
Progressive Distributed Top-k Retrieval in Peer-to-Peer Networks

Wolf-Tilo Balke1 Wolfgang Nejdl2 Wolf Siberski2 Uwe Thaden2

1University of California, Berkeley, USA
balke@eecs.berkeley.edu

2L3S, University of Hannover, Germany
{nejdl, siberski, thaden}@l3s.de

Abstract

Query processing in traditional information manage-
ment systems has moved from an exact match model to
more flexible paradigms allowing cooperative retrieval
by aggregating the database objects’ degree of match for
each different query predicate and returning the best
matching objects only. In peer-to-peer systems such
strategies are even more important, given the potentially
large number of peers, which may contribute to the re-
sults. Yet current peer-to-peer research has barely started
to investigate such approaches. In this paper we will dis-
cuss the benefits of best match/top-k queries in the context
of distributed peer-to-peer information infrastructures
and show how to extend the limited query processing in
current peer-to-peer networks by allowing the distributed
processing of top-k queries, while maintaining a mini-
mum of data traffic. Relying on a super-peer backbone
organized in the HyperCuP topology we will show how to
use local indexes for optimizing the necessary query rout-
ing and how to process intermediate results in inner net-
work nodes at the earliest possible point in time cutting
down the necessary data traffic within the network. Our
algorithm is based on dynamically collected query statis-
tics only, no continuous index update processes are nec-
essary, allowing it to scale easily to large numbers of
peers, as well as dynamic additions/deletions of peers.
We will show our approach to always deliver correct re-
sult sets and to be optimal in terms of necessary object
accesses and data traffic. Finally, we present simulation
results for both static and dynamic network environments.

1. Introduction

With information needs emerging beyond a simple ex-
act match paradigm, databases and information systems
have since long catered for extended retrieval paradigms
like top-k retrieval or skyline queries. Query languages
like SQL over relational databases have been extended to
facilitate rank- and/or score-based retrieval algorithms
assigning a degree of match with respect to all query
predicates to each database object and then aggregating
the rank/score values to get only the set of best matching
answers. Moreover, the new retrieval paradigms allow for
the direct incorporation of user preferences into queries
for a more cooperative retrieval behavior [9]. Whereas

too specific query predicates under the exact match para-
digm would far too often lead to empty result sets, the
notion of best matches and relative importance of predi-
cates can thoroughly satisfy a user’s information needs
independent of the respective database instance. Espe-
cially top-k queries [12] delivering a well defined set of k
best answers according to a user-provided, probably
weighted compensation function, have shown their broad
applicability in various areas like Web search engines,
mobile database applications, or content-based retrieval in
multimedia collections or digital libraries.

Recently the provisioning of information has, how-
ever, entered a new stage of flexibility beyond centralized
database servers that process queries. Peer-to-peer net-
works offer flexible access to large collections of infor-
mation, data objects or documents for exchange. Emerg-
ing from relatively simple architectures to exchange e.g.
audio files peer-to-peer networks have been developed to
complex ad-hoc data management systems that can al-
ready be employed to connect communities in different
areas like e-learning or collaborative working (cf. [15],
[14], [1]). Together with more sophisticated applications
also the basic processing of queries has evolved. Relying
on backbone structures of so-called super-peers, queries
are not necessarily flooded through the entire network
anymore, but can be purposefully routed to relevant parts
of the peer-to-peer network or even single peers using
centralized, distributed or even synchronized local in-
dexes [15], [17]. Recent studies show that these ap-
proaches can drastically reduce the data traffic within the
network. Up to now, however, the use of these indexes
was restricted to exact match queries, each index pointing
to (super-)peers that are known to provide a certain piece
of information.

In this paper we will extend traditional query process-
ing in peer-to-peer networks by allowing the distributed
processing of top-k queries with a minimum of object
data traffic. Relying on a super-peer backbone organized
in the HyperCuP topology, we will show how to use so-
phisticated local indexes for optimizing the necessary
query routing and how to process intermediate query re-
sults in inner network nodes at the earliest possible point
in time. Furthermore, we propose dynamic query driven
index updates, which avoid continuous index update traf-
fic in a P2P environment, while working well especially
for Zipf-like distributions of queries, i.e. after an initial
build-up phase over 90% of queries are index hits.

The rest of this paper is organized as follows: section 2
will provide an overview on related work in top-k query
processing in traditional information systems and current
query processing in peer-to-peer networks. Section 3 will
present our distributed top-k retrieval algorithm and give
an insight in how it works. A discussion of the algo-
rithm’s correctness and the optimality of data traffic will
be given in section 4, followed by a detailed practical
evaluation in section 5. We will conclude with a short
summary and an outlook on further interesting open re-
search problems.

2. Top-k Retrieval Model and Related Work

Since the top-k paradigm has been first introduced into
the area of database systems a large number of different
algorithms have been proposed, see e.g. [12], [13]. Algo-
rithms for top-k retrieval in databases generally try to
minimize the number of database objects that have to be
accessed before being able to return a correct result set of
the k best matching objects. Improving the naïve algo-
rithm that simply aggregates scores for all database ob-
jects, an optimal algorithm was given for multimedia re-
trieval [13], databases [12] and Web searches [8]. To be
more exact, this basic algorithm was proven to be optimal
in minimizing the necessary object accesses for top-k
querying [12]. Basically all algorithms distinguish be-
tween different query predicates evaluating different
characteristics of database objects, which often even have
to be retrieved from various subsystems or Web sources.
Each subsystem assesses numerical score values (usually
normalized to [0, 1]) to each object in the collection. The
physical implementation of object accesses always
strongly depends on the application area and usually dif-
fers from system to system. Then the integration of the
individual subsystems’ score lists is performed on a cen-
tral server. As a rule minimizing the number of necessary
object accesses and thus also the overall query runtimes is
paramount to build practical systems (with real-time con-
straints) like discussed in [4].

In the context of peer-to-peer networks, only very few
authors have explored retrieval algorithms taking rank-
ings into account. PlanetP [11] concentrates on peer-to-
peer communities in unstructured peer-to-peer networks
with sizes up to ten thousand peers. They introduce two
data structures for searching and ranking, which create a
replicated global index using gossiping algorithms. Each
peer maintains an inverted index of its documents and
spreads the term-to-peer index. Based on this replicated
index a simple TFxIDF-ranking algorithm can be imple-
mented.

