
November 29, 2001 DRAFT

Progressive Cutting with

Minimal New Element Creation

of Soft Tissue Models for

Interactive Surgical Simulation

Andrew B. Mor

CMU-RI-TR-01-29

The Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213

October 11, 2001

Thesis Committee

Takeo Kanade, Chair

Omar Ghattas

Branislav Jaramaz

Sarah F. Frisken

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Robotics

Copyright © 2001 Andrew B. Mor

November 29, 2001 DRAFT

November 29, 2001 DRAFT

for Maria, Euler, and Archimedes

November 29, 2001 DRAFT

November 29, 2001 DRAFT

Abstract

This thesis deals with the modification of finite element models

used in surgical simulation.

Surgical simulation offers the promise of enhanced medical training

and education. It can provide a more realistic learning environment

than many of the methodologies employed today while reducing costs.

It also increases the variability of pathologies presented to the student,

and can be used for continuing medical education. Simulators can also

gain a place in the medical practice, to rehearse difficult or uncommon

procedures. While a good deal of work has been done on the underlying

soft tissue simulation, cutting and interacting with the model has been

relatively ignored.

In this thesis, we present a method for simulating cutting of soft

tissue within a physically based surgical simulator. The technique

works on subdividing tetrahedral meshes while impacting model and

simulator efficiency as little as possible. Model stability is addresses so

that the new, cut, model does not cause the simulation to become

unstable. Also, within the framework the interactive simulator

demonstrated, the user is able to palpate, grasp, and puncture the

model.

November 29, 2001 DRAFT

November 29, 2001 DRAFT

Acknowledgements

Thanks to my advisor Takeo Kanade, for helping and encouraging

me throughout the years working on this research in the Robotics

Institute. Also, thanks to my thesis committee members, Omar Ghattas,

Branislav Jaramaz and Sarah Frisken.

I would also like to thank the many members of the Institute who

have helped me reach this milestone, and some of my classmates over

the years: Zack Butler, Sundar Vedula, Patrick Rowe and Terry Fong.

Lastly, I would like to thank my family for helping to get me here.

Most of all, thanks to Maria (and Euler and Archimedes) for putting up

with me these many years.

November 29, 2001 DRAFT

November 29, 2001 DRAFT

1

Table of Contents

1 Introduction 11

2 Motivation and Background 15

2.1 Difficulties of an Interactive Surgical Simulator15

2.2 Cutting as an Integral Part of Surgery .17

3 Previous Related Work 19

3.1 Model Modification .19

3.2 Deformable Modeling .21

3.2.1 Surface-Based Models .21

3.2.2 Volume-Based Models .22

3.3 Haptic Interface .25

4 Experimental Simulator Overview 27

5 Cutting 31

5.1 General Cutting Procedure. .31

5.2 Minimal New Element Creation .32

5.2.1 Element Subdivision .32

5.2.2 Generation of the Minimal Set. .33

5.2.3 Comparison of Minimal Sets to General Subdivision35

5.2.4 Intersection Detection and Propagation35

2 TABLE OF CONTENTS

November 29, 2001 DRAFT

5.2.5 Intersection Testing .36

5.2.6 Intersection Coordinates .37

5.3 Progressive Cutting .38

5.3.1 Progressive Cutting Between Elements38

5.3.2 Progressive Cutting with Temporary Subdivisions41

5.3.3 Different Possible Cases for Temporary Progressive Cuts . . .42

5.3.4 Progressive Cutting: Cutting Tip Within Model 43

5.3.5 Progressive Cutting: Topology Change44

5.4 Stable Cutting With Snapping .45

5.4.1 General Concept. .45

5.4.2 Geometry Test for Element Stability .46

5.4.3 Where Intersection Points Snap .47

5.4.4 Ordering of Possible Cases to Find Stable Subdivision.49

5.4.5 New Vertex Types .51

5.4.6 Paired Vertex Above or Below the Plane52

5.4.7 Different Possible Cases For Snapped Cuts.56

6 Soft Tissue Modeling 61

6.1 Tensor Mass System .61

6.1.1 Element Properties .62

6.1.2 Nodal and Edge Properties. .63

6.2 Position Integration .64

6.2.1 Nodal Dynamics. .65

6.2.2 Euler Integration .66

6.2.3 Runge-Kutta Integration .67

6.2.4 Verlet Integration .68

6.2.5 Element Stability .70

6.2.6 Computational Efficiency .71

7 Object Interaction 73

7.1 Palpation of Model. .73

7.1.1 Implicit Sphere - Node Interaction .74

 TABLE OF CONTENTS 3

November 29, 2001 DRAFT

7.1.2 Implicit Sphere - Surface Interaction.76

7.1.3 Implicit Cylinder - Surface Interaction 83

7.2 Grasping of the Soft Tissue Model .85

7.2.1 Grasping a Single Vertex .86

7.2.2 Grasping of a Surface Triangle .87

7.2.3 Grasping a Point Within a Triangle .88

7.3 Needle Puncture Modeling .89

7.3.1 Needle Sharpness Model .90

7.3.2 Propagation of the Needle Path .91

7.3.3 Transverse Forces Generated by a Needle92

8 Haptics 95

8.1 Haptic Feedback in a Surgical Simulator. .95

8.2 Intermediate Representation .96

8.2.1 Setpoint Local Model. .97

8.2.2 Constraint Plane Local Model .99

8.2.3 Line Constraint Local Model .100

9 Implementation Details 101

9.1 System Setup and Implementation. .101

9.2 Linear Elastic Soft Tissue Modeling .103

9.2.1 Tissue Parameters .103

9.2.2 Object Construction within the Simulator103

9.3 Interaction Routines .105

9.4 Haptics System. .106

9.5 Graphics System .106

10 Examples and Performance 107

10.1 Changes in Update Rate. .107

10.2 Distance of Cut Surface from User’s Path .109

4 TABLE OF CONTENTS

November 29, 2001 DRAFT

10.3 Progressive Cutting with Temporary Subdivisions113

10.4 Interaction with a Rectangular Model .113

10.5 Simulation of Liver Model. .117

11 Conclusions 123

11.1 Contributions .123

11.2 Future Work .125

November 29, 2001 DRAFT

5

List of Figures

Figure 1 System Diagram. 29

Figure 2 General cutting process.. 32

Figure 3 The five cases of tetrahedron subdivision after a completed cut. . . . 33

Figure 4 Minimal element subdivision. 33

Figure 5 Minimal element subdivision, exploded view. 34

Figure 6 General tetrahedron subdivision. 35

Figure 7 Cutting edge intersection with a tetrahedron. 36

Figure 8 Progressive cutting between elements example. 39

Figure 9 New vertices not connected to unintersected element. 40

Figure 10 Progressive cutting with temporary intersections example. 41

Figure 11 Different types of intersections for progressive cutting. 42

Figure 12 Eleven different progressive cutting cases. 43

Figure 13 Temporary subdivision, with two intersections on one face.. 44

Figure 14 Temporary cut opening up between face intersections.. 44

Figure 15 Flow of stable subdivision routine. 46

Figure 16 Example of stable snapping. . 47

6 LIST OF FIGURES

November 29, 2001 DRAFT

Figure 17 Element edge length and vertex height. 47

Figure 18 Where edge and face interaction points snap to. 48

Figure 19 Face snapping to vacated edge. 49

Figure 20 Sorting of possible permutations. . 50

Figure 21 Paired vertices in an unsnapped intersection. 52

Figure 22 Example of paired vertices in snapped intersections. 53

Figure 23 Example showing two different cases of paired vertices. 54

Figure 24 Non-trivial combinations of vertex distances above, below,

or on the plane.. 55

Figure 25 Volume fraction above the cutting plane. . 56

Figure 26 Snapped progressive cutting cases. 58

Figure 27 Tetrahedral element shape and nodal ordering. 63

Figure 28 Summing of stiffness matrices. 65

Figure 29 Tensor mass system deformation example. 67

Figure 30 Cross-section of implicit sphere interacting with the nodes

of a model. 75

Figure 31 Example of hole generated by implicit sphere, in cross-section.. . . . 76

Figure 32 Cross-section of implicit sphere interacting with surface,

showing the volume of intersection . 77

Figure 33 Closest point on a triangle.. 78

Figure 34 Sphere intersected with surface triangle, and projection

of the sphere onto the plane of the triangle.. 79

Figure 35 Different types of intersections between projected circle

and triangle. 79

 LIST OF FIGURES 7

November 29, 2001 DRAFT

Figure 36 Area of lopped circle.. 80

Figure 37 Equivalent forces at nodes to force at centroid.. 82

Figure 38 Model deformed by an implicit sphere touching the surface. 83

Figure 39 Intersection of a finite edge with a finite, implicit cylinder. 84

Figure 40 Grasping of a node. . 86

Figure 41 Grasping of a triangle. 87

Figure 42 Grasping the closest point on the model to the grasping tool. 88

Figure 43 Example of soft tissue model being grasped and pulled upon. 90

Figure 44 The beginning of puncture with a needle. 91

Figure 45 Checking the backward or forward motion of the needle.. 92

Figure 46 Force generation due to needle deflection. . 93

Figure 47 Example of object deformation caused by needle deflection. 93

Figure 48 Basic haptic feedback loop. 96

Figure 49 Typical force levels with and without intermediate representation

with slow update rates.. 97

Figure 50 Example of servoing to a point. 97

Figure 51 Extrapolated setpoint example. 98

Figure 52 Constraint plane for local modeling. 99

Figure 53 Line constraint for local modeling. 100

Figure 54 Block diagram of system flow. . 102

Figure 55 Basic data structures for the soft tissue model. 104

Figure 56 Completed cuts for showing changes in update rates. 108

8 LIST OF FIGURES

November 29, 2001 DRAFT

Figure 57 Cut surfaces generated by the same motion as in Figure 56.. 110

Figure 58 Second example of completed cuts demonstrating different

cutting methods.. 110

Figure 59 Cut surfaces generated by the same motion as in Figure 58.. 111

Figure 60 Liver model example (Exact, snapped, clearing cuts). 111

Figure 61 Cut surfaces of model shown in Figure 60. (Exact, snapped,

clearing cut). . 112

Figure 62 Progressive cutting, with temporary subdivisions, of

a rectangular model.. 114

Figure 63 Undeformed image of basic rectangular model 115

Figure 64 Palpating and grasping the rectangular model. 115

Figure 65 Partial cut of rectangular object. . 116

Figure 66 Complete cut of rectangular object. 116

Figure 67 Undeformed model of the liver.. 117

Figure 68 Model of the liver under the effect of gravity.. 118

Figure 69 Liver model palpated by implicit sphere. . 118

Figure 70 Palpating the liver model with an implicit cylinder. 119

Figure 71 Partial cut of the liver, front view. 120

Figure 72 Partial cut of the liver, bottom view. 120

Figure 73 Complete cut of the liver, frontal view. 121

Figure 74 Complete cut of the liver, bottom view. . 121

November 29, 2001 DRAFT

9

List of Tables

Table 1 Enumeration of different cases for temporary intersections. 42

Table 2 Sorting of possible permutations. .51

Table 3 Enumeration of different cases for snapped intersections. 57

Table 4 Computational efficiency vs. numerical stability for integration.72

Table 5 Changes in update rate and number of elements based on

cutting method. .108

Table 6 Mean distance from ground truth. .112

10 LIST OF TABLES

November 29, 2001 DRAFT

November 29, 2001 DRAFT

11

Chapter 1

Introduction

Rising health care costs and reduced reimbursements over the past few years have

spawned a quest to reduce the costs associated with medical care and education. The

number of minimally invasive procedures performed has drastically increased, while

surgeons are developing new methods for applying these procedures to regions of the

body formerly unheard of. For example, while arthroscopic knee surgery has

commonly been used for the past 10 years, only recently have minimally invasive total

joint replacements become common. Recent advances in cardiac surgery have led to

minimally invasive procedures for coronary artery bypass.

Minimally invasive procedures are, generally, cheaper to perform than open

procedures. They also generate less scarring and risk to the patient and reduced

healing time because the surgical field is not fully opened, but accessed through small

ports, usually less than half an inch in length. Visualization of the surgical field is done

with long, slender video cameras, and surgical tools are of similar shape, to reach the

remote surgical field. These procedures, and the many other minimally invasive and

new open surgical techniques, require extensive training to be performed reliably and

safely.

In the past five years, surgical simulation has become an area of heavy research in the

academic world. Surgical simulation, using computers and robotics, can supplant and

improve traditional training techniques. Traditionally, surgical training has been

performed on plastic models, cadavers, or on actual patients. While mechanical

models are relatively cheap and can be used many times, the sensations they generate

are unrealistic at best. They can also only demonstrate a limited range of anatomical

sizes and pathological situations. Additionally, different models must be acquired for

every type of procedure to be learned. Cadaveric training presents the most realistic

anatomy possible, but tissue responses are affected by the preserving techniques and

12 CHAPTER 1 INTRODUCTION

November 29, 2001 DRAFT

differences in temperature and fluid flow, and the number of pathologies presented is

usually not very broad. Additionally, there is a limited supply of cadavers for medical

training and the cost to provide extensive training with them would be high.

Training students by performing procedures on actual patients is the gold standard for

training, but there are ethical considerations. Novice students may not have the

experience to reliably and safely perform procedures; the potential for complications

may cause an attending surgeon to take over. Also, similar to cadaveric training, the

procedures related to particular pathologies is limited to what may come through the

operating room at a particular time, and may not fully cover the breadth of techniques

a student would need to learn. Lastly, when the difficult and interesting cases do come

into surgery, the student may be only allowed to observe the procedure, and not

actually participate.

Surgical simulation can improve on these limitations in many ways, although they can

not completely substitute for practicing on live patients. Depending on the fidelity of

the model, the simulator can be as realistic as the plastic model up to close to the

realism of living tissue. The simulator, unlike plastic models or cadavers, can be

programmed to show an unlimited variety of pathologies, both in type and placement.

They can often be used for surgical procedures on many different parts of the body,

with only changes to the modeled part of the body in software required. Patient models

can be adjusted to account for the sex and size of the simulated patient to be operated

upon. The student can also practice on a particular pathology as many times as she

feels is necessary. Students can also be easily scored on the simulators, with data

gathered on time of the procedure, accuracy of the results, and damage to surrounding

tissue. Lastly, training using a surgical simulator can reduce costs. Since there is only

the upfront cost of the simulator, ongoing costs are reduced while realism and amount

of practice are increased.

Surgical simulators also have a place outside of medical schools. Surgeons often

attend medical conferences to learn new techniques and to continue their medical

education. Simulators can be used at these conferences in a much more versatile and

realistic manner than plastic models for practicing surgeons. Simulators can also be

used within the surgical practice for rehearsing a procedure before operating on the

patient. Patient specific models can be acquired with current scanners and object

segmentation techniques. Tissue parameters can be assigned, and then the surgeon can

use that model to verify that a procedure is safe and effective.

Much of the recent research in surgical simulation has focused on increasing the

realism of modeling soft tissue. While this is very important to the overall applicability

of surgical simulators, other aspects of surgery must also be realized. This thesis

addresses another very important part of surgical procedures, cutting of soft tissue

within the framework of a physically based, interactive simulator. Since cutting is such

13

November 29, 2001 DRAFT

a common and important task within surgery, it needs to be addressed as an issue as

important to the realism of the simulation as the soft tissue model. Cutting of the

models must be done accurately, following the path traced out by the user as close as

possible, while maintaining the stability and efficiency of the overall simulation. A

minimal set of new elements, to reduce subsequent computational load, should be

generated for each cut element in the original model. The cutting should also occur

progressively, as the user moves through individual elements and the overall model, so

that the model is updated iteratively as the cut occurs, not after the cut is completely

finished. The cutting should also affect the tissue model in the expected fashion, not

altering tissue parameters or model size unnecessarily.

The simulator described in this thesis is built upon a linear elastic finite element based

tissue model using tetrahedral elements. In addition to cutting, we also implemented

other interaction techniques, palpation, grasping, and puncture, to demonstrate the

requirements of a general simulator.

In the following chapters, we first describe the motivation and background for this

work and prior work in the area. A brief description of the surgical simulator is

introduced in Chapter 4. Chapter 5 describes the main thrust of this work on cutting.

The soft tissue modeling is introduced in Chapter 6, and Chapter 7 describes other

interaction techniques in the simulator. Next, the haptics routines and implementation

details of the overall simulator are described. Lastly, examples and results are shown

in Chapter 10, and these results are discussed in the final chapter, Chapter 11.

14 CHAPTER 1 INTRODUCTION

November 29, 2001 DRAFT

November 29, 2001 DRAFT

15

Chapter 2

Motivation and Background

Performing surgical procedures requires a great deal of skill, involving proficiency in a

large number of different techniques. Since surgery most often entails modifying in

some manner the macroscopic tissue structure of a patient, one of the most common

aspects of surgery is cutting, to either reach or repair internal structures. Because of

the importance cutting of tissue has in surgery, this thesis largely addresses the issue of

cutting accuracy and efficiency in surgical simulators. Why surgical training is

necessary and how simulators can improve current methods was described in the

previous chapter. In this chapter, we will go into a little detail about the difficulties in

the development of an interactive surgical simulator and the importance of cutting in

surgery.

2.1 Difficulties of an Interactive Surgical Simulator

There are many challenges in the development of a realistic surgical simulation

system, including the modeling of the tissue, interaction between tools and the model,

and the user interface. A realistic model of the soft tissue of the body is required,

which behaves in a manner that surgeons would expect, given their background and

experience. A fast, physically based algorithm is required to generate the deformations

of the modeled tissue. Interaction between simulated tools and the model is also

required for a training system, as is a methodology for modifying the topology of the

tissue in an efficient manner. Lastly, the best way to train a novice user is to have her

practice the actual motions, which requires the use of a haptic interface. Update rate

requirements for force feedback devices are much higher than for graphical interfaces:

around 500-1000Hz instead of 15-30Hz, respectively.

16 CHAPTER 2 MOTIVATION AND BACKGROUND

November 29, 2001 DRAFT

The problem of how to model soft tissue for a real-time simulation is a difficult one.

Different methods have been used in the past, each with its own strengths and

weaknesses. In general, they can be broken down into either surface-based models or

volume-based models. Surface models that have been implemented range from

continuous, snake-based models, to discrete mass spring models based on triangle

meshes. The problem with all surface-based models, when used to simulate tissue with

interior structure, is that they do not explicitly model the interior. Therefore, complex

interactions between the surface of the tissue and the interior structure can not be

modeled. Volume-based models can simulate interior structure because they encode

the entire object, thereby modeling the interactions between the interior structure and

the exterior of the object. Discrete mass spring models are very popular, and can be

implemented in an efficient manner, but they do not model the tissue in a physically

based manner. A more physically based method is to use finite element techniques.

While standard finite elements can generate very accurate results, they can be quite

slow. There are techniques to speed up finite element models, but most of those impose

the requirement that the topology of the model does not change. Since cutting is such

an important part of surgery and it changes to topology of the model, none of the

standard precomputation techniques are applicable.

Modifications to the patient model caused by cutting are very important in a surgical

training system. While the ability to learn how to move and navigate around a new

anatomical region is very important, a system which does not include the capability to

modify the simulated tissue has limited utility. Modifying the soft tissue can be viewed

as occurring when the local shear stress passes above some threshold for the simulated

material, and all modification techniques, including cutting, puncture, and tearing,

have the same underlying basis in physics. For simulation however, it is advantageous

to model the different activities in different ways, both for simplicity and efficiency.

Cutting methods also should be accurate, volume preserving, and update as the user

moves the cutting tool through the modeled tissue. Progressively cutting through the

model requires a very efficient underlying technique to update the model as the user

moves a scalpel. Finding stable subdivisions of individual elements to ensure the

stability of the overall model is also necessary.

Training with a simulator requires both a graphical display and a haptic display. A

purely graphical display can tolerate low frame rates, lag, and dropouts. A haptic

display, on the other hand, would not work with any of those deficiencies. While there

are techniques for interfacing low rate simulations with high rate devices that will

provide a smooth sensation to the user, there is still a minimum update rate that needs

to be maintained to provide realistic sensations to the user. The haptic interface itself

must run at a minimum of 500Hz, while a simulation running at 100Hz, in most cases,

is fast enough to interface well with the haptic routines. Real-time interaction between

the user and the simulation also requires modeling tools that the user can hold and how

they interact with the soft tissue. Tools for modification, as described above, and

2.2 CUTTING AS AN INTEGRAL PART OF SURGERY 17

November 29, 2001 DRAFT

palpation are required. All interaction techniques require fast collision detection to

detect object-tool intersections and to generate the forces that arise.

2.2 Cutting as an Integral Part of Surgery

The main actions that surgeons utilize are cutting, carving, and sewing. While there

definitely is a great deal of knowledge and skill behind their hands, surgeons mainly

perform these three tasks. This thesis demonstrates a technique that accurately models

one of those three techniques, cutting. Cutting is very common in both open surgery

and minimally invasive surgery. It is used in all parts of the body, from the brain, to the

gall bladder, to orthopedic procedures. It is important to know where and how to cut,

because the action is often non-reversible. It is also important to be able to visualize

the results of the cutting actions.

Some simulators process the cutting action after the user has completed tracing the cut

through the object. This does not provide the immediate feedback that is needed to see

how a cut is progressing. It also does not allow the user to change the path that is being

traced to account for any problems or mistakes encountered while cutting through the

tissue. Because of this, it is better to update the model as the user cuts through the

object, providing almost instantaneous updates as to the progress of the cut.

This thesis demonstrates two types of progressive cutting: cuts that occur as the user

completes his motion through individual elements of the model; and cuts that are

modeled as the user moves within individual elements. The first method generates a

small amount of lag, on the order of the typical edge length within the model. The

second method updates at the rate of the simulation, but can suffer from difficulties

with model stability and determining when an edge is definitively cut.

There are multiple ways to modify the underlying model of the simulated object, each

with its own drawbacks. The main requirements for accurate cutting are to faithfully

follow the path traced out by the user and to impact the overall simulation as little as

possible. We want to follow the path of the user, and not to modify the object in a way

that the user didn’t intend. The path should accurately reflect the path traced out, and

not modify the mass or volume of the model. The generated cut should also not impact

the computational load of the simulator severely, either through the computation

required to generate the cut, or through a large increase in the model size, i.e. the

number of elements, after the cut is completed.

One very simple technique is to remove all elements that are contacted by the cutting

tool. Another technique is to find the element boundaries closest to the surface traced

by the cutting tool, and then split elements apart along that boundary. Lastly, we can

track the actual intersection points between the cutting tool and the individual

elements, and generate the cut surface between these intersection points.

18 CHAPTER 2 MOTIVATION AND BACKGROUND

November 29, 2001 DRAFT

The first two methods have clear drawbacks. The first technique changes the overall

topology, not to mention mass and volume, of the object. If the average element size is

not quite small, a large, irregularly shaped channel will be carved through the object.

The problem with the second method is that there are not always element boundaries

that closely follow the path of the cutting tool. Therefore, a rather jagged and

irregularly shaped cutting path is created, which may zig zag back and forth across the

path that the user traces out. In this way, the generated cut surface can be quite

different from the path traced by the user.

