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Abstract
As an important and challenging problem in ma-
chine learning and computer vision, neural network
acceleration essentially aims to enhance the com-
putational efficiency without sacrificing the mod-
el accuracy too much. In this paper, we propose a
progressive blockwise learning scheme for teacher-
student model distillation at the subnetwork block
level. The proposed scheme is able to distill the
knowledge of the entire teacher network by local-
ly extracting the knowledge of each block in terms
of progressive blockwise function approximation.
Furthermore, we propose a structure design crite-
rion for the student subnetwork block, which is
able to effectively preserve the original receptive
field from the teacher network. Experimental re-
sults demonstrate the effectiveness of the proposed
scheme against the state-of-the-art approaches.

1 Introduction
Recent years have witnessed a great development of deep
convolutional neural networks (DCNNs) and their various ap-
plications [Krizhevsky et al., 2012; Simonyan and Zisser-
man, 2015; He et al., 2016; Szegedy et al., 2017]. Due to
the resource limit of real world devices, DCNN compres-
sion and acceleration have emerged as a crucial and chal-
lenging problem in practice. Typically, the problem is re-
solved from the following four perspectives: 1) quantization
and binarization [Hubara et al., 2016; Rastegari et al., 2016;
Wu et al., 2016; Zhou et al., 2017]; 2) parameter prun-
ing and sharing [Courbariaux et al., 2015; Hu et al., 2016;
Li et al., 2017a; Luo et al., 2017; Molchanov et al., 2017;
Li et al., 2017c]; 3) matrix factorization [Tai et al., 2016;
Lin et al., 2016; Jaderberg et al., 2014; Sainath et al.,
2013]; and 4) model distillation [Bucila et al., 2006; Ba and
Caruana, 2014; Hinton et al., 2014; Romero et al., 2015;
Li et al., 2017b]. In principle, the first three points focus on
how to carry out an efficient network inference process using
a variety of computational acceleration techniques with low
memory usage. In contrast, the last one aims at distilling the
∗Indicates equal contribution
†Corresponding author

original network model into a low-complexity network mod-
el in terms of the teacher-student learning strategy. Without
sacrificing too much accuracy, the low-complexity network
model naturally possesses the properties of high computation-
al efficiency and low memory usage. However, the effective-
ness of model distillation is often challenged in the aspects
of teacher-student network optimization and student network
structure design. Therefore, we mainly focus on construct-
ing an effective network learning strategy with a structure-
preserving criterion for model distillation in this paper.

More specifically, the process of model distillation usually
involves two components: a teacher network with a compli-
cated network structure as well as a simple student network.
In essence, the process seeks for a feasible student network
to mimic the output of the teacher network. Usually, con-
ventional approaches (e.g., Knowledge Distillation [Hinton
et al., 2014]) rely on a non-convex joint network optimiza-
tion strategy that converts the teacher network into the de-
sired student network in a one-pass fashion. Implemented in
a huge search space of the student network function with a
wide variety of network configurations, the aforementioned
non-convex joint optimization process is usually intractable
and unstable in practice. Following the work [Hinton et al.,
2014], Nowak and Corso [Nowak and Corso, 2018] make an
attempt to compress a subnetwork block of the teacher net-
work into a student subnetwork block and then design differ-
ent methods for initialization and training. Moreover, their
design criterion for the student subnetwork block is to sim-
ply retain a convolution layer and directly remove the other
two convolution layers from the teacher subnetwork block.
Such a blockwise distillation strategy is simple and easy to
optimize, but incapable of effectively modeling the sequential
dependency relationships between layer-specific subnetwork
blocks. In addition, the student subnetwork block design cri-
terion is also incapable of well preserving the receptive field
information on feature extraction.

Motivated by the observations above, we propose a block-
wise learning scheme for progressive model distillation.
Specifically, the proposed learning scheme converts a se-
quence of teacher subnetwork blocks into a sequence of s-
tudent subnetwork blocks after progressive blockwise opti-
mization. Additionally, we propose a structure-preserving
criterion for student subnetwork design. This criterion allows
us to transform the teacher subnetwork blocks into the student

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2769



subnetwork blocks without changing the receptive field.
As a result, the proposed progressive learning scheme aim-

s at distilling the knowledge of the entire teacher network by
locally extracting the knowledge of each block in a progres-
sive learning manner with the structure-preserving criterion
of feature extraction. Therefore, the proposed scheme creates
a novel network acceleration strategy in terms of progres-
sive blockwise learning, and has the following advantages:
1) structure-preserving for each subnetwork block; 2) easy
to implement for progressive blockwise optimization; 3) fast
stagewise convergence; 4) flexible compatability with exist-
ing learning modules; and 5) good balance with high accuracy
and competitive FLOPs reduction.

