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Abstract 
 

Query processing in traditional information manage-
ment systems has moved from an exact match model to 
more flexible paradigms allowing cooperative retrieval 
by aggregating the database objects’ degree of match for 
each different query predicate and returning the best 
matching objects only. In peer-to-peer systems such 
strategies are even more important, given the potentially 
large number of peers, which may contribute to the re-
sults. Yet current peer-to-peer research has barely started 
to investigate such approaches. In this paper we will dis-
cuss the benefits of best match/top-k queries in the context 
of distributed peer-to-peer information infrastructures 
and show how to extend the limited query processing in 
current peer-to-peer networks by allowing the distributed 
processing of top-k queries, while maintaining a mini-
mum of data traffic. Relying on a super-peer backbone 
organized in the HyperCuP topology we will show how to 
use local indexes for optimizing the necessary query rout-
ing and how to process intermediate results in inner net-
work nodes at the earliest possible point in time cutting 
down the necessary data traffic within the network. Our 
algorithm is based on dynamically collected query statis-
tics only, no continuous index update processes are nec-
essary, allowing it to scale easily to large numbers of 
peers, as well as dynamic additions/deletions of peers. 
We will show our approach to always deliver correct re-
sult sets and to be optimal in terms of necessary object 
accesses and data traffic. Finally, we present simulation 
results for both static and dynamic network environments. 
 
1. Introduction 
 

With information needs emerging beyond a simple ex-
act match paradigm, databases and information systems 
have since long catered for extended retrieval paradigms 
like top-k retrieval or skyline queries. Query languages 
like SQL over relational databases have been extended to 
facilitate rank- and/or score-based retrieval algorithms 
assigning a degree of match with respect to all query 
predicates to each database object and then aggregating 
the rank/score values to get only the set of best matching 
answers. Moreover, the new retrieval paradigms allow for 
the direct incorporation of user preferences into queries 
for a more cooperative retrieval behavior [9]. Whereas 

too specific query predicates under the exact match para-
digm would far too often lead to empty result sets, the 
notion of best matches and relative importance of predi-
cates can thoroughly satisfy a user’s information needs 
independent of the respective database instance. Espe-
cially top-k queries [12] delivering a well defined set of k 
best answers according to a user-provided, probably 
weighted compensation function, have shown their broad 
applicability in various areas like Web search engines, 
mobile database applications, or content-based retrieval in 
multimedia collections or digital libraries. 

Recently the provisioning of information has, how-
ever, entered a new stage of flexibility beyond centralized 
database servers that process queries. Peer-to-peer net-
works offer flexible access to large collections of infor-
mation, data objects or documents for exchange. Emerg-
ing from relatively simple architectures to exchange e.g. 
audio files peer-to-peer networks have been developed to 
complex ad-hoc data management systems that can al-
ready be employed to connect communities in different 
areas like e-learning or collaborative working (cf. [15], 
[14], [1]). Together with more sophisticated applications 
also the basic processing of queries has evolved. Relying 
on backbone structures of so-called super-peers, queries 
are not necessarily flooded through the entire network 
anymore, but can be purposefully routed to relevant parts 
of the peer-to-peer network or even single peers using 
centralized, distributed or even synchronized local in-
dexes [15], [17]. Recent studies show that these ap-
proaches can drastically reduce the data traffic within the 
network. Up to now, however, the use of these indexes 
was restricted to exact match queries, each index pointing 
to (super-)peers that are known to provide a certain piece 
of information.  

In this paper we will extend traditional query process-
ing in peer-to-peer networks by allowing the distributed 
processing of top-k queries with a minimum of object 
data traffic. Relying on a super-peer backbone organized 
in the HyperCuP topology, we will show how to use so-
phisticated local indexes for optimizing the necessary 
query routing and how to process intermediate query re-
sults in inner network nodes at the earliest possible point 
in time. Furthermore, we propose dynamic query driven 
index updates, which avoid continuous index update traf-
fic in a P2P environment, while working well especially 
for Zipf-like distributions of queries, i.e. after an initial 
build-up phase over 90% of queries are index hits. 



The rest of this paper is organized as follows: section 2 
will provide an overview on related work in top-k query 
processing in traditional information systems and current 
query processing in peer-to-peer networks. Section 3 will 
present our distributed top-k retrieval algorithm and give 
an insight in how it works. A discussion of the algo-
rithm’s correctness and the optimality of data traffic will 
be given in section 4, followed by a detailed practical 
evaluation in section 5. We will conclude with a short 
summary and an outlook on further interesting open re-
search problems.  
 
2. Top-k Retrieval Model and Related Work 
 

Since the top-k paradigm has been first introduced into 
the area of database systems a large number of different 
algorithms have been proposed, see e.g. [12], [13]. Algo-
rithms for top-k retrieval in databases generally try to 
minimize the number of database objects that have to be 
accessed before being able to return a correct result set of 
the k best matching objects. Improving the naïve algo-
rithm that simply aggregates scores for all database ob-
jects, an optimal algorithm was given for multimedia re-
trieval [13], databases [12] and Web searches [8]. To be 
more exact, this basic algorithm was proven to be optimal 
in minimizing the necessary object accesses for top-k 
querying [12]. Basically all algorithms distinguish be-
tween different query predicates evaluating different 
characteristics of database objects, which often even have 
to be retrieved from various subsystems or Web sources. 
Each subsystem assesses numerical score values (usually 
normalized to [0, 1]) to each object in the collection. The 
physical implementation of object accesses always 
strongly depends on the application area and usually dif-
fers from system to system. Then the integration of the 
individual subsystems’ score lists is performed on a cen-
tral server. As a rule minimizing the number of necessary 
object accesses and thus also the overall query runtimes is 
paramount to build practical systems (with real-time con-
straints) like discussed in [4].  