For example, if we have a model where the average edge length is 30mm, removing

elements completely, or splitting along boundaries, would place the vertices on the cut

surface a large distance away from the path traced out by the user. This deflection

would be roughly half the average edge length, or 15mm. This distance in a surgical

simulation would be quite noticeable. If we wanted to bound the error at a smaller

distance we would have to decrease the element size. If the error is bounded to 3mm,

then we would require an average edge length of 6mm, which is 5 times smaller than

the initial mesh and would increase the number of elements by approximately 125

times. Even with this reduction in error, the cut surface will still not be smooth and

will zig zag back and forth across the user’s path. Meanwhile, the computational load

will have to increase by more than two orders of magnitude to achieve this increase in

accuracy. Conversely, if we follow the path that the user traces out, we will be able to

achieve the accuracy requirement while only increasing the number of elements

locally around the cut surface, a much smaller subset of the initial mesh.

The last method, using actual intersection points, does not have any of the difficulties

mentioned with the first two techniques. The cut surface exactly follows the path of the

user, as it is traced across the original elements of the model. It does not remove any

portion of the model, and therefore maintains object volume. The main drawback of

this method, however, is that it can generate a large number of new elements to model

the intersected elements, which can be prohibitively expensive computationally to

model. This is the problem addressed by the minimal new element creation cutting

technique described in this thesis.

November 29, 2001 DRAFT

19

Chapter 3

Previous Related Work

A large amount of work has been done in areas related to this research. In the area of

soft tissue modeling, research has been done on both surface-based and volume-based

modeling, with both physically and non-physically based representations. Haptic

methods for various applications have started to receive attention in the research

community, and work related to this thesis is also described. Work on modifying soft-

tissue models has not been as prevalent as work on the underlying soft tissue model or

on haptics. The work on model modification that is related to this thesis is described in

the following section.

3.1 Model Modification

Modification of object topology can take many different forms; cutting, tearing, and

puncture make up a large subset. Puncture simulation, where penetration of the object

occurs, is probably the most tractable form of interaction. Singh, et al. [45] and Popa

and Singh [40] demonstrate a lumbar puncture simulator using impedance control to

model the insertion through the layers of tissue of the back. Reinig [42] describes a

volume-based puncture simulator where the resistance to penetration is based on

actual tissue parameters. Reinig uses segmented visible human data to determine the

type of tissue being punctured, and integrates the frictional resistance of the shaft of

the needle along its path through the back.

Tearing can also be easily detected by looking at the internal forces being generated

within the model. Miyazaki, et al. [29] support tearing by looking at the elongation of

the springs in their mass spring system. If the length of the spring exceeds a threshold,

then one end of the spring is separated from its neighbor. Cotin, et al., in their

volumetric tensor mass system [13], support both cutting and tearing. Tearing occurs if

20 CHAPTER 3 PREVIOUS RELATED WORK

November 29, 2001 DRAFT

one of three geometric measures of the tetrahedron exceeds a threshold. Cutting occurs

when the model of a bipolar cautery instrument touches an element. Any element that

is touched is removed from the model.

Cutting of surface-based models was demonstrated by Song and Reddy [47], where, in

2 dimensions, they moved a finite element mesh around with a cutting tool. The

cutting force exerted by the user is introduced to the object as a nodal force. Once it

exceeds the shear strength of the material, cutting occurs. Tanaka, et al. [51] use

boolean operations on polygonal objects. The cutting tool and object are represented

as polygonal objects, and the intersection of the two causes the polygons of the

modeled object to be cut. Tanaka uses a haptic interface, and the cutting force

displayed to the user consists only of a viscous force, based on velocity. Since cutting

is modeled as a purely geometric activity, there is no internal model of a minimum

cutting force.

O’Brien and Hodgins [35] demonstrated a method for propagating fracture through a

brittle volumetric finite element model. They detect when the total forces, formed into

a tensor, acting on individual nodes within the model would initiate fracture. Once a

node has fractured, they determine the direction of travel of that fracture, and

subdivide the element based on that direction. They also insure that the fracturing

routine will not create ill-conditioned tetrahedra by snapping intersection points to the

closest nodes. This method generates a small number of different subdivisions, due to

the fact that all fractures are initiated at nodal locations. Fracture propagation is not

explicitly modeled, but is inherent in the model due to stress risers caused by

fracturing at previous time steps.

Cutting through volumetric objects is more difficult due to the more complicated

connectivity between nodes or vertices, and the greater number of cases due to the

arbitrary locations of intersections between the model and the cutting tool. Mazura and

Siefert [27] create a cutting surface by specifying the beginning and end points of the

cutting edge, and then interpolating between them. This creates a set of triangles

which are intersected with the tetrahedral mesh. Once an element is detected to have

been cut, it is split according to the number of intersected edges in the element. They

were able to process a model with 15,000 elements in about 6 minutes. Bielser, et al.

[7] cut through a mass spring object by tracking the tip and the direction of the cutting

edge through the object. A small cutting plane is generated at every time stop between

the previous edge position and the current edge position. Cutting occurs whenever an

element has an edge or face that has been intersected, but that no longer has the cutting

edge passing through it. In this manner, only one cut occurs in each tetrahedron, and

the cutting action occurs the equivalent of one tetrahedron length behind the cutting

edge position, introducing some apparent latency. The cutting procedure always

subdivides an element into 17 smaller elements using midpoint subdivision. If one of

the edges or faces has been cut, then that position is substituted for the midpoint. Split

3.2 DEFORMABLE MODELING 21

November 29, 2001 DRAFT

edges are replaced with two edges, with two vertices at the new location, while unsplit

edges get one vertex. Also, all possible intersections are just mirrors and rotations of 5

basic cases.

Bielser and Gross [6] extended the work of [7] by reducing the number of new

elements generated for each cut element. Instead of inserting new vertices on uncut

edges and faces, they only insert vertices at intersection locations, plus new vertices on

faces split in two. This reduces the number of new elements created, but does not

minimize it. Ganovelli, et al. [18] demonstrate a similar system, where the true

minimal sets of new elements are created when an element is cut, based on which of

the five basic subcases that element corresponds to. They determine the subdivision

function to call by generating a code based on which edges are intersected. This is a

fast and efficient method of determining how to subdivide each cut element. Ganovelli

also implements tearing, where an spring elongation factor is computed. Once a

certain number of edges have factors past a threshold, then a tearing path is propagated

out from the most stretched edge. This propagation insures that the split will generate

only legal subdivisions using the same routines as the cutting process. Mor and

Kanade [33] also demonstrate a system that generates a minimal set of new elements

during cutting, with progressive updates of the cut elements while the cut is occurring.

3.2 Deformable Modeling

The area of deformable modeling can be broken down into two main types of models:

surface-based and volume-based. Surface-based models only represent the exterior of

an object, and therefore should be limited to areas where complex interior structure is

not present; for example, the gallbladder. Volume-based models can simulate the

interior structure of an object, and are therefore more powerful, although

computationally more expensive. Additionally, novel methods for integrating the

motion of the model are also presented.

3.2.1 Surface-Based Models

Physically-based deformable object simulation began with the models based on

elasticity theory developed by Terzopolous [53] to fit models to images. The models

combined an internal energy term with external forces to generate a smooth model that

was attracted to edges in an image. These models were continuous and not suitable for

real-time interaction. Terzopolous and Waters [54] also developed a discrete mass-

spring system for facial modeling. Their system consisted of a three-layer mesh with

anisotropic behavior to model muscle below a fatty tissue layer below the epidermis.

The model had 6500 springs and was animated at interactive, graphical, update rates.

Swarup [49] developed a mass spring system that would run at rates suitable for a

force feedback device. His system was based on a two layer mesh, a top layer that the

22 CHAPTER 3 PREVIOUS RELATED WORK

November 29, 2001 DRAFT

user could interact with and would deform, and a bottom stationary layer that didn’t

move. The nodes in the top layer were interconnected with springs, connected to the

bottom layer with springs, and also connected to a “home” position with a spring.

Only elements within a certain distance of the user’s position would have their state

updated. One serious problem with this system was the need for the bottom layer,

whose only purpose was to ground the surface layer and to utilize existing finite

element theory. The model also was not partitioned into an octree or with bounding

spheres, so computation time increased quickly with the number of nodes. Tarr and

Salisbury [52] addressed these problems, by utilizing a dynamically remeshed surface

mesh to present to the user. The mesh was also partitioned within an octree, so only

local nodes were intersected with the sphere representing the users position. They

removed the bottom layer of the model by assuming the density of nodes on the mesh

was suitably high and homogeneous.

Keeve, et al. [24] presents a similar surface model for generating facial tissue

deformations after craniofacial bone surgery. He demonstrates both a multi-layer

mass-spring model with biphasic springs, and a single layer non-linear finite element

model. Both methods produced results that predominately agreed with a test case,

although the two demonstrate the trade-off between precision and computation time.

Meseure [28] recently presented a mass spring model that depends on a virtual rigid

component to generate bulk translations and rotations. A surface mesh is connected to

the virtual component, and motion of the virtual object represents the undeformed

desired position of the model. The surface mesh then deforms due to local interactions

and collisions. If no forces are present, then the two components line up. If there are

external forces, the surface mesh is perturbed away from the rigid component.

Moutsopoulos and Gilles [34] utilized a coarse-fine finite element model to simulate a

gallbladder in a laporascopic surgery simulation. The global model was coarse enough

(few enough nodes) to run at real-time rates, while the local model, around where the

user was interacting, would subdivide the mesh to generate a finer, smoother response

to the user. They also utilized a B-spline surface to interpolate the nodes of the finite

element model to represent the “skin” of the object. Their system was able to interact

at real-time rates (25 Hz) utilizing a coarse model with 60 nodes.

3.2.2 Volume-Based Models

Mass Spring Models

Two groups that have implemented three-dimensional, volumetric mass spring models

are Reznik and Laugier [43] and Miyazaki, et al. [29]. Reznik and Laugier

implemented a basic homogenous mass-spring model, using Euler’s method for the

numerical integration. The volume is sampled into a cubical lattice, with each node

3.2 DEFORMABLE MODELING 23

November 29, 2001 DRAFT

connected to its 26 nearest neighbors. Spring stiffness is determined by the Young’s

modulus for the material, and nodal mass is similarly determined by the density of the

material. Nodes are interconnected, but not attached to a home position. The authors

claim real-time simulation, although they do not state the number of nodes in the

simulation or what update rates they achieve. Miyazaki, et al., use a very similar

system, although they also simulate model modification through tearing or cutting. If

edges are cut, or the edges become too elongated, the spring connecting two nodes is

removed. They also present a method to prevent divergence of spring oscillations

when large forces are applied. Bielser, et al. [7] also recently demonstrated a system

for soft tissue simulation. They utilized a tetrahedral mass spring system to run the

simulation, with rigorous treatment of tracing a cutting surface through the simulated

object. They demonstrated update rates of a few Hertz on models ranging in size from

48 to 576 elements before cutting, to 354 to 2446 elements after cutting.

Radetzky, et al. [41] show a mass spring model where the spring constants are

generated by a neural network so that prespecified deformations match those acquired

from experiments on real tissue. The parameters can also be adjusted by a neuro-fuzzy

system for user feedback on whether tissue properties feel correct.

Kühnapfel, et al. [25] have developed a system based on their simulation software

KISMET, to simulate endoscopic surgery. The soft tissue system is a volumetric mass

spring model. The novel feature of their system is a spring stiffness value based on a

third degree polynomial. Their research into living tissue showed that the non-linear

shape of the stress-strain curve can be well approximated by this polynomial.

Suzuki, et al. [48] developed a system to model deformable tissue by filling a volume

with rigid spheres. Forces are generated and deformation occurs when the user,

modeled as a larger sphere, intersects the outer layer of spheres. Those spheres are

pushed back, and the spheres behind them are pushed back in turn; forces are

generated by each sphere wanting to return to its home position and contact with

neighboring spheres. Modification of the model was not demonstrated.

Physically Based Models

Bro-Nielsen and Cotin [8] developed a system to utilize classical, three dimensional

solid finite element models that would run at real-time rates. Real-time performance

was achieved by the use of condensation, precalculation of the inversion and

exploitation of the sparse structure of the force vector. Their technique is based on two

assumptions: that the topology of the model could not change and that the only

deformations seen by the user would occur at the surface nodes. First, the sparse

global stiffness matrix is condensed so as to only calculate the displacement and forces

at the surface nodes. In condensation, the effect of the interior nodes is taken into

account. The idea is that the actual value of the deformation of the interior nodes is not

24 CHAPTER 3 PREVIOUS RELATED WORK

November 29, 2001 DRAFT

important, only the deformations of the surface nodes matter. They then preinverted

the condensed stiffness matrix. Lastly, in most situations in interactive simulations, the

user is only touching a few of the surface nodes at a time. Due to this, the force vector

is made up of mostly zeros. Bro-Nielsen and Cotin precompute deformation vectors

based on a unit force at each node. At run-time, deformations are linear sums of the

precomputed vectors based on the force vectors applied by the user. They achieved

update rates of 20Hz on models with 250 surface nodes without utilizing the sparse

nature of the force vector, and 20Hz on models with 700 nodes utilizing that

sparseness. Cotin and Delingette [12] more recently demonstrated update rates of

100Hz on models with 1400 nodes.

Condensation is a popular technique for modeling soft tissue that will not be modified.

Kühnapfel, et al. [25] have used this technique, in addition to their mass spring model,

to generate faster updates. Berley, et al. [5] show a simulator for suturing skin that

simulates models with up to 13,300 nodes using a banded matrix technique that uses

condensation as a preprocessing technique. The user can interact, with a force

feedback device, with up to 285 nodes at a time. Frank, et al. [17] demonstrates results

for a banded system, and predicts the computational power required before condensed

finite element system can run at 500Hz and directly generate forces for a haptic device.

The results were shown for different techniques of solving the state equations of the

model, with only iterative solutions of small (125 nodes) elements capable of update

rates of 500Hz.

More recently, Cotin, et al. [13] developed a new representation they named tensor

mass based on linearly elastic continuum mechanics to model soft tissue. It is based on

finite element theory, but the models are solved in a dynamic fashion over time.

Stiffness matrices are calculated in the same manner as for typical finite element

models, but instead of forming a global stiffness matrix and solving a global solution

at each time step, the stiffness matrix is stored locally, at each nodal point and for each

edge. They achieved update rates of 40Hz with a mesh made up of 760 vertices and

approximately 4000 edges, which was similar to the rate obtained for a mass-spring

system they implemented. Also, as an update to the results in [8], they demonstrated

results utilizing precomputation of elementary deformations of a quasi-static mesh of

500Hz on a mesh with almost 8000 tetrahedra.

Due to the limitations of the linear elastic models, Picinbono, et al. [37] have shown

the application of a non-linear elastic model to the tensor mass system described in

[13]. The non-linear elastic component overcomes the elongation limit of 10% of

mesh size to be reasonably accurate. They also add an incompressibility constraint to

limit growth of individual elements. For one example, this reduced the growth in the

volume of the model under a large scale deformation from 63% to 1%. The main

drawback of using a non-linear model is the computation time required. Going from a

fully linear model to a fully non-linear model, the update rate for a liver model they

3.3 HAPTIC INTERFACE 25

November 29, 2001 DRAFT

show dropped from 45Hz to 8Hz, an 82% drop in update rate. For interactive

simulations, this can be a very expensive improvement.

Debunne, et al. [15] demonstrate a system using a multi-resolution model to guarantee

a minimum frame rate while still allowing a fine resolution model around deforming

areas and where the user is contacting the model. They built a model with multiple

levels of detail, and then switch between the different models based on computational

load and a quality criterion. This multi-resolution model, while depending on a good

deal of pre-computation, allows their simulator to run at real-time rates sufficient for

haptic interfaces, with the multi-resolution model running 5 to 20 times that a single

resolution model at the finest level of detail that they use.

Most of the methods described above that generate the state of the model iteratively

use either Euler or Runge-Kutta methods. The main constraint with respect to these

solvers is that the system of equations for the position of the model is viewed as a stiff

system of equations [2]. Bielser and Gross [6], though, use a semi-implicit method to

generate results more stably than using a typical explicit solver. The method uses an

explicit step to estimate the current position of the object, then that estimated current

position to implicitly determine the velocity. The final step is another implicit step to

determine the final current position of the object. They do not give comparison

numbers, though, for the stability of this model compared to a model updated with an

explicit method. They did achieve 30Hz with a mass spring model consisting of 1381

tetrahedra using an SGI Onyx2 with 8 R10000 200MHz processors.

3.3 Haptic Interface

Haptic refers to anything having to do with the sense of touch. A haptic interface is a

device that can be used to feel “objects” that are generated by a computer or some

other modality, that are not actually present locally. Motors are used to generate forces

that can act on the user based on his location within a virtual world. Haptic devices can

take many forms. Custom interfaces have been built by many groups to satisfy unique

requirements. Singh, et al. [45] implemented a custom device to support lumbar

puncture simulation. Berkelman, et al. [4] demonstrate a device that uses a

magnetically levitated handle that the user grasps. This removes all friction from the

device, and can increase its responsiveness. A commercially available device is the

PHANToM [26], which is a 6DOF input mechanical device, with either 3 or 6 active

degrees of freedom.

Haptics have been used to feel virtual objects in many types of situations. In [32] and

[19], a system for interacting with static voxel based data sets is described. Using

segmented voxel data sets from MRI scans of a healthy knee, Gibson and Mor

demonstrated the ability to feel medical data sets using a PHANToM haptic interface.

Both polygon and volume rendering visualization were implemented. Haptic

26 CHAPTER 3 PREVIOUS RELATED WORK

November 29, 2001 DRAFT

interaction with quasi-static finite element models of the liver is demonstrated by

Cotin and Delingette in [12]. And O’Toole, et al. describe in [36] a training and

evaluation system for end-to-end anastomosis using a flexible, spline-based model of a

blood vessel and a force feedback system.

Complex simulation systems often run at rates lower than that required for haptic

feedback. Adachi, et al. [1] proposed the use of an intermediate representation to

model a rigid object between updates from the simulation. Berkelman, et al. [4] use a

virtual coupling between the simulated object that the user is holding and the handle

position of the haptic device; and can therefore guarantee the stability of the haptic

device. When the update rate of the simulation is slow, setpoints for the haptic device

are interpolated to smooth the path that the user traces. Interaction occurs between

surfaces of completely rigid objects.

Picinbono, et al. [38] show a method of extrapolating forces by projecting the current

position of the device onto the line between the positions at the last two forces updates.

The force is then the extrapolated based on the distance from the current projected

point to the previous updated position, compared to the distance between the two

positions at the previous updates. This gave better results compared to the two other

methods that they implemented.

d’Aulignac et al. [14] demonstrated a mass spring model that uses a local model of the

system to generate updates more quickly than the rate of their underlying simulation.

The local model is based on a constraint surface that is continually updated based on

the previous history of the local model. The force generation portion of their simulator

is based on a penalty based method utilizing the volume of intersection between the

simulated object and a model of the tool that is being used. This is similar to most

implementations, although the scalar distance of penetration is normally used to

generate the magnitude of the force to display.

November 29, 2001 DRAFT

27

Chapter 4

Experimental Simulator Overview

Surgical simulators are designed to demonstrate and teach the motion and result of

surgical actions. In this manner, they must be able to model soft tissue and the actions

that affect it. In this thesis, we describe techniques and methods that we developed to

cut through soft tissue within the framework of an interactive simulator. In addition to

those cutting methodologies, we developed methods of simulating interaction between

surgical tools, modeled as simple shapes, and soft tissue. We tied these interaction

techniques into an experimental surgical simulator, using a linear elastic deformable

model, and a haptic interface to provide physical feedback to the user.

There are 3 main components of our surgical simulator: soft tissue simulation, tissue

modification and manipulation, and the user interface. In this simulator, soft tissue is

modeled with a linear elastic finite element model. Tetrahedra are used as the basic

element shape, to simplify modifications of individual elements when compared to

element shapes with more nodes. The soft tissue model is implemented in such a

fashion that models are easily and quickly updated and modified, using interconnected

lists of pointers to basic data types: vertices, nodes, and elements.

Tissue modification and manipulation are implemented as routines that are called by

the soft tissue simulation. They access the data structures of the model, modify the

structure of the model, and generate external forces to modify the current state, both

position and velocity, of the model. Intersections between the model and the currently

wielded tool are propagated based on the local neighborhood of the currently

intersected element, speeding up the determination of which features need to be

accurately tested. When interacting with the model, the routines also generate forces to

display back to the user through the haptic interface. These routines can push and pull

on the model, and cut or puncture the model. Currently implemented interaction tools

are: a form of cauterizing knife, that can cut in any direction; an implicit sphere model

28 CHAPTER 4 EXPERIMENTAL SIMULATOR OVERVIEW

November 29, 2001 DRAFT

for palpating the object, which can be viewed as similar to the shape of the fingertip;

an implicit cylinder model, also for palpating the soft tissue; a simple grasper tool,

which can grab the model and move it; and a needle model, for simulating puncture.

Lastly, all simulations require some method for the user to see and act upon the model.

A simple graphical interface is used, along with a PHANToM haptic device. The

haptic interface allows the user to feel the model, and act upon it in a more realistic

fashion than if there were no forces displayed back to the user. The haptic routines are

implemented so that they can receive intermittent, slow updates from a simulation, and

generate a smooth, stable flow of forces to display to the user.

Figure 1 shows the basic flow of control in our surgical simulator. After startup, the

soft tissue model is initialized and communications between the soft tissue simulator

and the haptics server are established. Then, the soft tissue modeling and object

modification loop runs as fast as possible, up to 1000Hz, and queries the haptic display

routine for the user’s current position. If the user is currently interacting with the

modeled tissue, then the type of interaction is determined, and if the tissue is being cut,

the intersection occurs. After the topology of the model is modified, if necessary, the

forces on the nodes are calculated and nodal positions updated, and the current model

for displaying forces to the user is communicated to the haptics server. The scene is

also, independently, graphically rendered at 30 frames per second. The separate haptic

display routine receives updates from the modeling routines after every soft tissue

update cycle, and interpolates between time steps to provide a smooth, stable

interaction for the user, nominally updating at 1000Hz. These different routines and

methods are described in the following chapters.

29

November 29, 2001 DRAFT

FIGURE 1. System Diagram.

Setup link to

haptics client

Initialize model

and tools

Setup link to

haptics server

Get current user

position

Interface current

tool with model

Update model

based on tool state

Initialize haptic

device

Get current

haptic state

Send current state

to haptics client

Render model and

tool graphically

Generate force

based on local

model

Communications

Process Flow

Send local model

to haptics server

30 Hz

< 1000 Hz

1
0
0
0
 H

z

30 CHAPTER 4 EXPERIMENTAL SIMULATOR OVERVIEW

November 29, 2001 DRAFT

November 29, 2001 DRAFT

31

Chapter 5

Cutting

Cutting of soft tissue models generates new model topologies within the surgical

simulator. The new topology of these models has to reflect competing goals. From the

user’s viewpoint, the cut should exactly follow the path that she traces out. From the

simulator’s viewpoint, the cut should impact its computational throughput as little as

possible. These two competing goals, accuracy of the cut and a minimal increase of

computational load, lead to the two main thrusts of this work on cutting: accurate and

stable progressive cutting that follows the user’s path, and minimal new element

creation for modified elements.

After describing the general cutting process, we explain the motivation and method for

generating minimal sets of new elements when cuts occur. Next, progressive cutting is

described, both within elements and between elements. Lastly, to combat possible

model instability, snapping of intersection points to maintain model stability is

described.

5.1 General Cutting Procedure

The general procedure for cutting through elements with our tetrahedral based surgical

simulator consists of the following steps. First, the initial intersection between the

cutting tool and the model is detected. To do this, we test surface triangles and edges

against the motion of the cutting tool to determine if the cutting tool moved across any

of the boundaries of the surface, creating either face intersections, caused by the

motion of the tip of the cutting tool, or edge intersections, caused by the motion of the

cutting edge itself. Once an intersection is detected, we encode where on that

intersected element the initial intersection occurred. We then test all the other faces

and edges of that element against the motion of the cutting tool. For all element faces

32 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

and edges that are intersected, we also propagate the intersection to the original

element’s neighbors, thereby quickly moving the cut surface through the model.

