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Complete Abstract:

In radiology, as a result if the increased utilization of digital imaging modalities, such as computed
tomography (CT) and magnetic resonance imaging (MRI), over a third of the images produced in a typical
radiology department are currently in digital form, and this percentage is steadily increasing, Image
compression provides a means for the economical storage and efficient transmission of these diagnostic
pictures. The level of coding distortion than can be accepted for clinical diagnosis purposes is not yet
well-defined. In this paper we introduce some constraints on the design of existing transform codes in
order to achieve progressive image transmission efficiently. The design constraints allow the image
quality to be asymptotically improved such that the proper clinical diagnoses are always possible. The
modified transform code outperforms simple spatial-domain codes by providing higher quality of the
intermediately reconstructed images. The improvement is 10 dB for a compression factor of 256:1. and it
is as high as 17.5 dB for a factor of 8:1. A novel progressive quantization scheme is developed for optimal
progressive transmission of transformed diagnostic images. Combined with a discrete cosine transform,
the new approach delivers intermediately reconstructed images of comparable quality twice as fast as
the more usual zig-zag sampled approach. The quantization procedures is suitable for hardware
implementation.
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Progressive Coding and Transmission of Digital
Diagnostic Pictures

SHARAF E. ELNAHAS, KOU-HU TZOU, seNiOR MEMBER, IEEE, JEROME R. COX, JR., FELLOW, IEEE,
REXFORD L. HILL, anp R. GILBERT JOST

Abstract—1n radiology, as a result of the increased utilization of dig-
ital imaging modalities. such as computed tomography (CT) and mag-
netic resonance imaging (MR1), over a third of the images produced in
a typical radiology department are currently in digital form, and this
percentage is steadily increasing. Image compression provides a means
for the economical storage and efficient transmission of these diagnos-
tic pictures. The level of coding distortion that can be accepied for
clinical diagnosis purposes is not yet well-defined.

In this paper we introduce some consiraints on the design of existing
transform codes in order to achieve progressive image transmission
efficiently. The design constraints allow the image quality to be asymp-
totically improved such that the proper clinical diagnoses are always
possible. The mudified transform code outperforms simple spatial-do-
main codes by providing higher quality of the intermediately recon-
structed images. The improvement is 10 dB for a compression factor
of 256: 1. and it is as high as 17.5 dB for a factor of 8:1.

A novel progressive gquantization scheme is developed for optimal
progressive transmission of transformed diagnostic images. Combined
with a discrete cosine transform, the new approach delivers interme-
diately reconstructed images of comparable quality twice as fast as the
more usual zig-zag sampled approach. The quantization procedure is
suitable for hardware implementation.

1. INTRODUCTION

D]GITAL diagnostic pictures are now used for an in-
creasing number of imaging modalities including CT,
MRI, nuclear medicine, ultrasound. and digital vascular
imaging. In the near future it is likely that many standard
radiographic images will also be available in digital form.
Considerable interest in picture archiving and communi-
cation systems (PACS) was a result of the ever increasing
number of digital diagnostic images. The quantities of im-
age data are large [1]-[3]. Data compression techniques
can be used to minimize, where possible, the burdens of
storage and transmission. However. the data compression
requirements for PACS are varied, and different solutions
are likely to be required for different aspects of the prob-
lem. In general. algorithms for archival purposes, which
require a minimum of time for decompression, are fa-
vored. In most situations it is not important how long it
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takes to compress an image for storage in the archive, but
clinical image retrieval demands will often require prompt
decompression. The new developments in optical and
magnetic storage technology [4], [5] are anticipated to
help alleviate digital storage problems. These develop-
ments will reduce the storage cost per bit significantly.
However, it is likely that, for the foreseeable future, sig-
nificant cost savings will be realized by reducing the stor-
age requirements through data compression. Data
compression technigues can play an important role in dig-
ital image transmission, reducing the time required to
move an image from one location to another. but the al-
gorithms suitable for data transmission may be entirely
different from those algorithms that are designed for ar-
chival purposes. Dunham er al. [6] reviewed the major
classes of data compression with respect to their suitabil-
ity for digital images in radiology.

