorch on GPU GTX

1080Ti. Throughout our experiments, the training batch size

is set 22. The related source code and pretrained model will

be distributed on Github https://github.com/Joyies/dehaze.

A. DATASETS

We conduct our experiments on RESIDE dataset [10],

O-Haze dataset [21] and I-haze dataset [22].

The RESIDE [10] dataset is a large scale synthetic dataset.

All images have spatial resolution of 620× 460 level. In this

experiment, we train our network model on its subset - Indoor

Training Set (ITS), and test comparison performance on its

subset - Synthetic Objective Testing Set (SOTS).

The ITS dataset contains 1399 clear images and

13990 hazy images. The clear images are derived from public

depth-map datasets like NYU2 [23] and Middlebury [24].

For each clear image, 10 synthetic hazy images are generated

according to its corresponding depth-map. Specifically, given

a clear image, a random atmospheric light Aλ ∈ [0.7, 1.0]

for each channel and a corresponding depth image d(x),

according to transmission map t(x) = e(−β·d(x)), a hazy

image is generated through Equation 1. The value of β is

randomly selected between [0.6, 1.8].

The SOTS dataset contains 500 matched Indoor syn-

thetic test images and 500 matched Outdoor synthetic

images.

I-Haze [22] and O-Haze [21] are dehazing benchmark with

real hazy and haze-free images that were used in 2018 NTIRE

Dehazing Challenge. The I-Haze dataset contains 35 image

pairs of hazy and corresponding haze-free indoor images. The

O-HAZE contains 45 different outdoor scenes depicting the

same visual content recorded in haze-free and hazy condi-

tions. Different from most of existing dehazing databases,

hazy images in these two datasets have been generated using

real haze produced by a professional haze machine and cap-

tured in a controlled environment. Therefore, both haze-free

and hazy images are captured under the same illumination

conditions.

We perform data augmentation on these images for

training. The augmentation process is similar as follow-

ing steps. Firstly, rotations and mirror flips are per-

formed on images. The rotation angles are set R = {0;

π/2; π; 3π/2}. The mirror flips are Mirror = {NoFlip;

HorizontalFlip;VerticalFlip}. As a result, 12 variants are

obtained for each image. Then, sliding window is employed

to extract image crops of 256 × 256 size. The stride is set

to be 128 pixels. The obtained patches are in consequence

augmented for training.

B. EXPERIMENT RESULTS

In order to verify the effectiveness of our proposed net-

work, we perform comprehensive comparisons with several

state-of-the-art image dehazing methods. The methods to

be compared are DCP [2], AOD-Net [14], DehazeNet [5],

PFF-Net [15], GFN [6], EPDN [7], and GCANet [8]. Since

the experiment setting up is standard, for convenience,

the performances are cited from their published papers.

The quantitative performance comparison are demonstrated

in Table 1. Some visual comparisons on real images are

shown in Figure 6.

From the experiment results, we can see that our method

shows great superiority over the compared methods on

RESIDE-SOTS dataset. From the visual comparisons both

in Figure 1 and Figure 6, we can easily find that our method

achieves more satisfied visual effects with much clearer

results than other models.

Our model’s dehazing results are more in line with real

situation. For example, DCP suffers greatly color distortion.

In terms of images in Figure 6, for the first and second row,

our method can remove haze clearly, while other methods

havemore or less defects. For the third and fourth row, texture

details of clouds in the sky are perfectly recovered by our

method, while in other dehazing results, more or less details

are lost. Some remove haze excessively. Especially the sky

restored by EPDN and GCANet shows severe color infidelity

on real ground-truth.
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FIGURE 6. Visual comparisons with state-of-the-art methods on real images.

TABLE 1. Performance comparison on RESIDE dataset.

FIGURE 7. Comparison with GCANet on RESIDE dataset.

GCANet achieves the second best quantitative perfor-

mance on RESIDE dataset in our experiments. Both GCANet

and our method show great improvement gap than other

state-of-the-art methods. Therefore, to better illustrate our

model’s superiority, we further compare our model with

GCANet more carefully. Some examples are compared

in Figure 7. From the comparisons on local textures, it is not

FIGURE 8. Ablation study: the degraded structures of Irregular
convolution module and residual fusion module.

difficult to find that our method is superior than GCANet

in detail processing. We owe this advantage to our multi-

scale recurrently dehazing strategy which is inspired from

super-resolution.

On both I-Haze and O-Haze datasets, our model has

achieved relatively good performance too, as shown

in Table 2 and Table 3. Since available training images are

very few and training data after data augmentation is not

sufficient, the improvement gap is not as satisfactory as we

expected.

C. ABLATION STUDY

We have conducted ablation studies on RESIDE to verify the

superiority of the proposed irregular multi-scale convolution

module and multi-scale residual fusion (RF) module. Specif-

ically, we remove the multi-scale irregular convolutions and

channel attention layer respectively. The degraded modules

are shown in Figure 8.

The ablation performances are illustrated in Table 4. From

the ablation studies, we can clearly witness the effectiveness

of the proposed modules.
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TABLE 2. Performance comparison on I-Haze dataset.

TABLE 3. Performance comparison on O-Haze dataset.

TABLE 4. Ablation studies on irregular multi-scale convolution module
and residual fusion module on RESIDE dataset.

V. CONCLUSION

In this paper, we have proposed an effective dehazing network

inspired from super-resolution and recurrent residual learn-

ing. The proposed network progressively generates dehazing

results of different resolutions in a back-traced reconstruc-

tion pipeline. In order to adapt to random concentration and

distribution of haze, we have introduced a kind of irregular

multi-scale convolution module to extract fine-grain local

details smoothed by haze. We have also introduced a kind

of multi-resolution residual fusion module for hierarchical

feature reuse. The ablation studies have witnessed their effec-

tiveness on final dehazing performance. We have compared

our method with several popular and latest state-of-the-art

methods on widely accepted public dehazing datasets. The

experiments demonstrate that our method is more supe-

rior and can restore haze-free image with satisfactory high-

frequency details and high-fidelity colors.
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