As a result, the main contributions of this work are two-
fold:

• We propose a progressive blockwise learning scheme for
model distillation, which is innovative in the area of neu-
ral network acceleration. The proposed learning scheme
naturally converts the problem of network acceleration
into that of progressive blockwise function approxima-
tion.

• We propose a structure design criterion for the student
subnetwork block, which is able to effectively preserve
the original receptive field from the teacher network.

2 Our Approach
2.1 Problem Definition
To better understand our representations, we provide the de-
tailed explanations of the main notations and symbols used
throughout this paper as shown in Tab. 1.

A neural network is mainly comprised of the convolution
layers, the pooling layers, and the fully connected layers. The
subnetwork between two adjacent pooling layers is defined as
a subnetwork block.

Let a complicated network T be the teacher network, which
is composed of N subnetwork blocks:

T = c ◦ tN ◦ tN−1 ◦ · · · ◦ t1 (1)

where ti (i ∈ {1, 2, . . . , N}) is the mapping function of the
i-th block in the sequence and c is the mapping function of
the classifier. To simplify the representation of the network,
we shorten it as:

N∏
i=1

◦ti = tN ◦ tN−1 ◦ · · · ◦ t1 (2)

Therefore, T is rewritten as:

T = c ◦
∏N

i=1 ◦ti (3)

The parameters of the teacher network are denoted as:

WT =
{
Wc,WtN ,WtN−1

, . . . ,Wt1

}
(4)

where Wc and Wti (i ∈ {1, 2, . . . , N}) are the parameters of
c and ti.

Our objective is to design a student network with high com-
putational efficiency and low memory usage, and to learn

Notation Definition
T The function that represents the initial teacher network
S The function that represents the final student network
Ak The auxiliary function that represents the intermediate network
si The mapping function of the i-th block in S
ti The mapping function of the i-th block in T
c The mapping function of the classifier∏N

i=1 ◦ A symbol to simplify the network representation
WT /WS/WAk The parameters of T/S/Ak

Wti/Wsi/Wc The parameters of ti/si/c

Table 1: Main notations and symbols used throughout the paper.

the corresponding optimal parameters. The student network
composed of N student subnetwork blocks can be written as:

S = c ◦
∏N

i=1 ◦si (5)
where si denotes a student subnetwork block. The corre-
sponding optimal parameters of the student network are de-
noted as:

WS = {Wc,WsN ,WsN−1
, . . . ,Ws1} (6)

In essence, the problem is to design N student subnetwork
blocks sequence S and optimize the corresponding parame-
ters WS using the prior knowledge of N teacher subnetwork
blocks sequence T :

c ◦
∏N

i=1 ◦ti(x;WT )
optimize WS−−−−−−−→

design S
c ◦
∏N

i=1 ◦si(x;WS)

(7)
The main challenges to solve this problem are: 1) The joint

optimization of the student network function with a wide va-
riety of parameters is usually intractable and unstable in prac-
tice; 2) Designing a feasible student network structure from
scratch is difficult. In Sectiom 2.2 and Section 2.3, we pro-
pose our solutions to these two challenges.

2.2 Progressive Blockwise Learning
To reduce the optimization difficulty described in Eq. (7), we
propose a progressive blockwise learning scheme. As shown
in Fig. 1, our blockwise learning scheme learns the sequence
of student subnetwork blocks byN block learning stages, and
only optimizes one block at each learning stage while keeping
the other blocks fixed.

To better introduce our blockwise scheme, we use the aux-
iliary function Ak (k ∈ {0, 1, . . . , N}) to represent our inter-
mediate network at the k-th block learning stage:

Ak = c ◦ (
N∏

i=k+1

◦ti) ◦ (
k∏

j=1

◦sj) (8)

where sj is the optimized student network block and ti is the
teacher network block. The parameters of Ak are denoted as
below:
WAk =

{
Wc,WtN , . . . ,Wtk+1

,Wsk ,Wsk−1
, . . . ,Ws1

}
(9)

As can be noted from the description of Ak, A0 is the
teacher network T and AN is the optimized network S.
Hence, the problem defined in Eq. (7) can be solved as be-
low:

A0 stage 1−−−−→ A1 stage 2−−−−→ A2 ...−→ Ak−1 stage k−−−−−→ Ak ...−→ AN

(10)
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Figure 1: Illustration of our progressive blockwise learning scheme by the Bottom-Up optimization order. We use the auxiliary function Ak

(k ∈ {0, 1, . . . , N}) to represent our intermediate network at each block learning stage (A0 is the initial teacher network, AN is the final
student network). At the k-th learning stage, we build the auxiliary function Ak according to Ak−1 and learn the optimal parameters of the
k-th block by minimizing the loss. The loss is the weighted sum of Lk

local and Lk
cls.