Lastly, for each element that has been intersected, we subdivide the element once the

cut has completed within its interior. This basic process is shown in Figure 2.

5.2 Minimal New Element Creation

When an individual element is intersected by a cutting tool, there are three possibilities

for splitting that element: removing the individual element completely; finding an

element boundary and splitting along that; and generating the cut surface using the

exact intersection points between the path of the cutting tool and the model. The first

method does not preserve the volume and mass of the model, while the second method

can generate cut surfaces that are very irregular and do not appear to actually follow

the path of the cutting tool. We have implemented the last method, where we take the

exact intersection points between the cutting tool and the model and generate the

cutting surface between those points. First, we will describe the different possible

topological types of intersections, then how we generated the minimal sets to replace

the cut elements. Lastly, we describe how intersections are detected, stored, and

propagated through the model, an important part of any cutting technique.

5.2.1 Element Subdivision

Tetrahedral elements cut by planar, or near-planar, surfaces will fall into one of five

different topological cases, based on the number of cut edges and intersected faces.

FIGURE 2. General cutting process.

No

If face intersections,

propagate to neighboring

elements

If element is no

longer intersected,

subdivide element

Intersection between

motion of cutter and

surface triangle?

For each intersected

element

Intersect faces and

edges against motion

of cutter

Is the list of intersected

elements empty?

No

Yes

Yes

The current cut

is complete

5.2 MINIMAL NEW ELEMENT CREATION 33

November 29, 2001 DRAFT

There are two different cases where the tetrahedron is completely cut through into two

pieces, and three cases where the element is cut, but not completely through. Figure 3

shows the different cases. The first example is when 3 edges are cut and a tip of the

tetrahedron is separated from the rest of the element. The second example shows 4

edges cut, and the element evenly split into two. The first of the partially cut elements,

when there are 2 face intersections, shows 1 edge intersection. The last two examples

demonstrate, once again, 2 face intersections, and respectively, 2 and 3 edge

intersections.

5.2.2 Generation of the Minimal Set

To reduce the amount of computation required, we generate a minimal set of new

elements to replace elements that have been cut. Individual procedures were

implemented for each type of intersection, so that no excess elements would be

created. Only four to nine new elements are created for each cut element, depending

on the type of intersection. This minimal subdivision uses only the original vertices of

the element and vertices created due to the cutting action: one vertex at the location of

each face intersection, and two vertices at the location of each edge intersection. For

example, Figure 4 demonstrates how each half of the cut element from case ii in

Figure 3 is minimally subdivided. In case ii, six elements are created to replace the

original one. The five different intersection cases are shown in exploded view, with the

same numbering as in Figure 3, in Figure 5. These subdivisions contain, respectively,

4, 6, 6, 8, and 9 new elements to replace every intersected element.

FIGURE 3. The five cases of tetrahedron subdivision after a completed cut.

FIGURE 4. Minimal element subdivision.

i. ii. iii. iv. v.

34 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

To determine these minimal subdivisions, each case was examined by hand to find the

minimal set to replace the original element. The resultant elements were then encoded

based on which edge and face intersections were present in the cut element. For

element subdivisions that could be easily broken down, like the top and bottom

portions of case ii, a separate subroutine was written to subdivide the six vertices

present into three new elements. In doing so, the routine also checks to see if, on the

faces of the segment with four vertices, any of the diagonal edges already exist within

the model, to ensure that the model is internally consistent across element boundaries,

without any crossing diagonal edges.

Within the framework of the tetrahedral mesh numbering, there are multiple

orientations of the cut element based on the ordering of the vertices and cut edges.

When the element is completely cut into two, there are four different permutations

when three edges are cut, as in case i, and three different permutations in case ii, when

four edges are cut. The four different permutations of case i correspond to each of the

four vertices being cut away from the remaining three. When only one edge is cut, as

in case iii, there are six permutations, and there are twelve permutations for both cases

iv and v.

Each procedure uses a lookup table to determine how to mirror or rotate the vertices to

fit the default orientation. The lookup table basically reorders the numbering of the

vertices of the element. After the ordering is determined, any new edges that are

needed are created. Then the new tetrahedra are created and the original tetrahedron is

removed.

FIGURE 5. Minimal element subdivision, exploded view.

i. ii. iii.

iv.

c2

v.

i. ii. iii.

iv.

c2

v.

5.2 MINIMAL NEW ELEMENT CREATION 35

November 29, 2001 DRAFT

5.2.3 Comparison of Minimal Sets to General Subdivision

A complete, general, subdivision (1 vertex on each face, and 1 vertex in the middle of

each edge) yields 17 news elements for every intersected element. By a careful

examination of the possible intersection scenarios, we generate an intelligent

subdivision which only creates between five and nine new elements per intersection.

The general subdivision is shown in Figure 6, where the circles are the locations where

new vertices are inserted. Two vertices are inserted at edge intersections, and one

vertex is inserted at all other locations.

5.2.4 Intersection Detection and Propagation

Cutting with a scalpel can be viewed as the motion of a finite length cutting edge

passing through an object. If the body of the blade is ignored, and the edge is taken to

be infinitely sharp, then the problem is reduced to tracking the passage of a line

segment corresponding to the cutting edge moving in time and space through a

tetrahedral mesh. Just checking to see if the cutting tool is in the interior of an element

is not sufficient, since the cutting edge could pass through an element between time

steps. Figure 7 shows the path of a cutting edge from time ti to ti+1, as it creates two

face intersections and one edge intersection.

The swept surface created by the path of the cutting edge must be tested at every time

step for intersections with the model. Two tests are required: the intersection between

the path of the tip of the cutting tool and the faces of the tetrahedron, and the

intersection of the swept surface and the edges of the tetrahedron. The path of the tip

of the cutting tool is a line segment whose endpoints are the positions of the tip of the

cutting tool at time ti and ti+1. The swept surface is a quad whose vertices are the

FIGURE 6. General tetrahedron subdivision.

36 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

endpoints of the cutting edge, both the tip and the base, at time ti and ti+1. These two

tests generate, respectively, face intersections, which mark the base of the cut, and

edge intersections, which occur where the model is split in two by the cutting edge.

The procedure for updating the intersection state of the model starts with a global

search to determine if the path of the blade has intersected the model. If any

tetrahedron has been intersected, then all 6 of the tetrahedron’s edges and all 4 of its

faces are tested against the swept surface and cutting tip path. After all the tetrahedra

are tested, if any were intersected, the model is marked as having an intersection

present.

Next, if the model has been intersected, all of the intersected elements are checked to

see if the cutting instrument has either passed through any non-intersected faces or

edges, or has left the tetrahedron. If a new intersection occurs, then the intersection

information for that tetrahedron is updated. Neighboring elements that also contain the

newly intersected edge or face are updated and tested against the motion of the cutting

tool, thereby using spatial coherency to propagate the cutting motion through the

model. If the cutting edge no longer passes through an intersected element, then the

user has completed the cut, and the element will be subdivided.

Cuts are assumed to pass through an element, such that only one intersection exists per

face or edge, and elements are subdivided after a cut is completed. Cuts where a tool

enters and leaves the element through the same face are not modeled.

5.2.5 Intersection Testing

The technique used for the actual intersection tests is based on the ray-triangle

intersection routine described in [30]. The implemented method is a fast intersection

routine, which returns, when an intersection occurs, the parametric distance along the

ray to the triangle, and the coordinates of the intersection point within the triangle. The

FIGURE 7. Cutting edge intersection with a tetrahedron.

ti

ti+1

5.2 MINIMAL NEW ELEMENT CREATION 37

November 29, 2001 DRAFT

original routine in [30] was modified to generate the intersection between a triangle

and a finite length edge instead of an unbounded ray.

To accelerate the initial intersection detection between the cutting tool and the

triangles, a bounding sphere test between each surface triangle of the model and the

swept surface traced out by the scalpel between time steps is performed. If the spheres

do not overlap, that triangle is not tested further.

The first intersection test for any triangle that passes the bounding sphere test is done

between the current position of the triangle and the path of the tip of the cutting edge

traced between time steps. If this test fails, then each edge of the triangle is intersected

against the quad traced out by the motion of the cutting edge between time steps. The

edge-quad test is performed as two edge-triangle tests, with the quad split into two

triangles.

5.2.6 Intersection Coordinates

Once a collision between the cutting tool and the model is detected, the local

coordinates of that intersection are used. For an edge intersection, the local coordinate

is the value between 0 and 1 that encodes the relative distance along the edge for the

intersection point. For a face intersection, the coordinates, u and v, are the distances

along two of the edges to the intersection point within the triangle. Using the local

coordinates, both single value coordinates for edge detection and two value

coordinates for intersections on element faces, allows us to a use a simple encoding for

the actual intersection point. The coordinates, which translate cartesian positions into a

local reference frame within the edge or triangle, are also used to propagate not only

the current position of the intersection to any new vertices created, but also the rest

position and current velocity of the new vertices. Given the local coordinates, any

value at the vertices, not just position, can be transformed.

The equation to transform local coordinates back into cartesian space, or to transform

any value at the endpoints to the interior is, for edge intersections:

(EQ 1)

where Vu is the transformed value at the point represented by u, and V0 and V1 are the

values at the two endpoints of the edge.

For face intersections, the equation is:

(EQ 2)

V u 1 u–()V o uV 1+=

V uv u V 1 V o–() v V 2 V o–() V o+ +=

38 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

where Vuv is the transformed value at the point represented by u and v, and V0 and V1

and V2 are the values at the vertices of the triangle. Note, both vectors and singular

values can be easily transformed with these equations. Also, for the interior point to be

within the triangle, the sum of u and v has to be between zero and one, inclusive.

5.3 Progressive Cutting

Cutting through soft tissue is a procedure where the user expects immediate visual

feedback as to the progress of the cut she is generating. Therefore, updating the model

while the user is cutting it is required. There are two types of progressive cutting: the

first method is to wait until the user completes cuts through individual elements, and

then subdivide each element; the second method is to generate temporary subdivisions

within elements as the user moves the cutting tool through the object. The first method

minimizes computation load during cutting, but generates a small amount of lag on the

order of the typical edge length within the model. The second method removes the lag,

but takes more processing time and may generate very small elements.

5.3.1 Progressive Cutting Between Elements

Progressive cutting between elements generates the subdivision of elements after the

cut through the individual element is completed. As the user moves through an

element, the intersections between the cutting tool and the element are detected and

stored. Once the cutting tool leaves an individual element, the element is permanently

subdivided. This complete process is shown in the following pseudocode, which has

been simplified by leaving speed up techniques and cut propagation out:

sweptQuad = Motion(CuttingEdge, PrevCuttingEdge)
sweptLine = Motion(CuttingTip, PrevCuttingTip)
if ModelNotIntersectedLastTimeThrough

foreach (SurfaceTriangle in Model)
if (Intersect(SurfaceTriangle, CuttingEdge) or

Intersect(SurfaceTriangle, sweptLine) or
Intersect(SurfaceTriangle, sweptQuad))
AddToIntersected(SurfaceTriangle->Element)
ModelIntersected = TRUE

endif
end

endif
if ModelIntersected or ModelIntersectedLastTimeThrough

foreach IntersectedElement
IntersectElement(sweptLine, sweptQuad)
if CutComplete(IntersectedElement)

SplitElement()
RemoveOriginalElement()

endif
end

endif

5.3 PROGRESSIVE CUTTING 39

November 29, 2001 DRAFT

For example, in Figure 8, from left to right, first the cutting tool enters the left element.

As the cutting tool moves within the element, any new edge or face intersections are

detected and stored. Lastly, when the cutting tool leaves the element, it is subdivided.

The process then continues for that original element’s neighbors.

One significant problem presents itself when implementing progressive cutting

between elements. This occurs when two neighboring elements share an edge that is

cut in two. When the first element is subdivided, two new vertices are inserted along

each cut edge, and are used in the new elements that replace the first element. But,

since the second element has not been subdivided yet, the new vertices are not

connected to the second element. This is shown on the left side of Figure 9. Since the

new vertices are not connected to that neighboring element, the new elements are free

to rotate about the original vertices of the cut edge. This is shown on the right side of

Figure 9, where the two neighboring elements were originally connected by the cut

edges. Now, the new elements are attached to the neighboring element only by the

original vertices of the cut edges, and the two new sections are shown rotating away

from each other due to a combination of internal and external forces and an insufficient

number of attachment points to the rest of the model.

This problem is alleviated by effectively attaching any new vertices generated by an

edge intersection to their parent edge, as long as that edge exists. Since cut edges are

removed once all the elements containing that edge are removed due to intersections,

the edge will only exist as long as an original element that contains it has not been

subdivided. This, then, is the indicator of whether an edge has been completely cut

through or not.

FIGURE 8. Progressive cutting between elements example.

40 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

The first step in this process is, after determining all the interior forces generated by

the soft tissue and all the external forces acting on the nodes, to check all the edges for

the case where the edge still exists but also has children vertices caused by a cut. For

those edges that fit this criteria, first the intersection coordinate for the original

intersection is ascertained. Then, the total force acting on the children vertices is

summed, and then divided between the two vertices at the ends of the original edge.

This step transfers the force acting within the new elements along the original edge to

the original elements that still exist using that edge. Then, after the overall state of the

object is updated, the same cut edges before are cycled through, and the child nodes of

the cut edges are then moved to the correct position along the deformed original edge

and their velocities are updated, using the initial intersection coordinate and

Equation 1. This process is shown in the following pseudocode:

UpdateVertexForces()
foreach Edge that is Intersected

u = Intersection Coordinate
f_total = Edge->Child_Vertex[0]->total_force +

Edge->Child_Vertex[1]->total_force
Edge->Vertex[0]->total_force += (1 - u) * f_total
Edge->Vertex[1]->total_force += u * f_total

end
UpdateModelState()
foreach Edge that is Intersected

u = Intersection Coordinate
Edge->Child_Vertex[0,1]->current_pos =

Transform_Vector(u,
Edge->Vertex[0]->current_pos,
Edge->Vertex[1]->current_pos)

Edge->Child_Vertex[0,1]->current_vel =
Transform_Vector(u,

Edge->Vertex[0]->current_vel,
Edge->Vertex[1]->current_vel)

end

FIGURE 9. New vertices not connected to unintersected element.

5.3 PROGRESSIVE CUTTING 41

November 29, 2001 DRAFT

5.3.2 Progressive Cutting with Temporary Subdivisions

Previous methods of modifying objects, and the basic technique described above, do

not split an element until the cut has been completed. When the element size is large,

this can introduce a noticeable lag into the cutting process. We have implemented a

method of progressive cutting that generates a minimal subdivision of a partially cut

tetrahedron. The subdivision is always based on the geometry of the original element,

not of the previous temporary subdivision, thereby minimizing a potential source of

error.

The general procedure for progressive cutting utilizes a temporary subdivision of each

partially cut element, which is added to the general process described previously in

Section 5.3.1. An example cut is shown in Figure 10. First, any temporary face

intersections caused by the cutting edge are updated for each partially cut tetrahedron.

A temporary face intersection occurs when the cutting edge, not the tip of the cutting

tool, currently intersects a face. This type of intersection does not occur for the

permanent intersections described previously. Then, the modified topology of the

partially cut element is checked for any changes. A change occurs when a new

intersection is created: for example, when the element is first cut into, or when the

cutting edge or tip passes through another edge or face. If the topology has changed, a

new minimal set of temporary tetrahedra are created and all the old temporary

tetrahedra are removed. If the modified topology has not been changed, then the

temporary elements are updated using the new positions of any temporary face

intersections. Once the cutting edge leaves an element and the cut is completed, the

temporary elements are removed, and a final subdivision is created.

As the progressive cutting moves through the model, the cutting routine modifies the

underlying soft tissue model at each time step, which is much more frequent than the

changes to the model described in Section 5.3.1. When the initial intersection occurs,

all contributions to the stiffness and mass of the model based on the original element

are removed. Then, the contributions based on the new, temporary elements are added.

As the cutting instrument moves with respect to the model, the initial contributions

due to the temporary subdivision are removed, in turn, and the new contributions are

added based on the current geometry of the temporary subdivision. The changes in the

pseudocode between the two types of progressive cutting are shown below, replacing

the second section of the first pseudocode in Section 5.3.1 with:

FIGURE 10. Progressive cutting with temporary intersections example.

42 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

if ModelIntersected or ModelIntersectedLastTimeThrough
foreach IntersectedElement

IntersectElement(sweptLine, sweptQuad)
if CutComplete(IntersectedElement)

RemoveTemporaryElements()
SplitElement()
RemoveOriginalElement()

else
RemoveContributionFromOriginalElement()
RemoveTemporaryElements()
TemporarySplitElement()

endif
end

endif

5.3.3 Different Possible Cases for Temporary Progressive Cuts

We have enumerated eleven different combinations of intersected edges, faces, and

temporary face intersections, which are enumerated in Table 1. The different types of

intersections are illustrated in Figure 11. Momentarily marking temporary

intersections as permanent, many of these cases can directly use the procedures

described in the previous section on minimal cutting. The cases which are not

topologically similar to those described in Section 5.2.2 were implemented in a similar

fashion, with a minimum number of new elements generated for each cut element,

where each case was examined by hand to determine the correct subdivision.

Case: 1 2 3 4 5 6 7 8 9a

a. Same number of intersections as case 8, but case 9 has a different subset of edges intersected.

10 11

Edge Ints. 0 0 1 1 1 2 2 2 2 3 3

Face Ints. 1 2 0 1 2 0 1 2 2 0 1

Temp. Face Ints. 1 2 2 1 2 2 1 2 2 2 1

Interior Ints. 1 0 0 1 0 0 1 0 0 0 1

TABLE 1. Enumeration of different cases for temporary intersections.

FIGURE 11. Different types of intersections for progressive cutting.

ti

ti+1

ti

ti+1

edge int. face int.

temp face int.

5.3 PROGRESSIVE CUTTING 43

November 29, 2001 DRAFT

Figure 12 shows the topology of the different cases. Note the difference between the

relationship of the edges intersected in cases 8 and 9. As described previously, a

lookup table is used on the intersected element to rotate and mirror its state to fit the

orientation of the default topology.

5.3.4 Progressive Cutting: Cutting Tip Within Model

When the tip of the cutting instrument is within the interior of an element, ideally we

would want the model to be able to open up along the cut of the blade, so that the user

could see all the way up to the base of the cut, where the tip is located. But given the

nature of the subdivision for a generic cut, this would not be possible. An example of

this is shown in Figure 13, case i, which corresponds to Case 1 from Table 1. In this

case, the tip of the blade is inserted fully through one face, with the tip of the cutting

edge within the interior of the tetrahedron. Ii is the tip of the cutting edge, If is a

permanent face intersection, and Itf is a temporary face intersection. There are now two

intersections on one face, one permanent and one temporary. Ideally, as described

above, the object would be able to open up along the edges between the two face

intersections, as shown in Figure 14. To be able to see the tip of the cutting tool,

though, we would have to insert two intermediate vertices along the line between those

two intersection points, and generate at least 8 more edges and 8 more temporary

elements. This would be very computationally expensive to perform because of the

large increase in the number of elements that would be generated.

FIGURE 12. Eleven different progressive cutting cases.

i. ii. iii. iv.

v. vi. vii. viii.

ix. x. xi.

edge int.

face int.

temp. face int.

44 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

If no intermediate nodes are inserted between the two face intersections, a straight line

will always connect them, and the model will not be able to open up. Additionally, the

fact that the model can not open up along these edges allows us to ignore the location

of the tip within the model, and, in fact, to generate an arbitrary topology within the

interior of the original element, since that topology will never be seen.

5.3.5 Progressive Cutting: Topology Change

Even though we may be able to ignore the position of the tip of the cutting tool within

the element, we still have to make sure that none of the triangles generated on that

original face overlap. This would occur, as shown in Figure 13, as the blade travels

from case ii to case iii, when a temporary face intersection moves across an edge

belonging to the other face intersection. The shaded area shows the overlapping area of

the two triangles. If this occurs, then the modified topology of the partially cut

tetrahedron has changed, and a new set of tetrahedra will be created, as is shown in

case iv.

FIGURE 13. Temporary subdivision, with two intersections on one face.

FIGURE 14. Temporary cut opening up between face intersections.

ii.i.

iii. iv.

Ii
If

Itf If

ItfItf

Itf

If If

5.4 STABLE CUTTING WITH SNAPPING 45

November 29, 2001 DRAFT

5.4 Stable Cutting With Snapping

Progressive cutting with the cut surface following exactly the path that the user traced

out is the ideal. This motion, though, will create small elements when the cutting tool

passes close to one of the original vertices in the model. Small elements are also

created due to the temporary subdivisions, when the cutting edge is close to an edge of

the original element. These small elements have either short edges or short height.

They can become unstable due to the nature of the simulation technique that generates

a set of stiff ordinary differential equations updated explicitly.

To counteract this problem, we utilize a snapping method with the progressive cutting

between elements technique to assure that these small elements will not be created. In

the following sections we will describe the general concept of the method, the test for

determining probable stability, how we find the collection of perturbations to the

original set of intersections that will generate a stable subdivision, and an enumeration

of all the possible topological cases of intersections with snapping.

5.4.1 General Concept

Once a cut has been completed through an element, normally, we would just subdivide

the original element. But, with model instability an issue, we first need to verify

whether or not the desired subdivision is stable or not.

If the initial subdivision would not be stable, then we set up a list of possible

permutations of the initial intersection state. The permutations are all the possible

combinations of moving one or a combination of the intersections to their closest

feature. The list is ordered based on a metric of how close the perturbed intersection

state is to the original state, and is described in detail in Section 5.4.4.

After the list is set up, we generate, in turn, a test subdivision for each permutation in

the list. If the currently tested permutation is stable, then we do a final subdivision

based on that permutation, and return to the cutting routine. If the currently tested

permutation is not stable, then we go to the next one in the list.

If none of the permutations generate a stable subdivision, then we utilize the best

permutation from the list of possible cases that was generated, utilizing the stability

values returned from the geometry test. This process is demonstrated in Figure 15.

To more clearly demonstrate the process, take, for example, Figure 16. In this element,

there are 3 edge intersections, effectively cutting off the top of the tetrahedron. If

testing of the initial subdivision, using the actual intersection points, determines that

the subdivision would be unstable, then we will attempt snapping the intersection

points. For each intersection point, we can try snapping to the closest vertex or

46 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

snapping to the center of the edge. We can try snapping individually, in pairs, or all 3

at once. The method of ordering the list is, as previous described, based on the distance

from the perturbed intersection state to the initial cutting path. In this example, though,

the first attempt moves intersection 0 (I0) to vertex 0 (V0). In this example, that

permutation is also not stable. The second attempt moves intersection 1 (I1) to V0. In

this example, that permutation, again, is not stable. The third attempt then tries to

move both I0 and I1 to V0. In this case, the resultant permutation is stable, and the

subroutine returns with that final subdivision.

5.4.2 Geometry Test for Element Stability

Model stability will be described in detail in Section 6.2.5. We have found that overall

model stability is dependent on individual element stability, such that if an individual

element becomes unstable, it forces the whole model to become unstable. Therefore,

we test individual elements to determine if they meet stability criteria.

