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Abstract Progressively censored order statistics from heterogeneous distributions
are introduced and their properties are investigated. After deriving the joint density
function, some properties are established. In particular, the case of proportional
hazards leads to an interesting connection to the model of generalized order sta-
tistics. Finally, the special case of exponential distribution is considered and some
known results are generalized to this heterogeneous case, and their implications to
robustness are highlighted.

Keywords Progressive censoring · Order statistics from non-identically
distributed random sample · Generalized order statistics · Spacings ·
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1 Introduction

Order statistics from independent and identically distributed (iid) random variables
X1, . . . , Xn have been discussed extensively in the literature; see, for example,
David and Nagaraja (2003) and Arnold et al. (1992). Although the assumptions
of independence and identical distribution are restrictive, the model is useful in
many applications. Moreover, it serves as an important tool in probability and sta-
tistics. However, these assumptions are important only in the probabilistic analysis
of order statistics X1:n ≤ · · · ≤ Xn:n of real-valued random variables X1, . . . , Xn ,
which is easy to handle in the iid case.
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In order to get more flexible models of order statistics, some relaxations of these
assumptions have been considered in the literature; see, for example, Harter and
Balakrishnan (1998). In this paper, we are interested in the case when X1, . . . , Xn
are independent but non-identically distributed (inid). Properties of order statis-
tics in this general set-up have been discussed in the literature first in the early
1970s by Sen (1970) and Pledger and Proschan (1971). Most of the available
results are based on explicit expressions for density functions of order statis-
tics. For example, the joint density function of all order statistics in this case is
given by

fX1:n ,...,Xn:n (t1, . . . , tn) =
∑

π∈Sn

n∏

j=1

fπ( j)(t j ), t1 ≤ · · · ≤ tn, (1)

where

Sn = {
(i1, . . . , in) ∈ {1, 2, . . . , n}n | i j �= ik, j �= k, 1 ≤ j, k ≤ n

}

denotes the set of all permutations π of (1, 2, . . . , n). Although the distribution the-
ory, such as marginal distributions, is well-known, Eq. 1 reveals that the resulting
expressions may often be complicated if not intractable. Due to these difficulties,
the available literature under this general setting is somewhat scarce. Surveys and
related references are provided by Arnold and Balakrishnan (1989) and Harter
and Balakrishnan (1998). An useful tool to handle Eq. 1 and the marginal dis-
tributions is provided by the theory of permanents. Its connection to marginal
density functions of order statistics from inid random variables was first noted
by Vaughan and Venables (1972). After their observation, the “permanent ap-
proach” has been exploited by some authors including Balakrishnan (1988, 1989),
Bapat and Beg (1989a, b), and Bapat (1990). Other papers on properties of or-
der statistics from inid variables make use of the explicit expressions of the den-
sity functions; see, for example, Kochar and Kirmani (1995), Kochar and Korwar
(1996), and Kochar and Rojo (1996). An important application of order statis-
tics from inid variables is in the modelling of outliers and robustness studies.
In particular, the case of a single outlier, viz., F1 = · · · = Fn−1 = F and
Fn = G �= F , has received great attention in the literature; see, for example,
Arnold and Balakrishnan (1989), Barnett and Lewis (1993), and Balakrishnan
(1994).

In this paper, we aim to generalize the model of progressive censoring to the
case of inid variables. In the model of progressively Type-II censored order statis-
tics, some of the underlying random variables X1, . . . , Xn are censored during the
observation. In particular, this means that in a life-testing experiment with n inde-
pendent units, a pre-fixed number R1 of surviving units are randomly censored from
the sample after the first failure time, min{X1, . . . , Xn}. Then, at the first failure
time of the remaining n − R1 −1 units, R2 units are censored, and so on. Finally, at
the time of the m-th failure, all the remaining Rm = n −m − R1 −· · ·− Rm−1 units
are censored. For a detailed description of this progressive censoring scheme and
related developments, one may refer to the book by Balakrishnan and Aggarwala
(2000).

Note that while carrying out this life-test, it is assumed that the units being tested
have iid life-times X1, . . . , Xn with distribution function F(·). In this paper, we
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develop results when the underlying life-times have heterogeneous distributions,
viz., X j ∼ Fj , 1 ≤ j ≤ n. In Sect. 2, we first derive the joint density function of
all m progressively censored order statistics. In Sect. 3, we present some examples
by considering some special cases. In Sect. 4, we give a permanent expression for
the joint density function of the m progressively censored order statistics as well
as the joint density function of the first p progressively censored order statistics.
This generalizes the result of Vaughan and Venables (1972) for the usual order
statistics. In the case of proportional hazards, we establish that the density func-
tions can be represented as a mixture of densities of generalized order statistics.
This yields immediately some properties of progressively censored order statistics
based on heterogeneous distributions. For example, we show that the spacings have
the decreasing failure rate (DFR) property (if the underlying distribution function
F is DFR) which is a generalization of a result of Gupta and Kirmani (1988) for
the usual order statistics; see also Kamps (1995). In Sect. 5, we focus on the special
case of exponential distributions and establish that the first spacing is independent
of all other spacings. Moreover, the resulting one-dimensional marginal distribu-
tions turn out to be a mixture of exponential distributions. This extends the results
of Gross et al. (1986) and Kochar and Korwar (1996) for the usual order statis-
tics from inid exponential random variables. Finally, in Sect. 6, we illustrate some
implications of these results in robustness studies.

Due to the framework of life-time experiments, the results presented subse-
quently are mainly formulated in terms of absolutely continuous life distributions.
However, most results are valid for general absolutely continuous distributions, too.

2 Joint density of progressively censored order statistics

Let F1, . . . , Fn be absolutely continuous distribution functions with densities
f1, . . ., fn , respectively. We consider a sample of independent random variables
X1, . . . , Xn , where Xr ∼ Fr , 1 ≤ r ≤ n. Moreover, let R = (R1, . . . , Rm) ∈ N

m
0

be the progressive censoring scheme with n = m + ∑m
i=1 Ri . For brevity, we

denote by γ1 = ∑m
i=1(Ri + 1) = n the sample size and by γ j = ∑m

i= j (Ri + 1)

the number of units remaining in the experiment after the ( j − 1)-th failure for
2 ≤ j ≤ m. Let X R

1:m:n, . . . , X R
m:m:n denote the progressively Type-II censored

order statistics observed from such a progressively censored life-test.

