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Progressive Cactus is a multiple-genome 
aligner for the thousand-genome era

Joel Armstrong1, Glenn Hickey1, Mark Diekhans1, Ian T. Fiddes1, Adam M. Novak1,  

Alden Deran1, Qi Fang2,3, Duo Xie2,4, Shaohong Feng2,5, Josefin Stiller3, Diane Genereux6, 

Jeremy Johnson6, Voichita Dana Marinescu7, Jessica Alföldi6, Robert S. Harris8,  

Kerstin Lindblad-Toh6,7, David Haussler1,9, Elinor Karlsson6,10,11, Erich D. Jarvis9,12,  

Guojie Zhang3,5,13,14 ✉ & Benedict Paten1 ✉

New genome assemblies have been arriving at a rapidly increasing pace, thanks to 

decreases in sequencing costs and improvements in third-generation sequencing 

technologies1–3. For example, the number of vertebrate genome assemblies currently 

in the NCBI (National Center for Biotechnology Information) database4 increased by 

more than 50% to 1,485 assemblies in the year from July 2018 to July 2019. In addition 

to this in�ux of assemblies from di�erent species, new human de novo assemblies5 are 

being produced, which enable the analysis of not only small polymorphisms, but also 

complex, large-scale structural di�erences between human individuals and haplotypes.  

This coming era and its unprecedented amount of data o�er the opportunity to 

uncover many insights into genome evolution but also present challenges in how to 

adapt current analysis methods to meet the increased scale. Cactus6, a reference-free 

multiple genome alignment program, has been shown to be highly accurate, but the 

existing implementation scales poorly with increasing numbers of genomes, and 

struggles in regions of highly duplicated sequences. Here we describe progressive 

extensions to Cactus to create Progressive Cactus, which enables the reference-free 

alignment of tens to thousands of large vertebrate genomes while maintaining high 

alignment quality. We describe results from an alignment of more than 600 amniote 

genomes, which is to our knowledge the largest multiple vertebrate genome 

alignment created so far.

Comparative genomics analyses, including species-tree inference7,8, 

comparative annotation9,10, and selection detection11,12, require genome 

alignments. Multi-species genome alignment involves creating a map-

ping from each region of each genome to a corresponding region in 

each other genome, taking into account the possibility of complex 

rearrangements and copy number changes13. Genome aligners are 

one of the most fundamental tools used in comparative genomics, 

but because the problem is difficult, different aligners frequently give 

different results14, and many intentionally limit the alignments they 

produce to simplify the problem. Two of the most common limitations 

are ‘reference bias’, the result of constraining a multiple alignment to 

only regions present in a single reference genome, and restricting the 

alignment to be ‘single-copy’, which allows only a single alignment 

in any column in any given genome, causing the alignment to miss 

multiple-orthology relationships created by lineage-specific duplica-

tions. Cactus6 is a genome alignment program that has neither of these 

restrictions; it can generate a reference-free multiple alignment that 

allows the detection of multiple-orthology relationships.

The version of Cactus available in 2012 performed very well in the 

Alignathon14, an evaluation of genome aligners. However, the runtime of 

that initial iteration of Cactus scaled quadratically with the total number 

of bases in the alignment problem, making alignment of more than 

about ten vertebrate genomes completely impractical. To address these 

difficulties, we present fundamental changes to the Cactus process 

that incorporate a progressive alignment strategy15, which changes the 

runtime of the alignment to scale linearly with the number of genomes. 

We show that the result, which we call Progressive Cactus, is an aligner 

that retains state-of-the-art accuracy, and continues to lack reference 

bias, but which is tractable to use on hundreds to thousands of large, 

vertebrate-sized input genomes. Progressive Cactus has been devel-

oped over several years, and has already been successfully used as an 

integral component of high-profile comparative genomics projects16–20.
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Progressive Cactus

The new Progressive Cactus pipeline is freely available and open source. 

The only inputs needed are a guide tree and a FASTA file for each genome 

assembly.

The key innovation of Progressive Cactus is to adapt the classic ‘pro-

gressive’ strategy (used in collinear multiple alignment for decades) to a 

whole-genome alignment setting. Progressive aligners use a ‘guide tree’ 

to recursively break a multiple alignment problem into many smaller 

sub-alignments, each of which is solved independently; the resulting 

sub-alignments are themselves aligned together according to the tree 

structure to create the final alignment. Progressive alignment has been 

successfully applied to whole-genome alignment before—for example, 

by progressiveMauve21 and TBA/MULTIZ22. Cactus now follows a similar 

strategy, with the key innovation being that Progressive Cactus imple-

ments a progressive-alignment strategy for whole-genome alignment 

using reconstructed ancestral assemblies as the method for combining 

sub-alignments. This strategy (analogous to the MAVID23 strategy of 

using ancestral reconstruction in collinear multiple alignment) not 

only results in a much faster alignment runtime but also produces 

ancestral reconstructions.

Figure 1a shows the overall organization of the Progressive Cactus 

process. The guide tree, which need not be fully resolved (binary), is used 

to recursively split a large alignment problem (comparing every genome 

to every other genome) into many small subproblems, each of which 

compares only a small number (usually 2–5) of genomes against one 

another. The purpose of each subproblem is to reconstruct an ancestral 

assembly at each internal node in the guide tree, as well as to generate 

alignments between that internal node’s children and its ancestral recon-

struction. The ancestral assemblies are then used as input genomes in 

subproblems further up the tree, and the parent–child alignments are 

later combined to produce the full alignment. Two sets of genomes are 

considered: the children of the internal node (which we call the ‘ingroup 

genomes’), and a set of non-descendants of that node (the ‘outgroup 

genomes’). The ingroup genomes form the core alignment relationship 

being established at this node. The outgroup genomes serve to answer 

the question of what sequence from the ingroups is also present in the 

ancestor (whether an indel among the ingroups is likely to be a deletion 

rather than an insertion), and in how many copies (whether a duplication 

predates or postdates the speciation event the node represents). The 

outgroups also provide information for guiding the ancestral assembly 

by providing order-and-orientation information, as well as base-level 

information when generating ancestral sequences. These genome sets 

are used as the input to the main subproblem workflow (Fig. 1b).

Each individual subproblem follows a similar procedure to the 

original Cactus process. The subproblem procedure begins with a 

set of pairwise local alignments generated via the sensitive pairwise 

local-alignment program LASTZ24. These pairwise alignments are 

then filtered and combined into a cactus graph representing an initial 

multiple alignment using the previously described CAF algorithm6—

although we note important changes to the filtering in Methods and 

Extended Data Fig. 1—to attempt to recover the homologies that date to 

the most recent common ancestor of the ingroup genomes. The initial 

alignment is refined using the previously described BAR algorithm6 

to create a more complete alignment. The ancestral assembly is then 

created by ordering the blocks in this final alignment and establishing 

a most-likely base call for each column in each block. The resulting 

ancestral sequence is then fed into later subproblems (unless the root 

of the guide tree has been reached, which ends the alignment process).

As a practical matter, Progressive Cactus uses the Toil25 workflow 

framework to organize and distribute its computational tasks. Although 

genome alignment is a computationally intensive task, using Toil, we 
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Fig. 1 | The alignment process within 

Progressive Cactus. a, A large alignment problem 

is split into many smaller subproblems using an 

input guide tree. Each subproblem compares a set 

of ingroup genomes (the children of the internal 

node to be reconstructed) against each other as 

well as a sample of outgroup genomes 

(non-descendants of the internal node in 

question). b, Flowchart represents the phases in 

which the overall alignment, as well as each 

subproblem alignment, proceeds through. The 

end result is a new genome assembly that 

represents the Progressive Cactus reconstruction 

of the ancestral genome, and an alignment 

between this ancestral genome and its children. 

After all subproblems have been completed, the 

parent–child alignments are combined to create 

the full reference-free alignment in the HAL27 

format.
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can break up the problem into small pieces that can work in hetero-

geneous compute environments, playing to the advantages of both 

cheap CPU-rich machines and more expensive memory-rich machines. 

Because it runs on Toil and supports container execution via Docker 

and Singularity26, Progressive Cactus can be run on many different 

environments: single machines (for small alignments), conventional 

clusters, and commercial clouds.

Given the rate of arrival of new assembly versions and newly sequenced 

genomes, adding new information to an alignment without recomput-

ing it from scratch is valuable, especially for large alignments in which 

recomputing the entire alignment is often cost-prohibitive. Progressive 

Cactus, combined with special functionality in the HAL toolkit27, there-

fore supports the addition and removal of genomes from the alignment 

by taking advantage of the tree structure of the progressive alignments 

it produces (Methods, Extended Data Fig. 2, Extended Data Table 1).

Evaluation on simulated data

The Alignathon simulated datasets14 have been aligned with many 

competing genome aligners and have a known truth set, providing 

a way to compare Progressive Cactus against other genome aligners. 

Progressive Cactus produces alignments with higher accuracy for both 

simulated primate (F1 score of 0.989) and mammal (F1 score of 0.795) 

clades than any aligner that participated in the Alignathon (Supple-

mentary Tables 1, 2), including the original version of Cactus.