In the context of peer-to-peer networks, only very few 
authors have explored retrieval algorithms taking rank-
ings into account. PlanetP [11] concentrates on peer-to-
peer communities in unstructured peer-to-peer networks 
with sizes up to ten thousand peers. They introduce two 
data structures for searching and ranking, which create a 
replicated global index using gossiping algorithms. Each 
peer maintains an inverted index of its documents and 
spreads the term-to-peer index. Based on this replicated 
index a simple TFxIDF-ranking algorithm can be imple-
mented. 

Aberer and Wu provide a good theoretical background 
in [2] where they present a ranking algebra as a formal 
framework for ranking computation. They show that not 
only one global ranking should be taking into account, 

but several rankings must be seen in different contexts. 
Their ranking algebra allows aggregating a number of 
local rankings into global rankings. 

Another important aspect is to take different peer ca-
pabilities into account, as peers often vary widely in 
bandwidth and computing power. Exploiting these differ-
ent capabilities - as discussed in [20] - can lead to a more 
efficient network architecture, where a small subset of 
peers, called super-peers, takes over specific responsibili-
ties, like e.g. query routing. Only a small percentage of 
nodes are super-peers, but these are assumed to be highly 
available nodes with relatively high computing capacity. 
Peers join the network directly connecting to one of the 
super-peers. Super-peer based P2P infrastructures usually 
exploit a two phase routing architecture, which routes 
queries first in the super-peer backbone, and then distrib-
utes them to the peers connected to the super-peers. 

 

 
 
Fig. 1: Simple HyperCube and an implicit spanning tree  

 
One important decision is how to arrange the super-

peers in order to optimize the routing of queries in the 
network. In our Edutella P2P-network [16] they are or-
ganized in the HyperCuP topology [18]. The HyperCuP 
algorithm is capable of organizing super-peers into a re-
cursive graph structure from the family of Cayley graphs, 
out of which the hypercube is the most well-known to-
pology. Having N super-peers in a network, the Hyper-
CuP ensures a maximal path length of log2 N thus allow-



ing for optimal broadcasting as well as implicit spanning 
trees from each node of the network. The basic query 
routing algorithm in HyperCuP topologies works as fol-
lows: All edges are tagged with their dimension in the 
hypercube. A node invoking a request sends a message to 
all its neighbours, tagging it with the edge label on which 
the message was sent. Nodes receiving a message forward 
it only via edges tagged with lower edge labels (see [18] 
for details). Using this topology we will have an optimal 
number of hops independently from the node that poses 
the query. Figure 1 shows the implicit spanning tree for a 
message originating from peer SP1 (since Hypercubes 
are symmetric, any super-peer can be the root of a span-
ning tree). Please note that the Hypercube is not limited to 
a special dimensionality and that super-peers can join and 
leave the network with very little overhead, allowing for a 
flexible approximation of a genuine hypercube structure. 

Additional routing indexes maintained by these super-
peers can restrict broadcasts to relevant super-peers direc-
tions [17] and can be used to enable optimized processing 
of more complex queries in a peer-to-peer network [5]. 
However, additional ranking and top-k optimization is 
necessary in such an environment and will be discussed in 
detail in the current paper. 
 
3. A Distributed Top-k Retrieval Algorithm 
for Peer-to-Peer Networks 
 

In this section we will present our algorithm for basic 
top-k querying capabilities in P2P networks with mini-
mum transfer of object data. According to the distributed 
nature of the retrieval and the P2P network we will divide 
the distributed retrieval algorithm into three parts that are 
respectively executed by  

• the super-peer initially receiving the query,  
• the super-peers in the HyperCuP backbone,  
• and the local peers at each super-peer.  

Since a dissemination of global knowledge should be 
avoided due to the overhead of data transmission, a basic 
concept of our algorithm is to locally evaluate as many 
parts of the query as possible. This means only the super-
peer receiving the query (i.e. the root node of our implicit 
HyperCuP spanning tree) needs full information to con-
trol the execution of the queries in order to guarantee a 
correct top-k result set with a minimum transmission of 
data. This super-peer will hand on the query to the rele-
vant super-peers along the backbone of adjacent super-
peers, which in turn will forward the query to their rele-
vant adjacent super-peers and connected local peers, 
without having to have full information about how the 
query answering is progressing. The local peers will just 
execute the query over their local object collections or 
databases and retrieve some best matching objects. We 
will present all relevant steps in detail in the following. 

For the scope of this paper we will rely on a set of su-
per-peers managing a number of local peers and intercon-
nected by a backbone using the HyperCuP topology. We 
will also assume all peers to be cooperative and provide 
normalized scores that can be compared to distinguish the 
quality between different objects (see section 4.1 for a 
detailed discussion). Each super-peer SP manages an in-
dex ISP in that information about which of its local peers 
and adjacent super-peers contributed results for answer-
ing recently posed queries like shown in [5]. These in-
dexes can be maintained efficiently even in rather volatile 
P2P networks to hold “current enough” information about 
object distributions. All index entries are time-stamped 
and expire after a certain time, which is set depending on 
the volatility of the network. Thus the individual index 
entries can be kept “up-to-date enough” to allow for im-
proved query processing even in volatile networks. 

Let us now present the algorithm to answer a top-k 
query Q posed by peer P to super-peer SP. The algorithm 
is entirely controlled by super-peer SP, which – whenever 
necessary – poses requests to connected peers and super-
peers for localized information gathering. Since all super-
peers are organized in a HyperCuP topology and SP is the 
root node of an implicit spanning tree containing all su-
per-peers, we will use the notion of adjacent super-peers 
of SP, i.e. those super-peers that can directly receive mes-
sages from SP, but are more distant from the root node, 
i.e. whose HyperCuP edge label is smaller. Moreover, let 
us assume that the query is answered using a snapshot of 
the current P2P network at query time, i.e. the connec-
tions stay constant for the time of the query answering 
process. We will deal with disconnections during query 
processing later by introducing time-outs for peers that do 
not answer a request within a tolerable time span.  

 
Algorithm for Peer-to-Peer Top-k Retrieval 
0. Assign a unique transaction identifier T depending 

on the query Q, querying peer P and super-peer SP. 
Initialize a counter i := 0. 

