

Computer-Aided Design & Applications, Vol. x, No. y, 200z, pp ww-uu

1

Progressive Conversion from B-rep to BSP for Streaming Geometric Modeling

Chandrajit Bajaj

1
, Alberto Paoluzzi

2
 and Giorgio Scorzelli

3

 1

ICES and Computer Sciences Dept., Univ. of Texas at Austin, bajaj@cs.utexas.edu
2
Dip. Informatica e Automazione, Univ. “Roma Tre”, paoluzzi@dia.uniroma3.it

3
Dip. Informatica e Automazione, Univ. “Roma Tre”, scorzelli@dia.uniroma3.it

ABSTRACT

We introduce a novel progressive approach to generate a Binary Space Partition (BSP) and convex
cell decomposition from any input triangles boundary representation (B-rep), by utilizing a very
fast computation of the surface inertia. A solid model is so generated at progressive levels of detail.
This approach relies on a simple variation of standard BSP trees, allowing for labeling cells as in,
out and fuzzy, and permits a complete representation of a solid mesh as the Hasse diagram of a cell
complex. Our new algorithm is embedded in a streamlined computational framework using four
types of dataflow processes, that continuously produce, transform, combine or consume subsets
of cells depending on the number or their input/output streams. A varied collection of geometric
modeling techniques are integrated in this streaming framework, including polygonal, spline, solid
and heterogeneous modeling with boundary and decompositive representations, Boolean set
operations, Cartesian products and adaptive refinement. The real-time B-rep to BSP streaming
results we report in this paper are a large step towards the unification of rapid conceptual and
detailed shape design methodologies.

Keywords: Geometric modeling and programming, Representation conversion, Solid modeling.
Binary Space Partitions.

Fig. 1. (a) BSP generated by boundary polygons and normals; (b) solid helicoid; (c) progressive intersection.

1. INTRODUCTION

We introduce here a novel progressive conversion from triangle boundary representations (B-rep) to solid Binary
Space Partition (BSP) decompositions. The algorithm may be used for importing geometric models into a dataflow
(streaming) pipeline to be used for shape modeling of complicated geometries. Streaming pipelines are commonly used

Computer-Aided Design & Applications, Vol. x, No. y, 200z, pp ww-uu

2

in graphics engines; conversely, their use for geometric modeling is relatively new. We use balanced BSP trees as
progressive representations of shapes, giving multiple levels of detail. The algorithm we introduce in this paper
generates finer and finer geometric approximations progressively, and closely integrates to streamlined rendering for
instant visualization. In our framework, we already used specialized routines to generate progressive representations
of primitive objects, such as spheres and cylinders, and introduce here a novel algorithm to import B-rep models from
external data stores, and embed them into complex generative expressions, in order to build progressive BSP-trees to
be refined on demand. Also, view-dependent data may be propagated upstream our geometric modeling pipeline so that
the computation is focused on detailing only the model features currently of interest for the shape designer.

Our novel conversion algorithm from B-reps to solid decompositions with convex cells takes as input a boundary
triangulation and does not need any representation of the boundary topology. It produces a natively balanced BSP-
tree with only O(n) preprocessing. The preprocessing consists in the computation of the Euler tensor of each input
triangle. The Euler tensor is strictly related to the inertia tensor, and takes into account the contribution of the
triangle to the spatial distribution of surface points. The tensor matrices are then attached like textures to triangles, and
are only recomputed when some triangles are split. A best-fitting parallelepiped is so generated for the input surface
using the eigendecomposition of the Euler tensor., and represented as the intersection of six boundary planes using a
standard BSP. The interior cell is further split by the principal plane normal to the direction of maximal elongation.
Two local best-fitting parallelepipeds are then computed for the two half-surfaces, and their intersection with the two
sub-cells is used to add detail to the solid approximation already generated. Some cells of the decomposition are
labeled as either external or internal to the boundary and are not further split. The splitting process of the cells
intersecting the boundary (called fuzzy) continues recursively by using the local best-fitting parallelepipeds, until
only few input triangles remain in a cell. In the very last step only the boundary triangles are used to add the maximum
detail.