In 2 PACS environment, noninvertible compression
provides high compression factors (20:1, 30: 1); but the
distortion introduced by noninvertible compression has yet
to be evaluated clinically for different classes of radiology
images and diagnostic modalities. Noninvertibie algo-
rithms might seem unsuited to situations in which fine im

- age detail is required for diagnosis and to situations in

which the images become the object of later automatic
computer processing. On the other hand, invertible
compression provides perfect image reconstruction with
jow compression factors (2:1, 4:1). One may combine
invertible and noninvertible procedures into one system,
wherein the advantages of both high compression factors
and perfect image reconstruction can be realized as fol-
lows. For archiving purposes, two types of data are gen-
erated. The first type is noninvertible compressed data.
The second type is the mathematical difference between
the imperfectly reconstructed image, from the first type of
data, and the original image data before compression was
applied. Elnahas [7] has shown that the sum of these two
types of data results in compression factors ranging from
5.1 1o 4:1 for CT and MRI pictures. For transmission
purposes, the first type of data can be used 1o achieve high
compression factors provided that the introduced distor-
tion is acceptable. Should the distortion be unacceptable,
the second type of data is transmitted such that perfect
image reconstruction is obtained at the price of low
compression factors. Therefore, efficient techniques for
both invertible and noninvertible compression are needed

0278-0062/86/0600-0073$01.00 © 1986 IEEE
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for PACS. This is particutarly desirable when the picture
network is large and includes low-bandwidth channels for
long-distance switched communication. For local envi-
ronments, where the workstations are very close to the
picture archive and direct communication using large-
bandwidth channels is affordable, noninvenible compres-
sion might not be necessary.

Progressive transmission of digital pictures permits the
initial reconstruction of an approximate picture followed
by a gradual improvement in the quality of image recon-
struction [8]-[13]. The technique is useful for the trans-
mission of pictures over low-bandwidth channels such as
telephone lines. Teleconferencing and telebrowsing are
good examples of prospective applications. The concept
of progressive transmission is of particular importance in
an electronic radiology environment. A radiologist
browsing through many remotely stored pictures of a pa-
tient may need to quickly abort transmission of one or
more unwanted pictures as soon as they are recognized at
the local image display unit. Here we assume that the ra-
diologist had already browsed on a distributed file system
and selected a patient who has several diagnostic studies
and several images per study. We further assume that the
local workstation is not close 1o the picture archive and
that direct picture transmission, over a large-bandwidth
channel, is not economical. Once the desired picture is
identified during early steps of the progression, more in-
formation can be transmitted, thereby improving the sub-
jective quality of the received picture until a clinical di-
agnosis is possible.

In order to evaluate the performance of progressive
transmission techniques, we assume that the image has
already been digitized into an N X N array of picture ele-
ments with L bits/pixel. The performance criterion is as
follows.

For X bits transmitted, such that X < N2L, the best
progressive transmission system will give the best
quality of intermediate image approximations within
some complexity limit.

It ts worth noting that, by the above criterion, we eval-
uate the performance of progressive image transmission
from the standpoint of data compression. The goal is to
use the transmitted information in the most efficient way
independent of bit rate. Knowlton [9] has proposed a sim-
ple encoding scheme, spatial-domain encoding, for pro-
gressive transmission of gray-scale pictures. His ap-
proach has the advantage of simple implementation with
no coding distortion in the final reconstructed image. Due
to the nature of successive picture division introduced in
Knowlton's method, the accumulated number of trans-
mitted bits to achieve the ith intermediate image recon-
struction is proportional to 2',

In transform coding of digital pictures [14], the input
image is divided into subblocks, u, ,,.n.m=1,2, -+,
N/M, where a subblock is an array of M X M picture
elements. Each subblock w, , is transformed into U, ,, by
the linear transformation 7, as shown in Fig. 1. In the

JUNE 1986
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Fig. 1. Transform coding,

transform domain, U, ,, is quantized into U¢ . by the
quantizer Q. Then, the quantized subblock U4, is en-
coded into U%,,, by the entropy encoder E, and transmit-
ted over the channel. At the receiver end, U%,, is entropy
decoded into U,T s dequantized mto U,, s and inverse-
transformed into the reconstruction &, ,,. Transform cod-
ing is suitable for progressive transmission of pictures in
the sense that an initial subset of transform domain sam-
ples yields an approximate picture, while the latter ones
add detail. Takikawa [11] focused on a fast algorithm for
progressive reconstruction of transformed images rather
than on the compression efficiency. In his method the M
X M transform coefficients are decomposed into (log, M
+ 1) complementary matrices; each of them can be in-
verse transformed by 1 X 1,2 X 2,4 x 4, , M x
M fast transformations.

Takikawa’s approach provides an efficient computation
of progressive reconstruction and at the same time re-
duces the accumulation of roundoff errors due to the pro-
gression. However, like Knowlton's approach, the accu-
mulated number of transmitted bits grows exponentially
with the order of an intermediate step in the progression.
In this paper we propose more efficient schemes for pro-
gressive transmission based on discrete cosine transform
coding of digital pictures. In Section II we formalize the
concept of progressive transmission of transformed im-
ages and introduce some design constraints that make the
system desirabie from the standpoint of electronic radiol-
ogy. Using the design constraints, we modify an existing
transform code and compare its performance to that of
spatial-domain coding. In order to achieve optimal pro-
gressive transmission of transformed images, progressive
quantization schemes are needed. A novel quantization
technique is developed in Section 1. Application of the
concept of progressive transmission to electronic radiol-
ogy 15 introduced in Section IV, and simulation results for
panels of digital diagnostic images are presented. The pa-
per describes software simulation results and the funda-
mental algorithms that may be used to design a working
system. Hardware based on the presented methods has not
been built yet. Conclusions are drawn in Section V.