Aberer and Wu provide a good theoretical background
in [2] where they present a ranking algebra as a formal
framework for ranking computation. They show that not
only one global ranking should be taking into account,

but several rankings must be seen in different contexts.
Their ranking algebra allows aggregating a number of
local rankings into global rankings.

Another important aspect is to take different peer ca-
pabilities into account, as peers often vary widely in
bandwidth and computing power. Exploiting these differ-
ent capabilities - as discussed in [20] - can lead to a more
efficient network architecture, where a small subset of
peers, called super-peers, takes over specific responsibili-
ties, like e.g. query routing. Only a small percentage of
nodes are super-peers, but these are assumed to be highly
available nodes with relatively high computing capacity.
Peers join the network directly connecting to one of the
super-peers. Super-peer based P2P infrastructures usually
exploit a two phase routing architecture, which routes
queries first in the super-peer backbone, and then distrib-
utes them to the peers connected to the super-peers.

Fig. 1: Simple HyperCube and an implicit spanning tree

One important decision is how to arrange the super-

peers in order to optimize the routing of queries in the
network. In our Edutella P2P-network [16] they are or-
ganized in the HyperCuP topology [18]. The HyperCuP
algorithm is capable of organizing super-peers into a re-
cursive graph structure from the family of Cayley graphs,
out of which the hypercube is the most well-known to-
pology. Having N super-peers in a network, the Hyper-
CuP ensures a maximal path length of log2 N thus allow-

ing for optimal broadcasting as well as implicit spanning
trees from each node of the network. The basic query
routing algorithm in HyperCuP topologies works as fol-
lows: All edges are tagged with their dimension in the
hypercube. A node invoking a request sends a message to
all its neighbours, tagging it with the edge label on which
the message was sent. Nodes receiving a message forward
it only via edges tagged with lower edge labels (see [18]
for details). Using this topology we will have an optimal
number of hops independently from the node that poses
the query. Figure 1 shows the implicit spanning tree for a
message originating from peer SP1 (since Hypercubes
are symmetric, any super-peer can be the root of a span-
ning tree). Please note that the Hypercube is not limited to
a special dimensionality and that super-peers can join and
leave the network with very little overhead, allowing for a
flexible approximation of a genuine hypercube structure.

Additional routing indexes maintained by these super-
peers can restrict broadcasts to relevant super-peers direc-
tions [17] and can be used to enable optimized processing
of more complex queries in a peer-to-peer network [5].
However, additional ranking and top-k optimization is
necessary in such an environment and will be discussed in
detail in the current paper.

3. A Distributed Top-k Retrieval Algorithm
for Peer-to-Peer Networks

In this section we will present our algorithm for basic
top-k querying capabilities in P2P networks with mini-
mum transfer of object data. According to the distributed
nature of the retrieval and the P2P network we will divide
the distributed retrieval algorithm into three parts that are
respectively executed by

• the super-peer initially receiving the query,
• the super-peers in the HyperCuP backbone,
• and the local peers at each super-peer.

Since a dissemination of global knowledge should be
avoided due to the overhead of data transmission, a basic
concept of our algorithm is to locally evaluate as many
parts of the query as possible. This means only the super-
peer receiving the query (i.e. the root node of our implicit
HyperCuP spanning tree) needs full information to con-
trol the execution of the queries in order to guarantee a
correct top-k result set with a minimum transmission of
data. This super-peer will hand on the query to the rele-
vant super-peers along the backbone of adjacent super-
peers, which in turn will forward the query to their rele-
vant adjacent super-peers and connected local peers,
without having to have full information about how the
query answering is progressing. The local peers will just
execute the query over their local object collections or
databases and retrieve some best matching objects. We
will present all relevant steps in detail in the following.

For the scope of this paper we will rely on a set of su-
per-peers managing a number of local peers and intercon-
nected by a backbone using the HyperCuP topology. We
will also assume all peers to be cooperative and provide
normalized scores that can be compared to distinguish the
quality between different objects (see section 4.1 for a
detailed discussion). Each super-peer SP manages an in-
dex ISP in that information about which of its local peers
and adjacent super-peers contributed results for answer-
ing recently posed queries like shown in [5]. These in-
dexes can be maintained efficiently even in rather volatile
P2P networks to hold “current enough” information about
object distributions. All index entries are time-stamped
and expire after a certain time, which is set depending on
the volatility of the network. Thus the individual index
entries can be kept “up-to-date enough” to allow for im-
proved query processing even in volatile networks.

Let us now present the algorithm to answer a top-k
query Q posed by peer P to super-peer SP. The algorithm
is entirely controlled by super-peer SP, which – whenever
necessary – poses requests to connected peers and super-
peers for localized information gathering. Since all super-
peers are organized in a HyperCuP topology and SP is the
root node of an implicit spanning tree containing all su-
per-peers, we will use the notion of adjacent super-peers
of SP, i.e. those super-peers that can directly receive mes-
sages from SP, but are more distant from the root node,
i.e. whose HyperCuP edge label is smaller. Moreover, let
us assume that the query is answered using a snapshot of
the current P2P network at query time, i.e. the connec-
tions stay constant for the time of the query answering
process. We will deal with disconnections during query
processing later by introducing time-outs for peers that do
not answer a request within a tolerable time span.

Algorithm for Peer-to-Peer Top-k Retrieval
0. Assign a unique transaction identifier T depending

on the query Q, querying peer P and super-peer SP.
Initialize a counter i := 0.

1. Choose the participating peers and super-peers for
answering the query Q: If query Q is contained in in-
dex ISP, and this index entry is not expired, assign
sets of contributing local peers PT and adjacent super-
peers SPT as given by ISP, else set PT as the set of all
locally connected peers and SPT as the set of all adja-
cent super-peers.

2. Initialize a datastructure TopResT as a |PT| + |SPT| -
dimensional array of oid and score pairs. Assign each
(super-)peer in PT and SPT to a specific field in To-
pResT. Initialize three sets BestPeersT := ∅, Deliv-
eredT := ∅, and RequestResultsT := ∅.

3. Send an open_transaction(T, Q, SP) request to each
(super-)peer in PT and SPT and add the respec-
tive(super-)peer to set RequestResultsT

4. Send an get_next(T, Q, SP) request to each (super-)
peer in RequestResultsT and remove the respective
peer from RequestResultsT.

5. For each incoming message that a (super-)peer can-
not deliver more result objects, send a close_transac-
tion(T, Q, SP) request to the (super-)peer, remove the
(super-)peer from PT or SPT and delete its assigned
field in TopResT.