To determine whether or not an individual element will likely become unstable

depends on the geometry of the element. We use a simple test where the rest length of

all the edges and the height of the vertices above their opposing faces are compared to

a minimum value. Figure 17 shows both edge length and vertex height within a typical

element. If all the values are greater than the minimum value for this element, then the

individual element, and therefore the model, will remain stable. If any of the values are

below that threshold, then the model may remain stable, but probably will not be

FIGURE 15. Flow of stable subdivision routine.

Generate best

subdivision based

on previous

stability checks

Generate list

of possible

permutations

Sort list based on

distance from

cutting path

For each

permutation:
Generate test

subdivision

Is test subdivision

stable?

Is initial

subdivision

stable?

Is this the last

permutation to

check?

Yes

No

Yes

Yes

No

No

Return

Return

Return

5.4 STABLE CUTTING WITH SNAPPING 47

November 29, 2001 DRAFT

stable. So, the threshold is set at a safe value, not right on the cusp of causing the

model to become unstable.

5.4.3 Where Intersection Points Snap

Figure 18 shows the two types of intersections and the features they can be snapped to.

The edge intersection can be snapped either to its closest endpoint or to the center of

FIGURE 16. Example of stable snapping.

FIGURE 17. Element edge length and vertex height.

V0

I0 I1

I2

le

hv

48 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

the edge. The face intersection is more complicated. The shaded circle around the

intersection represents the thresholded distance for snapping to the second-closest

edge, if that edge has already been intersected. Before we determine where we will

snap the face intersection, we check to see if the closest edge to the face intersection

has been intersected and already used in a subdivision of a previously cut element. If

the closest edge has not, then we check to see if any of the other edges on the

intersected face have been intersected and used in a previous subdivision. If one has,

and the edge is close enough to the face intersection, that edge is used as the closest

edge, since we will then be snapping to a previously determined and used intersection

point.

After we have determined which edge on the intersected face is the “closest” edge, we

project the face intersection to that edge. If we are forcing the snapping to go to the

center of the edge and the projected point is in the middle 50% of the edge, then the

projected point is moved to the center of the edge. Next, we test to see if the projected

point is too close to one of the endpoints. If it is, then the intersection point is

automatically forced to the closest vertex. If not, then if there is already an intersection

on that edge, we snap the face intersection to that point. Lastly, if the projected point is

far enough away from the endpoints of the edge, and there are no intersections already

present on this edge, then the face intersection is snapped to the projected point on that

edge.

Additionally, in the case that we have both a face intersection and an edge intersection

of the same face, if the edge intersection is snapped to one its endpoints, then we make

sure that if we try to snap the face intersection to that edge, the face intersection is

forced to one of the endpoints, and not allowed to snap to the interior of that edge. It

would not make any sense to move an intersection off an edge, and then put another

intersection right on it. This is shown in Figure 19, where in the first step, an edge

intersection is snapped to a vertex. Then the face intersection, which was initially

further from its closest feature than the edge intersection was from the vertex, is then

FIGURE 18. Where edge and face interaction points snap to.

5.4 STABLE CUTTING WITH SNAPPING 49

November 29, 2001 DRAFT

snapped. First we attempt to move it to the edge, and then realizing that the edge had

already been snapped, we move it to the vertex that the edge snapped to.

5.4.4 Ordering of Possible Cases to Find Stable Subdivision

When the initial intersection state does not provide a stable subdivision, then snapping

of one or more of the intersection points becomes necessary. The first thing that needs

to be done, then, is to determine which collection of snapped intersection points is

going to be most faithful to the original path traced by the user. While we are moving

intersection points from their original positions, and therefore changing the location of

the cut surface, we want to minimize the distance of the snapped cut surface from the

initial cutting surface traced by the user.

For each intersection, the distance to the closest feature is recorded. For edge

intersections, that closest feature would be the vertex at the end of the edge. For face

intersections, there are more possibilities, as described in the previous section.

Additionally, we can try moving edge intersections to the center of the edge, to

maximize the distance from both endpoints while still maintaining the direction of the

cut. Moving intersection points to coincide with original vertices of the element

maximizes the likelihood of a stable intersection, since the whole original edge

remains, and its edge length is no smaller than the original edge length.

FIGURE 19. Face snapping to vacated edge.

50 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

We generate all the different combinations of moving initial intersection points, and

sort the list based on the total distance that the vertices for each case have to move to

reach their closest feature. For example, if there are 3 initial intersections, 2 face

intersections and 1 edge intersection, then there are 7 different possible combinations

of moving intersections: 3 combinations where we move single intersection points, 3

combinations of moving 2 intersection points, and 1 combination where we move all 3

intersection points. For each of these cases, we sum up the distance from the initial

intersection points to where they will be moved, and then sort the list of possible

combinations based on that distance. In this way, if the 2 face intersections were each

0.1mm from their closest edges while the single edge intersection was 1.0mm from its

closest vertex, we would attempt moving both face intersections before moving the

single edge intersection, given that the sum of the distances is 0.2mm vs. 1.0mm.

Figure 20 and Table 2 enumerate the different permutations and the order of them for

this example.

One restriction on the moving of intersection points is required. Just as we don’t move

original element vertices, we can not move intersection points that have been used in

previous element subdivisions. As the cut progresses through an object, we subdivide

FIGURE 20. Sorting of possible permutations.

Case 1
I0

I1
I2 Case 2

Case 5Case 4Case 3

Case 6 Case 7

5.4 STABLE CUTTING WITH SNAPPING 51

November 29, 2001 DRAFT

each intersected element in turn. After one element is subdivided, the new intersection

points, which now have had vertices created at their positions, are fixed within the

topology of the model. Since they are now part of permanent elements in the model,

they can not be moved, since their change in position would affect the topology of not

only their element, but due to stability issues, may affect one or more levels of

modification back through the model. Therefore, as we move through the model,

progressively cutting and subdividing elements, intersection points which are used in

new elements are marked as unmovable. These unmovable vertices are not used in

generating all the possible combinations of moving intersection points in subsequent

elements.

Additionally, if the first pass through the possible combinations does not provide us

with a stable subdivision, we go through the list again, forcing all edge intersections to

snap to the middle of their edges, maximizing the possibility of a stable intersection

while maintaining the general direction of the cutting path. If that pass does not

provide a stable intersection, then we go through the list one last time, forcing all

intersections to the closest original vertex of the element. If this pass also does not

provide a stable intersection, then we use the combination that provided the most

stable subdivision from the previous three passes through the combination list.

5.4.5 New Vertex Types

There are two basic types of new vertices created by cutting. Vertices created by the

motion of the tip of the cutting tool are single vertices, where only one vertex is

created at the intersection position. Vertices created by the motion of the cutting edge

are created in pairs, so that the model can split apart where the cutting edge has parted

it. This is simple to implement for the initial cutting, but a difficulty arises when

snapping occurs.

For example, if there are neighboring elements that are cut, and one element is cut

completely through at one time step. Then, at the next time step, the neighboring

element is cut and the face intersections on it are snapped up to the edges it originally

Is intersection snapped? Int. 0 Int. 1 Int. 2 Total Distance

Case: 1 Yes No No 0.1mm

2 No Yes No 0.1mm

3 Yes Yes No 0.2mm

4 No No Yes 1.0mm

5 Yes No Yes 1.1mm

6 No Yes Yes 1.1mm

7 Yes Yes Yes 1.2mm

TABLE 2. Sorting of possible permutations.

52 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

shared with its neighbor. So, now, the original paired vertices have to be replaced with

a single vertex, since that area which was initially going to split open is now the base

of the cut.

In the simulator, though, the replacement does not happen right away. There are many

different data structures which include pointers to both vertices that were created when

the first element was split. Because of this, it is simpler to symbolically link the two

vertices so that their positions and forces are identical, and leave both vertices in the

model. On the other hand, we don’t want to increase the computational load

unnecessarily due to the additional vertex and edges that link the two vertices. So, after

the cut is completed and there are no more pointers in use for the two joined vertices,

one of the vertices is removed and its edges linked to the other vertex of that pair.

5.4.6 Paired Vertex Above or Below the Plane

When cutting without snapping, vertices generated in pairs, caused by intersections

along the cutting edge, are easily allocated as being above or below the cutting plane.

As seen in Figure 21, when you insert two new vertices at an intersection along an

edge, normally one is clearly connected to one endpoint, while the other is connected

to the other endpoint. And, since the internal topology is clearly defined by the type of

subdivision, connecting multiple paired sets of vertices is simple. An example where

the edges from the paired vertices are drawn in bold is shown in Figure 21.

When a subdivision is caused by a snapped intersection, though, allocating and

connecting vertices above or below the cutting plane is not as clear. If an edge

intersection is snapped to a vertex, then the obvious connection of one new vertex to

each endpoint of the edge is removed. For example, in the upper row of Figure 22 an

edge intersection was snapped to V0. Now, since the new vertices are not on an edge

FIGURE 21. Paired vertices in an unsnapped intersection.

5.4 STABLE CUTTING WITH SNAPPING 53

November 29, 2001 DRAFT

but at the endpoint, it needs to be determined which of the other vertices in the

subdivision each new vertex will connect to. Looking at the geometry of this example,

it is clear that the vertex above the plane, V0a, should connect to V1 and V2, while the

vertex below the plane, V0b, should connect to V3. Additionally, both new vertices will

connect to the face intersections at the base of the cut. Note that labeling the two

vertices as above or below the plane is arbitrary, as they exist at the same point in

space, and each could easily take the place of the other.

Now, in Figure 22 in the bottom row, we have a different type of intersection. In this

case, the upper element intersection was competed first, with all the edge intersections

snapping to V0. Since there is no internal subdivision to this element, only one of the

paired vertices is used for the new element that replaced the original element, with the

paired vertex kept as a placeholder. Then, when the cut through the lower element is

completed, we have two face intersections and the paired vertices at the vertex that

was previously snapped to, V0. In this case, as in the previous example, it is clear that

the vertex below the plane, V0b, should connect to V3, and the vertex above the plane,

V0a, should connect to V1 and V2.

To determine which of the paired vertices should be used in each new element in the

subdivision of the original element, we look at the unintersected vertices present in the

new element skeleton and their position with respect to the cutting plane. The skeleton

consists of four vertex pointers, of which at least one of the vertices is an original

FIGURE 22. Example of paired vertices in snapped intersections.

V0a

V0a

V3

V2

V1

V0b

V0b

V3

V2

V1

54 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

vertex from the initial intersected element. Any intersected vertex or intersection point

is considered to be on the cutting plane, while the unintersected vertices are checked to

see if they are above or below the cutting plane. The total number of vertices above

and below the plane are determined, and if there are both vertices above and below the

plane, then the position of the new element with respect to the cutting plane is used. If

the new element is predominately above the plane, then we use the paired vertex that is

above the plane for this new element, otherwise we use the paired vertex below the

plane. If only vertices above the plane, or vertices below the plane, are present, then

we use the corresponding vertex of the paired set.

Figure 23 shows two examples of the cutting plane and element skeletons. In the

element on the left, there are two sets of paired vertices, hidden from view, and 2

original vertices from the initial element. The original vertices are both above the

cutting plane, which cause us to use the paired vertices that are labeled as being above

the cutting plane. In the element on the right, though, one of the original vertices is

above the cutting plane and the other is below. In this case, then, we look at the

fraction of the new element volume that is above the cutting plane. Since in this case,

the fraction above the plane is greater than 0.5, we consider the new element to be

above the cutting plane, and use the paired vertices that are labeled as being above the

cutting plane.

To calculate the fraction of the element above, or below, the plane, all that is required

is the signed distance of each vertex from the plane. The non-trivial combinations of

distances above, below, or on the plane are shown in Figure 24.

In the case where only one vertex is above or below the plane, or all vertices with non-

zero distance are either above or below the plane, the fraction above the plane is

FIGURE 23. Example showing two different cases of paired vertices.

5.4 STABLE CUTTING WITH SNAPPING 55

November 29, 2001 DRAFT

clearly exactly one or zero. If there are two vertices with non-zero distances, the

equation for the fraction above the plane is a simple ratio of the distance from the

vertices to the cutting plane:

(EQ 3)

where Fa is the fraction of the volume above the plane, da is the distance of node a

above the plane, and db is the unsigned distance of node b below the plane. Figure 25

shows this fraction graphically. The actual signed distance along the intersected edge

could be used instead of the distance above the plane. This is because the distance to

the plane is equal to the dot product of the cutting plane normal vector with the vector

from the vertex to the intersection point. Since the normal vector is the same for both

segments of the edge, the ratio of the actual distances is equal to the ratio of the

distances from the cutting plane.

The rest of the cases derive from Equation 3. If there are more than 2 non-zero

distances, then half of the element is split by one of the distance pairs, and then that

new fraction is split again by one of the other distance pairs. In the case where there

are 3 non-zero distances, this equates to:

FIGURE 24. Non-trivial combinations of vertex distances above, below, or on the plane.

+

+

+

+

+

+

+

+

–

–

–

–

–

–

0 0

0

Fa

da

da db+
-----------------=

56 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

(EQ 4)

There are two different permutations when all four distances are non-zero. In the first

case, there is one vertex above and 3 vertices below the plane:

(EQ 5)

In the case where there are two vertices above, and two vertices below the plane,

breaking down the resultant volumes goes through three levels, and the resultant

fraction above the plane is:

(EQ 6)

5.4.7 Different Possible Cases For Snapped Cuts

Table 3 and Figure 26 demonstrate the different topological cases for snapped cuts.

These 60 permutations shown in Figure 26, some of which have the same combination

of intersected vertices, faces, and edges, were identified by first determining all

FIGURE 25. Volume fraction above the cutting plane.

Va

Vb

Va

Vb

da

db

Va

Vb

Va

Vb

Fa

da

da db+

da

da dc+

da
2

da db+() da dc+()
---= =

Fa

da

da db+

da

da dc+

da

da dd+

da
3

da db+() da dc+() da dd+()
--= =

Fa

da
2

da db+() da dd+()

dadbdc

da db+() da dd+() db dc+()
--

dc
2
dd

da dd+() db dc+() dc dd+()
--

+

+

=

5.4 STABLE CUTTING WITH SNAPPING 57

November 29, 2001 DRAFT

possible permutations of intersection cases with an allowable number of intersections.

Those possible cases were examined to weed out the cases which weren’t truly

possible due to geometric constraints. Lastly, during testing, additional cases were

found to occur due to the snapping of intersections. Without snapping, a maximum of

five intersections can occur on any one tetrahedron. But with snapping, we empirically

found two cases with six intersections on an element. Also, cases which did not look

geometrically possible without snapping did occur with snapping, and were similarly

addressed. As in Section 5.2.2, each of these 60 cases was examined by hand to

determine the minimal number of elements that needed to be generated to replace the

original cut element.

Case: 1 2 3 4 5 6 7 8 9 10 11

Vertex Ints. 0 0 0 0 0 0 0 0 0 0 0

Edge Ints. 1 1 1 2 2 2 3 3 3 4 4

Face Ints. 0 1 2 0 1 2 0 1 2 0 1

Case: 12 13 14 15 16 17 18 19 20 21 22

Vertex Ints. 1 1 1 1 1 1 1 1 1 1 1

Edge Ints. 0 0 1 1 1 2 2 2 3 3 4

Face Ints. 1 2 0 1 2 0 1 2 0 2 0

Case: 23 24 25 26 27 28 29 30 31 32

Vertex Ints. 1 2 2 2 2 2 2 2 3 3

Edge Ints. 4 0 0 1 1 2 2 3 0 1

Face Ints. 1 1 2 1 2 0 1 0 1 1

TABLE 3. Enumeration of different cases for snapped intersections.

58 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

FIGURE 26. Snapped progressive cutting cases.

i. ii. iii. iv.

v. vb. vi. vib.

vii. viib. viii. viiib.

ix. x. xi. xii.

xiii. xiv. xivb. xv.

edge int.

face int.

temp. face int.

5.4 STABLE CUTTING WITH SNAPPING 59

November 29, 2001 DRAFT

FIGURE 26. Snapped progressive cutting cases. (Continued)

xvb. xvi. xvii. xviib.

xviii. xviiib. xviiic. xix.

xixb. xixc. xixd. xixe.

xx. xxb. xxc. xxi.

xxib. xxii. xxiii. xxiv.

edge int.

face int.

temp. face int.

60 CHAPTER 5 CUTTING

November 29, 2001 DRAFT

FIGURE 26. Snapped progressive cutting cases. (Continued)

xxivb. xxv. xxvi. xxvib.

xxvii. xxviib. xxviii. xxviiib.

xxix. xxixb. xxixc. xxx.

xxxb. xxxc. xxxi. xxxii.

edge int.

face int.

temp. face int.

November 29, 2001 DRAFT

61

Chapter 6

Soft Tissue Modeling

Physically based volumetric models provide the most accurate results for soft tissue

simulation. The difficulty with these types of systems is the large amount of

computation required. A finite element model with 500 elements will have a global

stiffness matrix with a size on the order of 700 x 700, or larger. Inverting a matrix of

that size or solving the constitutive equations is very time consuming. Mass spring

systems can model objects volumetrically in a more efficient manner, but they are not

physically based. The tensor mass model has similar computational properties as the

mass spring model, but is physically based, and was the method chosen for the

proposed system.

6.1 Tensor Mass System

The tensor mass system, as described by Cotin, et al. [13], breaks down the standard

linear elastic finite element formulation into its component stiffness formulation, and

can be viewed as a local formulation of the global finite element method. The

advantage of this method is in its computational efficiency. To allow for easy

modification of the system, the stiffness and damping terms are modeled locally, and

not assembled into global matrices. The tensor mass system sums the contribution to

each node and edge in the model from all the elements before the simulation

commences. This allows topology changes to occur easily and quickly, without having

to deal with large sparse matrices. Tetrahedral elements were chosen as the basic

element type because of their simplicity, and relative ease of subdividing.

In addition to the standard element by element representation, the method relies on a

model that represents the object as a list of nodes and edges. The standard 12 x 12 (4

nodes, each with 3 degrees of freedom) stiffness matrix for each element is calculated,

62 CHAPTER 6 SOFT TISSUE MODELING

November 29, 2001 DRAFT

and the 10 distinct 3 x 3 submatrices (6 edges and 4 nodes, each with 3 degrees of

freedom) are distributed and linearly summed for each edge and node.

If the finite element system was to be solved on a per element basis, looking at the 12

x 12 stiffness matrix for each element, then the force contribution from each node and

edge present would be calculated for each element. This would visit nodes and edges

multiple times. For the tensor mass system, the simulation examines each node once

and each edge twice, leading to a decrease in the number of calculations required per

cycle. For a model of a cube consisting of 6 elements, the equivalent of 96 3 x 3 matrix

multiplications are performed for the per element technique; the tensor mass system

requires 46, which is equal to the sum of the number of nodes, 8, and twice the number

of edges, 19, present.

6.1.1 Element Properties

The standard finite element method can be broken down into 5 steps [58]:

1. The continuous object is broken down by a set of lines or planes;

2. The elements are interconnected by the lines connecting a discrete number of nodal

points on the boundary of the elements;

3. Shape functions are selected that transform nodal displacements into general

displacements within the interior of the elements;

4. The shape functions uniquely identify the strain state within each element when

given the nodal displacements;

5. A collection of forces at the nodal locations that balances out any boundary

conditions and external forces is calculated, given the general relationship that:

(EQ 7)

where f is the nodal force, Ke is the element stiffness matrix, ae is the displacement

vector, and fa is the applied external force vector.

The tetrahedral element shape and nodal numbering for this model are shown in

Figure 27. The tetrahedral element consists of four vertices, numbered 0 through 3.

They are ordered such that if you apply the right hand rule to the first three vertices,

the resultant vector points toward the fourth vertex.

The general equation for the stiffness matrix, Ke, is dependent on material properties

(represented by the matrix D) and the shape functions of the element (represented by

matrix B) given the following equation:

f K
e
a

e
f

a
+=

6.1 TENSOR MASS SYSTEM 63

November 29, 2001 DRAFT

(EQ 8)

Given an isotropic solid, the equation for the stiffness matrix simplifies to:

(EQ 9)

Due to the nature of the linear elastic model, realistic deformations are limited to

approximately 10% strain levels. If deformations grow past this 10% limit, the validity

of the results decreases. This leads to limitations on what the linear elastic model can

realistically simulate.

6.1.2 Nodal and Edge Properties

Cotin, et al breaks the element stiffness matrix for a tetrahedron down into its nodal

and edge components using the following equations:

(EQ 10)

The stiffness matrix above depends on the Lamé material coefficients, and , and

the geometry of the matrix, represented by the M vectors. The i and j indices represent

the node or edge to which the stiffness matrix belongs. If the index is repeated, as in

, then the stiffness relates to the force felt by the node due to its own displacement

from its home position. If the index is not repeated, as in , then the stiffness relates

to the force felt by the node i due to the displacement of node j from node j’s home

position; this can be viewed as an edge effect since it occurs between two nodes. Also,

due to symmetry, is the equal to the transpose of .

FIGURE 27. Tetrahedral element shape and nodal ordering.

v3

v2

v0 v1

K
e

B
T

DB Vol()d
V

e∫=

K
e

V
e
B

T
DB=

K ij

e 1

36V
e

------------ λM jM i

T µM iM j

T µ M iM j()
1 0 0

0 1 0

0 0 1

+ +

=

λ µ

K ii

e

K ij

e

K ji

e
K ij

e

64 CHAPTER 6 SOFT TISSUE MODELING

November 29, 2001 DRAFT

The M vectors are defined as:

(EQ 11)

where is the home position of node i. These vectors point away from the center of

the tetrahedron, toward the exterior, and their magnitude is equal to twice the area of

face j, which is the face opposite vertex j, with vertex numbering as shown in

Figure 27.

To calculate the internal elastic force acting on a node i, the contributions from all the

tetrahedra that node i belongs to are summed:

(EQ 12)

where fi is the nodal force, is the sum of the tensors associated with all the

tetrahedra that node i belongs to; the tensor is the sum of the tensors

associated with the edge from node i to node j, is the displacement vector of

node i, and N(Pi) is a list of all nodal neighbors of the node i.

Figure 28 shows a simple two element, tetrahedral mesh. For example, the stiffness

matrix for node n2, , is the sum of from the element on the left and the

element on the right, because node n2 belongs to both elements. is equal to

because node n1 belongs to only one element. Similarly, is the sum of from

both elements, while is equal to from the element on the left. Also, while the

vertices are numbered from 1 to 5 in this model, within each element the nodal

numbering is the same as in Figure 27. In this manner, the stiffness matrix for each

edge and node encodes all the contributions from the elements that the edge or node is

associated with.

6.2 Position Integration

Once the forces acting on the nodes of the model are determined, a method for

calculating the current position of the nodes is needed. We looked at three different

explicit solvers: first-order Euler integration, fixed-time step fourth-order Runge-

Kutta, and three different formulations of the Verlet algorithms. We compared these

solvers on the basis of computational load and maximum time step while still

M j P j 1+

0
P j 2+

0
P j 2+

0
P j 3+

0
P j 3+

0
P j 1+

0∧+∧+∧()l=

l
1

1–
{=

j 0 2,=

j 1 3,=

Pi

o

f i K iiPi

o
Pi K ijP j

o
P j

j N Pi()∈
∑+=

K ii K ii

e

K ij K ij

e

Pi

o
Pi

K22 K22

e

K11 K11

e

K23 K23

e

K12 K12

e

6.2 POSITION INTEGRATION 65

November 29, 2001 DRAFT

maintaining stability. Due to the fact that the finite element model consists of a stiff set

of ordinary differential equations, stability was the main concern with respect to

choosing a solver. An explicit solver was selected to avoid having to solve a system of

algebraic equations at every time step, which would have required setting up and

inverting a large sparse matrix. Also, note that stability is the driving criteria, and not

accuracy. Accuracy is important, but for the type of simulation described, and the

interactivity of it, greater stability and computational efficiency is of more significance

than greater accuracy. Computational efficiency affects synchronicity, the need for the

time step to be equal the computational time per cycle, insuring that simulation time

matches real time.