II. ProGRESSIVE TRANSMISSION

For the purpose of progressive transmission, we define
S;[U%,) to be the size, in bits, of the portion of U%,,
transmitted to produce the ith intermediate recenstruc-
tion. We note that

S [U.u ml = '— l[Un m] + dn.m.i (l)

where d, . ; is the number of bits transmitted during the
ith step in the progression, i = 1, 2, 3, - -+ . and
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SofU%.] = 0. At the decoding end. the recently received
d, ,.; bits are combined with the previously received
Si- I[U;‘,f,,,] bits to achieve the ith intermediate reconstruc-
tion of U, ,. Now, with X, denoting the accumulated
number of transmitted bits, to achieve the jth iniermediate
reconstruction of the entire image, we have

NiM o NiM

Xi= 2 Z. S{U%,] = N°L

n=| m=

(2)

where equality occurs when all of the transform-domain
samples are quantized at L bits/sample and transmitted
over the channel.

The question now is how to choose the subsets of trans-
form-domain samples and 4, ,, ; for all n, m, and i. Two
points are important here. First, the order in which the
transform-domain samples are transmitted should be
known by both the encoder and decoder such that the de-
coder can properly accumulate the progressively trans-
mitted data 10 obtain the intermediate picture approxi-
mations. Second, some quality measure for picture
reconstruction should be directly or indirectly involved in
choosing the progressive subsets of transform-domain
samples. Let us consider possible approaches for using
transform codes o achieve progressive image transmis-
sion. For example, one might ideally transmit the trans-
form samples U, ,, (i, j) in the order of their magnitudes
forall } = n,m =< N/Mand 1 = i,j = M. However,
this order is not known by the decoder. Transmitting the
magnitude order would require a very large amount of side
information. Ngan [12] has suggested another approach
in which the transform samples are transmitted in the or-
der of a zig-zag sampled pattern. This pattern determines
the order of transmitting elements from a given subblock.
The order of subblocks is not well defined for achieving
reasonable gradual improvements in the quality of pro-
gressively reconstructed images. The bit-assignment ma-
trices of the adaptive system of Chen and Smith [15] can
provide a practical solution of this problem. The remain-
der of this section is devoted to the details of this solution
when it is applied to digital diagnostic images.

A. Procedure

First, we introduce some design constrainis that will
make the solution desirable from the standpoint of clinical
diagnosis. In radiology, the level of coding distortion that
can be accepted for diagnosis purposes is not yet well de-
fined. What a radiologist actually needs is an image
compression system from which he can control the quality
of reconstructed images by reducing the level of distortion
so that the proper clinical diagnoses can be made. Our
design constraints are given by

NIM N/M

Z Z! dn.m.i =C

n=1m=

(3)

where C is a constant for all {. That is, we assume a fixed-
length transmission. Furthermore, we choose C = NL,
which leads 10 Xy = N2L. Therefore, N transform ele-
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Fig. 2. Bit-assignment matrices, (Numbers at the upper-right corners of
some locations indicate the order of transmission for Sieps 1-5 in the
progression.)

ments, quantized at L bits/element, are transmitted at each
intermediate step. The final step is the Nth step, and the
accumulated number of transmitted bits Xy to achieve the
final image reconstruction is N2L. We emphasize that we
progressively transmit the transform sampies quantized at
the full resolution of L bits/sample. The bit-assighment
matrices of Chen and Smith [15]., where more bits are
assigned to subblocks of the image high-activity regions
and fewer bits arc assigned to subblocks of the image low-
activity regions, are used only to tell in what order we
transmit the transform samples.