More specifically, we use the teacher-student learning s-
trategy at each block learning stage. At the block learning
stage 1, we consider A0/A1 as the teacher/student network,
and then learn A1 from A0. Similarly, we learn A2 from
A1 at the block learning stage 2. By analogy, using such a
progressive way, we will eventually solve the problem in E-
q. (10).

In order to solve the teacher-student network optimization
problem at each block learning stage, we use two terms to
compose the objective loss function. Taking the k-th block
learning stage for example, the first term of the loss compares
the output of the block sk with its corresponding block in the
teacher network tk, and is formulated as:

Lk
local(I;Wsk) =

1
2 ‖ (tk ◦

∏k−1
i=1 ◦si)(I;Wtk ∪ {Wsi}k−1

i=1 )

−(
∏k

i=1 ◦si)(I; {Wsi}ki=1) ‖2F
(11)

where I is the input of the network (e.g., image) and ‖ · ‖F
denotes the Frobenius norm.

The second classification loss term Lk
cls is to make the

output of the student network approximate the ground truth,
which is defined as:

Lk
cls(I, y;Wsk) = softmax(Ak(I;WAk), y) (12)

where y is the ground truth for I and softmax(.) means the
softmax loss between the network’s output and y as described
in [Simonyan and Zisserman, 2015].

Then the objective loss function for one training sample

(I, y) at the k-th block learning stage is as below:

Lk(I, y;Wsk) = λlocalL
k
local(I;Wsk) + Lk

cls(I, y;Wsk)
(13)

where λlocal is a hyper-parameter to balance these two terms
of the loss function. Therefore, our objective loss function for
the training data {(I(1), y(1)), . . . , (I(M), y(M))} is:

Lk(Wsk) =
1
M

∑M
m=1 L

k(Im, ym;Wsk) (14)

By optimizing this loss function, the student subnetwork
block can be trained under the ground truths and knowledge
of the teacher subnetwork block. The details of our progres-
sive blockwise learning scheme are shown in Alg. 1.

Moreover, the optimization order of our method can be
flexible. Typically, we try three optimization orders: 1)
Bottom-Up (1, 2, . . . , N); 2) Top-Down (N,N − 1, . . . , 1);
3) Skipping-First (2, 3, . . . , N, 1). Our experimental result-
s show that optimizing the network in a Bottom-Up fashion
gives better results than other orders. Therefore, we use the
Bottom-Up optimization order as the default optimization or-
der. The details are discussed in Section 3.

2.3 Student Subnetwork Block Design
We propose a blockwise design scheme. Based on our block-
wise design scheme, the student subnetwork block we design
should not change the input/output size of the next/previous
block and maintain the receptive field at the same time. In ad-
dtion, this student subnetwork block is based on the teacher
subnetwork block but contains fewer parameters and FLOPs
(floating point operations).
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Figure 2: Illustration of the student subnetwork block design. Our student subnetwork block is based on the teacher subnetwork block with
fewer convolution operations. First, we prune half of the filters of all teacher subnetwork block’s convolution layers (layer 1 and layer 2) to
reduce convolution operations. Then we use a 1× 1 convolution layer (layer 3) to recover the output size. The figure also illustrates that our
design criterion preserves the receptive field from the teacher subnetwork block.

Algorithm 1: Progressive Blockwise Learning
Input: A teacher network T = tN ◦ tN−1 ◦ · · · ◦ t1 and

the corresponding parameters
WT =

{
Wc,WtN ,WtN−1

, . . . ,Wt1

}
.

Output: The objective student network S and the
corresponding optimal parameters WS .