6. For each incoming oid/score pair from (super-)peers
with respect to transaction T do
6.1. If oid ∉ DeliveredT, store the oid/score pair in

the respective field in TopResT assigned to the
delivering (super-)peer, else discard the pair and
add the delivering (super-)peer to RequestRe-
sultsT.

7. If there are still missing entries in any field in Top-
ResT, proceed with step 4.

8. Select all distinct objects with current maximum
score from TopResT. While i ≤ k and there are still
objects, do:
8.1. Pick any object o having maximum score and

deliver its oid and score to peer P as the i-th
best object.

8.2. Add object o’s oid to the set DeliveredT and in-
crease i := i+1.

8.3. Remove object o’s oid and score from all occur-
rences in TopResT and add the corresponding
(super-)peers of the respective fields to Best-
PeersT and RequestResultsT.

9. If i > k, send a close_transaction(T, Q, SP) request to
all (super-) peers in PT and SPT and update ISP for
query Q using the (super-)peers in BestPeersT. Dis-
card all temporary results and datastructures and ter-
minate the algorithm.

10. If set RequestResultsT is empty, abort query Q at peer
P with the message that only i results are available
and discard all temporary results and datastructures,
else proceed with step 4.

Please note that although generally speaking the num-

ber k of objects to be returned is an integral part of the
query Q, the sets PT and SPT in step 1.1 can also be as-
signed, if index ISP does not contain query Q, but query
Q’ with the same query predicates, but a larger number of
objects to return than k. The resulting sets PT and SPT will
in that case not be optimal for query Q, but usually still
result in much better performance than simply flooding
the query through the network.

Another interesting side effect is the successive output
of result objects in step 8.1 such that the user can already
investigate some first overall best result objects before all
k overall best result objects have been found. Though the
total retrieval time stays the same as in the case where all
objects are returned after all top k objects have been de-
termined, the psychological response time is reduced for

the users. Moreover, once a user is satisfied by the ob-
ject(s) from the result set retrieved so far, she can termi-
nate the query at an early stage before the full result set
has been retrieved and thus improve bandwidth usage.

Let us now consider the functions that are called in our
distributed algorithm requesting locally connected peers
and adjacent super-peers to join into a query processing
task and to deliver their best matching objects. These
function calls are open_transaction(T, Q, SP), get_next(T,
Q, SP), and close_transaction(T, Q, SP). Since their basic
functionality does not differ for peers and super-peers,
though their local execution has to be slightly different,
we will assume that their individual implementations are
simply overwritten to suit the respective (super-)peers.
For the requesting super-peer SP their purpose, interface,
and expected results do not differ between peers and su-
per-peers. We will start with the implementations of the
functions in local peers and then turn to the functions in
the super-peers handling the local aggregation tasks.

Since local peers may differ in their information man-
agement and querying techniques, their implementation
may essentially differ between peers. Some peers may
rely on a database management system to store and query
data, while other may use a variety of custom made appli-
cations to manage their data. We will assume a compo-
nent in each peer that wraps the results and messages ac-
cording to the super-peers’ needs, and leave the actual
local top-k querying and scoring to the individual peers.
For example peers relying on a local DBMS may use any
algorithm like [13], [4] or [5], whereas other peers may
rely on filtering techniques for their collections. In the
following we will only assume that if asked to, every peer
joins a transaction, is able to evaluate a top-k query lo-
cally, iterate over the respective result set, and deliver its
objects using a specific oid (e.g. an URI, etc.) together
with a distinctive score value normalized to the interval
[0, 1]. When running out of deliverable objects a peer
notifies its super-peer with a suitable message. The re-
quests sent to a local peer are:

Basic Functions at Each Local Peer:

open_transaction(T, Q, SP):
If a peer receives this request it will prepare to answer the
top-k query Q over its local data (e.g. open a result set
and position a cursor) and assign all further requests with
the identifier T to the respective result set.

get_next(T, Q, SP)
If a peer receives this request it will iterate over the result
set assigned to T (e.g. move the cursor or get the next best
object from a progressive retrieval algorithm) and send
the respective result object’s oid and score to super-peer
SP. If there are no more results that can be delivered, if
will send a respective message to super-peer SP.

close_transaction(T, Q, SP)
If a peer receives this request it aborts the query assigned
to T (e.g. close an open result set) and may discard the
related temporary results.

The functionality in super-peers is a bit more difficult

than for the local peers, but quite similar to respective
steps in the algorithm at the querying super-peer. Assume
that a super-peer SP sends a request to an adjacent super-
peer SP’. To open the transaction for a specific query this
super-peer SP’ will also have to choose local peers and
his adjacent super-peers to participate in the query from
its local routing index. If requested, it will have to aggre-
gate information, determine the current best object lo-
cally, and hand it on to the super-peer that requested it.
Eventually the super-peer will have to close the transac-
tion:

Functions at each super-peer SP’:
open_transaction(T, Q, SP):
1. Choose the participating peers and super-peers for

answering the query Q: If a query Q posed by SP is
already contained in index ISP’, and this index entry is
not expired, assign sets of contributing local peers PT
and adjacent super-peers SPT as given by ISP’, else set
PT as the set of all locally connected peers and SPT as
the set of all adjacent super-peers.

2. Initialize a datastructure TopResT as a |PT| + |SPT| -
dimensional array of oid and score pairs. Assign each
(super-)peer in PT and SPT to a specific field in To-
pResT. Initialize three sets BestPeersT := ∅, Deliv-
eredT := ∅, and RequestResultsT := ∅.

3. Send an open_transaction(T, Q, SP) request to each
(super-)peer in PT and SPT and add the respec-
tive(super-)peer to RequestResultsT

get_next(T, Q, SP)
1. If set RequestResultsT is empty, send a message to

super-peer SP that no more objects can be delivered,
else do
1.1. Send an get_next(T, Q, SP’) request to each

(super-) peer in RequestResultsT and remove
the respective peer from RequestResultsT.

1.2. For each incoming message that a (super-)peer
cannot deliver more result objects, send a
close_transaction(T, Q, SP) request to the (su-
per-)peer, remove the (super-)peer from PT or
SPT and delete its assigned field in TopResT.

1.3. For each incoming oid/score pair from (super-)
peers with respect to transaction T do

1.3.1. If oid ∉ DeliveredT, store the oid/score
pair in the respective field in TopResT as-
signed to the delivering (super-)peer, else
discard the pair and add the delivering (su-
per-)peer to RequestResultsT.