The mechanism of using the bit-assignment matrices for
determining the order of transmission is best illustrated
by an example. Consider the 4 X 4 low-frequency por-
tions of the M X M bit-assignment matrices (see Fig. 2).
Here, N, corresponds to the highest activity level, and N,
corresponds 1o the lowest activity level. The full resolu-
tion L is assumed to be 8 bits/pixel. In the first step of the
progression, all of the dc samples at location (I, 1) are
transmitted. In the second step, all elements at locations
(1, 2), (2, 1), and (2, 2) are transmitted from the highest
activity level, and all elements at location (1. 2) are trans-
mitted from the second activity level. In the third step, all
elements at location (2, 1) are transmitied from the second
level, and all elements at locations (1, 3), (2, 3). and (3,
1) are transmitted from the highest activity level. In the
fourth step, all elements at location (3. 2) from the highest
activity level, all elements at location (2, 2) from the sec-
ond level, and all elements at locations (1, 2) and (2, 2)
from the third level are transmitted. In the fifth step, all
elements at locations (1, 4). (3. 3), and {4, 2) from the
highest activity level and all elements at location (I, 3)
from the second levei are transmitted. The process is con-
tinued in the obvious manner for the remainder of the steps
in the progression.
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Therefore. for N = 256 and M = 16. the four bit-as-
signment matrices can be used to control the progressive
transmission as follows. For each intermediate step. a
combination of four entries is chosen from the bit-assign-
ment matrices. Each entry will determine the transmission
of é4 transform-domain samples from one of the four
classification groups of transform subblocks. Entries from
the bit-assignment matrices are chosen as the largest en-
tries at the ith step for all /. A tie-breaking rule is needed
in the case of equality of two (or more) largest entries
from two (or more) different matrices. As an example,
consider the different possibilities of choosing a combi-
nation of four entries for the third step from the matrices
given in Fig. 2. The entry at location (2, 1) of N, has the
largest value of *“7.”" and. therefore, it is one of the four
needed entries. For the remaining three entries, we have
different possibilities since there are seven largest entries
at this pointi—namely, entries at locations (1,3), (2,3),
(3.1), and (3, 2) from N,; an entry at location (2, 2) from
N-; and entries at locations (1, 2) and (2. 2) from N;. All
of these entries have the largest value of **6.”" Our tie-
breaking rule was to choose entries at locations (1, 3}, (2,
3), and (3, 1) from N, as the remaining three entries for
the third step in the progression. In other words, we gave
the priority of transmission to elements from high-activity
regions. By this tie-breaking rule, the quality of recon-
struction of the high-activity regions will be improved in
the early steps of the progression. Details of the low-ac-
tivity regions will be added in later steps.

B. Simulation

Fig. 3 demonstrates the simulation results of the above
progressive transmission scheme when applied to the chest
CT image of Fig. 4(d). The first 48 picture approxima-
tions are shown in Fig. 3 with the first reconstruction at
the upper-left corner. The quality is gradually improved
from top to bottom in the first column of picture approx-
imations. The progression is continued at the bottom pic-
ture of the second column and is improved from botiom
o top in this case. The cycle is repeated every two col-
umns of picture approximations in a cosine-like form. The
relative quality of intermediate image approximations can
be compared, and recognized as superior, to that of
Knowlion [9], Burt and Adelson [10], or Takikawa [11].
The compared image reconstructions should be at the same
compression factor. For example, the relative quality of
Knowlton's ninth approximation (compression factor of
64:1) should be compared to that of the botiom approxi-
mation of the first column in Fig. 3, Knowlion’s tenth
approximation (32:1) should be compared to the top pic-
ture approximation of the second column, and so on.

C. Performance

Quantization of the transform coefficients prevents the
perfect reconstruction of the transformed images. How-
ever. since the transform-domain samples are quantized
at L bits/sample, the same intensity resolution as that of
the input image, we can expect the sequence of interme-

(c)
Fig. 3. Low-order approximations: (a) 1st through 16th, {b) 17th through
32nd. and (¢) 33rd through 48th.

(c

Fig. 4. High-order approximations: (a} 50th, (b) [25th, (¢} 225th, and (d)
onginal.

diate image approximations to converge into an almost
perfect reconstruction of the input image. In other words,
we claim that the subjective guality of the high-order im-
age approximations will be the same as that of the input
image, as shown in Fig. 4. Quantitatively, Fig. 5 shows
how the signal-to-noise ratio (SNR) converges reasonably
into a high value of 56.5 dB as a function of the order of
image approximation. The SNR for the ith intermediate
reconstruction is defined as follows:

(peak-to-peak value)’

SNR = 10 log)g
mean sguare error
(2:'.)3
= 10logp —% )
1/N? _§ El Ju(x. v) — w(x, y)]z
where u(x, y) are elements of the input image, and &;(x,

y) are elements of the ith intermediate reconstruction. In
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Fig. 6 we compare the SNR values of our intermediate
image approximations to those of Knowlion’s approxi-
mations {9]) that are obtained after the gray-scale values
of all picture elements have been formatted into a hier-
archical structure of picture subdivisions of successive
sizes from entire image down to basic element values. An
improvement of about 10 dB is achieved for a compres-
sion factor of 256:1. The improvement is as high as 17.5
dB for a compression factor of 8:1. We point out that no
quality measure has yet been directly involved in choos-
ing the progressive subsets of iransform-domain samples.
In the following section we include the mean squared er-
ror as a quality measure and derive an optimal progressive
guantization scheme. The ability to optimize the different
modules of the sysiem is actually why transform coding
techniques have promise for achieving more efficient sys-
tems for the progressive transmission of pictures.
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I11. ProGressIVE CODING