Theorem 1 For n ∈ N, let Sn be the set of all permutations π of (1, 2, . . . , n). For
brevity, let ρr = R1 + · · · + Rr , 1 ≤ r ≤ m, with ρ0 = 0 and ρm = n − m. Then,
the joint density of X R

1:m:n, . . . , X R
m:m:n is given by

fX R
1:m:n ,...,X R

m:m:n (t1, . . . , tm) = 1

(n − 1)!

⎛

⎝
m∏

j=2

γ j

⎞

⎠
∑

π∈Sn

m∏

j=1

fπ( j)(t j )

×
⎧
⎨

⎩

m+ρ j∏

r=m+ρ j−1+1

F̄π(r)(t j )

⎫
⎬

⎭, t1 ≤ · · · ≤ tm,

(2)
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where π(i) is the i-th component of the permutation vector π ∈ Sn, 1 ≤ i ≤ n.

Proof In order to prove this result, we first consider the joint distribution function

P
(

X R
1:m:n ≤ x1, . . . , X R

m:m:n ≤ xm

)
for x1 ≤ · · · ≤ xm . (3)

Otherwise, the joint distribution function reduces to a marginal distribution func-
tion, which means that at least one of the variables x j drops out. Since the expression
in (3) will be differentiated later on, the density will be zero at such a point. Hence,
without loss of any generality, we can assume the order x1 ≤ · · · ≤ xm in (3).

The definition of progressively Type-II censored order statistics is based on the
following construction. First, the minimum min{X1, . . . , Xn} is observed. Then,
R1 of the n − 1 surviving units are randomly censored. Afterwards, the minimum
of the remaining n − R1 − 1 surviving units is observed, at which time R2 of the
n−2− R1 surviving units are randomly censored, and so on. For now, let us assume
that we know exactly which units fail and which are censored. We consider the
following specific outcome of the progressive censoring procedure:

X1 → failure, Xm+1, . . . , Xm+ρ1 → censored

X2 → failure, Xm+ρ1+1, . . . , Xm+ρ2 → censored

· ·
· ·
· ·

Xm → failure, Xm+ρm−1+1, . . . , Xm+ρm → censored.

This means that, before the r -th failure, the units with indices r, . . . , m and m +
ρr−1 +1, . . . , n are still in the experiment. Moreover, the previous set-up fixes that
the r -th failure is assigned to the unit number r , 1 ≤ r ≤ m. In order to simplify the
notation, we introduce the random vectors Zr = (

Xm+ρr−1+1, . . . , Xm+ρr

)
, 1 ≤

r ≤ m. The components of Zr represent the life-times of those units which are
censored immediately after the r -th failure. Using this notation, we can write

min
{

Xr+1, . . . , Xm, Xm+ρr−1+1, . . . , Xn
}=min {Xr+1, . . . , Xm, Zr , . . . , Zm}.

Then,

P (Xr ≤ min {Xr+1, . . . , Xm, Zr , . . . , Zm} , Xr ≤ xr , 1 ≤ r ≤ m) ,

x1 ≤ · · · ≤ xm, (4)

denotes the probability that the random variables Xr represent the failure times
(which are supposed to be less than xr ) and that the units corresponding to the
components of Zr are censored (after the r -th failure), 1 ≤ r ≤ m.

The probability in (4) can be calculated as follows:
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P (Xr ≤ min {Xr+1, . . . , Xm, Zr , . . . , Zm} , Xr ≤ xr , 1 ≤ r ≤ m)

=
x1∫

−∞
· · ·

xm∫

−∞
P (tr ≤ min {tr+1, . . . , tm, Zr , . . . , Zm} , 1 ≤ r ≤ m)

×
m∏

j=1

f j (t j ) dtm . . . dt1

=
x1∫

−∞

x2∫

t1

· · ·
xm∫

tm−1

P (tr ≤ min {Zr , . . . , Zm} , 1 ≤ r ≤ m)

×
m∏

j=1

f j (t j ) dtm · · · dt1. (5)

Now, let us consider the probability term in the integrand in (5). Using the definition
of the minimum and t1 ≤ · · · ≤ tm , we obtain the following expression:

P (tr ≤ min {Zr , . . . , Zm} , 1 ≤ r ≤ m)

= P (t1 ≤min{Z1}, tr ≤ min{Z2}, 1 ≤ r ≤ 2, . . . , tr ≤ min{Zm}, 1≤r ≤ m)

= P (t1 ≤ min{Z1}) P (t2 ≤ min{Z2}) . . . P (tm ≤ min{Zm})

=
m∏

j=1

m+ρ j∏

r=m+ρ j−1+1

F̄r (t j ), t1 ≤ · · · ≤ tm .

Hence, we obtain

P (Xr ≤ min {Xr+1, . . . , Xm, Zr , . . . , Zm} , Xr ≤ xr , 1 ≤ r ≤ m)

=
x1∫

−∞

x2∫

t1

· · ·
xm∫

tm−1

m∏

j=1

f j (t j )

⎧
⎨

⎩

m+ρ j∏

r=m+ρ j−1+1

F̄r (t j )

⎫
⎬

⎭ dtm · · · dt1.

Differentiation of (5) with respect to x1, . . . , xm yields the function

hI (x1, . . . , xm) =
m∏

j=1

f j (x j )

⎧
⎨

⎩

m+ρ j∏

r=m+ρ j−1+1

F̄r (x j )

⎫
⎬

⎭ , x1 ≤ · · · ≤ xm,

where I = (1, . . . , n). Choosing a permutation π(I ) = (π(1), . . . , π(n)) of
(1, . . . , n), this leads to the expression

hπ(I )(x1, . . . , xm) =
m∏

j=1

fπ( j)(x j )

⎧
⎨

⎩

m+ρ j∏

r=m+ρ j−1+1

F̄π(r)(x j )

⎫
⎬

⎭ , x1 ≤ · · · ≤ xm .