1. Choose the participating peers and super-peers for 
answering the query Q: If query Q is contained in in-
dex ISP, and this index entry is not expired, assign 
sets of contributing local peers PT and adjacent super-
peers SPT as given by ISP, else set PT as the set of all 
locally connected peers and SPT as the set of all adja-
cent super-peers. 

2. Initialize a datastructure TopResT as a |PT| + |SPT| - 
dimensional array of oid and score pairs. Assign each 
(super-)peer in PT and SPT to a specific field in To-
pResT. Initialize three sets BestPeersT := ∅, Deliv-
eredT := ∅, and RequestResultsT := ∅. 

3. Send an open_transaction(T, Q, SP) request to each 
(super-)peer in PT and SPT and add the respec-
tive(super-)peer to set RequestResultsT 



4. Send an get_next(T, Q, SP) request to each (super-) 
peer in RequestResultsT and remove the respective 
peer from RequestResultsT. 

5. For each incoming message that a (super-)peer can-
not deliver more result objects, send a close_transac-
tion(T, Q, SP) request to the (super-)peer, remove the 
(super-)peer from PT or SPT and delete its assigned 
field in TopResT. 

6. For each incoming oid/score pair from (super-)peers 
with respect to transaction T do 
6.1. If oid ∉ DeliveredT, store the oid/score pair in 

the respective field in TopResT assigned to the 
delivering (super-)peer, else discard the pair and 
add the delivering (super-)peer to RequestRe-
sultsT. 

7. If there are still missing entries in any field in Top-
ResT, proceed with step 4. 

8. Select all distinct objects with current maximum 
score from TopResT. While i ≤ k and there are still 
objects, do: 
8.1. Pick any object o having maximum score and 

deliver its oid and score to peer P as the i-th 
best object. 

8.2. Add object o’s oid to the set DeliveredT and in-
crease i := i+1. 

8.3. Remove object o’s oid and score from all occur-
rences in TopResT and add the corresponding 
(super-)peers of the respective fields to Best-
PeersT and RequestResultsT. 

9. If i > k, send a close_transaction(T, Q, SP) request to 
all (super-) peers in PT and SPT and update ISP for 
query Q using the (super-)peers in BestPeersT. Dis-
card all temporary results and datastructures and ter-
minate the algorithm. 

10. If set RequestResultsT is empty, abort query Q at peer 
P with the message that only i results are available 
and discard all temporary results and datastructures, 
else proceed with step 4. 

 
Please note that although generally speaking the num-

ber k of objects to be returned is an integral part of the 
query Q, the sets PT and SPT in step 1.1 can also be as-
signed, if index ISP does not contain query Q, but query 
Q’ with the same query predicates, but a larger number of 
objects to return than k. The resulting sets PT and SPT will 
in that case not be optimal for query Q, but usually still 
result in much better performance than simply flooding 
the query through the network. 

Another interesting side effect is the successive output 
of result objects in step 8.1 such that the user can already 
investigate some first overall best result objects before all 
k overall best result objects have been found. Though the 
total retrieval time stays the same as in the case where all 
objects are returned after all top k objects have been de-
termined, the psychological response time is reduced for 

the users. Moreover, once a user is satisfied by the ob-
ject(s) from the result set retrieved so far, she can termi-
nate the query at an early stage before the full result set 
has been retrieved and thus improve bandwidth usage. 

Let us now consider the functions that are called in our 
distributed algorithm requesting locally connected peers 
and adjacent super-peers to join into a query processing 
task and to deliver their best matching objects. These 
function calls are open_transaction(T, Q, SP), get_next(T, 
Q, SP), and close_transaction(T, Q, SP). Since their basic 
functionality does not differ for peers and super-peers, 
though their local execution has to be slightly different, 
we will assume that their individual implementations are 
simply overwritten to suit the respective (super-)peers. 
For the requesting super-peer SP their purpose, interface, 
and expected results do not differ between peers and su-
per-peers. We will start with the implementations of the 
functions in local peers and then turn to the functions in 
the super-peers handling the local aggregation tasks.  

Since local peers may differ in their information man-
agement and querying techniques, their implementation 
may essentially differ between peers. Some peers may 
rely on a database management system to store and query 
data, while other may use a variety of custom made appli-
cations to manage their data. We will assume a compo-
nent in each peer that wraps the results and messages ac-
cording to the super-peers’ needs, and leave the actual 
local top-k querying and scoring to the individual peers. 
For example peers relying on a local DBMS may use any 
algorithm like [13], [4] or [5], whereas other peers may 
rely on filtering techniques for their collections. In the 
following we will only assume that if asked to, every peer 
joins a transaction, is able to evaluate a top-k query lo-
cally, iterate over the respective result set, and deliver its 
objects using a specific oid (e.g. an URI, etc.) together 
with a distinctive score value normalized to the interval 
[0, 1]. When running out of deliverable objects a peer 
notifies its super-peer with a suitable message. The re-
quests sent to a local peer are:  

 
Basic Functions at Each Local Peer:  
 
open_transaction(T, Q, SP): 
If a peer receives this request it will prepare to answer the 
top-k query Q over its local data (e.g. open a result set 
and position a cursor) and assign all further requests with 
the identifier T to the respective result set. 
 
get_next(T, Q, SP) 
If a peer receives this request it will iterate over the result 
set assigned to T (e.g. move the cursor or get the next best 
object from a progressive retrieval algorithm) and send 
the respective result object’s oid and score to super-peer 
SP. If there are no more results that can be delivered, if 
will send a respective message to super-peer SP.  



close_transaction(T, Q, SP) 
If a peer receives this request it aborts the query assigned 
to T (e.g. close an open result set) and may discard the 
related temporary results. 