The general transform coding procedure of Fig. | can
be extended to the case of transform progressive coding
as shown in Fig. 7. Bit-assignment matrices are designed
for coding rates of R, R;, - -+ , and R, bits/pixel, and
the transform samples are quantized by 0,, 05, - * - , and
@,, respectively. The coding rates are chosen such that
R; .1 > R; for any intermediate step i. In the first step of
the progression, transform coefficients quantized at the
lowest coding rate, R, bits/pixel, are entropy encoded by
E, and transmitted over the channel. In the second step,
the R,-quantized samples are subtracted from the R,-
quantized samples. The difference is entropy encoded by
E, and transmitted over the channel. At the receiver end,
the recently received difference is entropy decoded by D
and added to the previously decoded data. The result is
then dequantized by Q5 ! and inverse transformed to ob-
tain a reconstructed image. The process is repeated for
higher code rates. If the quantizers are optimized in the
sense of minimum mean squared error (MMSE), the in-
termediate reconstructions will be optimized in the same
sense. In Fig. 8 we compare the subjective quality of in-
termediate image reconstructions to that of the previous
section. The photo shown in Fig. 8(a) is from the scheme
of the previous section, while that of Fig. 8(b) is from the
optimal progressive coding scheme. both at a compres-
sion factor of 16:1. Now, even though the intermediate
quantization and reconstruction are optimized in the
MMSE sense, the intermediate transmission of data is not
well-optimized. As an example, consider the second step
in the progression with R, = 1 bit/pixel and R, = 2 bits/
pixel. The simple difference between the R,-quantized
samples and the R|-quantized samples will, in general,
require more than 1 bit/pixel for transmission. In order 10
achieve optimal progressive transmission, the quantiza-
tion scheme must provide an embedded code, that is, the
transmitted bits corresponding to a lower bit rate must be
contained within the code of a higher bit rate. We have
examined both the uniform and nonuniform Max [16]
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Fig. 8. Subjective quality at a compression factor of 16:1 from: (a) pre-
vious algorithm: and (b) optimal algorithm.

guantizers and found that neither of them has the embed-
ding property. The remainder of this section is devoted to
the design of an optimal embedded code for the optimal
progressive transmission of digital pictures.

A. Embedded Code

For the convenience of this discussion, we describe the
embedded code for the case of nonadaptive transform
coding with a zonal bit-assignment scheme where the
number of bits allocated 10 each transform subblock is the
same. Certainly, the proposed technique can be easily ex-
tended to adaptive transform coding. We further assume
the segments of progressive data 1o be of fixed length
d, . for all the intermediate steps. The incrementat bit rate
for each step is &, ,/M ? bits/intermediate pixel. Let b, (k,
1y and b, (k, I) be the number of bits allocated to the
transform coefficient at location (k, !} for the intermediate
steps of order i and i + 1, respectively. The number of
incremental bits Ab;, (k, ) to be transmitted at the inter-
mediate step of order i/ + 1 is given by Ab;, (k, [) =
b, (k, 1) = b;(k, ). The bit-assignment rule based upon
the rate-distortion theory [17) guarantees Ab;, (k, {) to
be always nonnegative. The maximum number of bits al-
located to each coefficient is set to L in order to match the
resolution of the input image. An example of incremental
bit-assignment maps designed for a block size of 4 X 4
with L = 8 bits/pixel and incremental rate of 1 bit/inter-
mediate pixel is shown in Fig. 9. The sequence of bits
allocated 1o each coefficient can be read from the map at
its corresponding location. For example, the bit-assign-
ment sequence for the dc term, location (1, 1), is
*‘41111000°" while the sequence for the coefficient at lo-
cation (1, 2) is “*31111100.”" The proposed scheme can
be viewed as slicing the full bit-assignment map, 8 bits at
all locations, into layers of incremental bit-assignment
maps and transmitting a slice of bits at each inermediate
step. When the incremental bit rate is reduced, the total
number of incremental bit-assignment maps is increased.
The overhead information corresponding to these maps
may be reasonably large if the incremental bit rate is very
small. Nevertheless, there is no need to send the incre-
mental maps as side information. Both the transmitter and
receiver can design the same maps based upon the stan-
dard deviations of transform coefficients that can be trans-
mitied beforehand, a modest amount of side information.

The bit-sliced progressive quantization scheme requires
the quantizers to be able to make progressively finer re-

STEP NO.