In the next step, we have to take into account that those units that are censored at
the r -th failure are censored at random. The procedure works as follows. First, we
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specify a number i1 out of n = γ1 units and assign this number to the first failure.
Then, from the remaining numbers, we choose randomly R1 values i2, . . . , iR1+1
out of γ1 −1 (with ordering!) and remove the associated units from the experiment.
The corresponding probability is (γ1−R1−1)!

(γ1−1)! = γ2!
(γ1−1)! . Then, we choose a new fail-

ure time XiR1+2 out of γ2 possible random variables, and so on. Continuing this pro-
cess, we obtain a permutation (i1, . . . , in) of (1, . . . , n), i.e, (i1, . . . , in) = π(I ).

The probability to choose a specific permutation π leading to the previous
outcome is then given by

γ2!
(γ1 − 1)! × γ3!

(γ2 − 1)! × · · · × γm !
(γm−1 − 1)! × 1

(γm − 1)!

= 1

(γ1 − 1)!
m∏

j=2

γ j = 1

(n − 1)!
m∏

j=2

γ j .

Denoting by the event Aπ the assignment of the permutation π to the unit indices,
we obtain

P
(

X R
1:m:n ≤ x1, . . . , X R

m:m:n ≤ xm

)

=
∑

π∈Sn

P
(

X R
1:m:n ≤ x1, . . . , Xm:m:n ≤ xm | Aπ

)
P(Aπ )

= 1

(n − 1)!
m∏

j=2

γ j

∑

π∈Sn

P
(
Xπ(r)

≤ min
{

Xπ(r+1), . . . , Xπ(m), Zπ
r , . . . , Zπ

m

}
,

Xπ(r) ≤ xr , 1 ≤ r ≤ m
)
,

where Zπ
j = (

Xπ(m+ρ j−1+1), . . . , Xπ(m+ρ j )

)
, 1 ≤ j ≤ m. By construction, Aπ

is independent of the random variables X1, . . . , Xn so that the condition can be
omitted after specifying the associated outcome of the progressive censoring pro-
cedure. Any term in the above sum is of the form defined in (4). In order to apply
the preceding results, the specific permutation of the indices has to be taken into
account only. Therefore, differentiation of the preceding expression yields

1

(n − 1)!
m∏

j=2

γ j

∑

π∈Sn

hπ(I ) (x1, . . . , xm) ,

which is the joint density of X R
1:m:n, . . . , X R

m:m:n presented in Eq. 2. ��
Remark 1 The proof of representation (2) mimics the construction process of
progressively censored order statistics. It is rigorous and, thus, quite technical
and complicated. The following argument due to an anonymous referee gives
a short intuitive explanation. Given π ∈ Sn , the probability density function
fX R

1:m:n ,...,X R
m:m:n (t1, . . . , tm) has three factors:
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• The product of the constants represents the experimenter randomly remov-
ing the specific ordered set of censored items. The probability

∏m
j=1 γ j/n!

to remove a certain ordered set results from the arguments presented in the
proof.

• The product of the probability density functions represents the likelihood for
the observed failure times,

• The associated product of the survival probabilities represents the probability
of the chosen items being alive when they are removed.

Remark 2 It should be noted that the number of terms in the sum
∑

π∈Sn
can be

reduced. This can be seen from the following argument. Let j ∈ {1, . . . , n} and π
be a permutation with

π(r) ∈ B j = {m + ρ j−1 + 1, . . . , m + ρ j } and π(r) = r, r �∈ B j ,

i.e., π has fix points in the complement of B j . Then,
∏m+ρ j

r=m+ρ j−1+1 F̄π(r)(t j ) =
∏m+ρ j

r=m+ρ j−1+1 F̄r (t j ) is independent of π and thus hπ(I ) = hI obviously holds.

Since R j ! permutations have this property, R j ! terms of the sum
∑

π∈Sn
are iden-

tical.

3 Examples

Example 1 In the case of the usual order statistics X1:n, . . . , Xn:n from non-identical
distributions, we have m = n as well as γ j = n − j +1 and R j = 0 for 1 ≤ j ≤ n,
so that the normalizing constant becomes 1. Hence, the well-known representation
in (1) results; see, for example, Arnold and Balakrishnan (1989, p. 135).

Example 2 Considering the progressively Type-II censored order statistics from
identical distributions, we arrive at the representation

fX R
1:m:n ,...,X R

m:m:n (t1, . . . , tm) =
⎛

⎝
m∏

j=1

γ j

⎞

⎠
m∏

j=1

f (t j )
{

F̄(t j )
}R j

, t1 ≤ · · · ≤ tm,

since γ1 = n and
∑

π∈Sn
1 = n!, which is the same as presented, for example, in

Balakrishnan and Aggarwala (2000, p. 8).
Note that Theorem 1 also gives a formal derivation of the joint density of pro-

gressively Type-II censored order statistics from identical distributions introduced
in Cohen (1963).

Example 3 The case when F1 = · · · = Fn−1 = F and Fn = G is of special inter-
est in the modelling of a single outlier; see Barnett and Lewis (1993). With f and
g as the corresponding densities, the joint density function of X R

1:m:n, . . . , X R
m:m:n

in (2) simplifies considerably. For t1 ≤ · · · ≤ tm , we obtain
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fX R
1:m:n ,...,X R

m:m:n (t1, . . . , tm)

= 1

(n − 1)!