To evaluate the improvements in quality and runtime of the align-

ments produced using the new progressive alignment strategy, we 

simulated the evolution of twenty 30-megabase genomes using Evolver 

(https://www.drive5.com/evolver) along a tree of catarrhines. We ran 

two alignment strategies—one using a fully resolved binary guide tree 

(which takes full advantage of the new progressive mode), and one using 

a fully unresolved star guide tree (which is similar to the originally pub-

lished version of Cactus)—across variously sized subsets of genomes 

roughly evenly spaced throughout the catarrhine tree. The alignments 

using the progressive strategy finished more quickly, with the speed 

improvement growing larger with the increasing number of species 

(for example, a 15% reduction in runtime for 10 species and 48% for 20 

species), owing to its linear runtime scaling, as opposed to the quad-

ratic scaling of the star-tree (Fig. 2a). The progressive strategy is also 

more accurate than the star strategy (Fig. 2b) and maintains accuracy 

as the number of species (and therefore nodes in the tree) increases.

Effect of the guide tree

Because Progressive Cactus uses an input guide tree to decompose 

the alignment problem, the guide tree can potentially impact the 

resulting alignment. This could be problematic when the exact spe-

cies tree relating the input set of genomes is unknown or controversial. 

However, we reduce any effect of the guide tree by including a great 

deal of outgroup information, including multiple outgroups when 

possible. To quantify the effect of the guide tree on a large alignment 

with an uncertain species tree, we created four alignments of a set of 

48 avian species (Supplementary Table 3), which we subset down to 

a single chromosome (chromosome 1). The avian species tree is still 

being actively debated28,29 and there are different plausible hypotheses, 

making birds an excellent test case with no single clearly correct guide 

tree. We aligned these birds using four different guide trees: two trees 

that represent two different hypotheses about the avian species tree28,29, 

one consensus tree between the former two trees, and one tree that 

was randomly permuted from one of the previously published trees29 

(Methods, Supplementary Fig. 1). The four alignments were highly 

similar, with an average of 98.5% of aligned pairs identical between 

any two different alignments (Extended Data Table 2).

We further examined whether these small differences in the guide 

tree affect some species more than others. For any pair of these 48 spe-

cies, the F1 score for aligned pairs between the previously published28,29 

alignments was at least 0.955 (Supplementary Fig. 2). As an example, 

the phylogenetic relationship between the species Cuculus canorus, 

Chlamydotis macqueenii and Tauraco erythrolophus is different in the 

guide tree based on Prum et al.28 than that based on Jarvis et al.29 (Sup-

plementary Fig. 3). The F1 score for aligned pairs within this clade between 

the two alignments was 0.972, lower but comparable to the score for a 

similar clade that had an identical phylogenetic relationship in both trees, 

0.982 (for Merops nubicus, Picoides pubescens and Buceros rhinoceros).

×

×

a b

Fig. 2 | Comparing alignments of varying numbers of simulated genomes 

using Progressive Cactus. a, The progressive mode of Progressive Cactus is 

shown, versus the mode without progressive decomposition that is similar to 

that previously described6 (‘star’). The average total runtime of the two 

alignment methods across three runs is shown. Data are mean and s.d. The 

runtime is identical when aligning two genomes as the alignment problem is 

not further decomposed, but the linear scaling of the progressive mode means 

it is much faster with large numbers of genomes than the quadratic scaling 

required without progressive alignment. b, The precision, recall and F1 score 

(harmonic mean of precision and recall) of aligned pairs for each alignment 

compared with pairs from the true alignment produced by the simulation.

https://www.drive5.com/evolver
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Effect of assembly quality on alignment

Our progressive approach means that the alignment between two 

genomes distant in the guide tree is informed by the reconstructions 

of the ancestral genomes along the path, which is in turn formed using 

data from other genomes in the tree. To evaluate the practical effect 

of differing quality of input assemblies, we created two alignments 

of 11 boreoeutherian mammal species, 7 of which represented either 

high-quality assemblies in one alignment (using modern assemblers and 

often long-read data) or lower quality assemblies in the other alignment 

(usually using much older shorter-read technologies) (Supplemen-

tary Table 4). The remaining four assemblies were held constant to 

facilitate a comparison between the two alignments. Despite alignment 

differences between the long-read and short-read assemblies (Sup-

plementary Table 5), the alignment between these four assemblies was 

similar in both datasets (for example, 0.855 Jaccard similarity between 

induced pairwise human–dog alignments) (Supplementary Fig. 4), 

a level of similarity higher than seen between alignment strategies, 

indicating that the progressive alignment strategy can tolerate poor 
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Fig. 3 | Analysing the 600-way amniote 

alignment. a, The species tree relating the 600 

genomes. Branches are coloured by clades as in b 

and c. b, Percentage coverage on human within the 

eutherian mammals, grouped by clade from highest 

to lowest coverage. c, As in b, but for coverage on 

chicken within the avian alignment. d, Percentage of 

various regions within the human genome 

mappable to each ancestral genome reconstructed 

along the path leading from human to the root. The 

positions of selected ancestors are labelled by 

dotted lines to indicate useful taxonomic reference 

points as context. UTR, untranslated region. e, As in 

d, but for the path of reconstructed ancestors 

between chicken and the root.
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assemblies. Reinforcing this, comparing the induced pairwise align-

ments of human–dog to direct pairwise alignments computed using 

the established chains and nets pipeline30, we find the same level of  

Jaccard similarity for both the high- and low-quality assembly align-

ments (Supplementary Fig. 5). Of the aligned pairs in the induced 

pairwise Progressive Cactus alignments, 82% were found in the chains 

and nets alignment, and, vice versa, 78% of pairs in the chains and nets 

alignment were found in each Progressive Cactus alignment. Concord-

ant results were found comparing human–mouse pairwise alignments 

(Supplementary Fig. 5).

600-way amniote alignment

To demonstrate Progressive Cactus, we present results from an align-

ment of 605 amniote genomes, relating in a reference-free manner to 

more than 1 trillion bases of DNA across hundreds of millions of years of 

genome evolution (an estimated 35.4 neutral substitutions per site). The 

amniote-wide alignment combines two smaller alignments: one created 

for the initial release of the Zoonomia project31, which includes 242 placen-

tal mammals representing most eutherian mammal families, and one for 

the Bird 10,000 genomes (B10K) project32, which includes 363 avians, also 

representing most bird families. The overall topology is shown in Fig. 3a. 

To our knowledge, this represents the largest whole-genome alignment 

created so far. Table 1 contains aggregate statistics on this alignment.

Coverage within the 600-way alignment closely tracks phylogenetic 

distance and genome size; for example, a median coverage on human of 

2.3 gigabases (Gb) from Euarchonta mammalian species, versus 1.2 Gb and 

1.0 Gb from more distant Laurasiatheria and Glires mammalian species, 

respectively (Fig. 3b, c). The ancestral reconstructions within the 600-way 

alignment are highly complete, especially for functional sequence: 86% of 

human coding bases are represented in our reconstruction of the ancestor 

of all placental mammals, whereas 95% of chicken coding bases are repre-

sented in our reconstruction of the common ancestor of avians (Fig. 3d, e). 

Owing to the long branch length (approximately 0.7 substitutions-per-site 

divergence between the two clades), the amniote (human–chicken) ances-

tral assembly has a much lower proportion of reconstructed sequence 

than its immediate children, the avian and eutherian mammal ancestors, 

for example, retaining 16.3% of chicken intron bases versus 84.4% in the 

avian ancestor, and 7.2% of human intron bases versus 56.5% in the euthe-

rian ancestor. However, coding bases are still well retained (86.8% from 

chicken and 58.7% from human). The ancestral assemblies consistently 

contain a relatively higher proportion of sequence for avians than for 

mammals even across similar phylogenetic distances, consistent with a 

more conservative mode of genome evolution in avians that is influenced 

by lower repeat counts and denser gene content33.

The ancestral reconstructions provide a history of substitution, indel 

and rearrangement events. Although this history is by its nature only a 

hypothetical reconstruction of the true history of genome evolution 

along the tree, it is accurate enough to be useful. To demonstrate the 

utility of the indel history, we examined rates of small (less than or equal 

to 20 base pairs (bp)) insertion and deletion events in the 600-way 

alignment. As expected from previous studies16,34, the rate of small 

indels in any given branch was correlated with the rate of nucleotide 

substitution (an R2 value of 0.69 for insertions and 0.80 for deletions 

in avians, and 0.39 and 0.40, respectively, for eutherians), although the 

relative rates remained lower for insertions (1.2% of the substitution 

rate for both clades) and for deletions (2.4% and 1.2% of the substitu-

tion rate for avians and eutherians, respectively). Notably, we observe 

similar rates of deletions between eutherian and avian lineages, but evi-

dence of a slightly increased rate of insertions in avians (Extended Data 

Fig. 3a). The ancestral assemblies also represent even difficult-to-align 

regions such as transposable elements. We ran RepeatMasker35 on sev-

eral human ancestors, focusing on the recently-emerged L1PA6 family 

of L1 retrotransposons. When ascending the primate tree, approaching 

the origin of modern L1PA6 elements above the human–rhesus ances-

tor, L1PA6 elements appear increasingly similar to their consensus 

sequence (Extended Data Fig. 3b, Supplementary Fig. 6).