1 Design the structure of si by the structure of ti as
described in Section 2.3 with the corresponding
randomly initialized weights Wsi (i = 1, 2, . . . , N);

2 Build the auxiliary function A0 and its parameters WA0

by the teacher network T ;
3 for k=1, 2, . . . , N do

/* Learn Ak from Ak−1 at the k-th
stage */

4 Build the auxiliary function Ak and its parameters
WAk using Eq. (8) and Eq. (9);

5 Obtain the optimal parameters Wsk by minimizing
Eq. (14);

6 Update WAk using Eq. (9);
7 end
8 return S = AN ;

More specifically, we prune half of the channels of al-
l convolution layers which belong to the teacher subnetwork
blocks to construct a simple student subnetwork block. Then
we apply one 1 × 1 convolution layer at the end of the block
to expand the number of output channels to the original num-
ber. Fig. 2 shows our student subnetwork block design based
on the teacher subnetwork block of two K ×K convolution
layers. The figure also illustrates that our design criterion pre-
serves the receptive field from the teacher subnetwork block.

Blockwise Complexity Analysis
The main complexity of the model’s computation costs lies in
the convolution layers. For network acceleration, our method
mainly focuses on the convolution layers. Taking the VGG-

16 model [Simonyan and Zisserman, 2015] for example, we
will analyze the FLOPs reduction of the general student sub-
network block in this section.

Let the FLOPs of a K ×K (K = 3) convolution layer be
Convfl. If the teacher subnetwork block has L (L ∈ {2, 3})
layers described above, then its total FLOPs TBfl is L ×
Convfl.

As shown in Fig. 2, we have three types of convolution lay-
ers based on our design. The first type of convolution layer
is the same input and half the number of filters as the origi-
nal convolution layer (Layer 1 in Fig. 2). The second type of
convolution layer is half the input and half the number of fil-
ters as the original convolution layer (Layer 2 in Fig. 2). The
third type of convolution layer is half the input and the same
number of filters as the original convolution layer (Layer 3 in
Fig. 2), but its kernel size is 1 × 1. So the FLOPs SBfl of
the student subnetwork block which we design based on the
previous teacher subnetwork block is:

SBfl =
1
2Convfl + (L− 1)× 1

4Convfl +
1

2K2Convfl
(15)

In summary, the FLOPs reduction Cfl of the student sub-
network block we design is:

Cfl =
TBfl

SBfl
≈ 4− 4

L+1 (16)

3 Experiments
3.1 Datasets
CIFAR10 [Krizhevsky and Hinton, 2009] is a labeled subset
of the 80 million tiny images dataset for object recognition.
This dataset contains 60000 32×32 RGB images in 10 class-
es, with 5000 images per class for training and 1000 images
per class for testing.
CIFAR100 [Krizhevsky and Hinton, 2009] is also a labeled
subset of the 80 million tiny images dataset for object recog-
nition. It contains 100 classes including 600 32 × 32 images
each, with 500 images for training and 100 images for testing.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2772



OriginalVGG Stage1 Stage2 Stage3 Stage4 Stage5
0.65

0.7

0.75

0.8

0.85

0.9
A

cc
ur

ac
y

(a)

Bottom-Up
Top-Down
Skipping-First

OriginalVGG Stage1 Stage2 Stage3 Stage4 Stage5
0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y

(b)

Maintaining
Increasing
Reducing

OriginalVGG Stage1 Stage2 Stage3 Stage4 Stage5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

(c)

Our Method
Deep Net Method

Figure 3: Ablation experiments’ results on CIFAR10. Figure (a): Optimization Orders Comparison, the result is better and more stable using
the Bottom-Up order. Figure (b): Receptive Fields Comparison, the compressed model’s accuracy is the highest at each block learning stage
by maintaining the receptive field of each block. Figure (c): Block Structure Comparison, the accuracy of our method is better than Deep
Net’s [Nowak and Corso, 2018] at every stage.

ImageNet [Krizhevsky et al., 2012] is a dataset for ImageNet
Large Scale Visual Recognition Challenge 2012. It contain-
s 1.28 million training images and 50k validation images in
1000 classes.

3.2 Implementation Details
Network Architecture
In this paper, we utilize the widely used network VGG-16 [Si-
monyan and Zisserman, 2015] as the teacher network sam-
ple. We divide the VGG-16 network into five blocks using
the pooling layers as the boundaries. For each block, we use
our block design criterion described in Section 2.3 to obtain
the student subnetwork block.
Data Preprocessing
On CIFAR10 and CIFAR100, the only preprocessing we do
is subtracting the mean RGB value computed on the training
data from each pixel. On ImageNet, we employ the data aug-
mentation strategy as the practice in [Krizhevsky et al., 2012;
Simonyan and Zisserman, 2015], including the 224 × 224
random cropping, the horizontal flip, and the per-pixel mean
subtracted.
Training Details
We implement our architecture using Caffe [Jia et al., 2014]
and use an NVIDIA TITAN X GPU to train the network. To
validate our proposed learning scheme, we first conduct four
ablation experiments on CIFAR10 which will be fully de-
scribed in Section 3.3 in the following aspects: 1) Optimiza-
tion Orders Comparison; 2) Receptive Fields Comparison;
3) Block Structure Comparison; 4) Block Training Strategy
Comparison. Then we verify our method on CIFAR100 and
ImageNet which will thoroughly be described in Section 3.4,
and compare our proposed method to recent state-of-the-art
approaches.