⎛

⎝
m∏

j=2

γ j

⎞

⎠
∑

π∈Sn

m∏

j=1

fπ( j)(t j )

⎧
⎨

⎩

m+ρ j∏

r=m+ρ j−1+1

F̄π(r)(tr )

⎫
⎬

⎭

= 1

(n − 1)!
m∏

j=2

γ j

⎡

⎣
m∑

ν=1

⎛

⎝
∑

π∈Sn ,π(ν)=n

m∏

j=1

fπ( j)(t j )

⎧
⎨

⎩

m+ρ j∏

r=m+ρ j−1+1

F̄π(r)(tr )

⎫
⎬

⎭

⎞

⎠

+
n∑

ν=m+1

⎛

⎝
∑

π∈Sn ,π(ν)=n

m∏

j=1

fπ( j)(t j )

⎧
⎨

⎩

m+ρ j∏

r=m+ρ j−1+1

F̄π(r)(t j )

⎫
⎬

⎭

⎞

⎠

⎤

⎦

= 1

(n − 1)!
m∏

j=2

γ j

⎧
⎪⎪⎨

⎪⎪⎩

m∑

ν=1

⎛

⎜⎜⎝
∑

π∈Sn ,π(ν)=n

g(tν)
{

F̄(tν)
}Rν

m∏

j=1
j �=ν

f (t j )
{

F̄(t j )
}R j

⎞

⎟⎟⎠

+
m∑

i=1

m+ρi∑

ν=m+ρi−1+1

⎛

⎝
∑

π∈Sn ,π(ν)=n

f (ti )
{

F̄(ti )
}Ri −1

Ḡ(ti )

×
m∏

j=1
j �=i

f (t j )
{

F̄(t j )
}R j

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭

=
⎛

⎝
m∏

j=2

γ j

⎞

⎠
m∑

ν=1

{
g(tν)F̄(tν) + Rν f (tν)Ḡ(tν)

} {
F̄(tν)

}Rν−1

×
m∏

j=1
j �=ν

f (t j )
{

F̄(t j )
}R j

.

In the preceding calculations, we have used the facts that

∑

π∈Sn ,π(ν)=n

1 =
∑

π∈Sn−1

1 = (n − 1)!, n ∈ N.

In the special case when m = n and R j = 0 for j = 1, . . . , n, the above readily
reduces to the well-known formula for distributions of order statistics from a single-
outlier model presented, for example, in Kale and Sinha (1971) and Joshi (1972).
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4 Permanent representation and proportional hazards case

Vaughan and Venables (1972) displayed that densities of usual order statistics from
non-identical distributions can be written in terms of a permanent

+| A
+|=

∑

π∈Sn

n∏

i=1

aiπ(i),

where A = (ai j ) is an appropriately defined n × n matrix (more information on
permanents can be found in Minc, 1978). Using the same notation as in Sect. 2, a
similar representation holds for the joint density of progressively Type-II censored
order statistics from non-identical distributions as well:

fX R
1:m:n ,...,X R

m:m:n (t1, . . . , tm)= 1

(n−1)!
m∏

j=2

γ j ×

+ +∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(t1) · · · fn(t1)

F̄1(t1) · · · F̄n(t1)

...
...

F̄1(t1) · · · F̄n(t1)

...
...

f1(tm) · · · fn(tm)

F̄1(tm) · · · F̄n(tm)

...
...

F̄1(tm) · · · F̄n(tm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫
⎪⎪⎬

⎪⎪⎭
R1 rows

⎫
⎪⎪⎬

⎪⎪⎭
Rm rows

.

(6)

A similar expression turns out to be valid for the marginal joint density of the
first p progressively Type-II censored order statistics. From the proof of Theorem 1,
it is directly seen that the expression yields

fX R
1:m:n ,...,X R

p:m:n (t1, . . . , tp) = 1

(n − 1)!

⎛

⎝
p∏

j=2

γ j

⎞

⎠
∑

π∈Sn

p−1∏

j=1

fπ( j)(t j )

×
⎧
⎨

⎩

p+ρ j∏

r=p+ρ j−1+1

F̄π(r)(t j )

⎫
⎬

⎭

× fπ(p)(tp)

⎧
⎨

⎩

n∏

r=p+ρp−1+1

F̄π(r)(tp)

⎫
⎬

⎭ ,

t1 ≤ · · · ≤ tp, (7)

where 1 ≤ p ≤ m. Moreover, a similar expression in terms of a permanent as in
(6) can be established in this case:



160 N. Balakrishnan and E. Cramer

fX R
1:m:n ,...,X R

p:m:n (t1, . . . , tp) = 1

(n − 1)!
p∏

j=2

γ j×

+ +∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(t1) · · · fn(t1)
F̄1(t1) · · · F̄n(t1)

...
...

F̄1(t1) · · · F̄n(t1)
...

...
f1(tp−1) · · · fn(tp−1)

F̄1(tp−1) · · · F̄n(tp−1)
...

...

F̄1(tp−1) · · · F̄n(tp−1)

f1(tp) · · · fn(tp)

F̄1(tp) · · · F̄n(tp)
...

...

F̄1(tp) · · · F̄n(tp)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫
⎪⎪⎬

⎪⎪⎭
R1 rows

⎫
⎪⎪⎬

⎪⎪⎭
Rp−1 rows

⎫
⎪⎪⎬

⎪⎪⎭
R∗

p rows

,

(8)

where R∗
p = n − p − R1 − · · · − Rp−1 and t1 ≤ · · · ≤ tp.

Eventhough the joint density of the first p progressively Type-II censored order
statistics from heterogeneous distributions can be expressed as a permanent as in
(8), it is an open problem whether such an expression holds for arbitrary marginal
density functions. It has to be mentioned that, in general, the derivation of explicit
expressions for the marginal distributions does not seem to be possible. However,
considering distribution functions F1, . . . , Fn generated by

Fr (t) = 1 − {1 − F(t)}λr = 1 − {
F̄(t)

}λr
, t ∈ R, 1 ≤ r ≤ n,

with an absolutely continuous distribution function F , density function f , and
parameters λ1, . . . , λn > 0, explicit expressions for marginal densities and dis-
tribution functions can be derived. In this case of proportional hazards, the corre-
sponding density functions are given by

fr (t) = λr f (t)
{

F̄(t)
}λr −1

, t ∈ R, 1 ≤ r ≤ n.

Applying this particular structure into Eq. 2, we obtain

fX R
1:m:n ,...,X R

m:m:n (t1, . . . , tm)

= 1

(n − 1)!

