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Progressive Duplicate Detection
Thorsten Papenbrock, Arvid Heise, and Felix Naumann

Abstract—Duplicate detection is the process of identifying multiple representations of same real world entities. Today, duplicate

detection methods need to process ever larger datasets in ever shorter time: maintaining the quality of a dataset becomes

increasingly difficult. We present two novel, progressive duplicate detection algorithms that significantly increase the efficiency

of finding duplicates if the execution time is limited: They maximize the gain of the overall process within the time available

by reporting most results much earlier than traditional approaches. Comprehensive experiments show that our progressive

algorithms can double the efficiency over time of traditional duplicate detection and significantly improve upon related work.

Index Terms—Duplicate Detection, Entity Resolution, Pay-as-you-go, Progressiveness, Data cleaning

✦

1 INTRODUCTION

Data are among the most important assets of a company.

But due to data changes and sloppy data entry, errors such

as duplicate entries might occur, making data cleansing and

in particular duplicate detection indispensable. However,

the pure size of today’s datasets render duplicate detection

processes expensive. Online retailers, for example, offer

huge catalogs comprising a constantly growing set of items

from many different suppliers. As independent persons

change the product portfolio, duplicates arise. Although

there is an obvious need for deduplication, online shops

without downtime cannot afford traditional deduplication.

Progressive duplicate detection identifies most duplicate

pairs early in the detection process. Instead of reducing the

overall time needed to finish the entire process, progressive

approaches try to reduce the average time after which a

duplicate is found. Early termination, in particular, then

yields more complete results on a progressive algorithm

than on any traditional approach.

As a preview of Sec. 8.3, Figure 1 depicts the number

of duplicates found by three different duplicate detection

algorithms in relation to their processing time: The in-

cremental algorithm reports new duplicates at an almost

constant frequency. This output behavior is common for

state-of-the-art duplicate detection algorithms. In this work,

however, we focus on progressive algorithms, which try

to report most matches early on, while possibly slightly

increasing their overall runtime. To achieve this, they need

to estimate the similarity of all comparison candidates in

order to compare most promising record pairs first.

With the pair selection techniques of the duplicate detec-

tion process, there exists a trade-off between the amount of

time needed to run a duplicate detection algorithm and the

completeness of the results. Progressive techniques make

this trade-off more beneficial as they deliver more complete

results in shorter amounts of time. Furthermore, they make
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Figure 1. Duplicates pairs found by an incremental and

our two progressive algorithms (see Sec. 8.3)

it easier for the user to define this trade-off, because the

detection time or result size can directly be specified instead

of parameters whose influence on detection time and result

size is hard to guess. We present several use cases where

this becomes important:

1) A user has only limited, maybe unknown time for

data cleansing and wants to make best possible use

of it. Then, simply start the algorithm and terminate

it when needed. The result size will be maximized.

2) A user has little knowledge about the given data but

still needs to configure the cleansing process. Then,

let the progressive algorithm choose window/block

sizes and keys automatically.

3) A user needs to do the cleaning interactively to, for

instance, find good sorting keys by trial and error.

Then, run the progressive algorithm repeatedly; each

run quickly reports possibly large results.

4) A user has to achieve a certain recall. Then, use the

result curves of progressive algorithms to estimate

how many more duplicates can be found further; in

general, the curves asymptotically converge against

the real number of duplicates in the dataset.

We propose two novel, progressive duplicate detection al-

gorithms namely Progressive Sorted Neighborhood Method

(PSNM), which performs best on small and almost clean

datasets, and Progressive Blocking (PB), which performs

best on large and very dirty datasets. Both enhance the
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efficiency of duplicate detection even on very large datasets.

In comparison to traditional duplicate detection, progressive

duplicate detection satisfies two conditions [1]:

Improved Early Quality. Let t be an arbitrary target time

at which results are needed. Then the progressive algorithm

discovers more duplicate pairs at t than the corresponding

traditional algorithm. Typically, t is smaller than the overall

runtime of the traditional algorithm.

Same Eventual Quality. If both a traditional algorithm

and its progressive version finish execution, without early

termination at t, they produce the same results.

Given any fixed-size time slot in which data cleansing

is possible, progressive algorithms try to maximize their

efficiency for that amount of time. To this end, our algo-

rithms PSNM and PB dynamically adjust their behavior by

automatically choosing optimal parameters, e.g., window

sizes, block sizes, and sorting keys, rendering their manual

specification superfluous. In this way, we significantly ease

the parameterization complexity for duplicate detection in

general and contribute to the development of more user

interactive applications: We can offer fast feedback and al-

leviate the often difficult parametrization of the algorithms.