 
The functionality in super-peers is a bit more difficult 

than for the local peers, but quite similar to respective 
steps in the algorithm at the querying super-peer. Assume 
that a super-peer SP sends a request to an adjacent super-
peer SP’. To open the transaction for a specific query this 
super-peer SP’ will also have to choose local peers and 
his adjacent super-peers to participate in the query from 
its local routing index. If requested, it will have to aggre-
gate information, determine the current best object lo-
cally, and hand it on to the super-peer that requested it. 
Eventually the super-peer will have to close the transac-
tion: 

 
Functions at each super-peer SP’: 
open_transaction(T, Q, SP): 
1. Choose the participating peers and super-peers for 

answering the query Q: If a query Q posed by SP is 
already contained in index ISP’, and this index entry is 
not expired, assign sets of contributing local peers PT 
and adjacent super-peers SPT as given by ISP’, else set 
PT as the set of all locally connected peers and SPT as 
the set of all adjacent super-peers. 

2. Initialize a datastructure TopResT as a |PT| + |SPT| - 
dimensional array of oid and score pairs. Assign each 
(super-)peer in PT and SPT to a specific field in To-
pResT. Initialize three sets BestPeersT := ∅, Deliv-
eredT := ∅, and RequestResultsT := ∅. 

3. Send an open_transaction(T, Q, SP) request to each 
(super-)peer in PT and SPT and add the respec-
tive(super-)peer to RequestResultsT 

 
get_next(T, Q, SP) 
1. If set RequestResultsT is empty, send a message to 

super-peer SP that no more objects can be delivered, 
else do  
1.1. Send an get_next(T, Q, SP’) request to each 

(super-) peer in RequestResultsT and remove 
the respective peer from RequestResultsT. 

1.2. For each incoming message that a (super-)peer 
cannot deliver more result objects, send a 
close_transaction(T, Q, SP) request to the (su-
per-)peer, remove the (super-)peer from PT or 
SPT and delete its assigned field in TopResT. 

1.3. For each incoming oid/score pair from (super-) 
peers with respect to transaction T do 

1.3.1. If oid ∉ DeliveredT, store the oid/score 
pair in the respective field in TopResT as-
signed to the delivering (super-)peer, else 
discard the pair and add the delivering (su-
per-)peer to RequestResultsT. 

1.4. If there are still missing entries in any field in 
TopResT, proceed with step 1.2. 

1.5. If there are objects in TopResT, select an object 
with current maximum score from TopResT. 
and deliver its oid and score to super-peer SP. 
Add the object’s oid to the set DeliveredT and 
remove the object’s oid and score from all oc-
currences in TopResT and add the correspond-
ing (super-) peers of the respective fields to 
BestPeersT and RequestResultsT. 

 
close_transaction(T, Q, SP) 
1. Send a close_transaction(T, Q, SP) request to all (su-

per-) peers in PT and SPT and update ISP’ for query Q 
and querying peer SP using the (super-)peers in Best-
PeersT. 

2. Discard all current sets and datastructures  
 
Please note that for using the index ISP’ in processing 

the open_transaction(T, Q, SP) request, it is of essential 
importance that the query Q has been posed by super-peer 
SP before, as the child nodes (and thus adjacent super-
peers that can deliver relevant results) depend on the re-
spective edge weight of the implicit super-peer spanning 
tree in the HyperCuP topology. Thus all the knowledge of 
which adjacent nodes may provide interesting information 
for the top-k case, is dependent on the topology for each 
query instance. Due to the characteristics of the Hyper-
CuP topology it is irrelevant, whether SP is the querying 
peer running the top-k search, or just passing the query 
on. It is only important that the query was routed via the 
edge between SP and SP’. As stated before, index entries 
for identical queries delivering more top elements as in 
the current request, can be used instead of querying all 
peers and adjacent super-peers.  

The index ISP always holds information for routing op-
timization in sense of avoiding irrelevant destinations. For 
each query it contains the peers, which have recently con-
tributed to a top-k result set. While results are delivered 
by the super-peers, for each query transaction T we main-
tain statistics in a set BestPeersT, which peers/super-peers 
returned the best results. On query completion this infor-
mation is used to update all local routing indexes. To 
adapt to changes in the peer-to-peer network, we let all 
index entries expire after a specified time span. The more 
volatile the network is the shorter the expiration period 
has to be in order to adapt to changing data allocations. 
Query driven update of indexes is possible, because que-
ries are not posed randomly, but usually follow a Zipf 
distribution, where few queries make up the majority of 
all requests. Zipf distributions are ubiquitous in content 
networks, the Internet and other collections and have be-
come one of the most empirically validated laws in the 
domain of linguistic quantities and networks (in the form 
of power law distributions) [3]. 
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Fig. 2: Querying a super-peer-based P2P-network 
 
To show in more detail how the algorithm works, let 

us consider an example for the simple scenario given in 
Figure 1. Suppose we have a backbone of four super-
peers each accommodating two local peers. A top-k query 
Q by peer PQ will define SPA as root of the super-peer 
backbone spanning tree (cf. labeled edges in Fig. 2) and 
start the query processing in SPA for transaction T. As-
sume that the query is a top 2 query that has recently been 
posed. SPA can check its local index to find out that only 
P1 and SPB have contributed to the result (step 1.1), i.e. PT 
and SPT are single element sets containing P1 and SPB 
respectively. Assuming that our P2P network is not too 
volatile, we won’t present index entry expiration in this 
example and initialize a two-dimensional array containing 
the current top elements of SPB and P1 (step 2) Note that 
in contrast to flooding query frameworks SPC will not be 
bothered at all with query answering, since SPA already 
knows that it most probably cannot deliver suitable re-
sults. SPA then will open transactions in P1 and SPB (step 
3) and add both to a set RequestResultsT.  