On CIFAR10 and CIFAR100, we use SGD with a mini-
batch size of 100 at each block learning stage. The initial
learning rate is set to 0.01 and is divided by 10 after 3 epochs.
We train the network using a weight decay of 0.005 and a
momentum of 0.9. From our experiments, we notice that each
learning stage converges in less than 6 epochs. And so we
terminate each learning stage after 6 epochs.

On ImageNet, we use SGD with a mini-batch size of 32
at each block learning stage. The momentum parameter is

chosen as 0.9, the initial learning rate is set to 0.01 and the
weight decay is 0.0005. It takes 50000 training iterations for
our method to converge at every learning stage.

3.3 Ablation Experiments
In this section, we utilize four ablation experiments to val-
idate our method on CIFAR10. And we obtain the origi-
nal VGG-16 model by fine-tuning the pre-trained model [Si-
monyan and Zisserman, 2015] on CIFAR10.
Optimization Orders Comparison. We evaluate the per-
formance of different optimization orders. We try three op-
timization orders: Bottom-Up, Top-Down, Skipping-First as
described in Section 2.2. The results in Fig. 3 (a) show that
the Bottom-Up order performs better than the other two opti-
mization orders. For Top-Down optimization order, the accu-
racy of the model drops rapidly at the stage five of optimizing
block one which indicates that the first-block features have a
significant impact on the higher block features.
Receptive Fields Comparison. We evaluate the performance
of the student networks with different receptive fields. The
method of maintaining each block’s receptive field is fully de-
scribed in Section 2.3, and repeating/reducing one 3× 3 con-
volutional layer on the basis of the former to increase/reduce
the receptive field of each block. As shown in Fig. 3 (b),
the model’s accuracy is the highest by maintaining the recep-
tive field of each block at every block learning stage. After
all block learning stages, the final model’s Top-1 accuracy is
improved by 1% compared to the other two methods. This in-
dicates that keeping the student subnetwork block’s receptive
field the same as that of the teacher network block is feasible.
Block Structure Comparison. We compare our studen-
t subnetwork block structure design’s performance with Deep
Net’s [Nowak and Corso, 2018]. The Deep Net’s method ap-
proximates the functions learned by the two or three layers
with a single layer in each block. Fig. 3 (c) shows that the
structure we design can improve the Top-1 accuracy by 17%
over Deep Net’s after all block learning stages.
Block Training Strategy Comparison. We evaluate the
performance of the loss in Eq. (14). We employ two d-
ifferent training strategies at each block learning stage: 1)
cls loss, we train the block only with the classification loss;
2) cls loss+local loss, we train the block with the weighted
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Dataset Strategy Top-1 Training Epochs

CIFAR10
OriginalVGG 86.61% –
cls loss 72.41% 60
cls loss+local loss 83.56% 30

Table 2: Performance of different block training strategies using pro-
gressive learning. The compressed model’s accuracy using our s-
trategy (cls loss+local loss) is higher than that of training the blocks
with the classification loss only (cls loss) and our strategy makes
faster convergence.

Dataset Method Top-1 Top-5 #Param. ↓ #FLOPs ↓ f./b.(ms)

CIFAR100 OriginalVGG 60.74% 87.05% 34.00M 0.66B –
Ours -2.22% -1.89% 1.40× 2.69× –

ImageNet

OriginalVGG 68.28% 88.36% 138.34M 30.94B 14.98/42.07
APoZ-1 -2.08% -0.76% 2.04× ≈1× –
APoZ-2 +1.99% +1.33% 2.70× ≈1× –
Taylor-1 – -1.36% ≈1× 2.68× –
Taylor-2 – -3.86% ≈1× 3.86× –
ThiNet-Conv +1.52% +1.17% 1.05× 3.23× –
ThiNet-GAP -0.94% -0.44% 16.63× 3.31× –
Ours-Conv +2.00% +1.36% 1.04× 2.53× 9.90/41.21
Ours-Conv-FC +1.59% +1.17% 4.22× 2.57× 7.92/36.29
Ours-GAP -0.55% -0.02% 13.75× 2.58× 7.36/35.24