Fig. 9. lacremental bit-assignment maps for a block size of 4 X 4 and
incremental bit rate of 1 bit/pixel.

constructions based upon the already received informa-
tion and the additional information received at each inter-
mediate step. In the example shown in Fig. 9, 4 bits are
allocated 1o the dc component in the first step and an ad-
ditional bit in each of the next four steps. Therefore, the
dc term is initially guantized by a 4-bit quantizer; the
guantization is refined into 5 bits in the second step, into
6 bits in the third step, and so on. Let ¥; and v;., be the
binary representations of b~ and b;, ,-bit quantizer out-
puts, corresponding to an input x, respectively. Then,
¥,+1 should be able to be represented as (¥;, Ayi4 )} SO
that the previous output code is embedded within the cur-
rent output code. Consequently, a finer reconstructed
value x;,, can be obtained from the already received y,
and the additional information Ay;., in the intermediate
step of order i + 1. Neither the uniform nor the nonuni-
form Max quantizer has the embedding property. Fig. 10
shows the thresholds of 1- to 4-bit nonuniform Max gquan-
tizers, where only the positive portions are shown since a
symmetric probability density function has been assumed.
The quantization procedure can be clearly explained by
the binary tree representation of thresholds for a logarith-
mic search as shown in Fig. 11. For each quantizer, the
procedure starts at the root of the tree and advances one
level down the tree for each additional bit assigned. If the
guantizer input is greater than the threshold, a “‘1"" is
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transmitted, and the right branch of the node is followed
to reach the next threshold to be compared. If the input is
smaller than the threshold, opposite actions are taken.
Now assume that the input marked as an “*x’’ in Fig. 10
is to be quantized sequentially by the quantizers. Refer-
ring to Figs. 10 and 11, we can find that the output codes
for the 1-, 2-, 3-, and 4-bit quantizers are **1,” **11,”
“101,”" and “*1011,"" respectively. Therefore, the non-
uniform Max quantizer is not embedded since ‘**11'" is not
included in **101."" Similarly, we can show that the uni-
form Max quantizer is also not embedded.

B. Threshold-Aligned Quantizers

However, we can modify the quantizers by aligning
their thresholds, linked with dashes in Fig. 10, to the same
levels to achieve the embedding property. For example,
we can fix the thresholds for the 3-bit quantizer and align

19
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(1L I YL I PY - P T P LV Y Y @) 1Y)

Fig. 12. Threshold-aligned guantizers. (Only the positive portions are
shown.)

15(1) and 1,(4) with 15(2), 14(2) with 1:(1}, and 1,(6) with
13(3). Fig. 12 shows the threshold-aligned quantizers. The
effect of aligning the thresholds in Fig. 10 is equivalent
to that of overlaying the binary trees in Fig. 11. There are
two major issues that we have to deal with while design-
ing the threshold-aligned quantizers. First, we have to
choose a quantizer as a reference. Examining the optimal
quantizers designed for Gaussian and Laplacian sources
{161, [18], [19], we find that the magnitudes of thresholds
to be aligned are increasing with the number of output
levels of the quantizers. If we choose the 2-bit quantizer
as the reference, the threshold-aligned 8-bit quantizer will
suffer significant degradation. The reverse is also true. A
compromise solution is to choose the 4- or 5-bit quantizer
as the reference so that the 2- and B-bit quantizers will
suffer mild degradations.

Second, we have to find the optimal finer thresholds
and reconstructed values for quantizers with higher reso-
lution than the reference and the optimal reconstructed
values for quantizers with lower resolution than the ref-
erence. For example, if the 3-bit quantizer is chosen as
the reference, we should align 1,(1)} with 13(2) and find an
optimal reconstructed value for each interval partitioned
by the aligned thresholds for the 2-bit quantizer. For the
4-bit quantizer, we should align 1,(2) with 13(1), 7,(4) with
14(2), and 7,(6) with 73(3). Then we have to find the opti-
mal finer thresholds 7,(1), 74(3), £(58), and 1,(7) and an
optimal reconstructed value for each interval specified by
a pair of thresholds. In other words. for those quantizers
with higher resolution than the reference, we have to solve
for an optimal finer threshold +,, and a pair of optimal re-
constructed values £, and %, for each pair of aligned
thresholds (z;, t,) such that the mean squared quantization
error (MSQE)

MSQE = S (x = £ plx) dx + S (& — £, p(x) d
It

Im

(5)

is minimized, where p(x) is the probability density func-
tion (pdf) of x. Following the same derivations used by
Max [16], we obtain a sei of equations as sufficient con-
ditions 1o minimize the MSQE
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TABLE ]
COMPARISON OF MSQE AMONG THI: UNIFORM Max, NORUNIFORM MaXx,
AND THRESHOLD-ALIGNED QUANTIZERS FOR GAUSSIAN SOURCES