Despite its scale, sub-alignments of the 600-way are similar to smaller 

alignments of the same species. Within the 7.1 billion aligned base pairs 

involving human, mouse, rat or dog within the 600-way, 76.49% were 

present in an alignment with less than a tenth the number of species 

(Supplementary Fig. 7)—this similarity is in line with that observed 

between different alignments of these same species14. As expected, the 

alignments more strongly agree in functional regions, such as coding 

exons, than for the genome as a whole (Supplementary Fig. 8). The 

size and fraction of functional elements reconstructed in ancestors 

shared between the 600-way and smaller alignments of mammals and, 

separately, avians were also highly similar (Supplementary Figs. 9, 10).

To evaluate the relative accuracy of the progressive alignment pro-

cess back to the amniote ancestor, human protein-coding transcripts 

and genes were mapped to the chicken genome using translated BLAT36, 

translated BLAST37, LASTZ24 and the 600-way alignment. Of 84,001 

transcripts, BLAT mapped 70%, BLAST mapped 80%, LASTZ mapped 

67%, and Progressive Cactus mapped 74%. Both Progressive Cactus and 

LASTZ had much lower levels of multi-mapping (2–3% of transcripts) 

than either translated method (16–51%) (Supplementary Tables 6–8). 

Comparison of Cactus and LASTZ coding sequence mappings to the 

union of the translated alignments, both in terms of individual gene 

counts and coding and mRNA bases, showed that Cactus has a margin-

ally higher fraction of shared elements with the translated alignments 

Table 1 | Aggregate statistics for the 600-way alignment

Alignment No. of 

genomes

Total 

bases

Instance- 

hours

Core-hours Common 

ancestor size

Zoonomia 242 669 billion 68,166 1.9 million 1.73 Gb

B10K 363 400 billion 5,302 0.2 million 1.13 Gb

Combined 605 1.07 trillion 73,692 2.1 million 181 Mb

The increase in computational work for the mammal alignment compared with the bird  

alignment is largely caused by the increase in the pairwise alignment phase runtime  

because it scales quadratically with the size of the genomes being aligned.
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than LASTZ (Supplementary Table 9). Supporting this result, comparing 

the median per-transcript and per-gene base-level Jaccard similarity of 

these mappings to chicken, while Progressive Cactus and LASTZ were 

most similar, Progressive Cactus was more similar to translated BLAT 

and Blast than LASTZ was (Supplementary Figs. 11, 12, Supplementary 

Table 10). Both Progressive Cactus and LASTZ have higher base-level 

similarity with existing chicken annotations than either translated 

alignment method (Supplementary Table 11).

The B10K species were also separately aligned with MULTIZ22 using 

the chicken genome as the reference, allowing us to make a comparison 

between the two resulting alignments. Progressive Cactus aligned more 

total bases to chicken (covering an average of 69.4% of the chicken genome 

from the other species) than MULTIZ (64.9%), for an average increase of 

47 Mb. Because, unlike Progressive Cactus, MULTIZ is reference-biased, 

the difference is starker when looking at the number of bases aligned to a 

genome not used as the MULTIZ reference (an average of 79% of the zebra 

finch covered versus 49.2%, for an average increase of 367 Mb) (Fig. 4).

Discussion

The Vertebrate Genomes Project38 led by the Genome 10K39 and the Earth 

BioGenome Project40, among others, aim to release thousands of new, 

high-quality genome assemblies over the next decade. These projects 

will give us incredible insight into natural history, but will need massive 

genome alignments. We have shown that Progressive Cactus can create 

reference-free alignments of hundreds of vertebrate genomes effi-

ciently. The B10K32 and Zoonomia31 consortia are using this alignment 

for comparative analysis, for example, analysing patterns of selection 

in unprecedented detail.

We focus on creating a reference-free alignment and ancestral recon-

struction, allowing analysis of genome evolution throughout the entire 

tree rather than in comparison to one anointed reference. As the aver-

age assembly becomes ever more complete and accurate38, the value of 

such a reference-free approach grows. Similarly driven by technology 

improvements, sequencing efforts will increasingly produce multiple, 

phased de novo assemblies from different individuals in a popula-

tion41. Progressive Cactus has already proved useful for comparison 

between assemblies of the same species20. Alignments of such assem-

blies are essential for annotation9 and variant characterization42 and 

should prove useful for reference-free pangenome construction of the  

variation present in a population43.
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Methods

Data reporting

Sample selection was made according to the needs of the Zoonomia 

and B10K projects. The experiments were not randomized, and there 

was no blinding.

Evaluation on simulated data

Twenty primate genomes were simulated using Evolver, managed using 

the evolverSimControl (https://github.com/dentearl/evolverSimCon-

trol, commit b3236deb) pipeline. The root genome used was derived 

from 30 megabases selected from the hg19 genome, and is available 

at http://courtyard.gi.ucsc.edu/~jcarmstr/datastore/progressiveCac-

tusEvolverSim.tar.gz along with the Evolver configuration files that 

were used. The species tree used for the simulation was obtained from 

a catarrhine subtree of the 100-way alignment tree available on the 

UCSC browser.

The tree used was, in Newick format:

(((((((Human:0.00655,Chimp:0.00684)anc0e:0.00122,Bonobo: 

0.00784)anc1e:0.003,Gorilla:0.008964)anc2e:0.009693,Orangu

tan:0.01894)anc3e:0.003471,Gibbon:0.02227)anc4e:0.01204,(((((Rh

esus:0.004991,Crab_eating_macaque:0.005991)anc5e:0.001,Sooty_

mangabey:0.001)anc6e:0.005,Baboon:0.003042)anc7e:0.01061, 

(Green_monkey:0.027,Drill:0.03)anc8e:0.002)anc9e:0.003,((Proboscis_ 

monkey:0.0007,Angolan_colobus:0.0008)anc10e:0.005,(Golden_

snub-nosed_monkey:0.0007,Black_snub_nosed_monkey:0.0008)

anc11e:0.004)anc12e:0.009)anc13e:0.02)anc14e:0.02183,(((Marm

oset:0.03,Squirrel_monkey:0.01035)anc15e:0.01065,White-faced_ 

sapajou:0.009)anc16e:0.01,Nancy_Mas_night_monkey:0.01)anc17e: 

0.01)anc18e;

The alignments were generated using Progressive Cactus commit 

51eb980b. The input files (the simulated genomes, input files and Pro-

gressive Cactus configuration file) are available at http://courtyard.

gi.ucsc.edu/~jcarmstr/datastore/progressiveCactus.EvolverSim.Cac-

tusInput.EvenlySpread.tar.gz. A non-default configuration (included in 

the dataset) was used to change the alignment filtering in both runs to 

better support the high degree of polytomy in the star-tree runs. Four 

sets of 2, 6, 10 and 20 genomes were used, each of which were run three 

times to generate runtime estimates. The sets are as follows: 2 species: 

rhesus and marmoset; 6 species: rhesus, marmoset, gorilla, drill and 

black snub-nosed monkey, white-faced sapajou; 10 species: species 

from 6-species alignment and human, sooty mangabey, proboscis 

Monkey and Nancy Ma’s night monkey; 20 species: all species.

The runtime statistics were gathered using the toil stats command 

(the overall clock time was used, which represents central processing 

unit (CPU) time spent across all jobs). To generate the recall and preci-

sion statistics, multiple alignment format files (MAFs) were exported 

for each run (using hal2maf from the HAL27 package (https://github.

com/ComparativeGenomicsToolkit/hal, commit 68db41d) with the 

--onlyOrthologs option using the rhesus genome as a reference) and 

compared with the Evolver MAF using mafComparator (https://github.

com/dentearl/mafTools, commit 82077ac3).

Comparison using Alignathon data

For comparison against other genome alignment methods, we aligned 

data (both the simulated ‘primates’ and ‘mammals’ datasets) used in 

the Alignathon using Progressive Cactus. For comparison, we down-

loaded all the original Alignathon entries in MAF format. We used the 

original Alignathon analysis workflow (https://github.com/dentearl/

mwgAlignAnalysis, commit df98753) to reanalyse the MAFs, with the 

output of the newest Progressive Cactus version added, to generate 

the precision/recall statistics (which we extracted from the compari-

son against the most recent common ancestor (MRCA) truth set). The 

simulated-mammal results are shown in Supplementary Table 1, and 

the simulated-primates results are shown in Supplementary Table 2.

Evaluation of the effect of the guide tree

The guide-tree analysis was performed on a set of 48 bird genomes pre-

viously published29. To reduce the amount of alignment work required, 

we subset these genomes down to the size of only a single chromosome, 

chicken chromosome 1 (by removing any contig or scaffold that had less 

than 20% of its sequence alignable to chicken chromosome 1). We used 

Progressive Cactus commit 36304707 for all alignments in this analysis.