Receiving the request P1 will perform its local query, 
whereas SPB will look up its index and may find that the 
query was recently posed by super-peer SPA and the top 2 
results came from SPD and P4. Subsequently SPB will 
open transaction T in P4 and SPD (which may then in turn 
open the transaction in say P7) and initialize all datastruc-
tures needed. Now SPA will request the top objects from 
P1 and SPB (step 4). Assume that P1 offers an object o1 
with score 0.8. Receiving the request SPB will in turn 
request the top results from P4 and SPC, which in turn will 
request the top object from P7. SPB has to wait until it has 
both results from P4 and SPC (to be on the safe side there 
will be a timeout after which SPB will assume that any 
(super-) peer, which has not yet delivered, has dropped 
out and thus will not be considered in the query any fur-
ther). Assume P7 delivers an object o2 with score 0.7, 
which is handed on by SPC to SPB. SPB also receives the 
top object o3 with score 0.9 by P4. SPB now has to pass on 
the maximum object o3 to SPA, which in turn chooses the 
maximum object o3 (step 8) and passes it on to PQ as the 
overall top object. Since we need the top 2 objects and the 
best object of P1 is still valid, SPA will request the next 

object only from SPB who in turn will only request the 
next object from P4 (say o4 with score 0.7) and deliver it 
to SPA (steps 4-7). Now SPA can again choose the top 
object o1 by P1, deliver it to PQ (step 8) and close the 
transaction (step 9). Since the top objects came from SPB 
and P1 there is no need to update SPA’s index. SPB will in 
turn close the transaction in P4 and SPC, however remove 
SPC from its local index, because it did not contribute to 
the result of query Q. 
 
4 Correctness and Optimality Results 
 

The discussion of correctness of retrieval results in 
P2P networks is a difficult matter because of their volatile 
nature. In traditional database retrieval complex transac-
tion protocols have been designed to assure that no phan-
tom objects occur in the retrieval process (e.g. when ob-
jects are updated) and it is easy to decide, if a retrieval 
algorithm has left out relevant results or retrieved false 
results (cf. precision/recall in IR). In exact match P2P 
retrieval each peer returns all its results matching the 
query (flooding of queries) or the objects are retrieved 
after a matching entry (and thus the address of a peer of-
fering a result object) in some centralized or distributed 
index structure has been found. However, it cannot be 
guaranteed that  

• a peer is always online for the necessary time to 
transfer these result objects,  

• a peer for a matching index entry is still available,  
• or that no new peer offering relevant content has 

occurred after a part of a distributed index has 
been evaluated.  

Thus the correctness of retrieval results in P2P re-
trieval is always considered on a ‘static snapshot’ of the 
P2P network. If no peers drop out or new peers are regis-
tered between the atomic evaluation of the query and the 
delivery of the result set, the query has been answered 
correctly. Such a model becomes of course less adequate 
the more volatile a P2P network gets.  

The problem how to define correct retrieval gets even 
worse, if top-k queries have to be answered. Besides the 
difficulties with the volatility of the P2P network, also the 
heterogeneity of the peers plays an important part, since 
each peer only knows its local objects and different peers 
may also feature different scoring or retrieval strategies. 
To compare between objects is thus only possible, if the 
cooperative behavior of all peers is assumed and a nor-
malization of the score values (e.g. to the interval [0, 1]) 
is requested of each single peer. Nevertheless different 
peers may still score the same object differently. Since the 
only solution of retrieving all objects and scoring them 
centrally with a single method (even the naïve approach 
of retrieving only the top k objects of every peer and then 
rescoring results does not solve this problem, because 
different scoring methods usually do not maintain relative 



monotonicity) is clearly impractical and generally not 
desirable in the P2P context anyway, we will always use 
the maximum score value any queried peer has assigned 
to an object as the relevant score for this object. 

Since [16] shows that querying with partial indexes 
along a super-peer backbone (pointing always to the top 
peers, which have recently contributed to the retrieval 
result of the same query) usually results in a good enough 
response behavior, our algorithm will combat the prob-
lems of volatility and heterogeneity relying on the experi-
ences with such indexes. We will therefore investigate 
correctness regarding correct top results with respect to 
the relevant part of a minimum spanning tree induced by 
an index entry maintained by the super-peer receiving the 
query. Moreover, we assume that the additional querying 
of arbitrary (super-)peers in step 1.2 will be sufficient to 
react to changes of content allocation within the network. 
We will directly use the normalized scorings of local 
peers for the result set and take only the maximum score 
for each distinct object into account. 

 
Lemma 1 (Correctness of the Top-k Result Set): 

Given that only cooperative peers are part of the peer-to-
peer network and retrieval scores between peers can be 
compared with respect to the objects’ relevance to an-
swering the top-k query, i.e.   
a) individually assigned scores are reliable and no peer 
maliciously assigns high scores to irrelevant objects  
b) for any two score assignments for different objects 
from different peers, it can be correctly decided, whether 
one of the objects is better than the other(s),    
the distributed top-k algorithm always retrieves the cor-
rect set of k overall best objects with respect to the index 
of the querying super-peer, if the maximum assigned 
score is used as the relevant object’s score in the case of 
some peers assessing the score for a database object dif-
ferently.  

Proof:  
Since - as discussed above - the correctness of a result set 
can only be decided at a certain point in time over a fixed 
set of database objects/documents, we consider the re-
trieval situation for our algorithm with up-to-date indexes 
in the super-peers and assume that neither new documents 
are added to the collection, nor are documents deleted.  

For the proof we use an inductive argument based on 
the aggregation of the local rankings. Since our indexes 
are up-to-date we know that some overall top scored ob-
ject otop is in one of the local collections of at least one 
peer in some index. Without loss of generality let us as-
sume there would only be a single object otop. For the 
sake of contradiction now assume that our querying su-
per-peer would deliver a dominated object ox with 
score(ox) < score(otop) as overall top-scored object. Since 
all super-peers indexes are up-to-date and we know from 
step 1 that all relevant peers have been queried and their 

best objects have been requested (step 4), there must be a 
path through the P2P network from our querying super-
peer to at least one peer holding otop.  