6.2.1 Nodal Dynamics

The position, velocity, and acceleration of the nodes is governed by standard

Newtonian mechanics, using the following basic equation:

(EQ 13)

where N is the mass matrix for the mesh, C is the damping matrix, K is the overall

representation of the stiffness of the mesh, is the vector of current positions of the

nodes, and fa is the vector of applied external forces, such as gravity and pushing

forces from the user, acting on the nodes. These matrices are the global equivalents of

the local matrices actually used in the tensor mass system. The calculation of the state

of individual nodes is done on a per node basis, using scalar values for nodal mass, and

Equation 12 to determine the force representative of the term. Raeligh

FIGURE 28. Summing of stiffness matrices.

n1

n4

n3

n2

n5

N
t
2

2

d

d
x t() C

td

d
x t() K x t()+ + f

a
=

x t()

f
i

K x t()=

66 CHAPTER 6 SOFT TISSUE MODELING

November 29, 2001 DRAFT

damping is used to gernate C, and and are chosen empirically so as to damp out

oscillations in a reasonable period of time. The mass term for each node is

proportional to the volume of the elements it belongs to. The mass for each node is

determined with the equation:

(EQ 14)

where mi is the mass of node i, E(i) is the set of elements that node i belongs to, and

 are the density and volume of element j, respectively.

This second order ordinary differential equation is solved using the explicit solvers

described below. When rewritten on a per-node basis to show the acceleration acting

on each node, Equation 13 looks like:

(EQ 15)

where is the current position of node i, and are the internal and applied

external forces acting on node i, is the Raleigh damping force acting on node i, and

c is the global scalar damping term, which models damping between the object and its

environment.

Figure 29 demonstrates an example of a model of a simple cubic object, where each

cube consists of 6 tetrahedra, randomly colored. The left image is of the model with no

external forces acting and no displacements. The right image is the model deformed

due to a gravitational force, with the model anchored at the top.

6.2.2 Euler Integration

First order Euler integration was implemented as a baseline numerical integration

technique to verify the viability of the model, and as a comparison for the other two

integration methods tested. The second order differential equation of the state of the

nodes, Equation 15, was implemented as a system of two first order equations:

(EQ 16)

While this equation did generate a solution for the current state of the model, it is

limited both by its accuracy, which was not a large concern, and more importantly by

the need for a very small time step to insure stability.

α β

mi

1

4
---ρ jV j

e

j E i()∈
∑=

ρ j

V j

e

t
2

2

d

d
xi t() 1

mi

----- f i

a 1

mi

----- f i

i
–

1

mi

----- f i

d
–

c

mi

td

d
xi t()–=

xi t() f i

i
f i

a

f i

d

x t h+() x t() h ẋ t()+≈
ẋ t h+() ẋ t() h ẋ̇ t()+≈

6.2 POSITION INTEGRATION 67

November 29, 2001 DRAFT

6.2.3 Runge-Kutta Integration

Due to the small time steps required to insure stability with Euler integration, a more

accurate and stable method was implemented. Fourth-order Runge-Kutta was chosen

for its large increase in accuracy for a given time step, thereby allowing us to greatly

increase the time step while maintaining stability and similar levels of accuracy.

The equations were set up in a similar fashion as before, as two sets of first order

equations, and then solved with the fourth-order Runge-Kutta algorithm:

(EQ 17)

where is the function which generates the acceleration acting on the node

when it has position xt and velocity yt, as in Equation 15. This method is written as:

(EQ 18)

where

FIGURE 29. Tensor mass system deformation example.

x t h+() x t() hy t()+= y t() ẋ t()=

y t h+() y t() hf xt yt,()+=

f xt yt,()

x t h+() x t() h

6
--- k1 2k2 2k3 k4+ + +()+=

68 CHAPTER 6 SOFT TISSUE MODELING

November 29, 2001 DRAFT

(EQ 19)

The implementation of this method stacked the position and velocity vectors on top of

each other, to generate one large vector that was passed to the Runge-Kutta routine

written for Numerical Recipes in C [39]. That is, the two equations in Equation 17, for

position and velocity, were solved simultaneously. While this method of integration

did generate results that were much more stable than those produced by the Euler

method, the simulation was still not quite fast enough.

6.2.4 Verlet Integration

The Verlet integration methods are popular in the molecular dynamics world, where

molecules are modeled as point masses that behave strictly according to Newtonian

mechanics [56]. Due to that similarity to the lumped mass model employed in the soft

tissue simulation, the Verlet method was tried here. There are three popular forms of

the Verlet algorithm: the basic Verlet, a leap-frog technique, and the Velocity Verlet

algorithm. All three were tested and found to be quite comparable in terms of model

stability, and more computationally efficient in this application than the other methods.

Basic Verlet Algorithm

The basic Verlet algorithm is simple and robust, and is the sum of two Taylor

expansions around the current time step, which are summed, and then rearranged to

provide the position at time t+h:

(EQ 20)

(EQ 21)

where is the sum of all the forces acting on a node at time t.

k1 f t xt,()=

k2 f t
1

2
---h+ xt

1

2
---hk1+,

 =

k3 f t
1

2
---h+ xt

1

2
---hk2+,

 =

k4 f t h+ xt hk3+,()=

x t h+() x t() v t()h
1

2

f
t

t()
m

------------h
2

O h3()+ + +=

x t h–() x t() v t()h–
1

2

f
t

t()
m

------------h
2

O h3()–+=

x t h+() 2x t() x t h–()–
f

t
t()

m
------------h

2
O h4()+ +=

f
t

t()

6.2 POSITION INTEGRATION 69

November 29, 2001 DRAFT

If velocity terms are needed, they can they be calculated with a difference term,

although note that at time t+h, the velocity term to be calculated is that for time t:

(EQ 22)

Since the velocity term is used in the calculation of forces for the nodes, calculating

the velocity one time step behind is not ideal, so the Velocity Verlet algorithm was

investigated.

Velocity Verlet Algorithm

The Velocity Verlet algorithm [50] calculates the velocities of the nodes at the new

time step, and therefore improves upon the basic algorithm. The main drawback is that

it is more expensive computationally. The basic Velocity Verlet algorithm requires four

steps:

1. Calculate the midpoint velocity:

(EQ 23)

2. Calculate the new position based on the midpoint velocity:

(EQ 24)

3. Calculate the new forces acting on the nodes, using the midpoint velocity and new

positions:

(EQ 25)

4. Calculate the final new velocity:

(EQ 26)

This form gives the most complete solution, but is slightly slower due to the fact that it

has to cycle through the list of nodes twice, once before updating the total forces

acting on the nodes, and once after. Depending on the memory architecture of the

machine and the software, this can impact the computation time.

Verlet Leapfrog Algorithm

The Verlet Leapfrog algorithm explicitly calculates velocity, like the Velocity Verlet

method, but the velocity it calculates is at the midpoint of the time step. The significant

v t() x t h+() x t h–()–

2h
-- O h2()+=

v t h 2⁄+() v t() 1

2

f
t

t()
m

------------h O h3()+ +=

x t h+() x t() v t h 2⁄+()h O h3()+ +=

f
t

t h+() f i

a
t h+() f i

i
t h+()– cv t h 2⁄+() O h3()+–=

v t h+() v t h 2⁄+() 1

2

f
t

t h+()
m

---------------------h O h3()+ +=

70 CHAPTER 6 SOFT TISSUE MODELING

November 29, 2001 DRAFT

difference for us is that it only cycles through the list of nodes once, not twice, and

therefore can run more quickly. While having the velocity calculated at the midpoint is

not as accurate and desirable as determining it at the end of the time step, in practice, it

did not prove to be a problem.

The algorithm first calculates the midpoint velocity:

(EQ 27)

Then, the new position is calculated using the midpoint velocity:

(EQ 28)

If the velocity term at time t is desired, it can be calculated with the difference

equation:

(EQ 29)

This method proved to be the fastest of the three methods described in this section,

while stability numbers were similar for all three.

6.2.5 Element Stability

Two of the main requirements for position integration within this type of surgical

simulator, where the user is applying a highly variable amount of force, is efficiency

and stability. Efficiency to reduce the computational load, and therefore increase either

the number of elements that can be modeled or the complexity of the interaction

routines between the model and the tools that the user wields. Stability is important so

that the models behave appropriately, and do not oscillate and shoot off to infinity,

thereby either generating large arbitrary forces or crashing the simulator.

The theoretical limits on time steps for the different routines do have interest, but only

in an academic sense. Due to the complexity of the model, the variability of element

size, and implementation issues, actual, empirical limits on the time steps proved to be

of more use than the theoretical limits.

For instance, in implementing a cubical model, the theoretical limit on the time step

for these explicit methods is proportional to the ratio of edge length to maximum wave

velocity in the material:

v t h 2⁄+() v t h 2⁄–() f
t

t()
m

------------h O h3()+ +=

x t h+() x t() v t h 2⁄+()h O h4()+ +=

v t() v t h 2⁄+() v t h 2⁄–()–

2
--- O h3()+=

6.2 POSITION INTEGRATION 71

November 29, 2001 DRAFT

(EQ 30)

For one model, this results in a maximum time step of 0.005sec. Empirically, the

maximum time step found for Euler integration was 0.00015sec, more than 30 times

less. This may be due to the fact that each node is not moving independently, but is

interconnected with many neighboring nodes in the model, thereby affecting the

calculations of a representative stiffness matrix.

In addition to determining a minimum stable time step for a given integration method,

we also need to determine the inverse, the minimum edge length, or threshold length,

to maintain stability, given material properties and the actual time step being used, for

use in our cutting routines.

This was also done on an empirical basis, given the fact that the minimum edge length

is proportional to the maximum velocity that a wave can travel through a linear elastic

finite element model:

(EQ 31)

where lt is the minimum threshold length, h is the time step of the simulation, and vmax

is determined using Equation 30. c is an empirical constant, determined through

testing.

The testing method to determine c is straightforward. Given a particular model, the

minimum edge length was found. Assuming that this edge length is lmin, and knowing

vmax, we increased the time step, h, until the model became unstable. We then reduced

this value to give a slight amount of cushion for stability, and set the value of c:

(EQ 32)

Subsequently, during cutting, the element edge lengths and the height of the vertices

are compared to lt, from Equation 31, to determine whether the resultant element will

be unstable or not.

6.2.6 Computational Efficiency

To determine which integration routine would work best overall, we calculated the

trade-off between numerical stability and computational efficiency by examining the

maximum time step that could be utilized without causing instability. We then divided

this maximum time step by the actual time spent performing the computation to

determine how close to, or how much better than, real-time the calculations could run.

hmax

lmin

vmax

----------≤ vmax

λ 2µ+

ρ
----------------=

lt chvmax≥

c
lmin

hmax

1

vmax

----------=

72 CHAPTER 6 SOFT TISSUE MODELING

November 29, 2001 DRAFT

A value of 1.0 would signify that the fastest this model could run would be real-time,

while a value of 5.0 would be five times as fast as real-time, and 0.5 would be half as

fast as real-time. These experiments were run on an SGI O2 with an 180MHz R5000

processor, with a model size of 144 elements, 63 vertices, and 262 edges.

As can be seen in Table 4, the Verlet algorithms perform much better than the Euler

and Runge-Kutta integration methods. Also, due to its better computational efficiency,

the Leapfrog Verlet technique is a little more than 4% better than the Velocity Verlet

method, and is the method used in our simulator.

Integration Type: Max. Time Step Calculation Time Ratio to Real-Time

Euler 0.00015 0.0006 0.25

Runge-Kutta 0.0113 0.0027 4.19

Velocity Verlet 0.0074 0.0007 10.57

Verlet Leapfrog 0.0074 0.00067 11.04

TABLE 4. Computational efficiency vs. numerical stability for integration.

November 29, 2001 DRAFT

73

Chapter 7

Object Interaction

While cutting tissue is the main method surgeons use to modify and effect changes in

patients, it is not the only way in which they interact with the patient. Palpation is used

quite often in determining possible pathologies in tissue and the location of particular

features. Forceps are used for grasping tissue, either to hold it out of the way or to

remove tissue fragments from the surgical field. Lastly, puncture of tissue is not

exactly similar to palpation and grabbing, but needle sticks are used often, and

suturing can be viewed as a series of tissue punctures, after which the punctured tissue

is affixed to its neighbor.

7.1 Palpation of Model

Palpation can be viewed as a method of applying external forces to an object, either

using the fingers directly or through some instrument. A surgeon would use her fingers

to palpate tissue, for example, when feeling for a lump in underlying tissue, while she

might use an instrument to hold tissue back or to palpate tissue while performing

minimally invasive procedures.

To simplify the modeling of interaction with the soft tissue model, the fingertip can be

represented by an implicit sphere, which roughly mimics the fingertip shape.

Instruments are represented as finite length, implicit cylinders, which can push on

objects both along their length and with their endcaps. Implicit shape models, where

the model is described completely by a mathematical equation instead of a set of

surface triangles, are used to simplify the intersection detection and calculations. With

these two shapes, a simple and powerful paradigm for interaction was generated.

Two methods of interaction were implemented using these implicit shapes. With the

sphere model, the first technique described generates interaction and intersections

74 CHAPTER 7 OBJECT INTERACTION

November 29, 2001 DRAFT

between the nodes themselves and the sphere, while the second technique intersects

the surface triangles. For the cylinder only interactions between the cylinder and the

triangles of the surface were modeled. Interacting directly with the surface, instead of

with the individual nodes, proved to be a more reliable and realistic interaction

modality.

7.1.1 Implicit Sphere - Node Interaction

The first method tested for interacting with the soft tissue model was to have the

implicit sphere model intersecting the surface nodes. This method is fast and efficient,

and generates smooth consistent forces.

This method generates external forces on the nodes using a penalty based method. In

the penalty based method, the magnitude and direction of the force vector acting on a

node, and acting back on the user, is dependent on how far into the sphere the node

penetrates. The routine cycles through the list of nodes that are on the surface of the

model, and checks to see which nodes are within the sphere centered at the user’s

current position. It stores pointers of all the nodes which fall within the diameter of the

sphere, and then cycles through that list, and generates the external forces being

applied to the intersected nodes. The external force vectors are also summed, so as to

display the opposite force back to the user, so that she feels the effects of the

deformation she is causing.

This method is demonstrated in Figure 30. As can be seen, two of the surface nodes

intersect the implicit sphere, and external forces are then applied to the nodes. A force

is applied to the sphere, which is equal and opposite of the sum of the forces on the

nodes. This force is displayed back to the user through the haptic interface.

The forces applied to the nodes are:

(EQ 33)

where is the current position of node i, is the current position of the

implicit sphere, r is the radius of the implicit sphere, is the external force being

applied to node i, and k is the stiffness term for the implicit sphere, which determines

how hard the sphere pushes on the nodes. Note that the internal structure of the model

generates the internal forces that cause the nodes to push back on the implicit sphere.

While this technique can work well in most cases, there are clear cases where it fails.

The most obvious case is when the diameter of the sphere is smaller than the average

xi t() xs t()– r:< f i

e
k r xi t() xs t()––()

xi t() xs t()–

xi t() xs t()–
--------------------------------=

xi t() xs t()– r:≥ f i

e
0=

xi t() xs t()
f i

e

7.1 PALPATION OF MODEL 75

November 29, 2001 DRAFT

distance between nodes. In this case, the sphere can just slip right between nodes and

penetrate within the object without generating any forces. A no less significant, but

more insidious difficulty arises when the sphere is on the order of the average distance

between nodes. In this case, the sphere will generate forces at first, but as it pushes into

the model, it effectively spreads the nodes apart and makes a hole in the surface for

itself. The force needed to generate this hole is smaller than might be expected,

because the directions of the forces being applied to the nodes tend to cancel each

other out.

Say, as shown in Figure 31, that there are four nodes arranged in a square on the

surface, or, in two dimensions, 2 nodes connected by an edge. The implicit sphere

starts to interact with those nodes, and after a little bit of time, falls slightly into the

crater at the center of the four nodes. In this case, all the force vectors are pointing to

the center of the sphere, and the components of the force vectors parallel to the surface

cancel themselves out. Therefore, the total force felt by the user can be much less that

the sum of the magnitudes of the component forces. Then, as the user pushes further

into the object, the force vectors acting on the nodes become more parallel to the

surface of the model, and the total force magnitude becomes even smaller. This

continues until the implicit sphere has penetrated to the interior of the model, with the

total force being displayed back to the user becoming smaller and smaller as the

penetration distance increases.

Because of this problem, it was decided that the interaction routines should deal with

the surface of the model, instead of the nodes, to generate a more realistic interaction

modality.

FIGURE 30. Cross-section of implicit sphere interacting with the nodes of a model.

76 CHAPTER 7 OBJECT INTERACTION

November 29, 2001 DRAFT

7.1.2 Implicit Sphere - Surface Interaction

Interacting with the surface triangles instead of the surface nodes is much more

realistic and analogous to real palpations. In this manner, the user interacts with what

she sees, and not some underlying, seemingly arbitrary, grid of points. The closest

example to this method found in the literature is in Berkelman, et al., [4] where an

impulse based method is used between two surfaces to enforce that no inter-

penetration occur between rigid models. But that method was not applied to

deformable models.

This method uses a similar penalty based method as that described in the previous

section, except that instead of using the distance from the node position to the surface

of the implicit sphere, we calculate an approximation of the volume of intersection,

and use that volume as the penalty term. This volume of intersection is shown in

Figure 32. We are looking back from the front, and seeing the surface area that has

been intersected by the implicit sphere. The volume of intersection is then projected

back between the shaded area and the boundary of the sphere.

This routine cycles through the surface triangles of the object, in the same manner as

the sphere-node routine, and first checks to see which triangles are intersecting the

sphere. It first does a simple test to see if the sphere intersects the unbounded plane

that the triangle defines. The test calculates the distance between the sphere center and

the plane, and if the distance between them is greater than the sphere radius, then no

intersection occurs. If the sphere does not intersect that unbounded plane, then it can

not intersect the triangle itself, and no intersection occurs between the implicit sphere

FIGURE 31. Example of hole generated by implicit sphere, in cross-section.

7.1 PALPATION OF MODEL 77

November 29, 2001 DRAFT

and that triangle. If there is an intersection between the implicit sphere and the

unbounded plane, we then check to see if there is an intersection with the triangle

itself. The first part of this extended test is to see if any of the vertices are within the

sphere itself. If so, then an intersection has occurred, the triangle is added to a list of

intersections with the sphere, and the next triangle is tested.

If no vertices are within the interior of the sphere, then an exact intersection test is

done. This test calculates the actual distance between the center of the sphere and the

triangle. The closest point on the triangle could be within the triangle, or on any of its

vertices or edges. We adapted the algorithm demonstrated by [16]. This algorithm

looks at the gradient of the squared distance function between the point in question

and the parametric form of the triangle. First, the parametric coordinates are calculated

for the point where the gradient is zero. If these coordinates are within the interior

triangle, then we use these coordinates. If they are outside the interior, then based on

which region they are in, as shown in Figure 33, we find the parametric coordinates of

the closest point, either on the closest vertex or edge. We then calculate the distance to

the center of the sphere. If this distance is less than the radius of the sphere, then there

is an intersection, and this triangle is added to the list of current intersections.

In testing to find the triangles which are currently intersected, the routine also uses the

previous list of intersected triangles to speed up the calculations. The first time we test

for intersections, we test all the surface triangles to insure that no intersections are

missed. These intersected triangles are stored, and the next time through the routine,

these current intersections are used as the basis for determining which new triangles

are intersected. Instead of testing all the surface triangles, only the previously

FIGURE 32. Cross-section of implicit sphere interacting with surface, showing the

volume of intersection

78 CHAPTER 7 OBJECT INTERACTION

November 29, 2001 DRAFT

intersected triangles and their neighbors are tested. This greatly reduces the number of

intersection tests performed. This speedup relies on continuity of the model, and the

fact that the models simulated are not convex in such a way that the user could contact

two triangles that are not neighbors at the same time. In testing, this has been true and

no problems attributable to this speedup have arisen.

Once we have a list of the triangles that are currently intersected, we then determine

the volume of intersection and forces to apply for each one. The first step is to

determine the fraction of the triangle that is within the volume of the sphere, and the

centroid of that intersected area.

First, we calculate the center and radius of the intersection between the sphere and the

plane that the triangle defines. In this manner, the intersection is now between a circle

and a triangle in two dimensions, as shown in Figure 34. We then determine the

topology of the intersected shape, composed of a set of segments of EDGES and

ARCS. The different types of intersections are shown in Figure 35. The possible cases

are: the projected circle is fully within the triangle; the triangle is fully within the

projected circle; one edge of the triangle is intersected by the projected circle; and two

or more edges are within the projected circle.

In the first case, where the circle of intersection is fully within the triangle, then the

area and centroid of intersection are just those of the circle itself. In the second case,

the area and centroid of intersection are just those of the triangle. If there are two

segments in the intersection, as in the third case, then the area of intersection is part of

a lopped off circle.

FIGURE 33. Closest point on a triangle.

v1

e3

v2e1
v3

e2

i

7.1 PALPATION OF MODEL 79

November 29, 2001 DRAFT

For this lopped off circle portion, we first determine whether or not we want the large

portion of the lopped circle, or the small side, based on whether or not the center of the

intersection circle is within the interior of the triangle or not. Next, we calculate the

area of the lopped portion of the circle:

FIGURE 34. Sphere intersected with surface triangle, and projection of the sphere onto

the plane of the triangle.

FIGURE 35. Different types of intersections between projected circle and triangle.

A
R

C

E
D

G
E

E
D

G
E

E
D

G
E

EDGE

ARC

ARC A
R

C

80 CHAPTER 7 OBJECT INTERACTION

November 29, 2001 DRAFT

(EQ 34)

where As is the area of the small side of the lopped circle and Al is the area of the large

side, r is the radius of the circle, and is half of the angle of the pie shaped segment

from the center of the circle to the two points where the lopping edge intersected the

circle. The shaped of the lopped off portion, and the other side of the circle, is shown

in Figure 36.

Lastly, we calculate the centroid of the lopped portion of the circle. The x-component

is zero, while the equation for that y-component of the centroid is:

(EQ 35)

where ycs is the y-component of the centroid of the lopped section if we are looking at

the smaller side of the circle, and ycl is the y-component if we are dealing with the

large side of the lopping segment.

If there are three or more segments, then there is an interior polygon area, and,

possibly, an additional area created by ARC segments. In the case of the triangle fully

within the projected circle, then there are no ARC segments. First, we calculate the

area of the interior, polygonal section of the intersected triangle, using the method

described in [22]. In the same function, we adapted the method in [3] to a three

FIGURE 36. Area of lopped circle.

As r2 θ θ θsincos–()=

Al πr2 As–=

θ

θ

ycs

2

3
--- r θsin()3

As

---------------------------=

ycl

2

3
---– r θsin()3

Al

----------------------------=

7.1 PALPATION OF MODEL 81

November 29, 2001 DRAFT

dimensional form to calculate the centroid of the polygon. After the centroid of the

interior is calculated, the area and centroids of any ARC segments present are

calculated using Equation 34 and Equation 35 and appropriately added to the total area

and centroid of the intersected triangle section.