The Prum and Jarvis topologies were adapted from Prum et al.28 

and Jarvis et al.29, respectively. The ‘permuted’ topology was gen-

erated starting from the Jarvis topology, via three randomly cho-

sen subtree-prune-regraft operations followed by three random 

nearest-neighbour-interchange operations. Each of these three topolo-

gies had branch-length estimates performed using phyloFit from the 

PHAST package (https://github.com/CshlSiepelLab/phast, commit 

52e8de9) based on fourfold-degenerate sites of BUSCO orthologues. 

Finally, the ‘consensus’ tree was produced as a strict consensus of the 

Jarvis and Prum trees (collapsing all groupings that were not the same in 

both trees) using the ape::consensus method from the APE R package44. 

The branch-lengths for this tree were generated from the fitted branch 

lengths for the two input trees, using the consensus.edges function of 

the phytools R package45. The four final trees that were used in the four 

Progressive Cactus alignments are shown in Supplementary Fig. 1, and 

available in supplementary data in Newick format.

We further focused on the alignments with guide trees based on 

Jarvis29 and Prum28 (Supplementary Fig. 3) to establish what alignment 

differences resulted from different phylogenetic hypotheses. Supple-

mentary Fig. 2 shows a refinement of the overall alignment-to-alignment 

F1 scores shown in Extended Data Table 2, showing the F1 scores for each 

species pair between the Jarvis- and Prum-based alignments. Each pair 

of species has an F1 score between Jarvis- and Prum-based alignments 

of at least 0.955.

Effect of assembly quality on alignment quality

We aligned two sets of 11 boreoeutherian genomes: one in which 7 of 

the species were represented by relatively low-quality assemblies, and 

another in which the same 7 species were represented by higher-quality 

assemblies; the assemblies used are listed in Supplementary Table 4. 

The remaining four genomes had the same assemblies in both align-

ments to facilitate comparison (human, hg38; mouse, mm10; rat, rn6; 

and dog, canFam3). We used Progressive Cactus commit 36304707 for 

all alignments in this analysis.

Generation of the 600-way alignment

The Zoonomia alignment was composed of two sets of mammalian 

genomes: newly assembled DISCOVAR assemblies and GenBank assem-

blies. The DISCOVAR genomes were masked with RepeatMasker commit 

2d947604, using Repbase46 version 20170127 as the repeat library and 

CrossMatch as the alignment engine. The pipeline used is available at 

https://github.com/joelarmstrong/repeatMaskerPipeline, commit 

a6ad966. The guide-tree topology was taken from the TimeTree data-

base47 (using release current in October 2018), and the branch lengths 

were estimated using the least-squares-fit mode of PHYLIP (http://

evolution.genetics.washington.edu/phylip/getme-new1.html, version 

3.695)48. The distance matrix used was largely based on distances from 

the 4d site trees from the UCSC browser49. To add those species not 

present in the UCSC tree, approximate distances estimated by Mash 

(https://github.com/marbl/Mash, commit 541971b)49 to the closest 

UCSC species were added to the distance between the two closest UCSC 

species. We used the hal package to process the HAL file (https://github.

com/ComparativeGenomicsToolkit/hal, commit 68db41d).

The final guide tree is embedded in the HAL file, and available using 

the halStats --tree command. The 363 assemblies in the B10K align-

ment comprised four sets: 236 newly sequenced species for the ‘family’ 

phase of the project, assembled using SOAPdenovo2 and AllpathsLG, 

https://github.com/dentearl/evolverSimControl
https://github.com/dentearl/evolverSimControl
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42 assemblies already sequenced from the ‘order’ phase of the project, 

36 assemblies taken from GenBank, and 49 assemblies contributed by 

other research groups. For the avian guide-tree, we used a tree that the 

B10K consortium derived as preliminary data from ultraconserved 

elements.

Both alignments were run on the AWS cloud over the course of 3 

weeks for the avians and 2 months for the mammals, using a maximum 

of 240 c3.8xlarge instances and 20 r3.8xlarge instances. Because Toil’s 

autoscaling mode was used, this capacity was only fully used during 

the initial phase of the alignment, when the potential for parallelism 

was at its highest.

The 600-way alignment was formed by aligning the two roots of 

the B10K and Zoonomia alignments, using the xenTro9 (frog), latCha1 

(coelacanth), and danRer11 (zebrafish) assemblies as outgroups. This 

created a ‘linker’ alignment connecting the roots of the two alignments. 

The B10K and Zoonomia alignments were then added to this linker 

alignment using the halAppendSubtree command.

Micro-indel events within the 600-way

We extracted all insertion and deletion events by running the halBranch-

Mutations (https://github.com/ComparativeGenomicsToolkit/hal, 

commit 68db41d) tool on every branch in the 600-way alignment. The 

ungapped insertion and deletion calls (represented by ‘I’ and ‘D’, respec-

tively, within the output file) were filtered so that only calls spanning 

less than 20 bp (in the child for insertions, and the parent for deletions) 

were counted. The rate for each branch was then obtained by dividing 

the count of these micro-indel events by the total amount of sequence 

present in the child.

Repetitive elements within ancestral sequences

We ran RepeatMasker (https://github.com/rmhubley/RepeatMasker, 

commit 2d947604) on all ancestral assemblies of human within the 

600-way alignment (using RepBase46 version 20170127, selecting the 

‘primate’ repeat library and choosing CrossMatch as the alignment 

engine). We also ran the same pipeline against human (as existing 

annotations used the ‘Homo_sapiens’ repeat library). All ancestors 

up to human-rhesus had over 78% of the human complement of L1PA6 

elements (Supplementary Fig. 10).

Human/chicken transcript alignment protocols

Protein-coding transcript annotations were obtained from the UCSC 

Genome browser48 tables. Human annotations are GENCODE V34 on 

hg38 (GRCh38/GCA_000001405.27) and chicken annotations are 

Ensembl 85 on galGal4 (GCA_000002315.2). Predicted RNA sequences 

for each protein-coding transcript are extracted from the genome. Only 

gene annotations on the primary assemblies were used, those on alter-

nate loci, patches, and assembled sequences were dropped. This results 

in 84,001 transcripts in 19,695 genes for human and 15,328 transcripts 

in 14,499 genes for chicken. The human transcripts were then mapped 

from the human genome to the chicken genome. The steps for each 

method are outlined below, although the actual execution was done by 

partitioning the data and using a cluster. Command-line tools from the 

UCSC Genome Browser group and programs used came from: https://

github.com/ucscGenomeBrowser/kent, commit 8a8d921, https://

github.com/ComparativeGenomicsToolkit/hal, commit 68db41d, 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.10.0/, version 

tblastn: 2.10.0, and https://github.com/lastz/lastz, version 1.03.54.

BLATX transcript alignment protocol

The BLATX alignments were created using protein-translated mode to 

align the mRNAs to the target genome with BLAT version 36x5. They 

were then filtered following the same protocol the UCSC Genome 

Browser uses for creating the other species RefSeq alignments:

blat -noHead -q=rnax -t=dnax -mask=lower <dest-genome.2bit> \

<src-rna.fa> <dest-rna-raw.psl>

We then filter to get near-best in genome. Alignment to chicken 

uses near best filter of -localNearBest = 0.010 while to human it uses 

-globalNearBest = 0.010:

faPolyASizes <src-rna.fa> <src-rna.polya>

pslCDnaFilter <nearBestOption> -minId=0.35 -minCover=0.15 

-minQSize=20 \

-ignoreIntrons -repsAsMatch -ignoreNs -bestOverlap \

-polyASizes=<src-rna.polya> <dest-rna-raw.psl> <dest-rna-mapped.

psl>

The transMapPslToGenePred command is then used to project the 

original coding sequence (CDS) onto the alignment.

TBLASTX transcript alignment protocol

The TBLASTX alignments were created using the protein-translated 

‘tblastx’ program to align the mRNAs to the target genome with BLAST+ 

version 2.10.0+.

The database is created using the repeat masking from the UCSC 

Genome Browser genomes to match what is used within the BLATX 

methodology above:

convert2blastmask -in <dest-genome.fa> -masking_algorithm 

repeat \

-masking_options “repeatmasker, default” -outfmt maskinfo_asn1_

bin \

-out <dest-genome.mask>

makeblastdb -dbtype nucl -in <dest-genome.fa> -mask_data 

<dest-genome.mask>

The mRNAs are aligned and the resulting XML converted to PSL format, 

filtering to an e-value threshold of 0.01. These are then chained using a 

program the UCSC group developed for chaining BLAST alignments:

tblastx -db <dest-genome.fa> -db_soft_mask 40 -outfmt 5 -query 

<src-rna.fa> \

-out <dest-rna-raw.xml>

blastXmlToPsl -eVal=0.01 <dest-rna-raw.xml> <dest-rna-raw.psl>

simpleChain -outPsl -maxGap=75000 <dest-rna-raw.psl> 

<dest-rna-chained.psl>

The alignments produced are then filtered in the same manner as the 

BLATX alignments.