The new algorithm integrates seamlessly with our streaming approach to geometric modeling [20]. It provides a native
generation of balanced BSP trees with only linear preprocessing of the imported triangulations. As it is well-known, a

balanced BSP tree provides an efficient spatial index allowing for fast point location, collision detection. and distance

field computations.. We demonstrate the practical validity of this approach on rather complicated geometric models
constructed with our prototype system. Also, our approach provides a natural convex decomposition [1] of large-scale
models, resulting in a representation that is highly portable and scalable, and can be effectively used on PCs and HPC
architectures of different kinds. The approach is aimed at supporting generative geometric modeling, starting from
either primitive or imported shapes, that may come from external data stores. Such atomic shapes may be either
transformed with affine or projective transformations, or aggregated within hierarchical assemblies, or combined by
several operators, including Boolean set operations [18], Cartesian product and Minkowski sums of point-sets.
This approach is embarrassingly parallel (see [20]), from limited to no communication between processes generating
the portions of the model on the nodes of a PC cluster, where communication overhead is negligible and the speedup is
nearly linear with the number of processors. After the initial broadcast of the generating expression (the executable

code) to all nodes, each job is simply specified by a clipping BSP-tree. Each clipping BSP is simply given exactly by
one of the paths of the tip of our progressive BSP-tree. Furthermore, the computation can be easily organized as a queue
of independent jobs, that may also be generated hierarchically, and submitted to some computational infrastructure by
using high-throughput batch tools for clusters or grids.

2. STREAMING GEOMETRIC MODELING

Our streaming approach results in a fine-grain streamlined parallelism where suitable geometric data structures flow

between specialized processes, with the resulting shape produced by progressive refinements of a first approximation of

the result. The data tokens flowing between different computations are a couple of pointers to the twin representations
of the mesh, i.e. (a) a BSP-node (actually either a linear hyperplane or a leaf label) and (b) its associated d-cell in the
Hasse diagram of the current mesh. For example, when computing a Boolean operation between large-scale objects, the
result with Naylor’s algorithm

[14]

is only generated at the end of the entire computation, and may require an

intolerably long time. With our approach, a continuously refined estimate of the Boolean result is available from the
very beginning. If the output appears unsatisfactory, the task can be instantly terminated. The streaming computation
can be also terminated using a local threshold for the geometric approximation error, and possibly depending on the
viewer’s gaze.

Computer-Aided Design & Applications, Vol. x, No. y, 200z, pp ww-uu

3

Fig. 2. A chess model: (a) union of a cylinder, a cone, a scaled sphere, two cones, a scaled sphere and a sphere, rendered flat at maximum

resolution; (b) exploded geometry; (c) differences from parallelepipeds

2.1 Progressive BSP data structures

In our approach two main data structures are used: BSP-trees for progressive generation of geometry, and doubly
linked list representation of Hasse diagrams for the storage of already generated geometry.
A short summary of the main properties of BSP trees [14] is included for completeness. In particular, each node of a BSP
tree: (a) is associated to a convex cell; (b) if non-leaf, then contains a hyperplane splitting its cell; (c) if leaf, then

contains a label that characterizes its cell as either IN, OUT or FUZZY; (d) is defined as the set intersection of the
halfspaces associated to the (unique) path from the node to the root; (e) equals the set union of cells associated to the
subtree rooted within it (see Figure 3). With respect to standard BSP trees, we only add a FUZZY label to nodes that can
be further split progressively, so that each frontier (time-dependent space partition) is always subdivided into solid
(IN), empty (OUT) and yet undecided (FUZZY) cells.

Fig. 3. Frontier evolution as progressive refinement of the space partition.