⎛

⎝
m∏

j=2

γ j

⎞

⎠
∑

π∈Sn

m∏

j=1

λπ( j) f (t j )

× {
F̄(t j )

}λπ( j)−1

⎧
⎨

⎩

m+ρ j∏

r=m+ρ j−1+1

{
F̄(t j )

}λπ(r)

⎫
⎬

⎭
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= 1

(n − 1)!

⎛

⎝
m∏

j=2

γ j

⎞

⎠
∑

π∈Sn

m∏

j=1

λπ( j) f (t j )
{

F̄(t j )
}m j,π

, t1 ≤ · · · ≤ tm, (9)

where

m j,π = λπ( j) +
m+ρ j∑

r=m+ρ j−1+1

λπ(r) − 1 > −1, 1 ≤ j ≤ m, π ∈ Sn .

In order to exploit the representation in (9), we introduce the sums γ j,π =∑m
i= j (mi,π + 1), 1 ≤ j ≤ m, which are obviously decreasingly ordered, viz.,

γ1,π > · · · > γm,π > 0. Then,

f∗,π (t1, . . . , tm) =
⎛

⎝
m∏

j=1

γ j,π

⎞

⎠
m∏

j=1

f (t j )
{

F̄(t j )
}m j,π

, t1 ≤ · · · ≤ tm,

denotes the joint density function of the generalized order statistics X (1)∗,π , . . . , X (m)∗,π

based on the distribution function F and parameters γ1,π , . . . , γm,π ; see, Kamps
(1995). Hence, we can express the joint density in (9) as a mixture of the densities
f∗,π , π ∈ Sn, as follows:

fX R
1:m:n ,...,X R

m:m:n (t1, . . . , tm) = 1

(n − 1)!
m∏

j=2

γ j

∑

π∈Sn

⎧
⎨

⎩

m∏

j=1

λπ( j)

γ j,π

⎫
⎬

⎭

× f∗,π (t1, . . . , tm), t1 ≤ · · · ≤ tm . (10)

This representation is useful to derive marginal densities and moments of the pro-
gressively Type-II censored order statistics X R

1:m:n, . . . , X R
m:m:n in this special case

of proportional hazards. For example, the marginal density of X (p)∗,π , 1 ≤ p ≤ m,
is given by (see Kamps and Cramer, 2001)

f
X (p)∗,π

(t) =
⎛

⎝
p∏

j=1

γ j,π

⎞

⎠ f (t)
p∑

j=1

{
F̄(t)

}γ j,π−1

∏p
ν=1
ν �= j

(γν,π − γ j,π )
, t ∈ R.

Hence, integration of (10) with respect to all the variables except tp yields an
expression for the marginal density of X R

p:m:n as

fX R
p:m:n (t) = 1

(n − 1)!
m∏

j=2

γ j

∑

π∈Sn

⎧
⎨

⎩

m∏

j=1

λπ( j)

γ j,π

⎫
⎬

⎭ f
X (p)∗,π

(t), t ∈ R. (11)

Similarly, an expression for the distribution function of X R
p:m:n can be established.

Equation 10 can also be readily applied to obtain the expectation of
h
(
X R

1:m:n . . . , X R
m:m:n

)
, provided it exists, where h : R

m → R is a real-valued
function, as follows:
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E
[
h
(

X R
1:m:n, . . . , X R

m:m:n
)]

= 1

(n − 1)!
m∏

j=2

γ j

∑

π∈Sn

⎧
⎨

⎩

m∏

j=1

λπ( j)

γ j,π

⎫
⎬

⎭

×E
[
h
(

X (1)∗,π , . . . , X (m)∗,π

)]
. (12)

From (10), upon integrating with respect to t1, . . . , tm , we obtain

∑

π∈Sn

pπ = 1, where pπ = 1

(n − 1)!
m∏

j=2

γ j

⎧
⎨

⎩

m∏

j=1

λπ( j)

γ j,π

⎫
⎬

⎭ , π ∈ Sn .

Hence, (pπ )π∈Sn defines a probability distribution on the set Sn . Suppose now
� is a random variable defined on Sn with distribution (pπ )π∈Sn , we can use
a result of Cramer and Kamps (2003) to obtain a stochastic representation for
X R

1:m:n, . . . , X R
m:m:n as follows.

Let U1, . . . , Um be independent Uniform(0,1) random variables which are inde-
pendent of �. Then, we have the stochastic representation

(X R
1:m:n, . . . , X R

m:m:n) ∼
⎛

⎝F−1
(

1 − U 1/γ1,�
1

)
, . . . , F−1

⎛

⎝1 −
m∏

j=1

U
1/γ j ,�

j

⎞

⎠

⎞

⎠ ,

where F−1(·) denotes the quantile function of F . This representation can be easily
applied to obtain explicit expressions for moments. Also, utilizing the results of
Cramer et al. (2002), upper bounds for moments can be obtained by the Moriguti
method. For example, with µ and σ denoting the mean and standard deviation of
the distribution function F , respectively, it can be shown that

E

(
X (p)∗,π − µ

σ

)
≤ Bπ ,

where Bπ is independent of F . A representation of the bound could be deduced from
formulae presented in Balakrishnan et al. (2001), since the parameters γ1,π , . . . ,
γm,π are pairwise different. Using the mixture representation in (11), a bound for

E
(

X R
p:m:n

)
then results. It needs to be mentioned here, however, that this bound

is not sharp.
Another application of the connection to generalized order statistics is as fol-

lows. A distribution function F with density function f is said to have the DFR-
property if the hazard rate f/(1−F) is a decreasing function. Kamps (1995, p. 177)
presented an extension of a result of Gupta and Kirmani (1988) proving that the
DFR-property of the underlying distribution function F holds for spacings of gen-
eralized order statistics. Since the DFR-property is preserved under mixing (see
Barlow and Proschan, 1975, p. 103), we readily obtain the following result.