LASTZ transcript alignment protocol

Both the LASTZ and Cactus transcript mappings use the ‘TransMap’50 

projection alignment algorithm to project transcript annotation 

between genomes. The LASTZ alignment chains and nets50–52 were 

obtained from the UCSC Genome Browser downloads. These were then 

filtered to produce a set of syntenic mapping chains using these steps:

netFilter -syn <genomes.net> <syntenic.net>

netChainSubset -wholeChains <syntenic.net> <genome.chain> 

<mapping.chain>

Cactus transcript alignment protocol

The Cactus alignments are extracted for all primary chromosomes 

from the HAL file and chained using the same chaining algorithm as 

the LASTZ chains, with the –noDupes option having a similar effect as 

the syntenic net filtering:

halLiftover --outPSL --noDupes 600way.hal <srcOrganism> \

<srcChroms.bed> <destOrganism> <src-dest.psl> <genome.psl>

axtChain -psl -linearGap=loose -scoreScheme=HoxD55.q <genome.

psl> <mapping.chain>

The ‘TransMap’ protocol is used for both the LASTZ and Cactus mapping 

chains to produce alignments of the transcripts to the other genomes. 

This used the ‘pslMap’ command to do the mapping and ‘pslRecalc-

Match’ to update the statistic in the alignments:

pslMap -chainMapFile <src-rna.psl> <mapping.chains> 

<dest-rna-over.psl>

pslRecalcMatch <dest-rna-over.psl> <dest-genome.2bit> <src-rna.

fa> <dest-rna-raw.psl>
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The alignments produced are then filtered in the same manner as the 

LASTZ alignments.

Transcript and gene alignment subsets and comparison

To facilitate the comparative analysis of the alignment methods, we 

created reduced sets of the alignments using two different approaches. 

Although both BLATX and TBLASTX will align UTR, the strength of 

protein-translated methods is in recognizing distant coding sequence 

relationships. Alignment projection-mapping methods were previously 

shown53 to align more UTR bases than translated methods. To facilitate 

comparisons, CDS alignments from each method were created by trim-

ming the RNA alignments to contain only the CDS regions as defined 

by the human annotation set.

Although mapping all transcripts is useful, particularly for under-

standing the utility of the methods in assisting genome annotation, 

individual transcripts overlap, biasing assessment of transcribed 

mappings to genes with larger transcript numbers. To remove most 

of this base multiplicity from comparisons, in addition to showing full 

transcript results, subsets of the alignments are created using only one 

representative transcript per gene. For the full RNA alignments, the 

longest RNA for each gene was chosen, with the CDS alignments choos-

ing the transcript with the longest CDS. The biology of overlapping 

gene structures and the ambiguities in defining genes cause around 

4% of genomic bases to appear in more than one gene in the RNA, and 

3% in the CDS gene sets owing to overlap.

Individual pairwise alignments were compared at the base-level, 

consistent with the earlier comparisons reported. In brief, alignment 

similarity is computed by comparing the set of shared aligned pairs. 

That is, a pairwise alignment can be viewed as a set of aligned base 

pairs, each a coordinate from the source (human) and target (chicken) 

genome. The Jaccard index is, in this context, the number of aligned 

pairs identical between the two alignments divided by the union of all 

aligned pairs in the two alignments. It is worth noting that translated 

alignments are encoded for comparison using their induced base-level 

alignments. Transcripts or genes that are not aligned by either of the 

aligners being compared are assigned Jaccard indices of zero.

To account for human bases that map to multiple bases in chicken 

(which occurs frequently for the translated alignment methods that 

include very distant, fragmented, paralogous alignments, but much less 

often for the non-translated methods), when comparing the alignments 

of an mRNA or CDS between two methods, if either or both methods 

produces multiple alignments, we pick the pair of mappings (one from 

each method) with highest shared similarity to report. This generally 

has the effect of removing distant paralogues from the comparison.

Progressive Cactus methods

Progressive Cactus builds upon the original Cactus program, in par-

ticular the CAF and BAR algorithms, which are described in detail in the 

original publication. In overview, the CAF algorithm (short for Cactus 

Alignment Filter) is an algorithm designed to construct a sequence 

graph from an input set of local alignments (in the Progressive Cactus 

pipeline computed using LASTZ). We omit a complete definition here, 

but a sequence graph represents the alignment of a set of nucleotide 

strings. It can formally be represented using a bi-directed or bi-edged 

graph54–56 (Supplementary Fig. 13a). Larger nucleotide strings are 

encoded as walks through sequence graphs (Supplementary Fig. 13b); 

in the bi-edged representation an alignment between two or more 

substrings is represented by both strings visiting a common sequence 

edge; in Progressive Cactus each sequence edge represents an align-

ment ‘block’, a set of oriented substrings in the set of input strings which 

are considered to be gaplessly aligned. A key property of alignments 

represented by sequence graphs is that the alignments they represent 

are equivalence relations: that is, alignments are transitive, reflexive 

and symmetric. The core challenge the CAF algorithm addresses is 

sub-selecting which local alignments from the input set to include 

in the sequence graph, because typically a collection of local align-

ments computed with a tool like LASTZ will contain numerous transitive 

inconsistencies which when combined will create implausible, high 

degree alignment blocks in the sequence graph. The CAF algorithm 

uses the 3-edge connected components of a sequence graph to define a 

restricted form of cactus graph such that there exists a homomorphism 

from the alignment blocks in the sequence graph onto the resulting 

cactus graph (Supplementary Fig. 13c). In the constructed cactus graph 

each edge is a member of exactly one simple cycle. These simple cycles 

correspond to ‘chains’ of alignment blocks, maximal sequences of 

blocks whose aligned substrings appear in the same order and orienta-

tion in the input strings. The CAF algorithm iteratively filters the input 

set of alignments to remove local alignments that create short simple 

cycles in the cactus graph, this is achieved by deleting alignment blocks 

from the sequence graph involved with these short cycles. The result 

of the CAF algorithm is a filtered set of local alignments represented 

using a sequence graph. To add to the output sequence graph of the 

CAF algorithm the BAR algorithm constructs a detailed alignment by 

extending gapped alignments from the ends of each alignment block, 

using a greedy approach to force consistency between the alignments 

constructed starting from connected alignment blocks. In Progressive 

Cactus the CAF and BAR algorithms are applied to create an alignment 

of the corresponding set of in-group and out-group species for each 

internal node of a guide tree.

Below we provide updates on the changes made to Cactus to create 

Progressive Cactus.

Preliminary repeat-masking

Progressive Cactus requires input genomes to be soft-masked, but often 

repetitive sequence goes unmasked due to poor masking or incom-

plete repeat libraries for newly-sequenced species. This can negatively 

affect alignment runtimes (as alignments need to be enumerated to 

and from all copies of a repetitive sequence) and impact quality. For 

this reason, we mask overabundant sequence before alignment, using 

a strategy not based on alignment to repeat consensus libraries, but on 

over-representation of alignments. We first divide each genome into 

small, mutually overlapping chunks. For each chunk, we align it to itself 

and a configurable amount of other randomly sampled chunks (cur-

rently 20% of the total pool). To avoid combinatorial explosion due to 

unmasked repetitive sequence, we use a special mode of LASTZ which 

stops exploring alignments from any region early if a maximum depth 

is reached (using the flag --queryhsplimit=keep,nowarn:1500, which 

stops after a high-scoring-pair depth of 1,500). We then soft-mask any 

region covered by more than a configurable number of these align-

ments (currently set to 50). Further details can be found in the src/

cactus/preprocessor section of the Progressive Cactus codebase. 

Although the preprocessing step is automatically run as part of the 

pipeline, we also provide a cactus_preprocessor utility to run only the 

preprocessor without producing a full genome alignment.

Local alignment and outgroup selection

The alignment process for each subproblem begins with a series of 

local alignments generated using LASTZ. The local alignments fall 

into two sets: a set of all-against-all alignments among the ingroup 

genomes, and a set of alignments from ingroup genomes to outgroup 

genomes. We have found outgroup selection to be absolutely crucial 

in creating an acceptable ancestral reconstruction: any missing data 

or misassembly in the outgroup that causes a true deletion in one of 

the ingroups to be misinterpreted as an insertion in others will mean 

that the ancestor contains less sequence than it ought to. This missing 

sequence in turn impacts the alignment between the entire subtree 

below the reconstructed ancestor and the entire supertree above it: 

the missing sequence will never be aligned between the subtree and 

supertree. To avoid this we attempt to use multiple outgroup genomes 

in each subproblem (by default, the three nearest outgroup genomes, 



as measured by branch-length). Naively aligning each ingroup against 

multiple outgroups would significantly increase the computation time; 

to avoid this we note that in general any region already containing an 

outgroup alignment benefits very little from aligning an additional 

outgroup. Therefore, we iteratively align each ingroup against one 

outgroup at a time, pruning away any ingroup sequence already covered 

by the previous outgroup alignments. In this way, the computational 

cost is reduced to be far less than naively aligning against the entire 

outgroup set, while still retaining nearly all of the benefit. In addition, 

we allow the user to designate certain genomes in the input as being 

of particularly high quality; these are chosen as outgroups if possible 

to avoid problems with missing data in regions such as mitochondrial 

or sex chromosomes that are often missing from some assemblies 

but not others.