This local peer has to return otop as best object to its 
connected super-peer due to the monotonic iteration 
through scorings in each local peer (i.e. at any point in 
time every local peer on request returns the highest scored 
object it can offer and which has not yet been output). 
Otherwise, as we always use the overall maximum scor-
ing as relevant score for each object, there would exist an 
object having a strictly better score than otop. Moreover, 
since there is a path along the super-peer backbone and 
each super-peer has to wait until all results have arrived 
(step 4-7) before determining the local maximum score 
within its local collection (step 8) all super-peers along 
the path from the querying super-peer to the local peer 
hosting otop also have to select otop as best object and pass 
it on, until it eventually arrives at the querying super-peer. 
Thus by delivering ox the super-peer would have chosen a 
dominated object though knowing otop, which is a contra-
diction to the maximum search in step 8.1 of our algo-
rithm. Inductively and considering that already delivered 
objects offered by any local peer are replaced by the next 
best objects (i.e. with monotonically decreasing score 
values) this peer can offer (step 6.1), we get the guaran-
teed correctness of the best k retrieval results.                

 

Having proven that a correct result set with respect to 
an up-to-date index is retrieved by our algorithm, we also 
have to consider the overall costs of transmitting the nec-
essary information about object data. The next lemma 
shows that in order to retrieve the result set, only a mini-
mum amount of object data needs to be transmitted. 

 

Lemma 2 (Optimality of transferred object data): 
Given the assumptions and conditions of lemma 1, the 
distributed top-k retrieval algorithm needs to transfer only 
a minimum amount of object data to find the correct re-
sult set. 

Proof:  
To show the optimality of the transmitted object data we 
focus on the score constraints that are maintained by the 
local peers and super-peers along the backbone. To de-
cide for the correct maximum in each single super-peer 
we have to request the best objects from each local peer 
in its index and the adjacent super-peers towards the 
leaves of the minimum spanning tree. Once the maximum 
is chosen, the best available objects are still correct for all 
but one local peer or adjacent super-peer. For the next 
maximum choice only the next best object has to be re-
quested from this and only this (super-)peer (unless the 
same maximum object was offered by two or more peers 
in which case step 8.3 will also request next best objects 
from these other peers).  

As the querying super-peer at the root of the super-
peer backbone knows what object was returned as part of 



the retrieval result, which (super-)peer’s best objects do 
still hold and how many objects are still needed, the itera-
tive requests of next best objects have to be issued by this 
super-peer as in step 4. Therefore only (super-) peers 
have to refresh their offer (and thus transmit more object 
data), whose current best offers have already been part of 
the final result set. This transmission is necessary, since 
after delivery of a peer’s best object, the next best object 
of this peer can still have a higher score than the best ob-
jects of the other peers at the same super-peer. Omitting 
the transmission when starting a new search for the 
maximum scored object in a super-peer could violate the 
correctness of the result set and hence the amount of ob-
ject information transmitted is optimal.                           

The last lemma is useful for handling disappearing 
peers in volatile networks. The typical situation in top-k 
queries is that a user poses a query on a rather small 
amount of objects/documents to retrieve. Typical values 
for k can be assumed to range around 10 in most practical 
applications. The result set delivered can then either con-
sist of k pointers to the peers and objects/documents to-
gether with the actual score value or the actual ob-
jects/documents themselves together with the respective 
scores. Given that the network can be volatile (especially 
since big parts of the objects under consideration have to 
be handed on along the super-peer backbones and each 
super-peer has to wait until it has collected all necessary 
objects), it can happen that a peer vanishes after one of its 
objects has been delivered as part of the result set. If the 
original document has been delivered in the result set, this 
does not pose a problem. In contrast, if only a pointer has 
been delivered, the retrieval of the result document fails 
and there will be less than k objects. So immediately de-
livering the objects/documents often is a sensible ap-
proach that - given the result of lemma 2 - does not result 
in unnecessary waste of valuable network bandwidth. 

In some situations, applications might favor optimizing 
the number of messages instead of bandwidth, e.g. if the 
bandwidth is large, but the RTT long. In this case our 
algorithm can be straightforwardly adapted by letting 
get_next() return a set of up to k results instead of just one 
result per message. The optimal value for this batch trans-
fer could even be chosen depending on the actual connec-
tion characteristics between two nodes. 
 
5 Simulation and Results 
 
We implemented the algorithm in a super-peer network 
simulator, whose first version we described in [5], and 
which we extended for the algorithms and simulations 
described in the current paper. We will in brief describe 
the simulator design in 5.1, the simulation scenarios in 
5.2, and the simulation results in 5.3.  

We wanted to test the following hypotheses: 

1. After the routing index is built up, we will not touch 
more than nSP + k peer nodes, where nSP is the number 
of super-peers. 

2. On average, the difference between the top-k docu-
ment set delivered with our algorithm and the docu-
ment set which would be retrieved by a central com-
putation of the union of all peers documents is small 
(i.e. the index-based routing also in volatile P2P net-
works only causes slight changes). 
 

5.1 Simulator design  
 
Query- and Resource Description. The main function-

ality of our simulator is to experiment with query routing 
in super-peer based P2P networks based on index infor-
mation. Query messages consist of a list of keywords 
used to formulate the request as a simple conjunction. For 
the generation of such queries a configurable distribution 
is taken into account. We can set the average number of 
keywords used in a query (and deviation), and the distri-
bution used to chose terms (e.g. Zipf or uniform). When a 
peer is created, we randomly assign documents from an 
existing collection to it. When a query is received by a 
peer, an appropriate response set is generated. For our 
network it makes no difference whether the queries origi-
nate at local peers or directly at super-peers. The gener-
ated queries are distributed evenly to the super-peers’ 
input queues.  

Super-Peer based Topology. As stated above the simu-
lation framework assumes a super-peer topology. All sim-
ple peers have exactly one connection to a super-peer. 
The super-peers form their own peer-to-peer network (it 
would also be possible to simulate a conventional P2P 
network by instantiating the super-peer backbone only). 
The super-peer network topology and protocol is plug-
gable. For the experiments described in this paper we 
used the HyperCuP topology. In contrast to other simula-
tions our approach doesn’t rely on a TCP/IP network 
simulation, but models connections between peers on a 
higher level. Connections are assigned a certain band-
width (specified by messages per second) and delay (in 
msec). Both properties are modeled as normal distribu-
tions with configurable deviation. As we assume that 
SP/SP connections typically have a higher capacity than 
SP/P connections, the parameters can be set separately for 
these connection categories. Super-peers are assumed to 
be highly available, so we don’t model their up- and 
downtime, but simulate using a static backbone. This 
makes it very simple to create different super-peer to-
pologies because it is not necessary to implement a full 
connection/disconnection protocol. Instead, a topology 
class creates all super-peers and the connections between 
them on simulation startup. Of course, the implementation 
for the real network has to consider joining and leaving 
super-peers, but, as super-peer joins or failures will be 



rare, their influence on the network performance will not 
be significant.  