Theorem 2 Let F have the DFR-property. Then, the spacings X R
r :m:n − X R

r−1:m:n,
2 ≤ r ≤ m, also have DFR-distributions.
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5 The exponential case

In the case of exponential distributions with

Fr (t) = 1 − e−λr t , t ≥ 0, 1 ≤ r ≤ n,

which clearly belongs to the proportional hazards case, Eq. 9 yields

fX R
1:m:n ,...,X R

m:m:n (t1, . . . , tm) = 1

(n − 1)!
m∏

j=2

γ j

∑

π∈Sn

m∏

j=1

λπ( j)

× exp

⎧
⎨

⎩−
m∑

j=1

(m j,π + 1)t j

⎫
⎬

⎭ , t1 ≤ · · · ≤ tm .

(13)

From this joint density function, we obtain the following theorem.

Theorem 3 Let X R
1:m:n, . . . , X R

m:m:n be the progressively Type-II censored order
statistics arising from exponential distributions with scale parametersλ1, . . . , λn >
0. Then,

X R
1:m:n and

(
X R

2:m:n − X R
1:m:n, . . . , X R

m:m:n − X R
1:m:n

)

are stochastically independent. Moreover, X R
1:m:n is exponentially distributed with

scale parameter
∑n

j=1 λ j . Consequently, the normalized spacing D1 = γ1 X R
1:m:n

is independent of the normalized spacings D2, . . . , Dm, where

Dr = γr

(
X R

r :m:n − X R
r−1:m:n

)
, r = 2, . . . , m.

Proof From Eq. 13 and an use of the transformation formula, we have

fX R
1:m:n ,X R

2:m:n−X R
1:m:n ,...,X R

m:m:n−X R
1:m:n

(t1, t2, . . . , tm)

= fX R
1:m:n ,X R

2:m:n ,...,X R
m:m:n (t1, t2 + t1, . . . , tm + t1),

which readily yields, for t1, . . . , tm ≥ 0,

fX R
1:m:n ,X R

2:m:n−X R
1:m:n ,...,X R

m:m:n−X R
1:m:n

(t1, t2, . . . , tm)

= 1

(n − 1)!
m∏

j=2

γ j

∑

π∈Sn

m∏

j=1

λπ( j)exp

⎧
⎨

⎩−t1

m∑

j=1

(m j,π + 1) −
m∑

j=2

(m j,π + 1)t j

⎫
⎬

⎭

=exp

⎧
⎨

⎩−t1

n∑

j=1

λ j

⎫
⎬

⎭
1

(n − 1)!
m∏

j=2

γ j

∑

π∈Sn

m∏

j=1

λπ( j)exp

⎧
⎨

⎩−
m∑

j=2

(m j,π + 1)t j

⎫
⎬

⎭ .
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Since the term following the summation
∑

π∈Sn
, on the RHS of the above equation,

is independent of t1, the factorization

fX R
1:m:n ,X R

2:m:n−X R
1:m:n ,...,X R

m:m:n−X R
1:m:n

(t1, t2, . . . , tm)

= fX R
1:m:n

(t1) fX R
2:m:n−X R

1:m:n ,...,Xm:m:n−X R
1:m:n

(t2, . . . , tm)

results, which establishes the main assertion of the theorem. ��
The result in Theorem 3 can be used to obtain an expression for the correla-

tion between the smallest and other progressively Type-II censored order statistics.

Using the fact that Cov
(

X R
1:m:n, X R

p:m:n − X R
1:m:n

)
= 0 for p = 2, . . . , m, we get

Cov
(

X R
1:m:n, X R

p:m:n
)

= Var
(
X R

1:m:n
)
, and consequently

Corr
(

X R
1:m:n, X R

p:m:n
)

=
√√√√ Var

(
X R

1:m:n
)

Var
(

X R
p:m:n

) , 2 ≤ p ≤ m.

This generalizes a result of Gross et al. (1986) for the usual order statistics wherein
the smallest and largest order statistics are considered; see also Joshi (1988).

Moreover, from Eq. 12, we can obtain the single and product moments of the
progressively Type-II censored order statistics. For example, the expectation of
the p-th generalized order statistic X (p)∗,π based on an exponential distribution and
parameters γ1,π , . . . , γm,π is given by

E
(

X (p)∗,π

)
=

p∑

i=1

1

γi,π
, 1 ≤ p ≤ m;

using this expression in (12), we immediately obtain

E
(

X R
p:m:n

)
= 1

(n − 1)!

⎛

⎝
m∏

j=2

γ j

⎞

⎠
∑

π∈Sn

⎛

⎝
m∏

j=1

λπ( j)

γ j,π

⎞

⎠
p∑

i=1

1

γi,π
, 1 ≤ p ≤ m.

Similar expressions for the variances and covariances of progressively Type-II cen-
sored order statistics can be obtained from Eq. 12. In addition, expressions for the
characteristic function and the moment generating function, similar to those for
the usual order statistics given by Bapat and Beg (1989b), can also be derived.

Kochar and Korwar (1996) proved that, in the case of usual order statistics, the
density of a single spacing is a mixture of independent exponentially distributed
random variables. A similar result holds under the general progressive censoring
scenario as well. To this end, let π ∈ Sn be a fixed permutation. Then, as mentioned
above, f∗,π is the joint density of generalized order statistics based on the standard
exponential distribution and parameters γ1,π , . . . , γm,π . It is well-known that the
spacings (not necessarily normalized) Dπ

1 , . . . , Dπ
m of generalized order statistics

X (1)∗,π , . . . , X (m)∗,π form a sequence of independent exponential random variables; see
Kamps (1995, p. 81). Hence, we can write the corresponding joint density as

fDπ
1 ,...,Dπ

m
(d1, . . . , dm) =

m∏

j=1

(
γ j,πe−γ j,π d j

)
, d1, . . . , dm ≥ 0.
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Taking into account the normalization factorsγ1, . . . , γm , we obtain from Eq. 13 that

fD1,...,Dm (d1, . . . , dm) = 1

n!
∑

π∈Sn

⎛

⎝
n∏

j=1

λπ( j)

γ j,π

⎞

⎠
m∏

j=1

(
γ j,πe−γ j,π d j /γ j

)
,

d1, . . . , dm ≥ 0. (14)

Integrating out all the variables other than dp in (14), we obtain the marginal density
function of Dp as

fDp (dp) = 1

n!