In summary, our contributions are the following:

• We propose two dynamic progressive duplicate de-

tection algorithms, PSNM and PB, which expose

different strengths and outperform current approaches.

• We introduce a concurrent progressive approach for

the multi-pass method and adapt an incremental tran-

sitive closure algorithm that together form the first

complete progressive duplicate detection workflow.

• We define a novel quality measure for progressive

duplicate detection to objectively rank the performance

of different approaches.

• We exhaustively evaluate on several real-world

datasets testing our own and previous algorithms.

The duplicate detection workflow comprises the three

steps pair-selection, pair-wise comparison, and clustering.

For a progressive workflow, only the first and last step need

to be modified. Therefore, we do not investigate the com-

parison step and propose algorithms that are independent

of the quality of the similarity function. Our approaches

build upon the most commonly used methods, sorting and

(traditional) blocking, and thus make the same assumptions:

duplicates are expected to be sorted close to one another

or grouped in same buckets, respectively.

Paper organization. Section 2 examines related work.

Sections 3 and 4 introduce the PSNM and the PB algorithm,

which progressively find duplicates based on windowing

and blocking techniques, respectively. Section 5 contributes

the Attribute Concurrency multi-pass strategy, which en-

ables PSNM and PB to automatically choose good key

attributes. We discuss the incremental transitive closure

calculation in Section 6 and define a novel quality measure

for progressiveness in Section 7. Section 8 comprehensively

evaluates our algorithms, showing that they can double

the efficiency of traditional duplicate detection algorithms.

Section 9 concludes this paper and discusses future work.

2 RELATED WORK

Much research on duplicate detection [2], [3], also known

as entity resolution and by many other names, focuses on

pair-selection algorithms that try to maximize recall on

the one hand and efficiency on the other hand. The most

prominent algorithms in this area are Blocking [4] and the

Sorted Neighborhood Method [5].

Adaptive Techniques. Previous publications on duplicate

detection often focus on reducing the overall runtime.

Thereby, some of the proposed algorithms are already

capable of estimating the quality of comparison candidates

[6]–[8]. The algorithms use this information to choose the

comparison candidates more carefully. For the same reason,

other approaches utilize adaptive windowing techniques,

which dynamically adjust the window size depending on

the amount of recently found duplicates [9], [10]. These

adaptive techniques dynamically improve the efficiency

of duplicate detection, but in contrast to our progressive

techniques, they need to run for certain periods of time and

cannot maximize the efficiency for any given time slot.

Progressive Techniques. In the last few years, the eco-

nomic need for progressive algorithms also initiated some

concrete studies in this domain. For instance, pay-as-you-

go algorithms for information integration on large scale

datasets have been presented [11]. Other works introduced

progressive data cleansing algorithms for the analysis of

sensor data streams [12]. However, these approaches cannot

be applied to duplicate detection.

Xiao et al. proposed a top-k similarity join that uses

a special index structure to estimate promising compari-

son candidates [13]. This approach progressively resolves

duplicates and also eases the parameterization problem.

Although the result of this approach is similar to our ap-

proaches (a list of duplicates almost ordered by similarity),

the focus differs: Xiao et al. find the top-k most similar

duplicates regardless of how long this takes by weakening

the similarity threshold; we find as many duplicates as

possible in a given time. That these duplicates are also the

most similar ones is a side effect of our approaches.

Pay-As-You-Go Entity Resolution by Whang et al. in-

troduced three kinds of progressive duplicate detection

techniques, called “hints” [1]. A hint defines a probably

good execution order for the comparisons in order to

match promising record pairs earlier than less promising

record pairs. However, all presented hints produce static

orders for the comparisons and miss the opportunity to

dynamically adjust the comparison order at runtime based

on intermediate results. Some of our techniques directly

address this issue. Furthermore, the presented duplicate

detection approaches calculate a hint only for a specific

partition, which is a (possibly large) subset of records that

fits into main memory. By completing one partition of a

large dataset after another, the overall duplicate detection

process is no longer progressive. This issue is only partly

addressed in [1], which proposes to calculate the hints

using all partitions. The algorithms presented in our paper

use a global ranking for the comparisons and consider the
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limited amount of available main memory. The third issue

of the algorithms introduced by Whang et al. relates to the

proposed pre-partitioning strategy: By using minhash signa-

tures [14] for the partitioning, the partitions do not overlap.