1.4. If there are still missing entries in any field in
TopResT, proceed with step 1.2.

1.5. If there are objects in TopResT, select an object
with current maximum score from TopResT.
and deliver its oid and score to super-peer SP.
Add the object’s oid to the set DeliveredT and
remove the object’s oid and score from all oc-
currences in TopResT and add the correspond-
ing (super-) peers of the respective fields to
BestPeersT and RequestResultsT.

close_transaction(T, Q, SP)
1. Send a close_transaction(T, Q, SP) request to all (su-

per-) peers in PT and SPT and update ISP’ for query Q
and querying peer SP using the (super-)peers in Best-
PeersT.

2. Discard all current sets and datastructures

Please note that for using the index ISP’ in processing

the open_transaction(T, Q, SP) request, it is of essential
importance that the query Q has been posed by super-peer
SP before, as the child nodes (and thus adjacent super-
peers that can deliver relevant results) depend on the re-
spective edge weight of the implicit super-peer spanning
tree in the HyperCuP topology. Thus all the knowledge of
which adjacent nodes may provide interesting information
for the top-k case, is dependent on the topology for each
query instance. Due to the characteristics of the Hyper-
CuP topology it is irrelevant, whether SP is the querying
peer running the top-k search, or just passing the query
on. It is only important that the query was routed via the
edge between SP and SP’. As stated before, index entries
for identical queries delivering more top elements as in
the current request, can be used instead of querying all
peers and adjacent super-peers.

The index ISP always holds information for routing op-
timization in sense of avoiding irrelevant destinations. For
each query it contains the peers, which have recently con-
tributed to a top-k result set. While results are delivered
by the super-peers, for each query transaction T we main-
tain statistics in a set BestPeersT, which peers/super-peers
returned the best results. On query completion this infor-
mation is used to update all local routing indexes. To
adapt to changes in the peer-to-peer network, we let all
index entries expire after a specified time span. The more
volatile the network is the shorter the expiration period
has to be in order to adapt to changing data allocations.
Query driven update of indexes is possible, because que-
ries are not posed randomly, but usually follow a Zipf
distribution, where few queries make up the majority of
all requests. Zipf distributions are ubiquitous in content
networks, the Internet and other collections and have be-
come one of the most empirically validated laws in the
domain of linguistic quantities and networks (in the form
of power law distributions) [3].

SPA

SPC

SPBSPD

0

10

P3

P2
P5 P4

P1

PQ

P7 P6

Fig. 2: Querying a super-peer-based P2P-network

To show in more detail how the algorithm works, let

us consider an example for the simple scenario given in
Figure 1. Suppose we have a backbone of four super-
peers each accommodating two local peers. A top-k query
Q by peer PQ will define SPA as root of the super-peer
backbone spanning tree (cf. labeled edges in Fig. 2) and
start the query processing in SPA for transaction T. As-
sume that the query is a top 2 query that has recently been
posed. SPA can check its local index to find out that only
P1 and SPB have contributed to the result (step 1.1), i.e. PT
and SPT are single element sets containing P1 and SPB
respectively. Assuming that our P2P network is not too
volatile, we won’t present index entry expiration in this
example and initialize a two-dimensional array containing
the current top elements of SPB and P1 (step 2) Note that
in contrast to flooding query frameworks SPC will not be
bothered at all with query answering, since SPA already
knows that it most probably cannot deliver suitable re-
sults. SPA then will open transactions in P1 and SPB (step
3) and add both to a set RequestResultsT.

Receiving the request P1 will perform its local query,
whereas SPB will look up its index and may find that the
query was recently posed by super-peer SPA and the top 2
results came from SPD and P4. Subsequently SPB will
open transaction T in P4 and SPD (which may then in turn
open the transaction in say P7) and initialize all datastruc-
tures needed. Now SPA will request the top objects from
P1 and SPB (step 4). Assume that P1 offers an object o1
with score 0.8. Receiving the request SPB will in turn
request the top results from P4 and SPC, which in turn will
request the top object from P7. SPB has to wait until it has
both results from P4 and SPC (to be on the safe side there
will be a timeout after which SPB will assume that any
(super-) peer, which has not yet delivered, has dropped
out and thus will not be considered in the query any fur-
ther). Assume P7 delivers an object o2 with score 0.7,
which is handed on by SPC to SPB. SPB also receives the
top object o3 with score 0.9 by P4. SPB now has to pass on
the maximum object o3 to SPA, which in turn chooses the
maximum object o3 (step 8) and passes it on to PQ as the
overall top object. Since we need the top 2 objects and the
best object of P1 is still valid, SPA will request the next

object only from SPB who in turn will only request the
next object from P4 (say o4 with score 0.7) and deliver it
to SPA (steps 4-7). Now SPA can again choose the top
object o1 by P1, deliver it to PQ (step 8) and close the
transaction (step 9). Since the top objects came from SPB
and P1 there is no need to update SPA’s index. SPB will in
turn close the transaction in P4 and SPC, however remove
SPC from its local index, because it did not contribute to
the result of query Q.

4 Correctness and Optimality Results

The discussion of correctness of retrieval results in
P2P networks is a difficult matter because of their volatile
nature. In traditional database retrieval complex transac-
tion protocols have been designed to assure that no phan-
tom objects occur in the retrieval process (e.g. when ob-
jects are updated) and it is easy to decide, if a retrieval
algorithm has left out relevant results or retrieved false
results (cf. precision/recall in IR). In exact match P2P
retrieval each peer returns all its results matching the
query (flooding of queries) or the objects are retrieved
after a matching entry (and thus the address of a peer of-
fering a result object) in some centralized or distributed
index structure has been found. However, it cannot be
guaranteed that

• a peer is always online for the necessary time to
transfer these result objects,

• a peer for a matching index entry is still available,
• or that no new peer offering relevant content has

occurred after a part of a distributed index has
been evaluated.

Thus the correctness of retrieval results in P2P re-
trieval is always considered on a ‘static snapshot’ of the
P2P network. If no peers drop out or new peers are regis-
tered between the atomic evaluation of the query and the
delivery of the result set, the query has been answered
correctly. Such a model becomes of course less adequate
the more volatile a P2P network gets.