⎛

⎜⎜⎝
m∏

j=1
j �=p

γ j

⎞

⎟⎟⎠
∑

π∈Sn

⎛

⎝
m∏

j=1

λπ( j)

γ j,π

⎞

⎠
(
γp,πe−γp,π dp/γp

)
, dp ≥ 0,

revealing clearly that the density fDp is indeed a mixture of exponential density
functions. Moreover, expressions for joint density functions fDi1 ,...,Di p

, 1 ≤ i1 <

· · · < i p ≤ m, similar to those for the usual order statistics given by Kochar and
Korwar (1996), can be derived in an analogous manner. This mixture property
leads to the following result which extends Theorem 2.2 of Kochar and Korwar
(1996). The proof follows directly from the preceding mixture representation since
an exponential distribution has a log-convex density and that this property is pre-
served under mixing; see, for example, Marshall and Olkin (1979, p. 452). In
addition, this implies directly the DFR-property of the spacings (see Theorem 2).

Theorem 4 The spacings of the progressively Type-II censored order statistics
from heterogeneous exponential distributions have log-convex densities. Further,
the normalized spacings D1, . . . , Dm have the DFR-property.

6 Progressive censoring scheme for robust estimation for exponential
distribution

In this section, we will focus on a single-outlier model from an exponential distri-
bution and discuss the progressive censoring scheme that will facilitate the robust
estimation of the exponential scale parameter. To fix the ideas, let us assume that
Xi ∼ Exp(λ), i ∈ {1, . . . , n}\{�} and X� ∼ Exp(µ) with µ ≤ λ; that is, X� corre-
sponds to the outlier in the sample. Let A j denote the event that the outlier (viz.,
X�) is the j-th failure time (viz., X R

j :m:n) when the progressive censoring scheme
employed in the life-testing experiment is R = (R1, . . . , Rm).

First, from Eq. 4, we find for j = 1, . . . , m,

P(A j ) = P
(

X� = X R
j :m:n

)

= 1

(n − 1)!
m∏

i=2

γi

∑

π∈Sn ,π( j)=�

P
(
Xπ(r) ≤ min

{
Xπ(r+1), . . . , Xπ(m),

Zπ
r , . . . , Zπ

m

}
, 1 ≤ r ≤ m

)
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= 1

(n − 1)!
m∏

i=2

γi

∑

π∈Sn ,π( j)=�

∞∫

0

∞∫

t1

· · ·
∞∫

tm−1

hπ(I )(t1, . . . , tm) dtm · · · dt1,

(15)

where

hπ(I )(t1, . . . , tm) =
m∏

i=1

fπ(I )(ti )

⎧
⎨

⎩

m+ρi∏

r=m+ρi−1+1

F̄π(r)(ti )

⎫
⎬

⎭

= λm−1µ exp

{
−λ

m∑

i=1

(Ri + 1)ti − (µ − λ)t j

}
,

0 < t1 ≤ · · · ≤ tm . (16)

Since the expression in Eq. 16 does not depend on the permutation π , we obtain
from Eq. 15 that

P(A j ) =
m∏

i=2

γi

∞∫

0

∞∫

t1

· · ·
∞∫

tm−1

λm−1µ g(t1, . . . , tm) dtm . . . dt1, (17)

where

g(t1, . . . , tm) = exp

{
−λ

m∑

i=1

(Ri + 1)ti − (µ − λ)t j

}
. (18)

Upon introducing the notation ηi = λ(Ri +1), i �= j, and η j = λ(R j +1)+µ−λ,
the function g(t1, . . . , tm) in (18) can be expressed as

g(t1, . . . , tm) = exp

{
−

m∑

i=1

ηi ti

}

=
(

m∏

i=1

γ̃i

)−1 m∏

i=1

γ̃i

m∏

i=1

e−ti
(
e−ti

)ηi −1

=
(

m∏

i=1

γ̃i

)−1

u(t1, . . . , tm), t1 ≤ · · · ≤ tm,

where γ̃i = ∑m
ν=i ην, i = 1, . . . , m, and u is the joint density of the generalized

order statistics from the standard exponential distribution and parameters γ̃1, . . . , γ̃m .
Using these facts and carrying out the integration in (17), we obtain

P(A j ) = µλm−1∏m
i=2 γi∏m

i=1 γ̃i
, (19)

where

γ̃i =
{

λγi , i > j
λ(γi − 1) + µ, i ≤ j.
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Upon substituting the above expression of γ̃i and that γ1 = n in Eq. 19, we obtain
an explicit expression for P(A j ) as

P(A j ) = µλm−1∏m
i=2 γi

∏ j
i=1 {µ + λ(γi − 1)}∏m

i= j+1(λγi )

= (µ/λ)

n − 1 + (µ/λ)

j∏

i=2

γi

γi − 1 + (µ/λ)
. (20)

Remark 3 If we set µ = λ in Eq. 20, we find P(A j ) = 1
n , which is to be expected

since this corresponds to the iid case.

Remark 4 If we consider the conventional Type-II right censoring, we have γi =
n − i + 1 and in this case Eq. 20 reduces to

P(A j ) = (µ/λ)

n − 1 + (µ/λ)

j∏

i=2

n − i + 1

n − i + (µ/λ)
(21)

which shows that P(A j )’s are increasing w.r.t. j , as expected.

Remark 5 With regard to robust censoring scheme, we conclude that the proba-
bility P(Am) (viz., the probability that the largest observation X R

m:m:n is the out-
lier) is minimal if the progressive censoring scheme is given by R1 = · · · =
Rm−1 = 0, Rm = n − m. It is maximal for the progressive censoring scheme
R1 = n − m, R2 = · · · = Rm = 0. This simply means that the most robust
progressive censoring scheme is the conventional Type-II right censoring scheme
while the least robust progressive censoring scheme is when all the censoring occurs
right after the first failure. In order to observe these results, we first note that the
function k(x) = 1

1−(α/x)
, for α > 0, is decreasing in (0,∞). Now, since µ ≤ λ

by assumption, upon writing

P(Am) = (µ/λ)

n − 1 + (µ/λ)

m∏

i=2

1

1 − 1−(µ/λ)
γi

,

we readily observe that each term in the product is minimal if γi is maximal and
vice versa.