The search for maximum runtime efficiency was the main reason for using the B-rep based on the Hasse diagram [24],
which allows for explicit and complete storage of both geometry and topology of the model. In order theory, a Hasse
diagram is a graph, whose nodes are the members of a finite partially ordered set S, and where there is an arc from x to y
iff: (a) x < y and (b) there is no z such that x < z < y. In this case, we say y covers x, or y is an immediate successor of x.
Hasse diagrams can be used to give a complete representation of the structure of d-polytopes and d-meshes, with
respect to the inclusion relation between k-faces, 0 ≤ k ≤ d. The very basic operation is the split of a fuzzy d-cell with a

hyperplane, with efficient update of the Hasse diagram, performed using the fast algorithm [2]. The inverse operation is
called join, and updates the representation by substituting two split d-cells (and their split k-faces) with their convex
hulls. These operations are geometrically robust, i.e. able to withstand the effects of numerical errors. Furthermore, they
are very fast, having to deal with hundreds of thousands or millions of cells of varying dimensions in practical cases.

Computer-Aided Design & Applications, Vol. x, No. y, 200z, pp ww-uu

4

Fig. 4. Splitting of a d-cell c with a hyperplane h, and corresponding Hasse diagram.

Notice that we only handle collections of piecewise-linear bounded and convex sets, i.e. complexes of polytopal cells.
Note also that the approach is dimension-independent, in the sense that both the data structures and the operations
would work with solid (codimension 0) pointsets of arbitrary dimension d.

2.2 Streaming framework

In our streaming framework, geometric objects are always produced by the (progressive) evaluation of a generating
expression, which is compiled into a dataflow pipeline made from four kind of processes, denoted respectively as
producers, transformers, combiners and consumers, according to the number of their input/output streams. A
producer, or builder, is a process with no input, and one output stream. It continuously generates progressive
polyhedral approximations, at finer and finer levels of detail. A special effort was devoted to supply our streaming
technology with a rich set of producers, providing solid primitives, polynomial and rational splines, subdivision
surfaces and polygon models. A transformer is a process with one input stream and one output stream. Our
transformers either apply affine or projective transformations or produce the complement or extrusion of their input. A
combiner is a process with more than one input stream and a single output stream. Such a process combines several
progressive BSP streams and return the stream of the result. In each combiner process, an efficient variable-grain merge
of splitting planes is used to combine the operation arguments. In particular, a cursor pointer is set to the current input
splitting node. This pointer is moved to the following input tree every g splitting nodes, where g stands for
granularity. A consumer is a process with one input stream and no output streams, that is used either to compute
suitable model properties or to analyse or visualize the progressively generated model. Depending on the computed
properties, a consumer process may decide which cells of the input stream should be expanded, i.e. further detailed, or
collapsed, (joined) in a single cell, and hence provides a mechanism for adaptivity and control with feedback.

The conversion algorithm described in this paper implements an important builder component in our streaming
architecture. In particular, it provides a mechanism to progressively import into the streaming pipeline models
extracted from an external store and, in particular, supplied using the weakest B-rep solid representation, i.e. given as a
bunch of raw triangles. The only constraint on the input triangles is that they must be coherently oriented. In other
words all triangles must be either implicitly or explicitly associated with the correct external normal to the surface they
belong to. Such a constraint is normally satisfied by most data structures, and in particular by the data files produced
by laser scanners of 3D solids.

3. Progressive CONVERSION ALGORITHM

The new algorithm generates a solid decomposition into convex cells by producing a balanced BSP-tree, and by using
only a coherently-oriented decomposition of the object boundary into raw triangles, and without any need for a
representation of the boundary topology.

The idea is very simple. A fast preprocessing, executed in linear time with the number of input triangles, computes for
each triangle a 4x4 matrix that codifies numerically its mechanical behavior. The sum of all such matrices gives a good
representation of the spatial distribution of the surface points. Such a matrix may be used used to generate a best-fitting
ellipsoid, centered in the center of mass of the surface, that is mechanically equivalent to the triangulated surface.