The problem how to define correct retrieval gets even
worse, if top-k queries have to be answered. Besides the
difficulties with the volatility of the P2P network, also the
heterogeneity of the peers plays an important part, since
each peer only knows its local objects and different peers
may also feature different scoring or retrieval strategies.
To compare between objects is thus only possible, if the
cooperative behavior of all peers is assumed and a nor-
malization of the score values (e.g. to the interval [0, 1])
is requested of each single peer. Nevertheless different
peers may still score the same object differently. Since the
only solution of retrieving all objects and scoring them
centrally with a single method (even the naïve approach
of retrieving only the top k objects of every peer and then
rescoring results does not solve this problem, because
different scoring methods usually do not maintain relative

monotonicity) is clearly impractical and generally not
desirable in the P2P context anyway, we will always use
the maximum score value any queried peer has assigned
to an object as the relevant score for this object.

Since [16] shows that querying with partial indexes
along a super-peer backbone (pointing always to the top
peers, which have recently contributed to the retrieval
result of the same query) usually results in a good enough
response behavior, our algorithm will combat the prob-
lems of volatility and heterogeneity relying on the experi-
ences with such indexes. We will therefore investigate
correctness regarding correct top results with respect to
the relevant part of a minimum spanning tree induced by
an index entry maintained by the super-peer receiving the
query. Moreover, we assume that the additional querying
of arbitrary (super-)peers in step 1.2 will be sufficient to
react to changes of content allocation within the network.
We will directly use the normalized scorings of local
peers for the result set and take only the maximum score
for each distinct object into account.

Lemma 1 (Correctness of the Top-k Result Set):

Given that only cooperative peers are part of the peer-to-
peer network and retrieval scores between peers can be
compared with respect to the objects’ relevance to an-
swering the top-k query, i.e.
a) individually assigned scores are reliable and no peer
maliciously assigns high scores to irrelevant objects
b) for any two score assignments for different objects
from different peers, it can be correctly decided, whether
one of the objects is better than the other(s),
the distributed top-k algorithm always retrieves the cor-
rect set of k overall best objects with respect to the index
of the querying super-peer, if the maximum assigned
score is used as the relevant object’s score in the case of
some peers assessing the score for a database object dif-
ferently.

Proof:
Since - as discussed above - the correctness of a result set
can only be decided at a certain point in time over a fixed
set of database objects/documents, we consider the re-
trieval situation for our algorithm with up-to-date indexes
in the super-peers and assume that neither new documents
are added to the collection, nor are documents deleted.

For the proof we use an inductive argument based on
the aggregation of the local rankings. Since our indexes
are up-to-date we know that some overall top scored ob-
ject otop is in one of the local collections of at least one
peer in some index. Without loss of generality let us as-
sume there would only be a single object otop. For the
sake of contradiction now assume that our querying su-
per-peer would deliver a dominated object ox with
score(ox) < score(otop) as overall top-scored object. Since
all super-peers indexes are up-to-date and we know from
step 1 that all relevant peers have been queried and their

best objects have been requested (step 4), there must be a
path through the P2P network from our querying super-
peer to at least one peer holding otop.

This local peer has to return otop as best object to its
connected super-peer due to the monotonic iteration
through scorings in each local peer (i.e. at any point in
time every local peer on request returns the highest scored
object it can offer and which has not yet been output).
Otherwise, as we always use the overall maximum scor-
ing as relevant score for each object, there would exist an
object having a strictly better score than otop. Moreover,
since there is a path along the super-peer backbone and
each super-peer has to wait until all results have arrived
(step 4-7) before determining the local maximum score
within its local collection (step 8) all super-peers along
the path from the querying super-peer to the local peer
hosting otop also have to select otop as best object and pass
it on, until it eventually arrives at the querying super-peer.
Thus by delivering ox the super-peer would have chosen a
dominated object though knowing otop, which is a contra-
diction to the maximum search in step 8.1 of our algo-
rithm. Inductively and considering that already delivered
objects offered by any local peer are replaced by the next
best objects (i.e. with monotonically decreasing score
values) this peer can offer (step 6.1), we get the guaran-
teed correctness of the best k retrieval results.

Having proven that a correct result set with respect to
an up-to-date index is retrieved by our algorithm, we also
have to consider the overall costs of transmitting the nec-
essary information about object data. The next lemma
shows that in order to retrieve the result set, only a mini-
mum amount of object data needs to be transmitted.

Lemma 2 (Optimality of transferred object data):
Given the assumptions and conditions of lemma 1, the
distributed top-k retrieval algorithm needs to transfer only
a minimum amount of object data to find the correct re-
sult set.

Proof:
To show the optimality of the transmitted object data we
focus on the score constraints that are maintained by the
local peers and super-peers along the backbone. To de-
cide for the correct maximum in each single super-peer
we have to request the best objects from each local peer
in its index and the adjacent super-peers towards the
leaves of the minimum spanning tree. Once the maximum
is chosen, the best available objects are still correct for all
but one local peer or adjacent super-peer. For the next
maximum choice only the next best object has to be re-
quested from this and only this (super-)peer (unless the
same maximum object was offered by two or more peers
in which case step 8.3 will also request next best objects
from these other peers).

As the querying super-peer at the root of the super-
peer backbone knows what object was returned as part of

the retrieval result, which (super-)peer’s best objects do
still hold and how many objects are still needed, the itera-
tive requests of next best objects have to be issued by this
super-peer as in step 4. Therefore only (super-) peers
have to refresh their offer (and thus transmit more object
data), whose current best offers have already been part of
the final result set. This transmission is necessary, since
after delivery of a peer’s best object, the next best object
of this peer can still have a higher score than the best ob-
jects of the other peers at the same super-peer. Omitting
the transmission when starting a new search for the
maximum scored object in a super-peer could violate the
correctness of the result set and hence the amount of ob-
ject information transmitted is optimal.

The last lemma is useful for handling disappearing
peers in volatile networks. The typical situation in top-k
queries is that a user poses a query on a rather small
amount of objects/documents to retrieve. Typical values
for k can be assumed to range around 10 in most practical
applications. The result set delivered can then either con-
sist of k pointers to the peers and objects/documents to-
gether with the actual score value or the actual ob-
jects/documents themselves together with the respective
scores. Given that the network can be volatile (especially
since big parts of the objects under consideration have to
be handed on along the super-peer backbones and each
super-peer has to wait until it has collected all necessary
objects), it can happen that a peer vanishes after one of its
objects has been delivered as part of the result set. If the
original document has been delivered in the result set, this
does not pose a problem. In contrast, if only a pointer has
been delivered, the retrieval of the result document fails
and there will be less than k objects. So immediately de-
livering the objects/documents often is a sensible ap-
proach that - given the result of lemma 2 - does not result
in unnecessary waste of valuable network bandwidth.