Connections (network characteristics). All connections 
are considered bi-directional. Each peer (including super-
peers) has an incoming message queue per connection, a 
single processing queue and an outgoing message queue 
per connection. Messages between the peers are inter-
preted as discrete events.  

Implementation. Our simulator is based on the discrete 
simulation framework SSF (Scalable Simulation Frame-
work [10]). The SSF provides an interface for discrete-
event simulations supporting object-oriented models to 
utilize and extend the framework. Thus the potential for 
direct reuse of model code is maximized, while the de-
pendencies on a particular simulator kernel implementa-
tion are minimized. The framework’s primary design goal 
was to support high performance simulations and to make 
models efficient. The SSF provides several classes that 
we used to map the P2P-behavior to the mode. Entities 
are the central class in SSF, which can have processes for 
event-processing. Events change the status of the system 
and are used for communication between entities.  

Processes are used to handle events during the simula-
tion. An entity can have one or more processes. In- and 
out-channels are the communication channel between the 
entities. An entity can have several in- and out-channels, 
which are always connected in a 1:1 fashion. This is a 
perfect match for P2P simulation. Peers are modeled as 
entities and the message they exchange are events. We 
provide classes which implement the general behavior of 
a super-peer based network (e.g. Peer, Super-peer, Mes-
sage, and Topology). For a specific setting these classes 
are extended; for the simulation described here we pro-
vided specializations for peers, super-peers, and query 
and response messages. Additional details about the simu-
lator are given in [5]. 

 
5.2 Data and Simulation Setup  

 
We evaluated the query processing for top-1 and top-

10 queries, both in a static and in a dynamic network set-
ting. 

Top-10. The top-10 case is the typical search engine 
use case. In most cases, users expect to find an appropri-
ate document among the best 10 hits. Therefore it is a 
reasonable value for the number of requested hits. If no 
suitable documents are found, users either refine their 
query (covered by the scenario) or ask for more results 
(not included in the simulation, but of course possible 
within our approach). 

Top-1. This situation often occurs, when applications 
or services execute a query to use the results in an internal 
process. A typical example can be found in the context of 
Web Services. To execute a predefined process consisting 
of several Web Services, the process execution engine has 

to find best matches for each service specification used in 
the process specification. However, only the best match is 
relevant, because in automated process execution only 
this service will be called as part of a workflow. These 
searches apply to both, necessary service discovery op-
erations, e.g. [5], and the actual selection of a semanti-
cally best matching service like in [6]. 

Static scenario. To evaluate how efficient the index 
works and how fast it builds up, we started with a static 
scenario where all peers are set up before the simulation 
starts. This scenario has practical applications e.g. for a 
network of service registries where registry nodes join 
and leave very rarely. 

Dynamic scenario. Obviously, we were also interested 
how good the algorithm works in a volatile network, the 
typical P2P case. To simulate volatility, we gave each 
peer a lifetime (with normal distribution). After its life-
time, the peer leaves the network, and soon afterwards a 
new peer with new documents joins. The lifetime was 
adjusted so that during a simulation run about 20% of the 
peers left the network and were replaced by new peers. In 
this scenario we need to update the indexes. As described 
in section 3, each index entry gets an expiration time on 
creation, based on a specified expiration period. This 
“best before” date will guarantee that our indexes do not 
age too much and provide out-dated information. 
For our experiments we varied the network size between 
100 and 2000 peers (connected via 2 to 16 super-peers), 
each holding 50 documents on average (with standard 
deviation 10). We used LA Times articles from the 
TREC-CD 5. The documents were distributed randomly 
among the peers. This is obviously the worst case for our 
approach: when documents are clustered on peers, the 
number of addressed peers can be essentially reduced. 
However, appropriate clustering algorithms are out of the 
scope of this paper, and the quality of our algorithms can 
be shown even in this worst case scenario (which basi-
cally affects only the number of super-peers contained in 
the indexes negatively). 
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Fig. 3:  Query Distribution 



We posed keyword queries with query term count av-
erage 2.0 and standard deviation 1.0. For these queries, 
we selected terms from the documents randomly. We 
assume a Zipf-shaped query frequency distribution with 
skew-factor 1.0 (see Fig. 3). The queries were pre-
generated for occurrence frequencies > 1%. Below this 
threshold queries were generated randomly with uniform 
distribution. The originating peer was selected randomly. 
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Fig. 4: Index Development (first 550 queries) 
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Fig. 5: Index Development (10000 queries) 

 
5.3   Simulation Results  

 
Static scenario. Fig. 4 shows how the index develops 

as more and more queries are processed by the network. 
The simulation starts with an empty index. As described 
in section 3, each query is added to the index on closing 
of the transaction. Thus the number of already indexed 
queries increases continuously. If a new query is sent, the 
algorithm checks if it is already in the index. The follow-
ing figures show how many of the queries were already in 
the index (as floating average with an interval of 200). 
The index coverage increases quickly. After 550 queries 
more than 90% of all queries are found in the index. After 

about 550 queries the index ratio stays rather constant, 
with some random variations, as shown in Fig. 5. 