After the area of intersection and the centroid for the intersected triangle are

determined, we calculate the distance between the centroid of the triangle and the

sphere center. We also find the normal vector of the triangle. Then, the total force

applied to the triangle is:

(EQ 36)

where is the total force acting on the triangle, k is the gain associated with the

implicit sphere, At is the total area of the triangle intersected with the implicit sphere,

is the centroid of the intersected area, is the position of the sphere center,

is the unit normal of the intersected triangle, and r is the diameter of the implicit

sphere. In this equation, the term:

(EQ 37)

approximates the volume of intersection, with the first term approximating the area of

intersection, and the second term representing the depth of intersection. This is scaled

by the gain, and the direction of force is perpendicular to the intersected triangle.

Ideally, we would then apply this force directly to the centroid of the intersected area.

This is not possible with the lumped masses at the nodes, so we calculate scaling

factors such that the total applied force to the triangle is equal to . The other main

requirement is that the total moment acting on the triangle is equivalent to the moment

generated by the force acting at the centroid . This can be represented by the

set of equations:

(EQ 38)

which can be represented by the matrix equation:

(EQ 39)

f i

t
k At r xc t() xs t()––()n̂t=

f i

t

xc t() xs t()
n̂t

At r xc t() xs t()––()

f i

t

f i

t
xc t()

F1 F2 F3+ + f i

t
=

d1xF1 d+
2x

F2 d+
3x

F3 0=

d1yF1 d+
2y

F2 d+
3y

F3 0=

1 1 1

d1x d2x d3x

d1y d2y d3y

F1

F2

F3

f i

t

0

0

=

82 CHAPTER 7 OBJECT INTERACTION

November 29, 2001 DRAFT

Inverting this and solving, we get:

(EQ 40)

Lastly, since we only need the first column of the inverted matrix, this simplifies to:

(EQ 41)

where the variables are as in Figure 37, with Fi being the force on node i and dix,y

being the distance along the respective axes between the vertex and the centroid of the

intersected area.

Figure 38 shows a snapshot of a model being deformed due to palpation with an

implicit sphere utilizing this method.

FIGURE 37. Equivalent forces at nodes to force at centroid.

F1

F2

F3

1 1 1

d1x d2x d3x

d1y d2y d3y

1–

f i

t

0

0

=

F1

F2

F3

f i

t

1 1 1

d1x d2x d3x

d1y d2y d3y

d2xd3y d3xd2y–

d3xd1y d1xd3y–

d1xd2y d2xd1y–

=

x

y

(d
1x ,d

1y)

(d
3x

,d 3y
)

(d
2
x ,d

2
y)

FT

F1

F3

F2

7.1 PALPATION OF MODEL 83

November 29, 2001 DRAFT

7.1.3 Implicit Cylinder - Surface Interaction

As mentioned before, an implicit cylinder can model many of the instruments used in

surgery. Almost all laporascopic and endoscopic instruments can be modeled by

cylinders or a collection of a small number of cylinders. If needed, a whole finger can

be modeled as a set of small cylinders, possibly with an implicit sphere on the end. In

this section, we will describe the geometric underpinnings of the implicit cylinder

interaction.

The basic paradigm for modeling the interaction between the implicit cylinder and the

model is the same as for the interaction between the implicit sphere and the model.

First, intersections between individual surface triangles and the cylinder are detected.

Then, for each triangle, the area and centroid of intersection within each triangle is

calculated, a volume of intersection is determined, and then the total force due to that

volume is distributed to the three vertices that make up the individual triangle.

The process of determining if the triangle and the cylinder intersect is more

complicated than in the case of the sphere. Not only must the body of the cylinder be

checked, but it must be truncated due to its length, and the endcaps at the two ends of

the finite cylinder must also be checked for intersections.

The first test is a simple test to see if the central axis of the cylinder intersects the

triangle. Next, we determine whether or not the vertices of the triangle are in the

interior of the cylinder. Then, we see if either of the circles bounding the endcaps

intersect the triangle. Lastly, if none of these simple tests determine that an

intersection has occurred, we do a complete test to see if the individual edges of the

triangle pass through the cylinder. In this test, we first determine whether the closest

FIGURE 38. Model deformed by an implicit sphere touching the surface.

84 CHAPTER 7 OBJECT INTERACTION

November 29, 2001 DRAFT

point between the edge and the axis of the cylinder is within the extent of the infinite

cylinder or not. If it is, we then calculate the distance between that closest point and

the surface of the cylinder, and the distance along the edge to the two intersection

points. Next, we check to see if the edge would actually hit either of the two endcaps

of the finite implicit cylinder, instead of either of the calculated intersections along the

infinite extent of the cylinder. Lastly, we check to see if the intersection points are truly

within the length of the finite edge. In this way, we calculate the true intersections with

the cylinder, check to see if the edge would strike an endcap first, and then verify that

the intersection points are within the actual length of the edge and the finite extent of

the cylinder. This process is demonstrated in Figure 39.

After it is determined that a triangle has been intersected by the implicit cylinder, we

have to generate the boundary of the area of intersection that has been created. This is

generated using the information on whether or not individual vertices are inside the

implicit cylinder, whether the endcap boundaries intersected the triangle, and the exact

intersection information generated by the tests between the triangle’s edges and the

cylinder. Each intersection point on the boundary is recorded, and the subsequent type

of edge segment determined in the same manner as in Section 7.1.2.

We also determine the amount of projection needed, based on the angle between the

implicit cylinder and the triangle normal. This is needed because if the cylinder axis

and the triangle normal are not parallel, then the intersection boundary between the

two is an ellipse and not a circle. To account for this, the intersection points are

projected back to a circle on the cylinder. Then, exactly as in the implicit sphere

routines, the centroid and area of intersection are calculated. The centroid is then

projected back to the plane of the triangle, while the area of intersection is scaled by:

(EQ 42)

where Ac is the area projected back onto the triangle, Ap is the area of the projected

intersection, is the normal vector of the triangle, and is the direction of the axis

FIGURE 39. Intersection of a finite edge with a finite, implicit cylinder.

Ac Ap

1

n̂t âc⋅
--------------=

n̂t âc

7.2 GRASPING OF THE SOFT TISSUE MODEL 85

November 29, 2001 DRAFT

of the implicit cylinder. Note that the projected area scales with the inverse of the dot

product . As the cylinder axis moves away from being parallel to the normal of

the triangle, the major axis of the ellipse of intersection increases, as does the area of

intersection. At the limit, when the two axes are perpendicular and the cylinder lies

parallel to the triangle’s plane, the dot product goes to zero and the projected

area becomes infinite. In this case, we use the actual intersection area of the triangle.

Once we have the location of the centroid and the area of intersection, we use the same

calculations as for the implicit sphere method to determine the total force and to divide

it among the three vertices of the triangle. The total force applied to the triangle is:

(EQ 43)

with the force split up according to:

(EQ 44)

7.2 Grasping of the Soft Tissue Model

Grasping and pulling on tissue is often used in surgery for many different purposes.

Clamping tissue and securing it temporarily to keep tissue out of the surgical field,

pulling on a tissue to expose a cut surface, and removing cut tissue from the surgical

field all rely on the ability to affix tissue with a tool. Grasping of the soft tissue model

within the simulator is built upon the interaction routines described in Section 7.1. A

simple tool modeled as an implicit sphere interacts with the object, and when closed,

or activated, grasps the object. This tool model could be easily replaced with a more

realistic model of forceps represented as two small cylindrical elements. Grasping of

the model is demonstrated with three different methods, grasping individual nodes of

the model, grasping individual triangles of the model, and grasping of an arbitrary

point on the surface of the model. While the first method is an analog of the implicit

sphere model interacting with individual nodes, the other two methods more directly

correlate to actual grasping. The second method generates forces based not only the

position of the grabber, but the orientation of it also. The last method does not generate

forces based on the orientation of the grabber, but more accurately relates forces based

on grasping the closest point on the model to the grasper when the user closes the tool,

and is the method most commonly used within our simulator.

n̂t âc⋅

n̂t âc⋅

f i

t
k At r xc t() xs t()––()n̂t=

F1

F2

F3

f i

t

1 1 1

d1x d2x d3x

d1y d2y d3y

d2xd3y d3xd2y–

d3xd1y d1xd3y–

d1xd2y d2xd1y–

=

86 CHAPTER 7 OBJECT INTERACTION

November 29, 2001 DRAFT

7.2.1 Grasping a Single Vertex

One method of grasping a model is to affix the closest node in the model to the

grasping tool. A fixed offset between the current position of the closest node and the

grasper is generated to insure that the grasper appears to be holding a point centered

under the grasping tool. The node would be moved along with the grasper to generate

deformations based on the motion of the tool. Figure 40 shows how this type of

grasping would be set up.

The first step with modeling this type of grasper is to determine whether or not there

are any nodes close enough to the grasper to be within its working range. If there are,

then the closest node is selected as the grasped node, and the current offset between it

and the grasper is determined:

(EQ 45)

where is the current offset within the grasper reference frame, is the transpose

of the rotation matrix between the grasper’s reference frame and the inertial frame,

is the current position of the closest node, and is the current position of

the grasper.

At each time step, then, the current position of the grasped node is set to:

(EQ 46)

The main problem with this method is similar to the difficulty with the palpation based

on nodal positions, in that there are times when the grasping tool may be touching the

FIGURE 40. Grasping of a node.

x
g

o

vc

xg

o
R

g T

0 xc t() xg t()–()=

xg

o
R

g T

0

xc t() xg t()

xc t() xg t() R
g

0 xg

o
+=

7.2 GRASPING OF THE SOFT TISSUE MODEL 87

November 29, 2001 DRAFT

surface but not in contact with any of the nodes. In this case, when the user closes the

grasper, there will be nothing for it to grasp within its reach, which would be

unexpected for the user. We therefore investigated grasping of the closest triangle to

the grasper instead of the closest node.

7.2.2 Grasping of a Surface Triangle

Interacting with the surface triangles solves the difficulty associated with grasping of

the nodes directly. The user will be grasping the triangle he is currently touching, and

will be able to rotate it based on the orientation of the tool, as if the grasper was

clamping the triangle in its jaw, instead of just fixing on a point. Figure 41 shows an

example of the initial grasp and calculations of offsets for this method of grasping.

This method is set up the same way as the method of grasping a node, except that

instead of finding the closest node, the closest triangle within the grasping radius of

the tool is located. Once the closest triangle is found, grasping offsets are calculated

for the three vertices that make up the triangle:

(EQ 47)

where is the current offset within the grasper reference frame of the ith vertex of

the closest triangle, is the transpose of the rotation matrix between the grasper’s

reference frame and the inertial frame, is the current position of the ith vertex of

the triangle, and is the current position of the grasper.

At each time step, then, the current position of each vertex of the grasped, closest,

triangle is set to:

FIGURE 41. Grasping of a triangle.

x
g1

o

x g0
o

xgi

o
R

g T

0 xi t() xg t()–()= i 1…3=

xgi

o

R
g T

0

xi t()
xg t()

88 CHAPTER 7 OBJECT INTERACTION

November 29, 2001 DRAFT

(EQ 48)

In this manner, the triangles current state, both position and orientation, with respect to

the grasper is fixed until the grasper is opened.

7.2.3 Grasping a Point Within a Triangle

One other method for grasping a model is to affix the grasper to the model with a stiff

spring damper system. While there is no direct analog to this within the range of

medical instruments, it can be useful as a method of directly applying forces instead of

displacements to the modeled tissue.

Grasping can be viewed as shown in Figure 42. When grasping is initiated, the closest

point on the model to the center of the grasper is found, and then that point is

connected to the grasper with a spring and damper.

The force applied to the closest point, and back to the user through the grasping tool, is

proportional to the displacement between the tool and the closest point and the relative

velocity between the two:

FIGURE 42. Grasping the closest point on the model to the grasping tool.

xi t() xg t() R
g

0 xgi

o
+=

xc

7.3 NEEDLE PUNCTURE MODELING 89

November 29, 2001 DRAFT

(EQ 49)

where is the force applied to the object at the closest point to the grasper, k and b

are the stiffness and damping terms for the grasper, is the current position of the

closest point, is the current position of the grasper, and is the force applied

back to the grasping tool. Note that the relative velocity term is dotted with the unit

vector between the closest point and the grasper. This insures that only the velocity

along the direction of the applied force is included in the damping term. Lastly, the

value of r that is used in Equation 49 is adjusted when grasping begins so that the total

force applied by the user, and back to the user, is the same as the force right before

grasping commenced, when the grasper was palpating the model.

(EQ 50)

where ra is the adjusted radius that is used in Equation 49 and is the magnitude of

the force acting on the grabber at the time step before grasping commenced.

is the total force being applied to the closest point on the model. This force needs

to be divided between the three nodes in a manner that does not generate any moments

about the closest point. To do this, we utilize Equation 41 to generate the relative

fractions of the total force that each vertex receives.

Figure 43 demonstrates a rectangular model being grasped using this method, with the

grasping tool being pulled away, to the left, from the model. This model generates the

best feeling response of the three described, although the second method can be used if

control of the orientation of the grasped tissue is desired.

7.3 Needle Puncture Modeling

Placing a needle and puncturing soft tissue is done countless times in surgery. It is

done when giving injections, when placing sutures, and when performing biopsies.

The simulation does not currently simulate the placement of sutures, but does generate

the forces created by the motion of the needle through the soft tissue. We have

implemented a simple sharpness model for the needle to initiate penetration, and then

track the motion and path of the needle through the object to generate transverse

forces.

f c

e
k ra xc t() xg t()––()

xc t() xg t()–

xc t() xg t()–
---------------------------------- +=

b ẋc t() ẋg t()–()
xc t() xg t()–

xc t() xg t()–
----------------------------------⋅

 xc t() xg t()–

xc t() xg t()–

f g

e
f c

e
–=

f c

e

xc t()
xs t() f g

e

ra

1

k
--- fp xc t() xg t()–+=

fp

f c

e

90 CHAPTER 7 OBJECT INTERACTION

November 29, 2001 DRAFT

7.3.1 Needle Sharpness Model

Needles are not infinitely sharp, so there is some deformation of the underlying tissue

before puncture initially occurs. Looking at this as an elastic material, puncture will

occur when the local stress passes a threshold for that tissue type. From an

experimental point of view, though, we can simply look at the force being generated

by the needle before puncture occurs. Using the now familiar penalty based method, a

needle pushing on the tissue will generate the force:

(EQ 51)

where is the force applied to the object by the needle, k is a stiffness term

associated with the needle, is the current position of the closest point on the

surface to the tip of the needle, and is the current position of the tip of the

needle. Before puncture occurs, this force would be transferred to the vertices of the

triangle using Equation 41.

If this force passes some threshold, based on tissue properties, sharpness of the needle,

and the direction of the needle with respect to its velocity, then puncture will occur.

This force threshold can be represented as:

(EQ 52)

FIGURE 43. Example of soft tissue model being grasped and pulled upon.

f p

e
k xp t() xn t()–()=

f p

e

xp t()
xn t()

f t()T

n f
T

t

s

v̂n t() x̂n t()⋅
---------------------------------=

7.3 NEEDLE PUNCTURE MODELING 91

November 29, 2001 DRAFT

where is the threshold force for the needle attempting to puncture the model at

the current time step t, s is sharpness value for the needle, is the force threshold

value for this particular tissue type, is the direction that the needle is pointing,

and is the direction that the needle is moving. The sharpness value is greater or

equal to zero, where a value of zero would imply that the needle is infinitely sharp, and

the threshold to initiate puncture is zero, and increasing values signify a needle that is

more and more dull, and therefore will require more force to initiate puncture. The

sharpness value can also be viewed as the radius of curvature of the tip of the needle.

The last term, the dot product between the needle direction and the direction the

needle is moving, encodes whether the needle is pushing, along its length, into the

tissue or not. This would return a value ranging from one, if the needle is moving in

the direction it is pointing, down to zero if the needle is just pushing from its side. An

example of the initiation of a needle puncture is shown in Figure 44.

7.3.2 Propagation of the Needle Path

The first thing that is done after puncture has commenced, and at each time step during

puncture, is to determine if the needle has been pulled back through the last triangle it

passed through. As the needle is pushed into the soft tissue, we track all the triangles

that it passes through, and record their local intersection coordinates in an ordered list,

from first to last intersection point. So, to see if the needle is being pulled back out of

the model, we check to see if the tip of the needle has passed back through the triangle

of the last intersection point. If so, then we remove that intersection point from the list.

If the needle tip did not pass back through the last intersection point, we then check the

other triangles of the tetrahedron that the last intersection point is on, to see if the

needle moved forward out of that element in the last time step. If so, we add the new

punctured triangle to the list. These two possibilities are shown in Figure 45.

FIGURE 44. The beginning of puncture with a needle.

f t()T

n

f
T

t

x̂n t()
v̂n t()

92 CHAPTER 7 OBJECT INTERACTION

November 29, 2001 DRAFT

Once the list has been updated with the motion of the triangle, we check to see if the

list is empty. If the list is empty, then the needle pulled completely out of the model. If

the list is not empty, then we generate the transverse forces to apply to the model based

on the motion of the needle perpendicular to its recorded path.

7.3.3 Transverse Forces Generated by a Needle

After puncture is initiated, the needle will trace a path through the soft tissue. If the

needle moves away from this path that it has traced, then forces should be generated to

move both the tissue over towards the current position of the needle and the needle

over towards the path that it had started tracing through the soft tissue.

For each intersection point that the needle passed through, we find the closest point on

the needle, and generate a force to apply to the intersection point based on this

displacement:

(EQ 53)

where is the force to the applied at the intersection point, k is the stiffness measure

of the needle, is the current position of the closest point on the needle to ,

the current position of this intersection point. This force is then split up amongst the

three vertices of the triangle using Equation 41. The force applied back to the needle is

the opposite of the sum of the forces applied to the triangles:

(EQ 54)

FIGURE 45. Checking the backward or forward motion of the needle.

f I

e
k xc t() xI t()–()=

f I

e

xc t() xI t()

f N

t f Ii

e

i I N()∈
∑–=

7.3 NEEDLE PUNCTURE MODELING 93

November 29, 2001 DRAFT

where is the total force acting on the needle, I(N) is the set of intersected triangles,

and is the force acting on the ith intersection point. Because the haptic interface

we use can only display 3 degrees of freedom, we do not calculate the moment

generated on the needle by the forces the user generates within the model.

A graphical example of how the forces on the individual intersection points are

ascertained is shown in Figure 46. Note that in Figure 47 the object is deflected

slightly due to the displacement of the needle from along its initial intersection points,

represented by the dots in the wireframe image.

FIGURE 46. Force generation due to needle deflection.

FIGURE 47. Example of object deformation caused by needle deflection.

f N

t

f Ii

e

94 CHAPTER 7 OBJECT INTERACTION

November 29, 2001 DRAFT

November 29, 2001 DRAFT

95

Chapter 8

Haptics

Surgical simulation requires a method of interaction to be used for training and

practice for surgery. While a simple graphical interface could be used, possibly with a

6 degree of freedom input device, haptic feedback provides the most powerful and

useful modality for a complete surgical simulator. The basic concept behind haptic

feedback is to allow the user to feel, through a physical device, the modeled object and

the effect of any action that she initiates. The device can interface with the user

through a simple manifestation that is familiar to the user. One available haptic device

has an endoscopic gripper handle, while the device we use has a simple cylindrical

handle.

8.1 Haptic Feedback in a Surgical Simulator

The basic purpose of haptic feedback is to display forces to the user based on the

current position of the device and the current state of the simulator. A typical update

cycle is shown in Figure 48. At the beginning of the update cycle, the current state of

the device is determined. The current state of the device is then fed to the simulator,

which updates its current internal state based on the position of the device and any

internal parameters and models. Additionally, the simulation calculates the forces and

moments to display to the user based on the state of the device and the simulation.

Then, the forces and moments from the simulator are transformed and displayed back

to the user.

For the device that is used in this simulation, a haptic update rate of 1000Hz is

considered ideal to ensure device stability [26]. The difficulty arises in that the

simulator does not always update at 1000Hz, and has an indeterminate rate that can

vary based on computational load and can intermittently drop down to a rate around

96 CHAPTER 8 HAPTICS

November 29, 2001 DRAFT

100Hz. Therefore, a method to generate intermediate forces based on slow and

indeterminate updates is required.

8.2 Intermediate Representation

An intermediate representation was implemented, similar to the method described in

[1]. The basic concept is to take a slow update rate simulation running as a haptic

client, and run a simple, local model on the haptic server at a high update rate. This

removes the effects of a zeroth order hold on the haptics system, where the haptic

device might display a constant force, F1, for a time step of 5ms, and then a constant

force, F2, for a time step of 3ms, and so on. With the intermediate representation, a

local model that would generate forces similar to F1 would run for 5ms, and then after

the next update, a local model that would generate forces similar to F2 would run until

the next update. The possible difference between the two haptic modes is illustrated in

Figure 49. The graph on the left demonstrates the force displayed without a local

model, while the graph on the right demonstrates how the force can vary with a locally

updated model. In this way, an indeterminate, slow, and erratically updated simulation

would still give rise to a stable haptic experience.

Additionally, with a local model, the force displayed can be much more realistic.

Without a local model, a certain constant force is displayed to the user, even if she

moves in such a way as to break contact with the simulated object. Even though the

force displayed to the user should be zeroed, there might be a noticeable lag before the

force is zeroed due to the slow update rate. With a local model of the object updated at

the full 1000Hz, if the user attempts to break contact with the simulated object, not

only will the force be zeroed at the boundary of the local model, the force will

correctly ramp down from the initial value to zero in a smooth fashion.

Three different types of local simulation were implemented and are described in the

following sections. The first method, servoing to a setpoint, demonstrates a first, and

naive, attempt for generating local models. The other two methods, local plane and

FIGURE 48. Basic haptic feedback loop.

1000 Hz

Updatevirtual

model with

current state

Generate forces

based on current

state of virtual

model

Display forces

to user

Get current

device state

8.2 INTERMEDIATE REPRESENTATION 97

November 29, 2001 DRAFT

line models, are the methods used in our simulator to generate appropriate forces that

behave in a correct manner as the user’s position changes with respect to the model.

8.2.1 Setpoint Local Model

The local setpoint model utilizes a setpoint calculated by the object simulation based

on the current position of the user. For instance, utilizing a penalty based method for

generating forces, where the force magnitude and direction are determined by the

penetration of the user’s position within the model, we can project the current position

of the user back out to the surface of the model. Given this, forces can then be

generated by servoing to the setpoint. For instance, in Figure 50 we see that the probe

has penetrated slightly into the modeled object. That position is projected out to the

surface, which is then communicated to the haptics server as the current setpoint.

The equation for the force generated by servoing to a point is:

(EQ 55)

FIGURE 49. Typical force levels with and without intermediate representation with slow

update rates.

FIGURE 50. Example of servoing to a point.

5ms 10ms 15ms 5ms 10ms 15ms

D
is

p
la

y
ed

 F
o
rc

e

D
is

p
la

y
ed

 F
o
rc

e

Pc

Pp

Ps

Pt

Pt

Pt

F k– Pt Ps–()=

98 CHAPTER 8 HAPTICS

November 29, 2001 DRAFT

where is the force displayed back to the user, k is a gain term, Pt is the current

position of the haptic device at time t, and Ps is the current position of the setpoint

since the last update.

An extension of this method is to extrapolate and move the setpoint based on the

recent motion of the setpoint. In this manner, we can account for the motion of the

user. To do this, we move the setpoint along the line projected from the last two

setpoints, and then servo to the moving setpoint. The equation for the motion of the

setpoint is:

(EQ 56)

where is the position of the extrapolated setpoint at the current timestep t, tu is the

timestep when was last received, is the most recent received setpoint set at

timestep tu, is the previous received setpoint set at timestep tu-T, and T is the

number of timesteps that passed between the previous two updates of the setpoint.