In some situations, applications might favor optimizing
the number of messages instead of bandwidth, e.g. if the
bandwidth is large, but the RTT long. In this case our
algorithm can be straightforwardly adapted by letting
get_next() return a set of up to k results instead of just one
result per message. The optimal value for this batch trans-
fer could even be chosen depending on the actual connec-
tion characteristics between two nodes.

5 Simulation and Results

We implemented the algorithm in a super-peer network
simulator, whose first version we described in [5], and
which we extended for the algorithms and simulations
described in the current paper. We will in brief describe
the simulator design in 5.1, the simulation scenarios in
5.2, and the simulation results in 5.3.

We wanted to test the following hypotheses:

1. After the routing index is built up, we will not touch
more than nSP + k peer nodes, where nSP is the number
of super-peers.

2. On average, the difference between the top-k docu-
ment set delivered with our algorithm and the docu-
ment set which would be retrieved by a central com-
putation of the union of all peers documents is small
(i.e. the index-based routing also in volatile P2P net-
works only causes slight changes).

5.1 Simulator design

Query- and Resource Description. The main function-

ality of our simulator is to experiment with query routing
in super-peer based P2P networks based on index infor-
mation. Query messages consist of a list of keywords
used to formulate the request as a simple conjunction. For
the generation of such queries a configurable distribution
is taken into account. We can set the average number of
keywords used in a query (and deviation), and the distri-
bution used to chose terms (e.g. Zipf or uniform). When a
peer is created, we randomly assign documents from an
existing collection to it. When a query is received by a
peer, an appropriate response set is generated. For our
network it makes no difference whether the queries origi-
nate at local peers or directly at super-peers. The gener-
ated queries are distributed evenly to the super-peers’
input queues.

Super-Peer based Topology. As stated above the simu-
lation framework assumes a super-peer topology. All sim-
ple peers have exactly one connection to a super-peer.
The super-peers form their own peer-to-peer network (it
would also be possible to simulate a conventional P2P
network by instantiating the super-peer backbone only).
The super-peer network topology and protocol is plug-
gable. For the experiments described in this paper we
used the HyperCuP topology. In contrast to other simula-
tions our approach doesn’t rely on a TCP/IP network
simulation, but models connections between peers on a
higher level. Connections are assigned a certain band-
width (specified by messages per second) and delay (in
msec). Both properties are modeled as normal distribu-
tions with configurable deviation. As we assume that
SP/SP connections typically have a higher capacity than
SP/P connections, the parameters can be set separately for
these connection categories. Super-peers are assumed to
be highly available, so we don’t model their up- and
downtime, but simulate using a static backbone. This
makes it very simple to create different super-peer to-
pologies because it is not necessary to implement a full
connection/disconnection protocol. Instead, a topology
class creates all super-peers and the connections between
them on simulation startup. Of course, the implementation
for the real network has to consider joining and leaving
super-peers, but, as super-peer joins or failures will be

rare, their influence on the network performance will not
be significant.

Connections (network characteristics). All connections
are considered bi-directional. Each peer (including super-
peers) has an incoming message queue per connection, a
single processing queue and an outgoing message queue
per connection. Messages between the peers are inter-
preted as discrete events.

Implementation. Our simulator is based on the discrete
simulation framework SSF (Scalable Simulation Frame-
work [10]). The SSF provides an interface for discrete-
event simulations supporting object-oriented models to
utilize and extend the framework. Thus the potential for
direct reuse of model code is maximized, while the de-
pendencies on a particular simulator kernel implementa-
tion are minimized. The framework’s primary design goal
was to support high performance simulations and to make
models efficient. The SSF provides several classes that
we used to map the P2P-behavior to the mode. Entities
are the central class in SSF, which can have processes for
event-processing. Events change the status of the system
and are used for communication between entities.

Processes are used to handle events during the simula-
tion. An entity can have one or more processes. In- and
out-channels are the communication channel between the
entities. An entity can have several in- and out-channels,
which are always connected in a 1:1 fashion. This is a
perfect match for P2P simulation. Peers are modeled as
entities and the message they exchange are events. We
provide classes which implement the general behavior of
a super-peer based network (e.g. Peer, Super-peer, Mes-
sage, and Topology). For a specific setting these classes
are extended; for the simulation described here we pro-
vided specializations for peers, super-peers, and query
and response messages. Additional details about the simu-
lator are given in [5].

5.2 Data and Simulation Setup

We evaluated the query processing for top-1 and top-

10 queries, both in a static and in a dynamic network set-
ting.

Top-10. The top-10 case is the typical search engine
use case. In most cases, users expect to find an appropri-
ate document among the best 10 hits. Therefore it is a
reasonable value for the number of requested hits. If no
suitable documents are found, users either refine their
query (covered by the scenario) or ask for more results
(not included in the simulation, but of course possible
within our approach).

Top-1. This situation often occurs, when applications
or services execute a query to use the results in an internal
process. A typical example can be found in the context of
Web Services. To execute a predefined process consisting
of several Web Services, the process execution engine has

to find best matches for each service specification used in
the process specification. However, only the best match is
relevant, because in automated process execution only
this service will be called as part of a workflow. These
searches apply to both, necessary service discovery op-
erations, e.g. [5], and the actual selection of a semanti-
cally best matching service like in [6].

Static scenario. To evaluate how efficient the index
works and how fast it builds up, we started with a static
scenario where all peers are set up before the simulation
starts. This scenario has practical applications e.g. for a
network of service registries where registry nodes join
and leave very rarely.

Dynamic scenario. Obviously, we were also interested
how good the algorithm works in a volatile network, the
typical P2P case. To simulate volatility, we gave each
peer a lifetime (with normal distribution). After its life-
time, the peer leaves the network, and soon afterwards a
new peer with new documents joins. The lifetime was
adjusted so that during a simulation run about 20% of the
peers left the network and were replaced by new peers. In
this scenario we need to update the indexes. As described
in section 3, each index entry gets an expiration time on
creation, based on a specified expiration period. This
“best before” date will guarantee that our indexes do not
age too much and provide out-dated information.
For our experiments we varied the network size between
100 and 2000 peers (connected via 2 to 16 super-peers),
each holding 50 documents on average (with standard
deviation 10). We used LA Times articles from the
TREC-CD 5. The documents were distributed randomly
among the peers. This is obviously the worst case for our
approach: when documents are clustered on peers, the
number of addressed peers can be essentially reduced.
However, appropriate clustering algorithms are out of the
scope of this paper, and the quality of our algorithms can
be shown even in this worst case scenario (which basi-
cally affects only the number of super-peers contained in
the indexes negatively).