However, such an overlap improves the pair-selection [15],

and thus our algorithms consider overlapping blocks as

well. In contrast to [1], we also progressively solve the

multi-pass method and transitive closure calculation, which

are essential for a completely progressive workflow. Finally,

we provide a more extensive evaluation on considerably

larger datasets and employ a novel quality measure to

quantify the performance of our progressive algorithms.

Additive Techniques. By combining the Sorted Neighbor-

hood Method with blocking techniques, pair-selection algo-

rithms can be built that choose the comparison candidates

much more precisely. The Sorted Blocks algorithm [15],

for instance, applies blocking techniques on a set of input

records and then slides a small window between the differ-

ent blocks to select additional comparison candidates. Our

progressive PB algorithm also utilizes sorting and block-

ing techniques; but instead of sliding a window between

blocks, PB uses a progressive block-combination technique,

with which it dynamically chooses promising comparison

candidates by their likelihood of matching.

The recall of blocking and windowing techniques can

further be improved by using multi-pass variants [5]. These

techniques use different blocking or sorting keys in multi-

ple, successive executions of the pair-selection algorithm.

Accordingly, we present progressive multi-pass approaches

that interleave the passes of different keys.

3 PROGRESSIVE SNM

The Progressive Sorted Neighborhood Method (PSNM) is

based on the traditional Sorted Neighborhood Method [5]:

PSNM sorts the input data using a predefined sorting key

and only compares records that are within a window of

records in the sorted order. The intuition is that records

that are close in the sorted order are more likely to be

duplicates than records that are far apart, because they

are already similar with respect to their sorting key. More

specifically, the distance of two records in their sort ranks

(rank-distance) gives PSNM an estimate of their matching

likelihood. The PSNM algorithm uses this intuition to

iteratively vary the window size, starting with a small

window of size two that quickly finds the most promising

records. This static approach has already been proposed

as the Sorted List of Record Pairs hint [1]. The PSNM

algorithm differs by dynamically changing the execution

order of the comparisons based on intermediate results

(Look-Ahead). Furthermore, PSNM integrates a progressive

sorting phase (MagpieSort) and can progressively process

significantly larger datasets.

3.1 PSNM algorithm

Algorithm 1 depicts our implementation of PSNM. The

algorithm takes five input parameters: D is a reference to

the data, which has not been loaded from disk yet. The

Algorithm 1 Progressive Sorted Neighborhood

Require: dataset reference D, sorting key K, window size

W, enlargement interval size I, number of records N

1: procedure PSNM(D, K, W, I, N)

2: pSize ← calcPartitionSize(D)

3: pNum ← ⌈N/(pSize−W + 1)⌉
4: array order size N as Integer

5: array recs size pSize as Record

6: order ← sortProgressive(D, K, I, pSize, pNum)

7: for currentI ← 2 to ⌈W/I⌉ do

8: for currentP ← 1 to pNum do

9: recs ← loadPartition(D, currentP)

10: for dist ∈ range(currentI, I, W) do

11: for i ← 0 to |recs| − dist do

12: pair ← 〈recs[i], recs[i + dist]〉
13: if compare(pair) then

14: emit(pair)

15: lookAhead(pair)

sorting key K defines the attribute or attribute combination

that should be used in the sorting step. W specifies the

maximum window size, which corresponds to the window

size of the traditional Sorted Neighborhood Method. When

using early termination, this parameter can be set to an

optimistically high default value. Parameter I defines the

enlargement interval for the progressive iterations. Sec. 3.2

describes this parameter in more detail. For now, assume

it has the default value 1. The last parameter N specifies

the number of records in the dataset. This number can be

gleaned in the sorting step, but we list it as a parameter for

presentation purposes.

In many practical scenarios, the entire dataset will not

fit in main memory. To address this, PSNM operates on a

partition of the dataset at a time. The PSNM algorithm cal-

culates an appropriate partition size pSize, i.e. the maximum

number of records that fit in memory, using the pessimistic

sampling function calcPartitionSize(D) in Line 2: If the

data is read from a database, the function can calculate

the size of a record from the data types and match this to

the available main memory. Otherwise, it takes a sample of

records and estimates the size of a record with the largest

values for each field. In Line 3, the algorithm calculates the

number of necessary partitions pNum, while considering a

partition overlap of W − 1 records to slide the window

across their boundaries. Line 4 defines the order-array,

which stores the order of records with regard to the given

key K. By storing only record IDs in this array, we assume

that it can be kept in memory. To hold the actual records of

a current partition, PSNM declares the recs-array in Line 5.