 

Contacted Peers / Query – Top-10 Static

0

200

400

600

800

1000

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00

# of processed queries

# 
of

 c
on

ta
ct

ed
 p

ee
rs

 (f
lo

at
in

g 
av

g)

2000
1000

Network 
Size

 
Fig. 6: Contacted peers per query  

 
The rapid build up of the index corresponds to a sig-

nificant reduction of contacted peers (see Fig. 6). After 
1000 queries the average number of contacted peers has 
become relatively constant (from 10 for 100 peers to 49 
for 2000 peers). Therefore we show only the first 2000 
queries here. The top-1 case shows the same trend. As 
can be expected, the average of contacted peers is a little 
lower (after 2000 queries it ranges from 5 for 100 peers to 
41 for 2000 peers). However, our simulation results show 
a smaller difference than could be expected. The number 
of messages sent to evaluate a query is proportional to the 
number of contacted peers. We illustrate this in Fig. 7 for 
the top-1 static case. 
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Fig. 7: Messages per query (top-1, static) 

 
Dynamic scenario. Fig. 8 shows the average number of 

contacted peers for the top-1 dynamic case. While it is 
slightly higher than the top-1 static results, the general 
index performance is not significantly affected by the 
introduction of an expiration period for the index entries 



forcing periodic broadcasts for all indexed terms to get a 
new snapshot of the changed P2P network in the index. 
On average the number of contacted peers in the dynamic 
case will increase by a few percent, e.g. in the top-1 case 
the difference between static and dynamic is only 6%.  
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Fig. 8: Contacted peers per query (top-1, dynamic) 

 
The curves exhibit a slight waveform. Besides random 

fluctuations this is caused by the way the expiration 
works. Frequently posed queries are indexed shortly after 
simulation start. They expire all in the same time frame, 
causing the first broadcast wave. Over time, these waves 
get less significant due to the probabilistic query fre-
quency distribution. In reality, such waves wouldn’t occur 
because node number and query frequency would grow 
over time instead of starting off with a fixed amount, thus 
also causing a less steep increase of index content. 

In Table 1 we show for how many queries the com-
puted result differs from the ‘perfect’ result (which is 
obtained by evaluating the same query against the joint 
document collection of all currently existing peers). 
Though network changes can temporarily invalidate in-
dex entries, this is corrected as soon as affected entries 
expire. Our experiments show the ratio of incorrect re-
sults to remain sufficiently low, rising only slightly with 
network sizes. Please note that we counted all differences 
between our and the perfect result as being ‘incorrect’ 
retrievals. However, such incorrect results may still be 
quite good matches, just not the best possible as given by 
centralized approaches using expensive broadcasts. 

 
Results Net-

work 
Size 

All Incorrect  Ratio 

100 5000 91 1.82% 
500 5000 109 2.18% 

1000 5000 151 3.02% 
2000 5000 174 3.48% 

Table 1: Ratio of incorrect hits 

Contacted Peers Network 
Size Estimated (nSP + k) Measured 

100     2 + 10 = 12 = 12% 10 = 9.7% 
500     4 + 10 = 14 = 2.8% 19 = 3.8% 

1000     8 + 10 = 18 = 1.8% 29 = 2.9% 
2000     16+10 = 26 = 1.3% 49 = 2.5% 

Table 2: Estimated vs. measured contacted peers 
 
Lessons learned. Coming back to our two initial hy-

potheses our experiments allow to state the following 
confirming results: 
1. Table 2 presents the expected and actual ratio of con-

tacted peers for the top-10 case. The last column con-
tains the average contacted peers of queries 2001 to 
10000. The first 2000 queries are regarded as initial 
phase until the simulation stabilizes and are thus left 
out. It shows that we do not fully reach the estimated 
numbers of contacted peers. The reason is because, 
though a large percentage of queries gets indexed very 
quickly, there constantly remains a small amount of 
queries that still have to be broadcasted. The impact of 
this phenomenon depends on the network size. It is 
caused by our query generation strategy which (fol-
lowing the assumption of a Zipf distribution) creates 
random queries for occurrence frequencies below 1% 
(see 5.1). Still the ratio of contacted peers/network 
size is very low, and the number of connected peers 
increases sub-linearly with increasing network size.  

2. The assumption that our approach works nearly as 
well in a volatile network as it does in a static network 
can also be confirmed, as we have shown by the re-
sults in our dynamic scenarios. Though in our practi-
cal tests we assumed quite a high volatility (20% of 
the network dropping out and being replaced), in all 
cases the number of contacted peers increased only by 
a few percent over the static case, and remained rela-
tively stable during the simulation. Our indexing 
scheme is thus applicable for most practical environ-
ments. 

 
6. Summary and Outlook 
 

In this paper we have in detail discussed the benefits of 
best match/top-k queries for distributed peer-to-peer in-
formation infrastructures. So far this important kind of 
queries had mainly been investigated for traditional cen-
tralized information systems and web search environ-
ments, We have described an innovative routing index-
based retrieval algorithm, which implements distributed 
processing of top-k queries in general peer-to-peer net-
works while maintaining a minimum of object data traf-
fic. In order to achieve scalability also for large peer-to-
peer networks, our algorithm is based on dynamically 
collected query statistics only, and does not rely on ex-



plicit index updates every time new peers and data are 
dynamically added to or drop out of the P2P network. 
Moreover, we have proven that our algorithm always de-
livers correct result sets and is optimal in terms of neces-
sary object accesses and data traffic. Finally, we have 
presented several simulations of our approach, which 
show the quality of our algorithm regarding index con-
struction and updates in static and dynamic environments.  

Interesting additional problems to explore in future re-
search are the local processing of retrieval tasks involving 
collection-wide information and the exploitation of se-
mantic structures like clusters of peers providing semanti-
cally similar objects or documents. The clustering of such 
peers with semantically similar content (as for example 
given in distributed digital library scenarios) can be ex-
pected to further improve the overall performance of our 
retrieval algorithm and enable flexible and efficient wide 
area document sharing applications without the mainte-
nance of central indexing servers. Another interesting 
area will be the generalization of our optimality results 
from the minimum number of object accesses to a mini-
mum network traffic, where administrative messages can 
be saved, if a set of objects can be fetched by each 
get_next() operator. Heuristically managing the resulting 
trade-off between saved messages by pre-fetched relevant 
result objects, and unnecessary transmissions of objects 
irrelevant for the result set, can probably optimize the 
overall network traffic. 
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