The first solid approximation of the surface is given by the minimal best-fitting parallelepiped, parallel to the principal
axes of the ellipsoid and strictly confining the surface. Such a solid is represented as a standard BSP-tree, as
intersection of six linear subspaces tangent to the boundary surface. This enclosing solid is then split by a plane
passing for the center of mass and normal to the direction of maximal elongation.
The set of input triangles is in turn split into two subsets contained in the two half-spaces of this plane, and the two
subsets are associated to the below and above sub-trees of the BSP root. The confinement of each surface subset into a
narrower and properly rotated best-fitting parallelepiped and its splitting into the principal direction is recursively
repeated for each sub-tree.

As it is well-known, the leaves of a BSP-tree give a partition of the embedding space into convex cells. Some cells are
labeled as empty or full, i.e. as either external or internal to the boundary surface. Such cells are not further split. Other
cells cross the boundary, and are provisionally classified as fuzzy.
The shape confinement using the local best-fitting parallelepiped is then repeated, either for every fuzzy cell or only for
those cells where better detail is needed. Each fuzzy cell is detailed by its intersection with the best-fitting
parallelepiped. This intersection of the current cell always produces some empty or full subcell, togheter with a smaller

Computer-Aided Design & Applications, Vol. x, No. y, 200z, pp ww-uu

5

fuzzy cell. Finally this one is split along the center of mass, and the refinement is recursively repeated, until the
boundary planes are used to get the final approximation.

3.1 B-rep Streams

It is fairly straightforward to set up a producer process importing a B-rep, externally defined by some standard

polygonal format, e.g. either a wavefront and java3D obj file, into an input stream for our geometric pipeline. The

boundary representation given by polygons and normals must be coherently oriented. A filtering of the input file to
cope with nonplanar polygons and other geometric inaccuracies may be needed for generally archived geometric
models used primarily in computer graphics [23]. The output stream of coherently-oriented triangles, is then converted
into our twin progressive-BSP trees by the algorithmic steps described below.

3.2 B-rep to BSP Algorithm Outline

A primary technique of our method is the computation of the inertia of triangle subsets by contraction of the pre-
computed inertia of each triangle, and the eigendecomposition of the inertia of triangle subsets to bound their shape
optimally and recursively.
Please notice that, in the d-dimensional case, the shape confinement is made by 2 extremal tangent hyperplanes for each
of the d eigenvectors of the Euler matrix. The intersection of the corresponding 2d hyperspaces produces the best-
fitting (hyper)parallelepiped of the boundary subset contained in the current cell. In 3D, there are 6=2x3 such planes.

Initialization

(a) The affinely extended Euler tensors [9] of each input triangle are first computed (in linear time).
(b) The entire set of input triangles is associated with the BSP root.
(c) The entire E

3
 space (that is convex) is associated to the root.

(d) The label of the root is set to FUZZY.

Recursive case

(a) The current FUZZY cell is split by at most 6 orthogonal hyperplanes that are normal to the eigenvectors of the matrix
representation of the Euler tensor of the current triangle subset.
(b) Such planes are computed via the minimum and the maximum value of the linear function w = a · v evaluated on the
vertices v of the current triangle subset, where a is the current eigenvector.
(c) For each eigenvector, at most three convex cells are produced by two max-min parallel hyperplanes, that are either
{OUT, FUZZY, OUT} or {OUT, FUZZY, IN}.
(d) Each FUZZY cell is further split by the principal hyper-plane associated to the maximum eigenvector.
(e) A smaller subset of triangles is associated to each split cell via containment test of their vertices.
(f) Triangles crossing a splitting plane are split, and the (sub)triangles are associated to node subtrees.

Basic case
The recursive inertia-based division stops when the current cell only contains a small number of boundary triangles. A
final cell splitting is executed using the planes of the boundary triangles.

Computer-Aided Design & Applications, Vol. x, No. y, 200z, pp ww-uu

6

Figure 5: Progressive construction of the BSP in 2D starting from edge boundary elements. OUT cells are white, IN cells
are black, and FUZZY (i.e. yet undecided) cells are grey. The ellipsoids of inertia of edge subsets are also drawn.