In Line 6, PSNM sorts the dataset D by key K. The sort-

ing is done by applying our progressive sorting algorithm

Magpie, which we explain in Sec. 3.2. Afterwards, PSNM

linearly increases the window size from 2 to the maximum

window size W in steps of I (Line 7). In this way, promising

close neighbors are selected first and less promising far-

away neighbors later on. For each of these progressive
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iterations, PSNM reads the entire dataset once. Since the

load process is done partition-wise, PSNM sequentially

iterates (Line 8) and loads (Line 9) all partitions. To process

a loaded partition, PSNM first iterates over all record rank-

distances dist that are within the current window interval

currentI. For I = 1 this is only one distance, namely

the record rank-distance of the current main-iteration. In

Line 11, PSNM then iterates all records in the current

partition to compare them to their dist-neighbor. The com-

parison is executed using the compare(pair) function in

Line 13. If this function returns “true”, a duplicate has

been found and can be emitted. Furthermore, PSNM evokes

the lookAhead(pair) method, which we explain later, to

progressively search for more duplicates in the current

neighborhood. If not terminated early by the user, PSNM

finishes when all intervals have been processed and the

maximum window size W has been reached.

3.2 Progressiveness Techniques

Window Interval. PSNM needs to load all records in each

progressive iteration and loading partitions from disk is ex-

pensive. Therefore, we introduced the window enlargement

interval I in Line 7 and 10. It defines how many dist-

iterations PSNM should execute on each loaded partition.

For instance, if we set I = 3, the algorithm loads the first

partition to sequentially execute the rank-distances 1 to

3, then it loads the second partition to execute the same

interval and so on until all partitions have been loaded

once. Afterwards, all partitions are loaded again to run

dist 4 to 6 and so forth. This strategy reduces the number

of load processes. However, the theoretical progressiveness

decreases as well, because we execute comparisons with

a lower probability of matching earlier. So I constitutes

a trade-off parameter that balances progressiveness and

overall runtime.

Partition Caching. As we cannot assume the input to

be physically sorted, the algorithm needs to repeatedly

re-iterate the entire file searching for the records of the

next partition, which contains the currently most promising

comparison candidates. So, all records need to be read

when loading the next partition. To overcome this issue, we

implemented Partition Caching within the loadPartition(D,

currentP) function in Line 9: If a partition is read for the

first time, the function collects the requested records from

the input dataset and materializes them to a new, dedicated

cache file on disk. When the partition is later requested

again, the function loads it from this cache file, reducing

the costs for PSNM’s additional I/O operations (and for

possible parsing efforts on the file-input).

Look-Ahead. After sorting the input dataset, we find areas

of high and low duplicate density, particularly if duplicates

occur in larger clusters, i.e., groups of records that are

all pair-wise duplicates. The Look-Ahead strategy uses this

observation to adjust the ranking of comparison candidates

at runtime: If record pair (i, j) has been identified as a dupli-

cate, then the pairs (i+1, j) and (i, j+1) have a high chance

of being duplicates of the same cluster. Therefore, PSNM

immediately compares them instead of waiting for the next

progressive iteration. If one of the look-ahead comparisons

detects another duplicate, a further look-ahead is recursively

executed. In this way, PSNM iterates larger neighborhoods

around duplicates to progressively reveal entire clusters. To

avoid redundant comparisons in different look-aheads or

in a following progressive iteration, PSNM maintains all

executed comparisons in a temporary data structure. This

behavior is implemented by the lookAhead(pair) function

in Line 15 of our PSNM implementation. Since the look-

ahead works recursively, it may perform comparisons that

are beyond the given maximum window size W. Hence, it

can find duplicates that cannot be found by the traditional

Sorted Neighborhood Method. For easier comparison, we

limited the maximum look-ahead rank-distance to W in

our evaluation. In summary, PSNM automatically prefers

locally promising comparisons in the otherwise static ex-

ecution order by adaptively comparing record pairs in the

neighborhood of previously detected duplicates.

MagpieSort. The sorting of records is a blocking prepro-

cessing step that we can already use to (progressively)

execute some first comparisons. MagpieSort is a naïve

sorting algorithm that works similar to SelectionSort. The

name of this algorithm is inspired by the larcenous bird that

collects beautiful things while only being able to carry a

few of them at once. MagpieSort repeatedly iterates over all

records to find the currently top-x smallest ones. Thereby,

it inserts each record into a sorted buffer of length x. If

the buffer is full, each newly inserted record displaces

the largest record from the list. After each iteration, the

final order can be supplemented by the next top x records

from the buffer. A record that has been emitted once will

not be emitted again. So for N records, the algorithm

terminates after
⌈

N
x

⌉

iterations yielding the final order of

records. As each pass over the input dataset delivers a

partition of appropriately sorted records, we can directly

execute some promising comparisons on them. In fact,

MagpieSort integrates the entire first progressive iteration

of PSNM. Overall, this sorting strategy generates only a

small overhead, because the algorithm needs to iterate over

the entire dataset anyway whenever a partition needs to be

read from disk.