Query Frequency Distribution

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

16,00%

0 10 20 30 40 50 60 70 80 90

Query

O
cc

ur
re

nc
e

Fr
eq

ue
nc

y

Fig. 3: Query Distribution

We posed keyword queries with query term count av-
erage 2.0 and standard deviation 1.0. For these queries,
we selected terms from the documents randomly. We
assume a Zipf-shaped query frequency distribution with
skew-factor 1.0 (see Fig. 3). The queries were pre-
generated for occurrence frequencies > 1%. Below this
threshold queries were generated randomly with uniform
distribution. The originating peer was selected randomly.

Indexed Queries – Top-10 Static

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0
10

0
20

0
30

0
40

0
50

0

of processed queries

in
de

x
ra

tio 2000
1000

Network
Size

Fig. 4: Index Development (first 550 queries)

Indexed Queries – Top-10 Static

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

of processed queries

in
de

x
ra

tio

2000
1000

Network
Size

Fig. 5: Index Development (10000 queries)

5.3 Simulation Results

Static scenario. Fig. 4 shows how the index develops

as more and more queries are processed by the network.
The simulation starts with an empty index. As described
in section 3, each query is added to the index on closing
of the transaction. Thus the number of already indexed
queries increases continuously. If a new query is sent, the
algorithm checks if it is already in the index. The follow-
ing figures show how many of the queries were already in
the index (as floating average with an interval of 200).
The index coverage increases quickly. After 550 queries
more than 90% of all queries are found in the index. After

about 550 queries the index ratio stays rather constant,
with some random variations, as shown in Fig. 5.

Contacted Peers / Query – Top-10 Static

0

200

400

600

800

1000

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00

of processed queries

of

 c
on

ta
ct

ed
 p

ee
rs

 (f
lo

at
in

g
av

g)

2000
1000

Network
Size

Fig. 6: Contacted peers per query

The rapid build up of the index corresponds to a sig-

nificant reduction of contacted peers (see Fig. 6). After
1000 queries the average number of contacted peers has
become relatively constant (from 10 for 100 peers to 49
for 2000 peers). Therefore we show only the first 2000
queries here. The top-1 case shows the same trend. As
can be expected, the average of contacted peers is a little
lower (after 2000 queries it ranges from 5 for 100 peers to
41 for 2000 peers). However, our simulation results show
a smaller difference than could be expected. The number
of messages sent to evaluate a query is proportional to the
number of contacted peers. We illustrate this in Fig. 7 for
the top-1 static case.

Messages / Query – Top-1 Static

0

200

400

600

800

1000

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

of processed queries

of

 m
es

sa
ge

s
(fl

oa
tin

g
av

g)

2000
1000

Network
Size

Fig. 7: Messages per query (top-1, static)

Dynamic scenario. Fig. 8 shows the average number of

contacted peers for the top-1 dynamic case. While it is
slightly higher than the top-1 static results, the general
index performance is not significantly affected by the
introduction of an expiration period for the index entries

forcing periodic broadcasts for all indexed terms to get a
new snapshot of the changed P2P network in the index.
On average the number of contacted peers in the dynamic
case will increase by a few percent, e.g. in the top-1 case
the difference between static and dynamic is only 6%.

Contacted Peers / Query – Top-1 Dynamic

0
100
200
300
400
500
600
700
800
900

1000

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00

of processed queries

of

 c
on

ta
ct

ed
 p

ee
rs

 (f
lo

at
in

g
av

g)

2000
1000

Network
Size

Fig. 8: Contacted peers per query (top-1, dynamic)

The curves exhibit a slight waveform. Besides random

fluctuations this is caused by the way the expiration
works. Frequently posed queries are indexed shortly after
simulation start. They expire all in the same time frame,
causing the first broadcast wave. Over time, these waves
get less significant due to the probabilistic query fre-
quency distribution. In reality, such waves wouldn’t occur
because node number and query frequency would grow
over time instead of starting off with a fixed amount, thus
also causing a less steep increase of index content.

In Table 1 we show for how many queries the com-
puted result differs from the ‘perfect’ result (which is
obtained by evaluating the same query against the joint
document collection of all currently existing peers).
Though network changes can temporarily invalidate in-
dex entries, this is corrected as soon as affected entries
expire. Our experiments show the ratio of incorrect re-
sults to remain sufficiently low, rising only slightly with
network sizes. Please note that we counted all differences
between our and the perfect result as being ‘incorrect’
retrievals. However, such incorrect results may still be
quite good matches, just not the best possible as given by
centralized approaches using expensive broadcasts.

Results Net-

work
Size

All Incorrect Ratio

100 5000 91 1.82%
500 5000 109 2.18%

1000 5000 151 3.02%
2000 5000 174 3.48%

Table 1: Ratio of incorrect hits

Contacted Peers Network
Size Estimated (nSP + k) Measured

100 2 + 10 = 12 = 12% 10 = 9.7%
500 4 + 10 = 14 = 2.8% 19 = 3.8%

1000 8 + 10 = 18 = 1.8% 29 = 2.9%
2000 16+10 = 26 = 1.3% 49 = 2.5%

Table 2: Estimated vs. measured contacted peers

Lessons learned. Coming back to our two initial hy-

potheses our experiments allow to state the following
confirming results:
1. Table 2 presents the expected and actual ratio of con-

tacted peers for the top-10 case. The last column con-
tains the average contacted peers of queries 2001 to
10000. The first 2000 queries are regarded as initial
phase until the simulation stabilizes and are thus left
out. It shows that we do not fully reach the estimated
numbers of contacted peers. The reason is because,
though a large percentage of queries gets indexed very
quickly, there constantly remains a small amount of
queries that still have to be broadcasted. The impact of
this phenomenon depends on the network size. It is
caused by our query generation strategy which (fol-
lowing the assumption of a Zipf distribution) creates
random queries for occurrence frequencies below 1%
(see 5.1). Still the ratio of contacted peers/network
size is very low, and the number of connected peers
increases sub-linearly with increasing network size.

2. The assumption that our approach works nearly as
well in a volatile network as it does in a static network
can also be confirmed, as we have shown by the re-
sults in our dynamic scenarios. Though in our practi-
cal tests we assumed quite a high volatility (20% of
the network dropping out and being replaced), in all
cases the number of contacted peers increased only by
a few percent over the static case, and remained rela-
tively stable during the simulation. Our indexing
scheme is thus applicable for most practical environ-
ments.