Paralogy resolution

Users of a genome alignment are often interested in ‘orthology’ rela-

tionships, rather than all ‘homology’ relationships, between a set of 

sequences. For example, when comparing human and chimpanzee 

KZNF genes, providing an alignment from each gene to the over-40056 

homologous KZNF genes in the other genome is nigh-useless; the user 

is likely interested in only the orthologous copy or copies (in the case 

of a lineage-specific duplication) in the other genome. For this rea-

son, Progressive Cactus alignments are capable of representing com-

plex orthology/paralogy relationships, with an ability to display the 

alignment(s) labelled as orthologous, but also the option for a user to 

request alignments to paralogues at a customizable divergence-time 

threshold. This is achieved by implicitly producing a gene tree as the 

alignment is built, albeit with some restrictions, namely that a duplica-

tion event is represented by multiple regions in the child(ren) aligned 

to a single region in the parent species. This forbids the representation 

of gene-tree-species-tree discordance as would occur in incomplete 

lineage-sorting or horizontal transfer, as well as the exact ordering 

of multiple duplication events along a single branch. The restricted 

problem we solve at each subproblem step is that each alignment block 

should represent all regions orthologous to a single region of the ances-

tral sequence, possibly multiple per species; we make no attempt to 

fully resolve the gene tree when multiple duplications take place along 

a single branch. However, this still requires resolving the timing of all 

duplication events to the lineages of the tree: duplicated sequences 

whose coalescence precedes the speciation event represented in the 

subproblem should be split, while those following the speciation event 

should be kept together.

To achieve the desired alignment blocks in each subproblem, in con-

structing the initial sequence graph during the CAF algorithm Progres-

sive Cactus greedily chooses which pairwise alignments to include 

in an effort to prevent paralogous alignments between the ingroup 

species. We developed two algorithms. Both are greedy algorithms 

designed to rank the pairwise local alignments and then iteratively add 

the alignments to the graph, at each step choosing to accept or reject 

the addition of alignments to the graph. Each added alignment ‘glues’ 

together two alignment blocks, splitting existing alignment blocks as 

necessary and merging the resulting two alignment blocks into one 

new block in the graph (Supplementary Fig. 14).

The first algorithm, which was used in previous, beta versions of 

Progressive Cactus, relied on an outgroup-based heuristic to resolve 

duplication timing. This heuristic, which we term ‘single-copy out-

group filtering’, first sorts all the LASTZ alignments by their score in 

descending order. Then, starting from the highest-scoring alignment, 

it iteratively adds one alignment at a time to the sequence graph, reject-

ing the gluing of any two blocks if the resulting alignment block would 

contain two or more substrings from the same outgroup genome. In 

this way the heuristic refuses to glue blocks when the resulting block 

would contain homologies that imply duplications in the outgroups. 

These self-homologies within the outgroup would necessarily involve 

duplication events that occurred above or outside of the subtree rooted 

at the MRCA of the ingroup genomes. Since the goal at each progressive 

step is to determine (the transitive closure of) orthology relationships 

within this subtree, refusing these outgroup self-homologies proves 

useful for assigning orthology between ingroups. Unfortunately, this 

method is very sensitive to incomplete outgroup assemblies (contain-

ing an incorrect number of copies of a duplicated region) or variation in 

the similarity between closely related paralogues, causing assignment 

to the wrong copy. As seen in Extended Data Fig. 1, this filtering method 

tended to resolve duplications far too early, often causing paralogues 

to be called orthologues.

To remedy this problem, we developed an improved duplication- 

timing method, which we term ‘best-hit filtering’. The method pre-

processes the local alignments to define for every base in every input 

genome a ranking by score of the local alignments that overlap it. The 

sequence graph is then built by first including the highest-scoring align-

ment for each base in each genome. We refer to this highest-scoring 

set as the set of ‘primary’ alignments and the remaining alignments 

the ‘secondary’ alignments. Note this definition is asymmetric: a 

pairwise alignment may be primary for one of the substrings it aligns 

and secondary for the other. All primary alignments are added to the 

initial graph unconditionally because they represent the most likely 

orthologue relationship (or in the case of multiple orthology, probably 

a random orthologue) (Supplementary Fig. 15). The set of primary 

alignments represents a conservative set of alignment relationships 

that should include nearly no alignments to ancient paralogues. How-

ever, in regions that have undergone many rounds of lineage-specific 

duplications (which should all be aligned together in the restricted 

duplication-timing problem we described above), the set of primary 

alignments will often by chance not align all copies together. For this 

reason, after adding the primary alignments we iteratively add second-

ary alignments, going in descending order of score, rejecting any sec-

ondary alignment that would glue together any two existing blocks that 

both contain sequences from the same outgroup species (similar to the 

‘single-copy outgroup filtering’ method)—this allows lineage-specific 

duplications of ingroup genomes to correctly land in the same block, 

while avoiding merging blocks from likely-paralogous alignments.

Of the two methods, the newer best-hit filtering removes many more 

probably paralogous alignments, especially to closely related genomes, 

while leaving approximately the same amount of sequence covered by 

at least one alignment. For example, we ran two versions of Progressive 

Cactus, one using the best-hit filtering and one using the outgroup 

filtering (commits 450da74 [best-hit filtering] and aca859f [outgroup 

filtering]), using the following tree:

(((((Human:0.006969,Chimp:0.009727):0.025291,Rhesus:0.0445

68):0.07,Tree_shrew:0.19):0.03,(Kangaroo_rat:0.17,(Mouse:0.072818,

Rat:0.081244):0.11):0.150342):0.02326,((Dog:0.07,Cat:0.07):0.08738

1,((Pig:0.06,Cow:0.06):0.104728,Horse:0.05):0.05):0.04);

Comparing the best-hit filtering alignment and the one using the 

single copy outgroup filtering, the amount of human sequence mapping 

to two or more places in the chimpanzee genome was reduced from 6.1% 

to 2.6%, while the total amount of human covered by chimpanzee actu-

ally increased owing to the removal of ancient homologues, simplifying 

the initial alignment relationships (see Extended Data Fig. 1a, b for an 

example visualization and Extended Data Fig. 1c for aggregate statistics).

The alignment files are accessible in the URLs listed at Supplementary 

Table 12, and the assemblies used are listed in Supplementary Table 13. 

Coverage statistics from the resulting alignments were obtained using 

the halCoverage tool (https://github.com/ComparativeGenomics-

Toolkit/hal, commit 68db41d). To confirm that these improvements 

were likely caused by the removal of paralogous rather than ortholo-

gous alignments, we compared phylogenetic trees implicit in the col-

umns of HAL alignments to independently re-estimated approximately 

maximum likelihood (ML) trees produced by FastTree (http://www.

microbesonline.org/fasttree/, version 2.1.11)57 for the same regions. The 

https://github.com/ComparativeGenomicsToolkit/hal
https://github.com/ComparativeGenomicsToolkit/hal
http://www.microbesonline.org/fasttree/
http://www.microbesonline.org/fasttree/
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duplication-timing evaluation was performed using a custom pipeline 

(https://github.com/joelarmstrong/treeBuildingEvaluation) designed 

to sample columns from a HAL file and evaluate their trees against an 

independently re-estimated tree of the same region. For this analy-

sis we used the two 12-boreoeutherian alignments described above, 

sampling 10,000 columns from the human genome. The comparison 

trees were built from a context of 1,000 bases around the entries in 

each sampled column using FastTree 2.1.10 and the -gtr -nt options. 

Only duplicated columns were counted in the final output (columns 

containing no duplications did not count in the results). The coales-

cence pairs were evaluated using the --onlySelf option, meaning that 

only pairs that included the sampled site were counted in the results. 

To avoid weighting columns with a high number of copies per genome 

more than columns with a low number of copies per genome, only a 

single coalescence was randomly sampled per column.

Because HAL does not produce a fully binarized history of duplica-

tion events, we compared the MRCA of randomly selected pairs of 

sites from genomes containing a duplication within the column. If 

the MRCA species in the HAL tree is a descendant of the MRCA species 

within the reconciled ML tree, that implies that there are paralogues 

represented as orthologues within the HAL tree (since a duplication 

event must have been resolved too early). Similarly, if the MRCA spe-

cies within the HAL tree is an ancestor of that within the reconciled ML 

tree, a duplication event must have been resolved too late in the HAL 

tree, indicating additional false loss or deletion events. The number of 

paralogous alignments (represented by the coalescence time between 

duplicated sequences being too ‘early’ in the HAL tree relative to the ML 

tree) in the alignment of the 12 boreoeutherian genomes was clearly 

reduced (46% in the outgroup filtering versus 26% in the best-hit filter-

ing) (Extended Data Fig. 1d).