3.3 Fast Inertia Computation

Mass and inertia of compact point-sets (curves, surfaces, volumes) are defined as integrals of certain scalar fields f : E
3

" R over the point-set. If S " E
3
 is a surface, then its mass M, first moments Mx, My, Mz, second moments Mxx, Myy,

Mzz, and products of inertia Myz, Mxz, Mxy are defined as

where the scalar field f(x,y,z) is respectively equal to 1 for mass; to x, y and z for first moments; to x
2
, y

2
 and z

2
 for

second moments; and to yz, xz and xy for products of inertia. The centroid or center of mass g= (gx, gy, gz) is defined
by the ratios

of the first moments to the mass. For homogeneous point-sets, where the density is constant, the centroid depends only
on the geometry. In conclusion, an integral over an entire surface S, open or closed, as well as over every subset S' "

S, is a summation of integrals over the triangles τ � S’: please add epsilon

The integrals described above for a point-set S can be arranged into a 4x4 matrix, that represents by components the
affinely extended Euler tensor [9] of S,:

A reference frame with origin in the surface centroid and with the first three eigenvectors of the tensor as its fundamental
basis is called the surface’s principal frame. In the principal frame, products of inertia and first moments are zero and
the tensor IS is diagonal. Since integrals are additive with respect to the integration domain, the inertia tensor of S is

Computer-Aided Design & Applications, Vol. x, No. y, 200z, pp ww-uu

7

the sum of tensors of triangles in S. A very fast procedure for computation of the Euler tensor of triangulated surfaces is
given in [9]. There is a ten-fold time improvement of such an approach over explicit integration methods [6]. It is about

a thousand fold if implemented on a modern GPU [15]. E.g. the Euler tensor of the cow model was computed in 0.17
seconds, on a triangulation with 5804 triangles, using an Intel Centrino 2.00Ghz with 1.047.784 KB of RAM and MS
Visual C++ 6.0. The average computation on several models is greater than 35,000 triangles/sec.

3.4 Algebraic Details

With some abuse of notation, let denote the generic input triangle as τ ∈ S. In the following, without lose of generality,

we denote as SC ⊂ S the subset of input triangles contained in the current FUZZY cell C of the progressive BSP-tree.

Suppose that the Euler matrices of triangles in SC have been already computed. SC may be either closed, i.e. may be the
boundary of a solid, or an open surface. Let MC denote the symmetric and positive definite (by definition) affinely
extended Euler tensor of SC, or better, the coordinate representation (i.e. the matrix) of such tensors in world
coordinates. So we have:

Since the matrix MC is symmetric, and positive definite, its eigenvalues are all reals and positive. The ratios of elements
of the 4-th row to the element m44 give the affine coordinates of the centroid gC of triangles contained in C. The first
three normalized eigenvectors give an orthonormal basis of E

3
 where the inertia matrix is diagonalized.

Fig. 6. BSP solid models from B-rep triangulations, and exploded views of the cell complexes.

Consider the linear function w : E

3
 " R such that w(p) = p "a, where a is the eigenvector of M corresponding to the

minimum eigenvalue. It is possible to show, that a linear function take maximum and minimum value over extremal
(vertex) points of a polyhedral point-set [7,14]. Hence, find a pair of minima and maxima points of w(S) over the set V(S)
of vertices of S. Lets call them vmin and vmax, respectively. Clearly this task is O(n), if n=|V(S)|.

Split the cell C in at most three parts using the two parallel hyperplanes

p "a - w(vmin) = 0 and p "a - w(vmax) = 0.

The cell will be split in only two parts if one of the hyperplanes contains a boundary facet of C. No less than two parts
may arise, one of which certainly to be labeled as IN or OUT, by construction. If no splitting is possible, the entire cell C
is certainly empty (OUT) or solid (IN), and the progression in the current cell will stop.