Table 3: Validation of our method on CIFAR100 and comparison of
different methods on ImageNet. Here, the results of APoZ-1, APoZ-
2, Taylor-1, Taylor-2, ThiNet-Conv and ThiNet-GAP are based on
the original paper. (M/B means million/billion respectively, ↓means
the compression ratio of parameter numbers and FLOPs compared to
the original model, f./b. denotes the forward/backward speed tested
on one TITAN X GPU with batch size 1)

sum of the classification loss and the local loss described in
Eq. (14). As shown in Tab. 2, the final model’s accuracy is
roughly 97% of the original model using our strategy and our
strategy makes faster convergence than another strategy.

3.4 State-of-the-Art Performance Comparison
We evaluate the performance of our method on CIFAR100
and ImageNet, against the state-of-the-art methods, includ-
ing APoZ-1, APoZ-2 [Hu et al., 2016], Taylor-1, Taylor-
2 [Molchanov et al., 2017], ThiNet-Conv and ThinNet-
GAP [Luo et al., 2017]. In principle, the original VGG-
16 model on CIFAR100 is obtained by fine-tuning the
pre-trained model [Simonyan and Zisserman, 2015]; APoZ
prunes the zero activation neurons to compress network; Tay-
lor uses Taylor expansion to approximate the loss, and then
only utilizes the first order gradient information; ThiNet re-
duces the number of convolution-layer channels by evaluating
channel importance.

Subsequently, we design three variants based on our
method: 1) Ours-Conv: it doesn’t optimize the last three lay-
ers (conv5-1, conv5-2, conv5-3) of the original VGG-16 mod-
el similarly to ThiNet-Conv; 2) Ours-Conv-FC: it compresses
the fully connected layers by truncated singular value decom-
position [Girshick, 2015] on Ours-Conv; 3) Ours-GAP: it re-
places the fully connected layers of Ours-Conv with a global
average pooling layer [Lin et al., 2014] similarly to ThiNet-
GAP. We mainly focus on the VGG-16 model’s acceleration,
so we only compare our proposed method with the VGG-16
based frameworks as shown in Tab. 3.

In principle, our method is based on the progressive block-
wise learning scheme with the structure-preserving design
criterion. This criterion focuses on improving the accuracy
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Figure 4: Illustration of the convergence performance of our learn-
ing method for each stage on ImageNet. As the epoch goes on,
the performance improves rapidly to approximate the original model
(0.6828) and then converges.

of the compressed model with a competitive FLOPs reduc-
tion. From the comparison of these state-of-the-art methods
in Tab. 3, we can observe that the accuracy of our proposed
method is the highest and our method’s FLOPs reduction is
comparable to those of others. In addition, Fig. 4 shows
that our method makes fast convergence for different learning
stages. Taking ThiNet-Conv [Luo et al., 2017] for example, it
demonstrates that ThiNet-Conv requires one or two epochs to
converge for each layer, but we only need about 1.5 epochs to
converge for each block containing two or three layers. More-
over, as shown in Tab. 3, the results of three variant experi-
ments (Ours-Conv, Ours-Conv-FC, Ours-GAP) demonstrate
that our method can be flexibly combined with other methods
(e.g., fully connected layers decomposition [Girshick, 2015]
and GAP [Lin et al., 2014]) to further reduce the parameters
and achieve feasible results.

In summary, our scheme sets up an effective and practi-
cal network acceleration pipeline from a new viewpoint of
progressive blockwise learning. In contrast to other types of
pipelines, ours is a powerful tool in the aspects of structure-
preserving for knowledge distillation, easy implementation
for progressive blockwise optimization, fast stagewise con-
vergence, flexible compatability with existing learning mod-
ules, and good balance with high accuracy and competitive
FLOPs reduction.

4 Conclusion
In this paper, we have proposed a novel progressive block-
wise knowledge distillation scheme for neural network accel-
eration, which distills the teacher network model by progres-
sively extracting the knowledge of each block in local opti-
mization. We have also proposed a structure-preserving cri-
terion for the student subnetwork block design. The proposed
criterion is able to keep the original receptive field unchanged
from the teacher network. Therefore, our proposed progres-
sive blockwise learning scheme provides a novel theoretical
perspective as well as a promising practical alternative for
neural network acceleration. Moreover, the experimental re-
sults on several datasets also demonstrate the effectiveness of
our scheme.
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