Using this equation, the setpoint moves evenly along the path predicted by the

previous two updates of the setpoint, as shown in Figure 51, and does not try to hold

the user to a particular point in space.

There are clear problems with both of the setpoint methods. The first method generates

a very sticky experience. If the user is interacting with a sphere, and is feeling the

shape in a circular motion, then as she tries to move the device around the sphere, it is

as if she is stuck to one point momentarily. Then, that point moves closer to her current

location, at which point the device can move around the sphere a little more, given a

similar force as generated at the previous setpoint. In this manner, a path can be traced

around the surface, but it is punctuated by many hangups along the way. Additionally,

this method does not deal appropriately with the user trying to pull away from the

object. With a setpoint, if the user pulls back, away from the sphere, the local

simulation still servos to the setpoint, thereby imparting a sticky feeling to the object.

To partially alleviate one of these problems, the extrapolated setpoint helps with the

feeling of little hangups as the user traces a path. This works well as long as the user

maintains an even pace. But, if the user tries to stop, for example, the setpoints will

FIGURE 51. Extrapolated setpoint example.

F

P
t

s 1
t tu–

T
------------–

 2Pu T– Pu 2T––()
t tu–

T
------------ 2Pu Pu T––()+=

P
t

s

Pu Pu

Pu T–

Received Setpoints

Predicted Setpoints

Extrapolated Setpoints

8.2 INTERMEDIATE REPRESENTATION 99

November 29, 2001 DRAFT

continue to extrapolate beyond the user’s current position, and try to pull the user

along the path of the setpoints. In this way, the simulation feels partly alive, since it

adds energy back to the user. Also, this enhancement does not help alleviate the

stickiness problem of the general setpoint method. Because of these problems, we

investigated other local models for generating forces to display.

8.2.2 Constraint Plane Local Model

Interacting with a plane can generate a much more realistic experience than servoing

to a point. The constraint plane local model method generates that experience by

taking the position and direction of a plane and generating forces to keep the user on

the positive side of that plane. In this manner, there is no attachment to a particular

point, and no stickiness. In Figure 52, the plane shown is the local approximation of

the surface, and forces are generated while the user is on the negative side of the plane.

As before, the simulation determines the closest point on the model to the user’s

current position. The surface normal at that point is then calculated, and the position

and direction are communicated to the haptics server. On the haptic server side, given

the position and direction of the constraint plane, the signed distance from the current

position of the user to the constraint plane is calculated. If it is greater than or equal to

zero, then no force is applied because the user has stopped interacting with the surface.

Otherwise, the force is proportional to the depth of penetration, utilizing a penalty

based method:

(EQ 57)

where d is the depth of penetration, or the distance between the current position and

the constraint plane, k is the gain or stiffness of the plane, and is the normal of the

plane.

The constraint plane method is used for all palpations of the deformable models. It

also is used for grasping, where the force generated by the deformation of the model is

FIGURE 52. Constraint plane for local modeling.

Pc

F

F

Pt

n̂

Pt

Pt

n̂

F=0

d 0:≥ F 0=

d 0:< F kd n̂–=

n̂

100 CHAPTER 8 HAPTICS

November 29, 2001 DRAFT

used to create a local plane, pointing in the direction of the force vector generated by

the grasping subroutine.

8.2.3 Line Constraint Local Model

The last local method implemented, to enable the simulation of needle puncture, is a

line constraint mode. In this mode, forces are generated to move the user back toward

a line in space, for instance, a line demarcating the current path of a needle. In this

model, the user is free to move along the line, but will feel perpendicular forces if she

tries to move away from the line in space, as shown in Figure 53.

The data communicated to the local simulation running on the haptic server is similar

to the plane model. The object simulation determines the direction of the constraint

and position of the constraint line, which, for a needle stick, would be the location and

direction of the path traced out by the needle up to its current location. Given that

information, the haptic server then calculates the closest point on the constraint line to

the current position of the device. The force generated and displayed to the user is

proportional, then, to the vector between this closest point and the current position of

the device:

(EQ 58)

where is the force displayed back to the user, k is a gain term, Pt is the current

position of the haptic device at time t, and Pc is the closest position on the constraint

line. Note that at this point that the equation for is very similar to that in the setpoint

model. The significant difference is that the setpoint in the line constraint mode, as the

closet point can be viewed, is free to move along the constraint line, and therefore does

not generate the stickiness present in the setpoint model.

FIGURE 53. Line constraint for local modeling.

F

F

Pt

Pt

PtF

F k– Pt Pc–()=

F

F

November 29, 2001 DRAFT

101

Chapter 9

Implementation Details

The general theory of the different components that make up this thesis were described

in the previous chapters. While these descriptions are complete, as with any

experimental system, there are many details of the implementation which directly

affect the performance and quality of the work. In this chapter, we will describe the

general layout of the experimental system, how the soft tissue model was created and

updated, the way that the interaction and cutting routines fit within the scope of the

simulator, and details on the haptics and graphics subsystems.

9.1 System Setup and Implementation

The simulator is composed of three main subsystems, the soft tissue simulation and

interaction routines, the graphical subsystem, and the haptics subsystem. The soft

tissue simulation sits at the core of the simulator, with the modification and interaction

routines running concurrent with it. The graphics subsystem is another part of the

main simulator, updating the graphical scene at 30Hz. Running on a separate machine

is the haptics server. This server was implemented separately to insure the safety of the

haptic device, so that it would behave gracefully if the simulator itself were to crash.

The system can be viewed in block-diagram form in Figure 54. The system starts up

by either reading in from a data file or creating from scratch the soft tissue model. The

tools that might be used are then created, and the graphics system started up. Next, the

simulator tries to find a haptics server to generate user position updates. Once it

connects to a haptic server, it starts updating the model’s state and calling the

appropriate interaction routines, based on position data it receives from the haptic

server. At each time step, the simulator receives an updated user position from the

haptics server. It then runs the interaction routine that is currently selected, and

102 CHAPTER 9 IMPLEMENTATION DETAILS

November 29, 2001 DRAFT

modifies or perturbs the model as necessary. The last step is to run the position

integration routine. After that, the simulation returns, and then repeats. The simulation

routines are run on a 1000Hz interrupt driven rate. If the process takes more than 1ms,

then the process runs as fast as possible. The graphics routine runs at 30Hz. It runs as

a separate process from the soft tissue simulation, and uses semaphores to insure that

the data it is reading is not currently in use by the soft tissue routines.

The haptics server runs on a separate machine, and is started up separately. On startup,

it initializes the haptic device, if necessary, and then opens a communications port and

waits for a client to connect. Once a client connects, it receives commands from the

client on changing the state of the device controller, such as rezeroing the device or

enabling or disabling forces, and updates of the intermediate representation for

generating forces. The haptics server also cycles on a 1000Hz interrupt, and at each

cycle, it checks to see if it has received an update of the intermediate representation. If

it has, it updates that representation, whereas if it doesn’t, it just continues to run with

the previous local model. It then generates forces to display to the user based on the

FIGURE 54. Block diagram of system flow.

Setup link to

haptics client

Initialize model

and tools

Setup link to

haptics server

Get current user

position

Interface current

tool with model

Update model

based on tool state

Initialize haptic

device

Get current

haptic state

Send current state

to haptics client

Check for new

local model?

Send local model

to haptics server

Update local

model

Generate force

based on local

model
Yes

No

Communications

Process Flow

9.2 LINEAR ELASTIC SOFT TISSUE MODELING 103

November 29, 2001 DRAFT

current intermediate representation. The last part of the cycle is to broadcast the

current position of the device back to the user. The server sends current position data

back to the client at twice the rate it receives data, up to 1000Hz. This insures that the

client does not receive a flood of updates at a rate much higher than it is running at. For

example, if the server receives updates at 200Hz, which is the rate that the soft tissue

simulation would be running at, then it only sends out updates at 400Hz. When the

simulator next checks for updates, it might have two updates there, and it discards the

older one.

The soft tissue system is currently implemented to run on a single or dual processor

SGI. Results shown in this thesis were generated on a dual processor SGI Octane, with

250MHz R10000 processors. One processor handled the simulation of the soft tissue

and the interaction routes, while the other processor handled the graphics rendering.

The graphic board in this machine is an MXI. The haptics server runs on a single

processor SGI Indigo-2 Extreme with a 250MHz R4400 processor. Communications

between the two machines runs over 100Base-T ethernet.

9.2 Linear Elastic Soft Tissue Modeling

There are a great many different details on how our soft tissue model is implemented.

In this section, we discuss the basis for our choice of tissue parameters and how the

model is allocated and stored.

9.2.1 Tissue Parameters

While a linear elastic finite element model is not the best method for simulating soft

tissue, due to its internal structure, we attempted to find tissue parameters that were

roughly correct and appeared appropriate. The stiffness value used in the homogenous

model of the liver was 2e6 N/m^2, which is similar to the value used in [38] and to the

values determined for bovine livers in [11]. Tissue density of 1.05 g/cm^3 was

obtained from [21], and is used for iteratively updating the model state. The Raleigh

damping parameters were determined empirically to damp out motion of the model in

an appropriate time frame. A value of 1e-5 1/sec was used for , and 2e-4 m*sec was

used for .

9.2.2 Object Construction within the Simulator

Finite element models can be implemented in many different ways. A popular method

for generating a fast model is to precompute a stiffness matrix for the model and invert

it ahead of time. Then, updating the state of the model is quite simply a large matrix

multiplication. This is not possible for this model due to the modifications and changes

that can occur in the model. To help facilitate the modification of the model, we

α
β

104 CHAPTER 9 IMPLEMENTATION DETAILS

November 29, 2001 DRAFT

needed a memory structure that would be easily and quickly updated, for both

removing and adding elements to the model.

In this vein, we implemented the model as a linked list of elements, nodes, and edges.

We used a linked list instead of a fixed size array because we can not predict the

number of elements that might end up in the model after cutting occurs. If we had a

fixed size array, and generated more elements due to a cut than could fit in that array, it

might take a disproportionate amount of time to resize and move the array. On the

other hand, adding elements individually only requires the allocation of small chunks

of memory. This requires a fair amount of memory overhead, but ensures that there

should always be enough room to add more elements, assuming that the machine itself

hasn’t run out of memory. The basic data structures are shown in Figure 55.

The object data type contains the basic pointers to the contents of the model. It

contains linked lists of all the elements, nodes, edges, and surface triangles in the

model. It also contains the tissue parameters and other values of import to the model.

The object data type is passed to every function, to facilitate locating, and removing if

necessary, any part of the model. The lists of vertices and edges are used in the model

update routines to quickly compute, for every node, the forces applied to it.

FIGURE 55. Basic data structures for the soft tissue model.

Object

List of elements

List of vertices

List of edges

List of surface

triangles

Model parameters

Element

Vertex[4]

Edge[6]

Neighbors[4]

Geometry

matrices[4]

Model parameters

Surface Triangle

Pointers[4]

Edge

Vertex[2]

List of elements

Stiffness matrix

Vertex

Current state

External force

Total Force

Stiffness matrix

List of edges

List of elements

Mass

9.3 INTERACTION ROUTINES 105

November 29, 2001 DRAFT

Elements are the next largest data structures, and contain pointers to the four nodes

and six vertices that make up the element. The element data structure also includes the

calculated M vectors to speed up any modification of the element that may be

necessary. Lastly, they also contain pointers to their neighboring elements to help with

quickly propagating intersection detection throughout the model.

The edge data structure contains pointers to its two endpoints, its stiffness matrix, and

a list of elements that it is a member of.

The vertex data structure contains its current state: position, velocity, and acceleration,

and the external and total forces acting on it. It holds the vertex’s mass and stiffness

matrix. It also contains the list of edges and elements that the vertex belong to.

Both the edge and vertex data structures include lists of the other data types that they

belong to, in order to facilitate checking of certain conditions and to help remove other

structures when the underlying data type is removed. This allows quick and easy

modification of the model. For instance, if we had to remove a vertex, all the edges and

elements that use that vertex will have to be removed to. It is much faster to store a list

of those edges and vertices than to have to search through the object lists to find which

edges and elements need to be removed.

9.3 Interaction Routines

The routines that implement the different types of interaction that the user can have

with the model, cutting, palpation, grasping, and needle puncture, are implemented as

routines that can plug into the soft tissue simulation. In this way, it is very easy to

create and add a new type of interaction routine, and to cycle through the available

routines.

All the different routines act in the same manner within the framework of the

simulation system: the state of the interaction tool is updated by the position update

from the haptics server, the tool is tested against the model, resultant forces or

modifications are then applied to the model, and then the routines return to the process

that called them. In this case, the soft tissue modeling routine, which then feeds into

the position integration state.

All of the tools include the relevant data for their action. For instance, the cutting tool

includes the length and size of the cutting blade, the position and orientation of the

blade, and the length of the handle. It also contains any data structures it needs to

facilitate and speed up the cutting process, like a list of the currently intersected

elements. The same is true for the other routines.

106 CHAPTER 9 IMPLEMENTATION DETAILS

November 29, 2001 DRAFT

9.4 Haptics System

The haptics system uses the PHANToM device from Sensable Technologies, Inc. The

haptics environment is built on a simple package that encapsulates the basic i/o

package that ships with the PHANToM. The PHANToM is a version 1.5 model, which

provides 3 degrees of freedom of feedback, and 6 degrees of freedom of input. While

this device can not generate torques to display to the user, it is adequate for an

experimental system.

9.5 Graphics System

The graphics subsystem was written in OpenGL on the SGI, and uses the glut library

to perform simple windowing functions. The system can display the model as either a

wireframe or surface rendered model, and shows graphical models of the user’s tools

within the workspace. Zooming is implemented, as is arbitrary rotation utilizing the

Arcball routines from [44]. The monitor is considered to be the inertial reference

frame, and rotations in the graphical view are transferred to the object data structure as

the gravity direction, so that gravity always points down on the monitor. In this way,

with gravity enabled, the object can be rotated and simple deformations of the model

can be tested and shown. Simple stereo rendering is also implemented.

November 29, 2001 DRAFT

107

Chapter 10

Examples and Performance

The results of the progressive cutting techniques described in the previous chapters

can be quantified in two ways. The first numerical result is the decrease in

computational load the minimal set creation of these techniques has when compared

with generating full sets. The second numerical result is the deviation of the generated

cut surface from the surface traced out by the user. The second half of this chapter

demonstrate examples of the simulator running with two types of model, a simple

rectangular model, and a liver model courtesy of Project Epidaure at INRIA.

10.1 Changes in Update Rate

When the cutting tool passes through the model, all intersected elements are modified.

The update rate of the state of the model is dictated by the size of the model, so the

number of elements directly impact how quickly the model runs. When the described

cutting routines process an intersected element, they generate between five and nine

new elements, compared to seventeen new elements for a general subdivision, or the

complete removal of the intersected element. Given the passage of the cutting tool

through the model shown in the upper left in Figure 56, we generated subdivisions to

demonstrate the following techniques:

1. the general minimal element creation method

2. cutting with snapping

3. and the complete removal of any intersected elements.

The number of elements that would have been created with a general subdivision,

along with a comparison of computation times and expected update rates are shown in

Table 5.

108 CHAPTER 10 EXAMPLES AND PERFORMANCE

November 29, 2001 DRAFT

As we can see, using the general subdivision method the model more than tripled in

size. Using the progressive cutting method, the model size increases by a much smaller

FIGURE 56. Completed cuts for showing changes in update rates.

Original

Number of

Elements

Original

Integration

Time

Number of

Elements

After

Cutting

Integration

Time After

Cutting

Decrease in

Integration

Time over

General

Subdivision

General Subdivision 72 0.00030 232 0.00109a -

Element Removal 72 0.00030 62 0.00023 79%

Progressive Cutting 72 0.00030 128 0.00061 44%

Cutting w/Snapping 72 0.00030 106 0.00050 54%

TABLE 5. Changes in update rate and number of elements based on cutting method.

a. Expected integration time.

10.2 DISTANCE OF CUT SURFACE FROM USER’S PATH 109

November 29, 2001 DRAFT

number. The increase in the number of elements was more than two and a half times

less, 6.6 new elements vs. 17 new elements for every element replaced. This

translated, for this model, into 44% better integration time. Looking at the results for

cutting with snapping, we achieved a similar improvement in the integration time and

number of elements after cutting, with almost four times fewer new elements (4.4 new

elements per cut element) and a 54% decrease in integration time after cutting.

Completely clearing out intersected elements, predictably, resulted in fewer elements

and a faster update time after cutting, but at the expense of cutting and model accuracy.

10.2 Distance of Cut Surface from User’s Path

When the user moves a cutting tool through a model, intersections between the path of

the cutting tool and the edges and faces of the model are generated. These intersections

represent a discrete form of the path of the cutting tool. They also represent the ground

truth of our knowledge of how the tool’s path interacts with the model. This ground

truth is generated by the progressive cutting method described in Section 5.3, since it

only uses the intersection points created by the tool.

The second numerical comparison is based on the distance of the generated cut surface

from this ground truth. Using the technique of completely removing any intersected

surfaces, this metric would be the mean distance of the vertices that make up the

removed elements from the ground truth path. For the cutting with snapping method,

the metric is the mean distance of the vertices used on the generated cut surface from

the ground truth path. The equation for this distance is:

(EQ 59)

where is the mean distance to the ground truth surface, is the number of vertices

on the cut surfaces, V is the set of those vertices, is the position of the ith vertex,

and is the closest point on the ground truth surface to the ith vertex.

These calculations are performed on the undeformed models after the cutting occurs.

The same path as in Figure 56 is used, and the actual cut surfaces are shown in

Figure 57. First is the surface traced by the progressive cutting routines, which uses

the precise intersection points. The second image is of the snapped progressive cutting

example. Note how the surface is similar to the exact surface, but deflects away at

points which were initially too close to edges and vertices of the original elements.

The last image is of the surface generated by completely removing the intersected

elements. Unlike the previous two images, where only one apparent surface is visible

because the upper and lower cut surfaces are coincident, this surface has two distinct

parts, since part of the original model was removed. Another example of cutting

through a rectangular object is shown in Figure 58 and Figure 59. An example of the

d
1

nv

----- xi x
t

c–
i V∈
∑=

d nv

xi

x
t

c

110 CHAPTER 10 EXAMPLES AND PERFORMANCE

November 29, 2001 DRAFT

results of cutting a liver model with the different methods is shown in Figure 60 and

Figure 61. Results for these examples are tabulated in Table 6.

FIGURE 57. Cut surfaces generated by the same motion as in Figure 56.

FIGURE 58. Second example of completed cuts demonstrating different cutting methods.

10.2 DISTANCE OF CUT SURFACE FROM USER’S PATH 111

November 29, 2001 DRAFT

FIGURE 59. Cut surfaces generated by the same motion as in Figure 58.

FIGURE 60. Liver model example (Exact, snapped, clearing cuts).

112 CHAPTER 10 EXAMPLES AND PERFORMANCE

November 29, 2001 DRAFT

\

FIGURE 61. Cut surfaces of model shown in Figure 60. (Exact, snapped, clearing cut).

Rect. Example 1 Rect. Example 2 Liver Example

Progressive Cutting 0.000 (mm) 0.000 0.000

Removal of Intersected Elements 14.050 16.008 13.833

Cutting with Snapping 3.318 2.368 2.162

TABLE 6. Mean distance from ground truth.

FIGURE 60. Liver model example (Exact, snapped, clearing cuts). (Continued)

10.3 PROGRESSIVE CUTTING WITH TEMPORARY SUBDIVISIONS 113

November 29, 2001 DRAFT

As can be seen from these results, while the progressive cutting does follow the path

exactly, cutting with snapping is still significantly better than just removing the

intersected elements, which generates the maximum deviation of the cut surface from

the path traced out by the user. These distances are in relation to a typical edge length

of 30mm for the rectangular model and an average edge length of 26.522mm for the

liver model. Element removal, instead of subdivision, causes an average deflection

from ground truth of half of the typical edge length. The deflection from the ground

truth caused by snapping is on the order of 10% of the typical edge length. In the two

rectangular examples, the improvement in actual distance from the ground truth

surface due to cutting with snapping is 4.23 and 6.76 times. The improvement in the

liver model example is 6.40 times better. Additionally, the snapping method does not

remove mass and volume from the model. In the liver model, the clearing method, as

shown by the distance between cut surfaces at rest in Figure 61, removes 3.5% of the

object’s volume. This reduces the mass of the liver from 3.470kg to 3.351kg, a change

of 119 grams. The snapping method does not change the model’s volume or mass at

all.

10.3 Progressive Cutting with Temporary Subdivisions

Figure 62 shows the results of an example of cutting through a rectangular object that

is under tension. There were 576 tetrahedra in the rectangular object before cutting, on

a 4x6x4 cubical lattice, and 954 afterwards. 60 elements were cut, removed, and

replaced by a new set of 312 tetrahedra, an average of 5.2 elements added for every

element removed.

10.4 Interaction with a Rectangular Model

Testing of the simulator was done with a rectangular model to facilitate seeing

deformations and performing predictable cuts and other interactions with the object.

The basic shape of the object was shown in Figure 29, where the image on the left is of

the undeformed object and the image on the right is the object under the influence of

gravity. The nodes on the top of the model are anchored in space. This model is

rendered in random colors to facilitate viewing of the deformation. The model used in

the following figures is made up of 20 cubical blocks, 30mm on a side, where each

block consists of six tetrahedra. The undeformed state of this model is shown in

Figure 63. This model requires 0.188 milliseconds of computation per cycle to update

the model state while using a time step of 1.0 milliseconds.

Figure 64 shows the effects of the user interacting with the model. The first image

shows the user palpating the object with an implicit sphere model, while the next

image shows the effects of the user grasping the model and pulling to the side.

114 CHAPTER 10 EXAMPLES AND PERFORMANCE

November 29, 2001 DRAFT

The next two figures show the results of the user cutting the rectangular model with

snapping. Figure 65 shows a partial cut through the object, while Figure 66 shows a

complete cut through the object, with a simple displacement of the cut portion.

FIGURE 62. Progressive cutting, with temporary subdivisions, of a rectangular model.

10.4 INTERACTION WITH A RECTANGULAR MODEL 115

November 29, 2001 DRAFT

FIGURE 63. Undeformed image of basic rectangular model

FIGURE 64. Palpating and grasping the rectangular model.

116 CHAPTER 10 EXAMPLES AND PERFORMANCE

November 29, 2001 DRAFT

FIGURE 65. Partial cut of rectangular object.

FIGURE 66. Complete cut of rectangular object.

10.5 SIMULATION OF LIVER MODEL 117

November 29, 2001 DRAFT

10.5 Simulation of Liver Model

The underlying simulation of the liver model is identical to that of the rectangular

model. The only difference is that the liver model is read in by the simulator from a

data file, while the rectangular model is generated at runtime. The basic shape of the

liver is shown in Figure 67. Note, that the surface nodes on the left side of the liver are

anchored in space, to keep the liver fixed in space during interactions. A fixed surface

to rest it on could have been used, but the collision detection required for that was

deemed too expensive. The model consists of 467 nodes that make up 1967 elements.

The simulation runs at approximately 300Hz, and has a time step of 0.001 seconds. As

currently implemented, this model does not achieve synchronicity and is not real time.

Figure 68 shows the liver model deformed under the effect of gravity. As was

mentioned, the nodes on the left side of the model are fixed in space, so only the right

side of the liver is affected by the gravitational force.