Computer-Aided Design & Applications, Vol. x, No. y, 200z, pp ww-uu

8

If at least one cell splitting has occurred, and hence one of sub-cells is FUZZY, let continue splitting the generated FUZZY
sub-cell by using the max and min hyperplanes parallel to the remaining eigenvectors previously computed. The result
is a confinement of the geometric data into a smaller (mimimal) rotated parallelepiped, parallel to the principal frame of
the current triangles. Finally, split such FUZZY cells with the hyperplane orthogonal to the maximum eigenvector and
passing for the center of mass:

p "a - w(g(τ)) = 0

3.5. Eigendecomposition of the Euler Matrix

The upper-diagonal 3x3 submatrix of the affine inertia matrix has several nice properties. It is small, dense, symmetric
and positive-define, so that we can safely use the simplest algorithms for computation of eigenvectors, i.e. the direct
and inverse power methods [10]. First, only the minimum and maximum eigenvector must be computed iteratively, since
the third one may be derived by their vector product. Both methods are iterative, and work by repeatedly applying
either the matrix M or the inverse M

-1
 to an initial trial vector, say (1,1,1), to successively yield an approximation of

the maximum (minimum) eigenvector. This process may be accelerated by applying a number of squaring operations to
the initial matrix M. For example, after 5 compound applications of the squaring operator to M, the resulting matrix is
M^2

5
= M

32
. Hence, a single multiplication of the trial vector by it will give the same result than 32 iterations of the

multiplication by M.

Fig. 7. Transformation from B-rep triangles to BSP: (a) progressive generation of model from triangles;

(b) exploded view of the produced BSP; (c) a close view of the head.

5. CONCLUSIONS

We have presented an optimal conversion from triangled B-Rep to a BSP solid representation. The algorithm has a O(n)
preprocessing, used to compute the inertia tensor of each triangle, and a O(n log n) construction phase of a balanced
(progressive) BSP. Furthermore, the algorithm is well suited to GPU implementations [15] and to streaming rendering
and combination with other operations, and in particular to perform Boolean set operations on-the-fly [18]. The
prototype system is presently implemented as a multithreaded library written in C and named XGE, for eXtreme
Geometric Environment. An integration with the PLASM design language just started, with the aim of compiling the

user functional environment into a distributed dataflow, able to exploit the available resources on demand. All the main
techniques of geometric and solid modeling are well supported by this technology. The next step will concentrate on:
(a) porting the library on the cell processor architecture, that appears to perfectly fit our streaming approach, and can be
implemented using the Stanford’s Brooke streaming extension of the C language (see [4,5] and [8]); and (b) a close
integration of solid and physical modeling, with the goal of supporting progressive simulations and adaptive,

simulation-driven refinements of the generated mesh.

Computer-Aided Design & Applications, Vol. x, No. y, 200z, pp ww-uu

9

Fig. 8. Progressive transformation from B-rep triangles to BSP: adaptive refinement

Fig. 9. Progressive transformation from B-rep triangles to BSP:

(a) progressive solid models of the Max Plank head; (b) exploded views of the produced BSP.

6. REFERENCES

[1] Bajaj, C. L., and Dey, T. Convex Decompositions and Robustness, SIAM J. on Computing, 21, 2, (1992), 339-
364.

[2] Bajaj, C. L., and Pascucci, V. Splitting a complex of convex polytopes in any dimension. In SCG ’96: Proc. of
the 12th Symposium on Computational Geometry (1996), ACM Press, pp. 88–97.

[3] Bajaj, C. L., Pascucci, V., and Zhuang, G. Progressive compressive and transmission of arbitrary triangular
meshes. In VIS ’99: Proc. of Visualization ’99 (Los Alamitos, CA, USA, 1999), IEEE Computer Society Press,
pp. 307–316.

[4] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and Hanrahan, P. Brook for GPUs: stream
computing on graphics hardware. ACM Trans. Graph. 23, 3 (2004), 777–786.

[5] Buck, I., and Purcell, T. A toolkit for computation on GPUs. In GPU Gems: Programming Techniques, Tips
and Tricks for Real-Time Graphics, F. Randima, Ed. Addison-Wesley, 2004.