Remark 6 If P(A j ) is to be minimized or maximized, the same argument as the
one above applies to the first j progressive censoring numbers R1, . . . , R j .

Remark 7 If we wish to minimize the probability that the outlier is one of the
observations (viz.,

∑m
j=1 P(A j )), then we will obtain the same optimal progres-

sive censoring schemes as mentioned above in Remark 5.
In particular, we have

m∑

j=1

P(A j ) = (µ/λ)

n − 1 + (µ/λ)

⎛

⎝1 +
m∑

j=2

j∏

i=2

γi

γi − 1 + (µ/λ)

⎞

⎠ .
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Writing αi = γi
γi −1+(µ/λ)

, we obtain the representation

m∑

j=1

P(A j ) = (µ/λ)

n − 1 + (µ/λ)
(1 + α1(1 + α2(1 + · · · ))) .

This proves directly that
∑m

j=1 P(A j ) is minimal (maximal) if each αi is minimal
(maximal). Hence, this criterion which is more natural for judging robustness leads
to the same extremal schemes as P(Am). Thus, it is natural to consider the follow-
ing robustness measures. Given n and m, a censoring scheme R̃ = (R1, . . . , Rm)

is said to be more robust than a censoring scheme S̃ = (S1, . . . , Sm) if

Criterion A: PR̃(Am) ≤ PS̃(Am)

Criterion B:
m∑

j=1

PR̃(A j ) ≤
m∑

j=1

PS̃(A j ).

Although both criteria yield the same extremal schemes, they could lead to different
decisions. For instance, consider m = 3, n = 10, µ = λ/2, and (R1, R2, R3) =
(2, 1, 4), (S1, S2, S3) = (0, 4, 3). Then, we obtain the following probabilities
(rounded to five decimals)

Criterion/scheme (2, 1, 4) (0, 4, 3)
A 0.06298 0.06369
B 0.17229 0.17205

Hence, the scheme (2, 1, 4) is more robust than (0, 4, 3) according to A whereas
B yields the other decision. The complete results for A and B are presented in
Table 1.

Remark 8 Since

P(A j+1)

P(A j )
= γ j+1

γ j+1 − 1 + (µ/λ)
≥ 1 ⇐⇒ µ ≤ λ, j ∈ {1, . . . , m},

we observe that P(A j ) is increasing in j (see also Remark 4); hence, it is more
likely that a larger observation is generated by Exp(µ), as expected.

Remark 9 Since the probability to observe an outlier is minimal for the scheme
(R1, . . . , Rm) = (0, . . . , 0, n − m), it is favorable to use right censoring for robust
estimation of the parameter λ. Hence, if progressive censoring is carried out by
design, this scheme should be used in order to minimize the probability that the
outlier is contained in the sample. If one could choose between some censoring
schemes, criteria A and B may be taken into consideration. However, the distribu-
tions of the presented linear estimators are complicated functions of the censoring
scheme so that the impact of the censoring scheme is not obvious. Thus, our pro-
posal is a first attempt to tackle this problem: it is favorable to use that linear
estimator which excludes the outlier with highest probability. A detailed account
to this problem will be subject of future research.
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Table 1 Results for robustness criteria A and B for n = 10, m = 3, and µ = λ/2

Censoring scheme Criterion A Criterion B
(0, 0, 7) 0.05944 0.16780
(0, 1, 6) 0.06001 0.16837
(0, 2, 5) 0.06079 0.16915
(0, 3, 4) 0.06192 0.17028
(0, 4, 3) 0.06369 0.17205
(0, 5, 2) 0.06687 0.17523
(0, 6, 1) 0.07430 0.18266
(0, 7, 0) 0.11146 0.21981
(1, 0, 6) 0.06046 0.16923
(1, 1, 5) 0.06124 0.17002
(1, 2, 4) 0.06238 0.17115
(1, 3, 3) 0.06416 0.17293
(1, 4, 2) 0.06737 0.17614
(1, 5, 1) 0.07485 0.18363
(1, 6, 0) 0.11228 0.22105
(2, 0, 5) 0.06183 0.17114
(2, 1, 4) 0.06298 0.17229
(2, 2, 3) 0.06478 0.17409
(2, 3, 2) 0.06802 0.17733
(2, 4, 1) 0.07557 0.18489
(2, 5, 0) 0.11336 0.22267
(3, 0, 4) 0.06380 0.17384
(3, 1, 3) 0.06562 0.17567
(3, 2, 2) 0.06890 0.17895
(3, 3, 1) 0.07656 0.18660
(3, 4, 0) 0.11483 0.22488
(4, 0, 3) 0.06683 0.17794
(4, 1, 2) 0.07018 0.18129
(4, 2, 1) 0.07797 0.18908
(4, 3, 0) 0.11696 0.22807
(5, 0, 2) 0.07218 0.18496
(5, 1, 1) 0.08020 0.19298
(5, 2, 0) 0.12030 0.23308
(6, 0, 1) 0.08421 0.20000
(6, 1, 0) 0.12632 0.24211
(7, 0, 0) 0.14035 0.26316

The robustness aspect supplements some results obtained in experimental de-
sign for progressive censoring. For instance, Balakrishnan and Aggarwala (2000)
showed that in the exponential case any censoring scheme leads to the same vari-
ance of the BLUE for 1/λ. Thus, the choice of the scheme is immaterial in terms of
precision of the estimate. Using the preceding robustness considerations, we can
pick one scheme leading to both least variance and robustness. In case of other
distributions than exponential, it is not clear in which way this additional crite-
rion influences the resulting estimator. The impact of both criteria on the optimal
choice of censoring schemes will be considered in future research. More infor-
mation on experimental design in progressive censoring is provided by Burkschat
et al. (2006).
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