Figure 69 shows the liver being palpated by an implicit sphere, similar to pushing on it

with a fingertip. Figure 70 shows the effect of the user palpating the liver with a

cylindrical object, similar to a straight probe. This shows the effects of the implicit

cylinder modeling.

FIGURE 67. Undeformed model of the liver.

118 CHAPTER 10 EXAMPLES AND PERFORMANCE

November 29, 2001 DRAFT

FIGURE 68. Model of the liver under the effect of gravity.

FIGURE 69. Liver model palpated by implicit sphere.

10.5 SIMULATION OF LIVER MODEL 119

November 29, 2001 DRAFT

The last four figures show the effects of cutting the liver model. Figure 71 and

Figure 72 shows a partial cut that has been grasped by the user and pulled to open up

the cut. Figure 73 and Figure 74 show the effect of a complete cut of the model of the

liver.

Update Rate Considerations

Based on the results in [28], we foresee at least an increase by a factor of 2 the number

of nodes than can be modeled in real-time by moving to a system based on an Intel

Pentium, running at 1.0 GHz or above. Meseure and Chaillou [28] show that the

computation times between a R10000 at 194 MHz and a Pentium II at 300 MHz are

very similar. These results were generated on a R10000 at 250 MHz, so moving to a

Pentium IV at 1.6 GHz could result in a computational increase by a factor of a 4.

FIGURE 70. Palpating the liver model with an implicit cylinder.

120 CHAPTER 10 EXAMPLES AND PERFORMANCE

November 29, 2001 DRAFT

FIGURE 71. Partial cut of the liver, front view.

FIGURE 72. Partial cut of the liver, bottom view.

10.5 SIMULATION OF LIVER MODEL 121

November 29, 2001 DRAFT

FIGURE 73. Complete cut of the liver, frontal view.

FIGURE 74. Complete cut of the liver, bottom view.

122 CHAPTER 10 EXAMPLES AND PERFORMANCE

November 29, 2001 DRAFT

November 29, 2001 DRAFT

123

Chapter 11

Conclusions

The main goal of this thesis was to address the problem of cutting tissue within the

framework of an interactive physically based soft tissue surgical simulation.

Physically based linear elastic finite elements were used as a fairly simple model to

generate the simulation of the soft tissue. We focused on cutting of the soft tissue as a

surgical technique that occurs with great frequency but that can impact the state of the

simulation a great deal. This thesis demonstrated cutting techniques to generate

accurate cut surfaces that impact the computational load of the simulator as little as

possible. Different methods were shown that traded off accuracy of the cut surface

with stability of the resultant model. These techniques can be easily utilized in other

systems as methods to model modification of any tetrahedral mesh. By demonstrating

these results, we have shown that it is possible to cut through models while

maintaining the accuracy of the cut, preserving the volume of the model, and

maintaining the underlying efficiency and stability of the simulator.

We also demonstrated other interaction techniques required for surgical simulators:

palpation, grasping, and puncture. These were all demonstrated on an interactive

system utilizing both a graphical and a haptic interface.

11.1 Contributions

The main thrust of this thesis was to generate accurate cuts through models of soft

tissue. The cutting of these tetrahedral models is designed to impact the total number

of elements, nodes, and edges as little as possible. In reaching this goal, a method for

testing the geometry of the elements was required due to limitations in the underlying

soft tissue simulation utilizing a tetrahedral linear elastic finite element mode.

124 CHAPTER 11 CONCLUSIONS

November 29, 2001 DRAFT

The cutting methods demonstrated follow the surface swept out by the user while

preserving the volume of the element. The progressive cutting within elements

technique models cut elements while the user is moving within these elements by

creating temporary subdivisions, thereby generating as realistic updates of the model

as possible. This method creates temporary subdivisions based on the current position

of the cutting tool and the true intersection points on faces and edges that the cutting

path has already passed through. In this way, there is no lag between the motion of the

user and the updating and subdividing of the model. The cut surface within the model

also accurately follows the path that the user has traced out with the cutting tool. With

the temporary subdivision, the user can see the complete cut as it is created. The main

drawback with this technique is that very small elements can be created right after the

cutting tool passes a boundary, which can cause instability in the model. Progressive

cutting between elements does not generate small temporary elements, but can create

small permanent elements.

Progressive cutting between elements with snapping guarantees that the cutting

routines do not create any elements small enough to cause instability. The cutting of

elements lags behind the motion of the user by approximately one element length, but

it does not create any unstable elements. The cut path follows the path that the user

traces with the cutting tool, but does not always lie on it, due to the snapping of

intersection points to maintain stability. We have demonstrated the ability to generate

stable and efficient cuts through tetrahedral meshes that closely approximate the path

traced out by the user.

Both of these methods were implemented in such a fashion that they generate the

minimum number of new elements to fill the cut element, impacting the computational

load of the simulator as little as possible. Other methods either create the maximum

numbers of elements to fill up a subdivided element, or remove the intersected element

completely. This method generates a minimal set of new elements to replace the cut

element, while maintaining the volume of the model.

In addition to cutting, other aspects of interactive simulators were shown. Different

methods for interacting with deformable models were developed. New techniques for

palpation, with either an implicit model of a sphere or a cylinder, for grasping of

triangles or points on the surface, and for simulating needle puncture were described.

While previous methods have mainly generated forces based on a penalty method

based solely on penetration depth, we looked at the volume of intersection to more

accurately model the resultant forces. Lastly, a method for displaying forces based on

a local model of an erratically updated simulation was also described.

We have shown a general method for cutting soft tissue within an overall interactive

surgical simulator. This cutting generates an accurate cut while maintaining the

stability and the efficiency of the model as much as possible.

11.2 FUTURE WORK 125

November 29, 2001 DRAFT

11.2 Future Work

While we have demonstrated accurate and efficient interaction with and modification

of soft tissue models, there are areas within this research and the experimental

simulator which could be explored further.

The implementation of these techniques, while leading towards a realistic surgical

simulator, is not yet polished enough to be used in an actual system. The cutting

routines do not always handle extraordinary cases appropriately. Also, cutting through

the model multiple times, for instance if the user was extending a cut, does not always

work and can cause the simulator to crash. The force that is displayed to the user can

behave erratically, which reduces the realistic nature of the simulator. Forces generated

by the needle subroutines can also fluctuate as the needle is pulled out of the model,

causing large instantaneous forces which can pull the interface handle out of the user’s

hand. The current simulator also only generates 3 degrees of freedom of feedback,

which can be insufficient when grasping tissue, or levering between objects in the

surgical field. Methods to co-locate the haptic device and the graphical image would

also greatly increase the realism for practicing open techniques. For minimally

invasive techniques, changing the physical setup to match the operating theater would

improve the similarity between the two modalities.

The soft tissue model can be more accurately modeled with a technique other than a

linear elastic finite element model. Non-linear elasticity, volume constraints, and other

new methods for more accurately modeling tissue can be investigated for their

applicability in a fast, real time simulator. Other methods for updating the state of the

model are also possible. More efficient explicit solvers, or implicit solvers, could be

investigated.

With regards to the user interface, the graphical model can be improved, using texture

maps and showing surrounding tissue, for example. The haptic modeling could be

improved by overlaying texture and friction onto the local haptic model. Interpolation

between updates from the haptics client and other methods for improving the

intermediate representation are possible.

Interaction between the user and the model can also be improved through better

methods to generate forces to apply to the model. A more accurate method for

calculating the projected volume of intersection for penalty methods and impulse

based methods so that no penetration will actually occur during palpation are possible.

Collision detection routines can also be improved. The method for propagating cuts

and interaction through the model utilizes spatial coherency to accelerate collision

detection during a cut. While this did prove sufficient for the models tested, a more

global method will probably be required in actual use, due to a more crowded and

126 CHAPTER 11 CONCLUSIONS

November 29, 2001 DRAFT

complex field of interest. For example, a palpation tool may actually push on two parts

of a liver while holding it back. Or extending a cut may actually bring the scalpel blade

into contact with two disjoint surfaces due to deformations caused by the initial cut.

Lastly, the main improvement to the cutting techniques would be to implement a

snapping version of progressive cutting within elements. One possible method would

be to hold an intersection at the element boundary until the user has moved far enough

into the model to generate a stable, temporary subdivision. Then, once the user gets

close to another boundary of the element, snap the temporary intersection forward to

that boundary. Once the user passes through the boundary, generate the final

subdivision as described in the thesis.

November 29, 2001 DRAFT

127

References

[1] Adachi, Y., Kumano, T., Ogion, K., “Intermediate Representation for Stiff Virtual

Objects”, Proceedings IEEE Virtual Reality Annual International Symposium, pp 203-

210, 1995.

[2] Baraff, D. and Witkin, D. “Large Steps in Cloth Simulation.” Proceedings of

SIGGRAPH, 1998.

[3] Bashein, G., and Detmer, P. “Centroid of a Polygon.” Graphics Gems IV.

Academic Press, Boston, MA, 1994.

[4] Berkelman, P., Hollis, R., Baraff, D., “Interaction with a Realtime Dynamic

Environment Simulation using a Magnetic Levitation Haptic Interface Device”,

Proceedings of the 1999 International Conference on Robotics & Automation, 1999.

[5] Berkley, J., et al. “Fast Finite Element Modeling for Surgical Simulation.”

Medicine Meets Virtual Reality 7, 1999.

[6] Bielser, D., and Gross, M.H. “Interactive Simulation of Surgical Cuts.”

Proceedings of the Eighth Pacific Conference on Computer Graphics and

Applications, Hong Kong, China, 2000.

[7] Bielser, D., Maiwald, V., Gross, M.H. “Interactive Cuts through 3-Dimensional

Soft Tissue.” Proceedings of the Eurographics ‘99 (Milano, Italy, September 7-11,

1999), Computer Graphics Forum, Vol. 18, No. 3, C31-C38, 1999.

[8] Bro-Nielsen, M., and Cotin, S. “Real-time Volumetric Deformable Models for

Surgery Simulation Using Finite Elements and Condensation”, Proceedings of

Eurographics ‘96.

[9] Bro-Nielsen, Helfrick, Glass, et al., (HT Medical), “VR Simulation of

Abdominal Trauma Surgery”, Medicine Meets Virtual Reality 6, 1998.

[10] Chen, D.T. and Zeltzer, D. “Pump It Up: Computer Animation of a

Biomechanically Based Model of the Muscle Using the Finite Element Method.”

Computer Graphics (SIGGRAPH), num. 26, July 1992.

128 REFERENCES

November 29, 2001 DRAFT

[11] Chen, E., et al. “Young’s Modulus Measurements of Soft Tissues with

Applications to Elasticity Imaging.” IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control. Vol. 43, No. 1, January 1996.

[12] Cotin, S., Delingette, H., “Real-time Surgery Simulation with Haptic Feedback

using Finite Elements”, Proceedings of the 1998 International Conference on Robotics

& Automation, Belgium, 1998.

[13] Cotin, S., Delingette, H., Ayache, N., “Efficient Linear Elastic Models of Soft

Tissues for Real-Time Surgery Simulation”, INRIA T.R. No. 3510, October 1998.

[14] d’Aulignac, D., Balaniuk, R., Laugier, C., “A Haptic Interface for a Virtual Exam

of the Human Thigh.” Proceedings of the IEEE 2000 International Conference on

Robotics & Automation, San Francisco, CA, April, 2000.

[15] Debunne, G., et al. “Dynamic Real-Time Deformations Using Space & Time

Adaptive Sampling.” Proceedings SIGGRAPH 2001, pp. 31-36, 2001.

[16] Eberly, D., “Distance Between Point and Triangle in 3D,” Magic Software,

http://www.magic-software.com/Documentation/pt3tri3.pdf.

[17] Frank, A., et al. “Finite Element Methods for Real-Time Haptic Feedback of

Soft-Tissue Models in Virtual Reality Simulators.” Proceedings IEEE Virtual Reality

2001, Japan, March 2001.

[18] Ganovelli, F., et al. “A Multiresolution Model for Soft Objects Supporting

Interactive Cuts and Lacerations.” Computer Graphics Forum, Vol. 19, No. 3, pp.

C271-81, 2000.

[19] Gibson, S., et al, “Volumetric Object Modeling for Surgical Simulation”,

Medical Image Analysis, vol. 2, num. 2, pp 121-132, 1998.

[20] Gibson, S. and Mirtich, B. “A Survey of Deformable Models in Computer

Graphics.” TR-97-19, Mitsubishi Electric Research Laboratories, Cambridge, MA,

1997.

[21] Gray, H. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918.

Bartleby.com, 2000. www.bartleby.com/107/. September, 2001.

[22] Green and Hatch. “Fast Polygon-Cube Intersection Testing,” Graphics Gems V.

Academic Press, Boston, MA, 1995.

[23] Liu, A., and Joe, B., “Relationship Between Tetrahedron Shape Measures.” BIT,

Vol. 34, No. 2, pp. 268-87, 1994.

[24] Keeve, E., et al. “Deformable Modeling of Facial Tissue for Craniofacial Surgery

Simulation.” Computer Aided Surgery, Vol. 3, No. 5, pp. 228-38, 1998.

 REFERENCES 129

November 29, 2001 DRAFT

[25] Kühnapfel, U., Çakmak, H.K., and Maaß, H., “Endoscopic Surgery Training

Using Virtual Reality and Deformable Tissue Simulation.” Computer & Graphics, Vol.

24, No. 5, pp. 671-82, Oct. 2000.

[26] Massie, T, Salisbury, J.K., “The PHANToM Haptic Interface”, Proceedings of

the ASME Winter Annual Meeting, 1994.

[27] Mazura, A., Seifert, S., “Virtual Cutting in Medical Data”, Medicine Meets

Virtual Reality, San Diego, CA, 1997.

[28] Meseure, P., and Chaillou, C. “A Deformable Body Model for Surgical

Simulation.” The Journal of Visualization and Computer Animation, Vol. 11, No. 4,

pp. 197-208, September 2000.

[29] Miyazaki, Ueno, Yasuda, et al., “A Study of Virtual Manipulation of Elastic

Objects with Destruction”, IEEE International Workshop on Robot and Human

Communication, 1996.

[30] Möller, T. and Trumbore, B., “Fast, minimum storage ray-triangle intersection”,

Journal of Graphics Tools, 2(1):21-28, 1997.

[31] Mor, A., “5DOF Force Feedback Using the 3DOF Phantom and a 2DOF

Device”, Salisbury, JK and Srinivasan, MA (Eds.), Proceedings of the Third

PHANToM Users Group Workshop, AI Lab Technical Report No. 1643, MIT,

December 1998.

[32] Mor, A., Gibson, S., Samosky, J., “Interacting with 3-Dimensional Medical Data-

Haptic Feedback for Surgical Simulation”, Salisbury, JK and Srinivasan, MA (Eds),

Proceedings of the First PHANToM Users Group Workshop, MIT AI Tech Report No.

1596, 1996.

[33] Mor, A. and Kanade, T. “Modifying Soft Tissue Models: Progressive Cutting

with Minimal New Element Creation.” Proceedings of Medical Image Computing and

Computer-Assisted Intervention - MICCAI 2000, Vol. 1935, October, 2000.

[34] Moutsopoulos and Gilles, “Deformable Models for Laporascopic Surgery

Simulation”, Computer Networks and ISDN Systems 29, pp 1675-1683, 1997.

[35] O’Brien, J. and Hodgins, J. “Graphical Models and Animation of Brittle

Fracture.” Proceedings SIGGRAPH 1999, pp. 137-146, 1999.

[36] O’Toole, R., et al, “Assessing Skill and Learning in Surgeons and Medical

Students Using a Force Feedback Surgical Simulator”, Proceedings of Medical Image

Computing and Computer Assisted Intervention - MICCAI ‘98, Cambridge, MA,

1998.

[37] Picinbono, G., et al. “Anisotropic Elasticity and Force Extrapolation to Improve

Realism of Surgery Simulation.” Proceedings of the IEEE International Conference on

Robotics & Automation, San Francisco, CA, 2000.

130 REFERENCES

November 29, 2001 DRAFT

[38] Picinbono, G, Delingette, H., and Ayache, N. “Non-Linear and Anisotropic

Elastic Soft Tissue Models for Medical Simulation.” Proceedings of the IEEE

International Conference on Robotics & Automation, Seoul, Korea, 2001.

[39] Press, W.H., et al. Numerical Recipes in C. The Art of Scientific Computing.

Second Edition. Cambridge University Press, 1992.

[40] Popa, D., Singh, S., “Creating Realistic Force Sensations in a Virtual

Environment: Experimental System, Fundamental Issues and Results”, Proceedings of

the 1998 International Conference on Robotics & Automation, Belgium, 1998.

[41] Radetzky, A., et al. “Elastodynamic Shape Modeling in Virtual Medicine.”

Proceedings Shape Modeling International '99, Japan, 1999.

[42] Reinig, K., “Haptic Interaction with the Visible Human”, Proceedings of the First

PHANToM Users Group Workshop, MIT AI Tech Report No. 1596, 1996.

[43] Reznik and Laugier, “Dynamic Simulation and Virtual Control of a Deformable

Fingertip”, Proceedings of IEEE International Conference on Robotics and

Automation, Minneapolis, MN, 1996.

[44] Shoemake, K., “Arcball Rotation Control.” Graphics Gems IV. Academic Press,

Boston, MA, 1994.

[45] Singh, S., et al, “Design of an Interactive Lumbar Puncture Simulator with

Tactile Feedback”, Proceedings of the 1994 International Conference on Robotics &

Automation, San Diego, CA., 1994.

[46] Siira, J. and Pai, D., “Haptic Texturing - A Stochastic Approach”, Proceedings of

IEEE International Conference on Robotics and Automation, Minneapolis, MN, 1996.

[47] Song, G., Reddy, N., “Towards Virtual Reality of Cutting: A Feasibility Study”,

Proceedings of 16th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society, Baltimore, MD, 1994.

[48] Suzuki, N., et al, “Virtual Surgery System Using Deformable Organ Models and

Force Feedback System with Three Fingers”, Proceedings of Medical Image

Computing and Computer Assisted Intervention - MICCAI ‘98, Cambridge, MA,

1998.

[49] Swarup, N., “Haptic Interaction with Deformable Objects Using Real-Time

Dynamic Simulation”, MS Thesis, MIT, 1995.

[50] Swope, W., et al. “A Computer Simulation Method for the Calculation of

Equilibrium Constants for the Formation of Physical Clusters of Molecules:

Application to Small Water Clusters.” Journal of Chemical Physics, Vol. 76, No. 1

pp. 637-49, 1982.

 REFERENCES 131

November 29, 2001 DRAFT

[51] Tanaka, A., Hirota, K., Kaneko, T., “Virtual Cutting with Force Feedback”,

Proceedings IEEE 1998 Virtual Reality Annual International Symposium, pp 71-75,

Atlanta, GA, 1998.

[52] Tarr and Salisbury, “Haptic Rendering of Visco-Elastic and Plastic Surfaces”,

Second PHANToM User’s Group Workshop, 1997.

[53] Terzopolous, D., Platt, J., et al. “Elastically Deformable Models”, Computer

Graphics Proceedings, Annual Conference Series, Proceedings of SIGGRAPH 87, pp

205-214, 1987.

[54] Terzopolous, D. and Waters, K. “Physically-Based Facial Modeling, Analysis,

and animation”, Journal of Visualization and Computer Animation, 1:73-80, 1990.

[55] Trotts, I., et al, “Simplification of Tetrahedral Meshes”, Proceedings of

Visualization ‘98, pp 287-95, North Carolina, 1998.

[56] Verlet, L, “Computer “Experiments” on Classical Fluids. I. Thermodynamical

Properties of Lennard-Jones Molecules.” Physical Review, Vol. 159, 1967.

[57] Zhuang, Y. and Canny, J. “Real-time Simulation of Physically Realistic Global

Deformation.” IEEE Vis’99. San Francisco, California. October 24-29, 1999.

[58] Zienkiewicz, O., Taylor, R., The Finite Element Method, McGraw-Hill Book

Co., London, Fourth Edition, 1988.

	Progressive Cutting with Minimal New Element Creation of Soft Tissue Models for Interactive Surgi...
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Motivation and Background
	2.1 Difficulties of an Interactive Surgical Simulator
	2.2 Cutting as an Integral Part of Surgery

	Chapter 3 Previous Related Work
	3.1 Model Modification
	3.2 Deformable Modeling
	3.2.1 Surface-Based Models
	3.2.2 Volume-Based Models

	3.3 Haptic Interface

	Chapter 4 Experimental Simulator Overview
	Chapter 5 Cutting
	5.1 General Cutting Procedure
	5.2 Minimal New Element Creation
	5.2.1 Element Subdivision
	5.2.2 Generation of the Minimal Set
	5.2.3 Comparison of Minimal Sets to General Subdivision
	5.2.4 Intersection Detection and Propagation
	5.2.5 Intersection Testing
	5.2.6 Intersection Coordinates

	5.3 Progressive Cutting
	5.3.1 Progressive Cutting Between Elements
	5.3.2 Progressive Cutting with Temporary Subdivisions
	5.3.3 Different Possible Cases for Temporary Progressive Cuts
	5.3.4 Progressive Cutting: Cutting Tip Within Model
	5.3.5 Progressive Cutting: Topology Change

	5.4 Stable Cutting With Snapping
	5.4.1 General Concept
	5.4.2 Geometry Test for Element Stability
	5.4.3 Where Intersection Points Snap
	5.4.4 Ordering of Possible Cases to Find Stable Subdivision
	5.4.5 New Vertex Types
	5.4.6 Paired Vertex Above or Below the Plane
	5.4.7 Different Possible Cases For Snapped Cuts

	Chapter 6 Soft Tissue Modeling
	6.1 Tensor Mass System
	6.1.1 Element Properties
	6.1.2 Nodal and Edge Properties

	6.2 Position Integration
	6.2.1 Nodal Dynamics
	6.2.2 Euler Integration
	6.2.3 Runge-Kutta Integration
	6.2.4 Verlet Integration
	6.2.5 Element Stability
	6.2.6 Computational Efficiency

	Chapter 7 Object Interaction
	7.1 Palpation of Model
	7.1.1 Implicit Sphere - Node Interaction
	7.1.2 Implicit Sphere - Surface Interaction
	7.1.3 Implicit Cylinder - Surface Interaction

	7.2 Grasping of the Soft Tissue Model
	7.2.1 Grasping a Single Vertex
	7.2.2 Grasping of a Surface Triangle
	7.2.3 Grasping a Point Within a Triangle

	7.3 Needle Puncture Modeling
	7.3.1 Needle Sharpness Model
	7.3.2 Propagation of the Needle Path
	7.3.3 Transverse Forces Generated by a Needle

	Chapter 8 Haptics
	8.1 Haptic Feedback in a Surgical Simulator
	8.2 Intermediate Representation
	8.2.1 Setpoint Local Model
	8.2.2 Constraint Plane Local Model
	8.2.3 Line Constraint Local Model

	Chapter 9 Implementation Details
	9.1 System Setup and Implementation
	9.2 Linear Elastic Soft Tissue Modeling
	9.2.1 Tissue Parameters
	9.2.2 Object Construction within the Simulator

	9.3 Interaction Routines
	9.4 Haptics System
	9.5 Graphics System

	Chapter 10 Examples and Performance
	10.1 Changes in Update Rate
	10.2 Distance of Cut Surface from User’s Path
	10.3 Progressive Cutting with Temporary Subdivisions
	10.4 Interaction with a Rectangular Model
	10.5 Simulation of Liver Model

	Chapter 11 Conclusions
	11.1 Contributions
	11.2 Future Work

	References