We separately ran the Comparative Annotation Toolkit (CAT; https://

github.com/ComparativeGenomicsToolkit/hal, commit 68db41d)9 on 

identical human, chimpanzee and gorilla assemblies (hg38, panTro6, 

and gorGor5 assemblies) in two alignments using the outgroup and 

best-hit filtering methods. We ran using the GENCODE V30 gene set58. 

We projected the transcripts solely via transMap without the use of the 

AUGUSTUS modes. Multiple-mapping statistics and the gene compo-

sition of the final gene set were taken from the filter_tm_metrics.json 

file in the CAT output.

Not only was CAT less likely to identify a human gene in multiple 

chimp loci using the best-hit filtering (for example, 6.5% versus 9.8% 

multiple-mappings across all genes in chimp, and 5.9% versus 13.8% 

for the recently-duplicated KRAB zinc-finger gene family) (Extended 

Data Fig. 1e), but as a result orthologues for 104 more human genes 

were identified in the output gene set for chimp (182 in gorilla) (Sup-

plementary Table 14). This is probably because tens of thousands of 

fewer paralogous transcripts were filtered out in the initial filtering 

phase of CAT (Supplementary Table 15), reducing confusion about 

which transcript projection to put into the gene set.

Removing recoverable chains

The original CAF algorithm was focused on removing small rearrange-

ments while retaining as much of the original alignment relationships 

as possible in the filtered cactus graph. However, because the input 

local alignments are insensitive, the original alignment relationships 

are likely to have missed certain homologies. This can result in what 

we term ‘incomplete blocks’: blocks that contain some alignment rela-

tionships but are missing others, that is, are proper subsets of the cor-

responding ‘true’ alignment block. In our anchor-and-extend process, 

once a block becomes an anchor it can never be modified. As a result, 

these incomplete blocks will remain incomplete: they prevent the true 

alignment relationship from being found, even if an adjacent syntenic 

anchor block is complete and contains all desired alignment relation-

ships. These problematic incomplete blocks become more prevalent 

at longer evolutionary distances: the local aligner will miss more true 

homologies at increasing distances, causing more incomplete blocks 

and in turn a far worse alignment.

To remove these incomplete blocks, Progressive Cactus originally 

relied on a heuristic that identified blocks that were ‘likely’ to be 

incomplete, removing blocks that did not have alignment relation-

ships between all ingroups. However, this heuristic performed poorly 

in the presence of deletions or missing data: any large deletion in one 

ingroup could cause huge stretches of the other ingroup(s) to be left 

unaligned. To remedy this, we have developed a new alteration to the 

CAF algorithm, one that now focuses on maximizing the potential size 

of the alignment graph ‘after’ extension as opposed to ‘before’ exten-

sion. We call this addition ‘removing recoverable chains’ because it 

identifies chains in the cactus graph that represent alignments that 

could be recovered by the BAR algorithm extension process.

The algorithm is applied as a post-processing step after the CAF 

process, which proceeds as normal. After the cactus graph is created 

and filtered, the algorithm identifies ‘recoverable blocks’. Each block 

is composed of segments, each of which represents a non-overlapping 

region of a sequence and which strand is being aligned; we briefly review 

the necessary terminology, but see59 for additional context. We call a 

segment ‘a left-adjacent’ to another segment ‘b’ if ‘a’ represents the 

positive strand and ‘b’ comes before ‘a’ in their sequence and there is 

no other segment between them. Similarly, we call a left-adjacent to 

b if a is on the negative strand and a comes before b in their sequence 

ordering with no other intervening segment. If a is left-adjacent to b, 

then b is right-adjacent to a.

A block is called ‘recoverable’ if, in the case that the block was removed, 

all its regions would be contained entirely within a single end alignment 

in the BAR extension phase. The end alignments are identified by looking 

at all unaligned sequences between the adjacent segments of a single 

‘end’ of a block: in short, two end alignments are created for every block, 

one for all sequences between each segment and its left-adjacent seg-

ment, and similarly for the right-adjacent segments. In practice, this 

means that for some block A, it is recoverable if all its segments are all 

left- or right-adjacent to segments from the same block B ≠ A.

Whether a block is recoverable depends only on its immediate neigh-

bouring blocks. However, it is interesting to consider the maximum set 

of recoverable blocks, and, by contrast, of unrecoverable blocks—these 

unrecoverable blocks represent a minimal set of anchors that can be 

extended from to recover the alignment relationships from the original 

sequence graph as well as potential additional alignment relationships.

Because the chains and nets within the cactus graph represent a hier-

archy of the rearrangements implicit in the alignment, they are helpful 

for finding a smaller set of anchors to extend from. We consider what 

anchors could provide recoverability to a block: if a block A’s segments 

would lie within the end alignment of B if all the recoverable blocks 

between B and A, including A, were destroyed, we call A recoverable 

given B. The relationship is transitive: if block A is recoverable given 

block B, and B is recoverable given C, then A is recoverable given C. All 

blocks in a chain are recoverable given each other, since all blocks in a 

chain are collinear with each other, potentially with intervening rear-

rangements located further down the chain/net hierarchy. Similarly, 

if any block in a chain is recoverable given another block above the 

chain in the chain/net hierarchy, the entire chain is recoverable given 

that block. Owing to this fact, to determine the recoverability status 

of all blocks, we only have to examine the blocks at the ends of chains 

and their immediate neighbours, rather than every block.

Although in principle we would need to keep only one block within 

even unrecoverable chains (since all other blocks within the chain 

would be recoverable given that single block), to save computational 

effort in realignment we only destroy or keep entire chains as a unit. 

In the same spirit, to avoid spending needless effort when the chain is 

recoverable but very likely is not incomplete, we apply a heuristic and 

do not remove chains that contain the same number of copies in all 

ingroups and outgroups.

https://github.com/joelarmstrong/treeBuildingEvaluation
https://github.com/ComparativeGenomicsToolkit/hal
https://github.com/ComparativeGenomicsToolkit/hal


After identifying and removing all recoverable blocks, some blocks 

previously marked unrecoverable may become recoverable (because 

adjacent blocks were removed). For this reason, we run the process of 

identifying and removing recoverable chains multiple times in a loop, 

until either no recoverable chains are identified or a limit on the num-

ber of cycles is reached. The structure of the cactus graph may change 

after removing recoverable blocks, so we recompute the cactus graph 

after every removal step. The process that is followed is described in 

pseudocode as follows:

function RemoveRecoverableChains(G, n)

for 1 ... n do

cactusGraph ← CreateCactusGraph(G)

RecoverableChains ← ∅

for chain C in cactusGraph do

if

 ⊳ A single adjacent end offers the potential for recover-

ability

(|C.leftAdjacencies| = 1 or |C.rightAdjacencies| = 1)

 ⊳ Shared adjacencies indicate a non-recoverable rear-

rangement

and C.leftAdjacencies ∩ C.rightAdjacencies = ∅

 ⊳ Links between chain ends indicate a non-recoverable 

duplication

and C.leftEnd ∉ C.rightAdjacencies then

RecoverableChains ← RecoverableChains ∪ {C}

end if

end for

if |RecoverableChains| = 0 then

break

else

Destroy each chain in RecoverableChains

end if

end for

end function
 

Improvements from removing recoverable sequence

To quantify the effect that the process of removing recoverable chains 

(described above) had on real alignments, we ran alignments on a set 

of nine Euarchontoglires genomes with the feature turned on and off. 

The tree used was:

(((((((human:0.00877,gorilla:0.008964):0.009693,orang:0.01894): 

0.015511,rhesus:0.037601):0.07392,tarsier:0.1114):0.034014,tree_ 

shrew:0.19114):0.002,(kangaroo_rat:0.171759,(chinese_hamster:0.14, 

mouse:0.132282):0.11015):0.114051)euarchontoglires:0.020593,(cow: 

0.18908,dog:0.13303):0.032898);

We used Progressive Cactus commit 56874bde, with the --root euar-

chontoglires option so that cow and dog were used only as outgroups. 

Coverage on human increased for all genomes when recoverable chains 

were removed, especially for those most distant from human (Supple-

mentary Fig. 16). This probably reflects the fact that though the losses 

caused by not removing recoverable chains in any single subproblem 

are relatively small, they can compound to be quite considerable in 

large alignments since many subproblems are involved in creating the 

alignment between distant species (such as human and mouse, which 

are separated by seven internal nodes in this tree).

Ancestral genome reconstruction

The core of what makes the progressive alignment algorithm pos-

sible is the ancestral reconstruction generated in each subproblem. 

This assembly serves as a summary of each subproblem alignment; 

the alignable sequence between the genomes in the subtree below 

the ancestor, as well as that alignable between the subtree and the 

supertree above the ancestor, is all present in the ancestral reconstruc-

tion. The ancestral sequence contains a base for each column in all 

blocks which contain an alignment between two ingroups and/or an 

ingroup and an outgroup—any alignment purely between outgroups 

is discarded. The order and orientation of the blocks relative to one 

another is chosen via a previously published algorithm for ordering 

a pangenome60.