MSOE
No Uniform Nonuniform Embedded
of Max Max Max
Bis Quantzer Quanuzer Ouanuzer
Gaussian
1 3634 3634 3634
2 1188 1175 1203
3 03744 03455 03485
4 01154 009501 0009501
L} 003495 002505 002524
6 001041 0006442 0006596
7 0003035 0001635 0003705
g 00008714 00004117 00004347

Sr (x — &) px)dx =0 (6)
2‘m = (fo + 'j:m)"I2 (7)
g, (x — £,) plx) dx = 0. (8)

For most pdf’s, it is not easy to solve (6)-(8) simuita-
neously. We used the numerical method suggested by Max
[16] to solve the set of equations. For those quantizers
with lower resolution than the reference, we only need to
find an optimal reconstructed value £ for each given pair
of aligned thresholds {1/, 1,) such that

1

MSQE = g (x — £ p(x) dx 9
i

is minimized. The corresponding sufficient condition is

S (x =) pxydx =0 (10)

and it is also solved numerically. Using the 4-bit non-
uniform Max quantizer as the reference, we designed the
threshold-aligned quantizers for both Gaussian and Lapla-
cian sources. Comparisons are made among the uniform
Max, nonuniform Max, and threshold-aligned quantizers;
the results are shown in Table I for a Guassian source and
in Table II for a Laplacian source. For both sources, the
threshold-aligned quantizers suffer little degradation due
to their suboptimal thresholds, and their performance is
exiremely close to that of the nonuniform Max quantizers.

C. Implementation

Simple quantization is very desirable for practical
transform coding systems. The complexity of the thresh-
old-aligned quantizer is suitable for hardware implemen-
tation. The quantization procedure can be easily imple-
mented as successive comparisons, and only one
comparison is required for each allocated bit. When the
guantization is refined from / bits 1o (i + 1) bits, the finer
threshold of the (i + 1)-bit quantizer to be compared to

TABLE H
COMPARISON OF MSQE AMONG THE UNIFORM MAX, NONUNIFORM Max,
AND THRESHOLD-ALIGNED QUANTIZERS FOR LAPLACIAN SOURCES

MSQE
Neo Uniiorm Nonumiorm Embedded
of Max Max Max
Bits Quantizer Quannzer Quantizer
Laplacian

1 .5 5 5

2 1963 1762 1826

3 07175 05448 05516

4 02535 01637 01537

5 008712 004102 004146

[} 002913 001081 001097

7 0009486 0002699 DO02863

g 0003014 30006806 00007402

an input data point can be solely determined from the out-
put code of the i-bit quantizer. Therefore, we can store
the thresholds in a look-up table and address the table by
the previous output code to obtain finer quantization. The
size of the look-up table is approximately 256 storage
words, which is reasonably small for hardware implemen-
tation in a ROM. Dequantization is even simpler since
only table look-up is involved. The size of the look-up
table for dequantization is approximately 512 storage
words, which is also small. We like to point out that no
accumulation of round-off errors due to progression will
occur in the proposed progressive quantization scheme
since the reconstructed coefficients can be directly read
from look-up tables and since no arithmetic operations are
involved throughout the progression.

By software simulation, we have applied the proposed
progressive quantization scheme to a digital image of 512
X 512 pixels with 8-bit resolution. At g5 bit per interme-
diate pixel, 8 kbits are transmitted at each intermediate
step. For the purpose of comparison, the zig-zag sampled
approach of Ngan {12], where the transmission starts with
the lower frequency coefficient and continues on to the
high-order frequency by following a zig-zag pattern, was
also simulated for block sizes of 16 X 16 and 32 X 32.
The 8-bit nonuniform Max quantizer is used in the sim-
ulation for the zig-zag sampled scheme. The SNR's of the
two schemes are shown in Figs. 13 and 14. It is clearly
shown in the figures that the bit-sliced approach is supe-
rior to the zig-zag sampled approach through almost the
entire course of progression. The efficiency of the bit-
sliced approach in terms of the bit rate required to achieve
a certain SNR value is about twice as good as the zig-zag
sampled approach for bit rates less than 4 bits per pixel.
When the accumulated bit rate reaches 8 bits per pixel,
both systems assign a full & bits to each coefficient. In
this case, the zig-zag sampled approach should outper-
form the bit-sliced approach since the former uses an op-
timal quantizer while the latter uses a suboptimal quan-
tizer. As we pointed out in Tables I and 11, the degradation
due to the suboptimal quantization is negligible. Simula-
tion results showed that the SNR’s are almost identical at
a block size of 32 X 32, and the degradation is less than
0.2 dB at a block size of 16 X 16.
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IV. APPLICATION TO ELECTRONIC RADIOLOGY