6. Summary and Outlook

In this paper we have in detail discussed the benefits of
best match/top-k queries for distributed peer-to-peer in-
formation infrastructures. So far this important kind of
queries had mainly been investigated for traditional cen-
tralized information systems and web search environ-
ments, We have described an innovative routing index-
based retrieval algorithm, which implements distributed
processing of top-k queries in general peer-to-peer net-
works while maintaining a minimum of object data traf-
fic. In order to achieve scalability also for large peer-to-
peer networks, our algorithm is based on dynamically
collected query statistics only, and does not rely on ex-

plicit index updates every time new peers and data are
dynamically added to or drop out of the P2P network.
Moreover, we have proven that our algorithm always de-
livers correct result sets and is optimal in terms of neces-
sary object accesses and data traffic. Finally, we have
presented several simulations of our approach, which
show the quality of our algorithm regarding index con-
struction and updates in static and dynamic environments.

Interesting additional problems to explore in future re-
search are the local processing of retrieval tasks involving
collection-wide information and the exploitation of se-
mantic structures like clusters of peers providing semanti-
cally similar objects or documents. The clustering of such
peers with semantically similar content (as for example
given in distributed digital library scenarios) can be ex-
pected to further improve the overall performance of our
retrieval algorithm and enable flexible and efficient wide
area document sharing applications without the mainte-
nance of central indexing servers. Another interesting
area will be the generalization of our optimality results
from the minimum number of object accesses to a mini-
mum network traffic, where administrative messages can
be saved, if a set of objects can be fetched by each
get_next() operator. Heuristically managing the resulting
trade-off between saved messages by pre-fetched relevant
result objects, and unnecessary transmissions of objects
irrelevant for the result set, can probably optimize the
overall network traffic.

7. Acknowledgements

Part of this work was generously funded within the
Emmy Noether program of the German Research Founda-
tion (DFG). We also want to thank Tobias Buchloh for
his significant contribution to the simulation develop-
ment.

8. References

[1] K. Aberer, P. Cudré-Mauroux, M. Hauswirth: The Chatty

Web: Emergent Semantics Through Gossiping. Intern.
World Wide Web Conf., Budapest, Hungary, 2003.

[2] K. Aberer, J. Wu: A Framework for Decentralized Ranking
in Web Information Retrieval. Asian-Pacific Web Conf. on
Web Technologies and Applications, Xian, China, 2003

[3] Adamic, L.A., Huberman, B.A.: Zipf’s law and the inter-
net. Glottometrics 3, 2002.

[4] W.-T. Balke, U. Güntzer, W. Kießling: On Real-time Top k
Querying for Mobile Services. Intern. Conf. on Coopera-
tive Information Systems, Irvine, USA, 2002.

[5] Wolf-Tilo Balke, Matthias Wagner. Cooperative Discovery
for User-centered Web Service Provisioning. Intern. Conf.
on Web Services, Las Vegas, USA, 2003.

[6] Wolf-Tilo Balke, Matthias Wagner. Towards Personalized
Selection of Web Services. Intern. World Wide Web Conf.,
Budapest, Hungary, 2003.

[7] I. Brunkhorst, H Dhraief, A. Kemper, W. Nejdl, C. Wies-
ner: Distributed Queries and Query Optimization in
Schema-Based P2P-Systems. Intern. Workshop on Data-
bases, Information Systems, and Peer-to-Peer Computing,
Berlin, Germany, 2003.

[8] N. Bruno, L. Gravano, A. Marian: Evaluating Top-k Que-
ries over Web-Accessible Databases. Intern. Conf. on Data
Engineering, San Jose, USA, 2002.

[9] J. Chomicki: Querying with intrinsic preferences. Intern.
Conf. on Advances in Database Technology, Prague, Czech
Republic, 2002.

[10] J. Cowie, H. Liu, J. Liu, D. Nicol, A. Ogielski.: Towards
realistic million-node internet simulations. Intern. Confer-
ence on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, USA, 1999

[11] F. Cuenca-Acuna, C. Peery, R. Martin, T. Nguyen:
PlanetP: Using Gossiping to Build Content Addressable
Peer-to-Peer Information Sharing Communities. Intern.
Symp. on High-Performance Distributed Computing, Seat-
tle, USA, 2003.

[12] R. Fagin, A. Lotem, M. Naor: Optimal Aggregation Algo-
rithms for Middleware. ACM Symp. on Principles of Data-
base Systems, Santa Barbara, USA, 2001.

[13] U. Güntzer, W.-T. Balke, W. Kießling: Optimizing Multi-
Feature Queries for Image Databases. Intern. Conf. on Very
Large Databases, Cairo, Egypt, 2000.

[14] A. Halevy, Z. Ives, P. Mork, I. Tatarinov: Piazza: Data
Management Infrastructure for Semantic Web Applica-
tions. Intern. World Wide Web Conf., Budapest, Hungary,
2003.

[15] W. Nejdl, W. Siberski, M. Sintek: Design Issues and Chal-
lenges for RDF- and Schema-based Peer-to-peer Systems.
SIGMOD Records, 32(3), ACM, 2003.

[16] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve,
M. Nilsson, M. Palmér, T. Risch: EDUTELLA: a P2P
Networking Infrastructure based on RDF. Intern. World
Wide Web Conf., Honululu, Hawaii, USA, 2002.

[17] W. Nejdl, M. Wolpers, W. Siberski, A. Löser, I. Bruck-
horst, M. Schlosser, C. Schmitz: Super-Peer-Based Routing
and Clustering Strategies for RDF-Based Peer-To-Peer
Networks. Intern. World Wide Web Conf., Budapest, Hun-
gary, 2003.

[18] M. Schlosser, M. Sintek, S. Decker, W. Nejdl. HyperCuP –
Hypercubes, Ontologies and Efficient Search on P2P Net-
works. Intern. Workshop on Agents and P2P Computing,
Bologna, Italy, 2002.

[19] W. Siberski, U. Thaden: A Simulation Framework for
Schema-based Query Routing in P2P Networks. Intern.
Workshop on Peer-to-Peer Computing & Databases,
Heraklion, Crete, Greece, 2004.

[20] B. Yang, H. Garcia-Molina: Designing a super-peer net-
work. Intern. Conf. on Data Engineering, Bangalore, India,
2003.