The identity of the ancestral bases is inferred via maximum-likelihood 

on a Jukes-Cantor model61 of evolution using Felsenstein’s pruning 

algorithm62 on the subtree of the guide tree induced by the genomes 

in the subproblem. These base-calls are generated as the alignment 

is being made, so they necessarily take only a part of the alignment 

information into account and may be different than the ideal base-calls 

would be if taking into account information across the entire alignment. 

However, we provide a tool, ancestorsML, distributed as part of the 

HAL toolkit, that re-estimates ancestral base-calls after completion 

of the alignment if desired.

Adding a new genome to an existing alignment

Progressive Cactus supports adding a new genome to an existing 

alignment by taking advantage of the tree structure of the progres-

sive alignments it produces. There are three ways that a new genome 

can be added to an alignment, depending on its phylogenetic posi-

tion relative to the existing genomes: (1) as outgroup to all the exist-

ing genomes in the alignment; (2) by being added as a new child of 

an existing ancestral genome in the alignment; or (3) by splitting a 

branch in the existing alignment, creating a new internal node and 

two new branches (Extended Data Fig. 2). Progressive Cactus allows 

adding a new genome in any of these ways, though the details differ 

(as described below). Assemblies can be replaced with new versions by 

simply deleting them and adding the new assembly in as a leaf. Adding 

multiple genomes is possible, either iteratively or (if the new genomes 

are monophyletic) by aligning together the new genomes and adding 

in the ancestral clade root.

Adding a genome as an outgroup is straightforward because it fol-

lows the normal progressive process: the root of the existing align-

ment and the new genome can be aligned together into a supertree 

alignment in which the existing subtree alignment can be appended 

to. A genome can be added as a new child of an existing internal node 

by simply aligning the new child, its siblings, and its parent together, 

without inferring a new ancestral genome. Adding a genome by split-

ting an existing branch is the least straightforward, but is key if the 

topology of the alignment or the accuracy of the ancestral genomes 

is important. To add a genome to an existing alignment, two subprob-

lems are required: one relating the new genome and its new sibling 

in the target tree, constructing the ancestral genome that will split 

the existing branch, and one relating this new ancestral genome, its 

sibling, and its parent.

After the addition of a new genome as an ingroup (by adding it to a 

node or a branch), at most a single ancestral sequence is re-inferred. 

This prevents any information from the new genome from propagat-

ing to the rest of the tree. Although this saves considerable effort in 

recomputing other parts of the alignment, it also means that, occasion-

ally, rare stretches of sequence in a newly added genome would not be 

properly aligned to distant outgroups because they were deleted or 

missing in the new genome’s close relatives. Re-inferring the ancestral 

genomes on the path from newly added genomes to the root should 

address this issue if it appears.

We tested the effect of adding a new genome to an existing alignment 

using the same set of simulated catarrhine genomes as described above. 

To replicate the use-case of an end-user wanting to add a genome to 

a previously-created alignment, we generated an alignment holding 

out one of the 20 genomes (the crab-eating macaque), and added that 

genome back into the alignment by both splitting an existing branch 

(resulting in the same topology as a full alignment would), and by add-

ing the macaque as a new child of an existing ancestor (creating a tri-

furcation which did not exist in the original tree. All alignments for this 

analysis were generated using Progressive Cactus commit 49e80082 
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and we used tools from the hal package (https://github.com/Compara-

tiveGenomicsToolkit/hal, commit 68db41d).

To add the crab-eating macaque back in as the child of an existing 

node (the add-to-node strategy), we ran a single new alignment with 

the tree (Rhesus:0.006, Crab_eating_macaque:0.007, Sooty_mang-

abey:0.001)anc6e;. The anc6e genome from the original, held-out align-

ment was used as an unreconstructed ancestral input sequence. We set 

the ‘runMapQFiltering’ option in the config file to ‘0’ and the ‘align-

mentFilter’ option to ‘singleCopyOutgroup’, because these options 

produce a better alignment of polytomies. We merged the resulting 

HAL file into a new copy of the existing alignment via the command:

halReplaceGenome <copy of held-out alignment> anc6e \

--topAlignmentFile <held-out alignment> \

--bottomAlignmentFile <add-to-node alignment>.

To add the macaque by splitting a branch (the add-to-branch strat-

egy), we ran two separate alignments. We ran the first with the tree 

(((Rhesus:0.004991, Crab_eating_macaque:0.005991) anc5e:0.001, 

Sooty_mangabey:0.001)anc6e:0.005, Baboon:0.003042)anc7e; 

(with the --root anc5e option so that only a single subproblem was 

run), generating a newly reconstructed anc5e ancestor. We then ran a 

second alignment with the tree (anc5e:0.001, Sooty_mangabey:0.001)

anc6e;, again providing the anc6e assembly from the original alignment 

rather than inferring a new reconstruction. (We note that these two 

subproblems could have been run in a single alignment invocation, 

resulting in the same amount of alignment work but a slightly more 

complicated merging process.) To merge these two add-to-branch 

intermediate alignments into a full alignment, we first removed the 

Rhesus genome from a new copy of the held-out alignment. We then ran  

 halAddToBranch <held-out alignment> <first add-to-branch 

alignment> <second add-to-branch alignment> anc6e anc5e  

 Rhesus Crab_eating_macaque 0.001 0.006.

Both methods resulted in alignments that had accuracy deviating 

less than 0.1% from the full alignment that included the macaque from 

the start: both addition methods, as well as the full alignment, achieved 

an F1 score of 0.926 (Extended Data Table 1). We evaluated the perfor-

mance of these new alignments using mafComparator in the same 

way as described above. In the interest of narrowly determining the 

accuracy of alignments involving the newly added genome, we counted 

only aligned pairs involving the Crab_eating_macaque genome when 

calculating precision, recall, and F1 scores.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

The 600-way genome alignment is composed of data gathered for 

the Zoonomia mammalian genomes project and data from the B10K 

project. All genomes have been archived in GenBank, spreadsheets 

containing all the accession numbers of the assemblies is provided in 

the Supplementary Information. The 600-way alignment is available 

in HAL format from https://cglgenomics.ucsc.edu/data/cactus/. At the 

same location we also provide the subset of the alignment containing 

the Zoonomia genomes, the subset of the alignment containing the 

B10K genomes, and a visualization of the alignments and associated 

data as an assembly hub for the UCSC Browser49. Note that the B10K 

consortium is organizing phylogenomic and other analyses with the 

avian alignment and sequencing data. We encourage people to contact 

us for collaboration if they are interested in using these data for phylo-

genetic analyses. Source data are provided with this paper.

Code availability

The Progressive Cactus pipeline is available at https://github.com/

ComparativeGenomicsToolkit/cactus under the MIT license, version 

1.0 is archived here: https://doi.org/10.5281/zenodo.3873410. The exact 

version of Progressive Cactus used for each of the analyses described 

above varies; for the commit used in each analysis, see the appropriate 

section of the Methods.
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Extended Data Fig. 1 | Results from improved paralogue filtering. a, b, A 

sample snake track64 within a recently duplicated region before (a) and after  

(b) the filtering change. Nucleotide substitutions are shown as red bars, and 

insertions are shown as thin orange bars. c, Coverage results from two 

alignments of identical assemblies using the outgroup and best-hit filtering 

methods. Multiple-mappings: sites that map to two or more sites on the target 

genome. d, Results from comparing phylogenetic trees implicit in the HAL 

alignment to ML re-estimated trees of the same regions. ‘Early’ coalescences 

indicate that too many duplication events have been created in the reconciled 

trees, and ‘late’ indicates that too many loss events have been created.  

e, Percentage of human genes that map more than once to the chimp/gorilla 

genomes in two CAT9 annotations using alignments created with the outgroup 

and best-hit filtering methods. KZNF, KRAB zinc-finger genes.
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Extended Data Fig. 2 | Methods of adding a genome to a Progressive Cactus 

alignment. The top row shows the different ways of adding a new genome 

given its phylogenetic position, and the bottom row shows what subproblems 

would need to be computed for the new genome to be properly merged into the 

existing alignment. Green circles represent a new genome, and red circles 

represent newly reconstructed genomes.
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Extended Data Fig. 3 | Analysing insertions, deletions and L1PA6 repeats in 

the 600-way alignment. a, Rates of micro-insertions and -deletions 

(micro-indels) along each branch within the 600-way alignment, compared to 

conventional substitutions/site branch length. The data from avian and 

eutherian branches are separated. Lines show a best-fit linear model for each 

category. b, Violin plot showing the increasing similarity to consensus of L1PA6 

elements within reconstructed ancestral genomes along the path to the 

emergence of modern L1PA6 elements (in the human-rhesus ancestor). 

Horizontal lines indicate the median values.



Article

Extended Data Table 1 | Adding a new genome to an alignment of simulated genomes

Precision, recall and F1 score statistics are all of the aligned pairs that contain a base of the added genome. An alignment in which the genome was included initially is shown for comparison.



Extended Data Table 2 | Alignment similarity between four alignments of the same 48 avian genomes with different guide 
trees

The similarity between each pair of alignments is represented by the F1 score of aligned-pair relationships in the two alignments.
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