Computer-Aided Design & Applications, Vol. x, No. y, 200z, pp ww-uu

10

[6] Cattani, C., and Paoluzzi, A. Boundary integration over linear polyhedra. Comput. Aided Des. 22, 2 (1990),
130–135.

[7] Chvatal, and Vasek. Linear Programming. W. H. Freeman and Company, New York, 1983.
[8] Dally, W. J., Labonte, F., Das, A., Hanrahan, P., Ahn, J.-H., Gummaraju, J., Erez, M., Jayasena, N., Buck, I., Knight,

T. J., and Kapasi, U. J. Merrimac: Supercomputing with streams. In SC ’03: Proceedings of the 2003
ACM/IEEE conference on Supercomputing (Washington, DC, USA, 2003), IEEE Computer Society, p. 35.

[9] DiCarlo, A. and Paoluzzi, A. Fast computation of inertia properties through affinely extended Euler tensor,
(Submitted paper) 2005.

[10] Gerald, C.F., and Wheatley, P.O. Applied Numerical Analysis. Addison-Wesley, NY, 1998.
[11] Lario, R., Pajarola, R., and Tirado, F. Hyperblock-quadtin: Hyper-block quadtree based triangulated irregular

networks. In Proc. IASTED Visualization, Imaging and Image Processing (2003).
[12] Milicchio, F., Paoluzzi, A., and Bertoli, C. A visual approach to geometric programming, Computer-Aided

Design & Applications, Vol. 2, Nos. 1-4, CAD’05, 2005, pp 411-420.
[13] Murty, K. G. Linear Programming. John Wiley & Sons, New York, NY, 1983.
[14] Naylor, B. F. Binary space partitioning trees as an alternative representation of polytopes. Computer Aided

Design 22, 4 (1990), 250–252.
[15] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krger, J., Lefohn, A. E., and Purcell, T. J. A survey of

general-purpose computation on graphics hardware. In Eurographics 2005, State of the Art Reports (Aug.
2005), pp. 21–51.

[16] Pan, Z., Tao, Z., Cheng, C., and Shi, J. A new BSP tree framework incorporating dynamic lod models. In VRST
’00: Proc. of the ACM symposium on Virtual reality software and technology (2000), ACM Press, pp. 134–
141.

[17] Paoluzzi, A. Geometric Programming for Computer Aided Design. John Wiley & Sons, Chichester, UK, 2003.
[18] Paoluzzi, A., Pascucci, V., and Scorzelli, G. Progressive dimension-independent Boolean operations. In

Proceeding of the 9-th ACM Symposium on Solid Modeling and Applications (2004), G. Elber, N.
Patrikalakis, and P. Brunet, Eds., pp. 203–212.

[19] Pascucci, V., and Bajaj, C. L. Time critical isosurface refinement and smoothing. In VVS ’00: Proceedings of the
2000 IEEE Symposium on Volume Visualization (New York, NY, USA, 2000), ACM Press, pp. 33–42.

[20] Scorzelli, G., Paoluzzi, A., and Pascucci, V. Parallel Solid Modeling Using BSP Dataflow. (2006). To appear on
Int. Journal of Computational Geometry & Applications.

[21] Stephens, R. A survey of stream processing. Acta Informatica 34, 7 (1997), 491–541.
[22] Wiley, C., A. T. Campbell, I., Szygenda, S., Fussell, D., and Hudson, F. Multiresolution BSP trees applied to

terrain, transparency, and general objects. In Proc. of Graphics interface ’97 (Toronto, Ont., Canada, 1997),
Canadian Information Processing Society, pp. 88–96.

[23] Tao-Ju, Robust Repair of Polygonal Models, Proceedings of ACM SIGGRAPH, 2004 ACM Transactions on
Graphics, 23(3):888-895.

[24] Eric W. Weisstein. "Hasse Diagram." From MathWorld--A Wolfram Web Resource. Url of the specific page:
http://mathworld.wolfram.com/HasseDiagram.html