In radiology. as a result of the increased utilization of
digital imaging modalities, such as CT and MRI, over a
third of the images produced in a typical radiology de-
partment are currently in digital form, and this percentage
is steadily increasing [3]. New commercial offerings make
it possible to routinely digitize film images for clinical use
[20], and radiology equipment manufacturers are devel-
oping products that will produce ‘“‘standard’’ examina-
tions, such as chest and bone images, in digital form [2].
This infusion of digital image sources is occurring at a
time when significant new technical developments in the
field of digita! storage and transmission are close at hand,
and this has stimulated planning for the development of
picture archiving and communication systems that are ca-
pable of transmitting, storing, processing, and displaying
radiologic image data [21], [22]. There are important eco-
nomic and medical reasons for this trend. Studies show
that significant cost benefits can result from electronic
storage of medical images [2], and it is anticipated that
the instantaneous, reliable electronic distribution of ra-
diology images to the appropriate clinical decision-mak-
ing area will expedite the delivery of quality medical care.

The problem of storage cost has impeded the develop-
ment of a comprehensive electronic image archive. New
developments in storage technology, both optical [4] and
magnetic [5), promise a potential solution. It has been
estimated [1] that a large radiology department requires
an archive capacity of no more than 0.5 to 2 X 10" bits
per year, a requirement that could be reduced through data
compression [7].

Image presentation is an important aspect in electronic
radiology. Traditionally, films for critical care patients are
kept in the radiology deparument on one of several mul-
tiviewers with rotating panels. Electronic multiviewers
have been developed [23] to electronically simulate tra-
ditional multiviewing environments. Progressive trans-
mission of digital pictures can play a key role in devel-
oping efficient schemes of image transmission and
presentation. A radiologist will have a means 10 quickly
browse through many remotely stored picture panels. As
soon as the desired picture panel is recognized, more panel
detail can be progressively transmitted until a particular
image within the panel is determined. Next, more details
of this particular image can be progressively transmitted
such that a clinical diagnosis can be made. We have ap-
plied the progressive transmission technique, based on
adaptive transform coding without progressive quantiza-
tion, 1o the panel of 16 CT images shown in Fig. 15. The
first three approximations are depicted in Fig. 16. At this
level of picwure detail, it could be possible to make a de-
cision on which particular images within the panel should
be transmitted with sufficient fidelity 10 make diagnosis
possible. Anticipatory paging of image data may im-
prove, where possible, the performance of image trans-
mission at high resolution. Utilizing a priori information.
the local station can start prefetching compressed images
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Fig. 5. Original picture panel of 16 CT images.
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Fig. 16. Progressive approximations of piciure paneis: (a) first, (b) sec-
ond. and (c) third approximations,

to the local disk whenever the traffic on the picture net-
work allows such a prefetching transmission of data. In
this case, the compression techniques discussed herein
will improve the latency; the time required to access the
data from the local disk.

V. CoNCLUSIONS -

The concept of progressive transmission presenis a
technical solution 10 the clinical suitability of imperfect
reconstruction from encoded digital diagnostic pictures.
It allows the subjective quality to be progressively im-
proved so that proper diagnoses are possible. The greatest
value will be in situations where the picture panels are
displayed at remote workstations after transmission over
low-bandwidth channels such as telephone lines. Trans-
form coding techniques provide an efficient means for
achieving progressive transmission of digital pictures, The
relative quality of intermediate image approximations
from transform-domain coding is superior to that of spa-
tial-domain coding. An improvement of about 10 dB is

achieved for a compression factor of 256:1. The improve-
ment is as high as 17.5 dB for a compression factor of
8:1. The SNR converges reasonably into a high value of
56.5 dB as a function of the order of image approxima-
tion. This assures that the sequence of intermediate image
approximations converges into an almost perfect recon-
struction of the input image.

The ability to optimize the different modules of a cod-
ing system is actually why transform coding techniques
have a potential promise in achieving more efficient
schemes for the progressive transmission of pictures. The
bit-sliced progressive transmission has been shown to be
more efficient in delivering image quality than the zig-zag
sampled approach. The SNR’'s shown in Figs. 13 and 14
indicate that the bit-sliced approach is about twice as ef-
ficient as the zig-zag sampied approach. We conjecture
that incorporating a human visual model [24], [25] with
the progressive coding system is a way to match the ob-
jective quality with the subjective quality and will achieve
more efficient coding subjectively. Complexity of the
threshold-aligned quantizers is suitable for hardware im-
plementation. Other points for future investigation in-
clude optimal entropy coding and algorithms for efficient
inverse transform of the sparse matrices corresponding to
the progressive reconstructions of picrures.
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