Load-Compare Parallelism. The PSNM algorithm con-

sists of two continuously alternating phases: A load phase,

in which PSNM reads a partition of records from disk

into main memory, and a compare phase, in which PSNM

executes comparisons on the current partition. The load

phase frequently blocks the algorithm’s progress and re-

duces its progressiveness. To avoid this blocking behavior,

we propose to parallelize the two phases and then use

double buffering for the partitions. In this way, PSNM

can hide data access latencies by simultaneously executing

comparisons. Our implementation of this idea, which we

call Load-Compare Parallelism, uses two worker-threads:

a Loader and a Comparator. It also requires one partition

for each worker. Since both partitions need to reside in

memory at the same time, each of them can only be half
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the size of the overall available memory. So we define the

recs-array twice with half of its original size. The PSNM

algorithm then runs Lines 2 to 9 in the Loader thread and

Lines 10 to 15 in the Comparator thread.

4 PROGRESSIVE BLOCKING

In contrast to windowing algorithms, blocking algorithms

assign each record to a fixed group of similar records (the

blocks) and then compare all pairs of records within these

groups. Progressive Blocking (PB) is a novel approach

that builds upon an equidistant blocking technique and

the successive enlargement of blocks. Like PSNM, it also

pre-sorts the records to use their rank-distance in this

sorting for similarity estimation. Based on the sorting, PB

first creates and then progressively extends a fine-grained

blocking. These block extensions are specifically executed

on neighborhoods around already identified duplicates,

which enables PB to expose clusters earlier than PSNM.

Sections 8.3 and 8.4 directly compare the performance of

PB and PSNM showing that PB is indeed preferable for

datasets containing many large duplicate clusters.

4.1 PB intuition

Figure 2 illustrates how PB chooses comparison candidates

using the block comparison matrix. To create this matrix, a

preprocessing step has already sorted the records that form

the Blocks 1-8 (depicted as vertical and horizontal axes).

Each block within the block comparison matrix represents

the comparisons of all records in one block with all records

in another block. For instance, the field in the 4th row and

the 5th column represents the comparisons of all records in

Block 4 with all records in Block 5. Assuming a symmetric

similarity measure, we can ignore the bottom left part of

the matrix. The exemplary number of found duplicates is

depicted in the according fields. In this example, the block

comparison (4, 5) delivered nine duplicates. Because of the

equidistant blocking, all blocks have the same size. This

eases the progressive extension process that we describe in

the following. Only the last block might be smaller, if the

dataset is not divisible by the desired block size.
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Figure 2. PB in a block comparison matrix

In the initial run, PB defines the blocking and executes

all comparisons within each block. For the first progressive

iteration, the algorithm then selects those block pairs that

delivered the most duplicates in the initial run. In the

example, these are the block pairs (2, 2) and (5, 5). Because

these two block pairs represent the areas with the currently

highest duplicate density, the PB algorithm chooses (1, 2)
and (2, 3) to progressively extend the first block pair and

(4, 5) and (5, 6) to extend the second block pair. Having

compared the four new block pairs, PB starts the second

iteration. In this iteration, (4, 5) and (5, 6) are the best block

pairs and, hence, extended. The results of this iteration

then influences the third iteration and so on. In this way,

PB dynamically processes those neighborhoods that are

expected to contain most new duplicates. In case of ties, the

algorithm prefers block pairs with a smaller rank-distance,

because the distance in the sort rank still defines the

expected similarity of the records. The extensions continue

until all blocks have been compared or a distance threshold

for all remaining block pairs has been reached.

4.2 PB algorithm

Algorithm 2 lists our implementation of PB. The algorithm

accepts five input parameters: The dataset reference D

specifies the dataset to be cleaned and the key attribute

or key attribute combination K defines the sorting. The

parameter R limits the maximum block range, which is the

maximum rank-distance of two blocks in a block pair, and

S specifies the size of the blocks. We discuss appropriate

values for R and S in the next section. Finally, N is the size

of the input dataset.

At first, PB calculates the number of records per partition

pSize by using a pessimistic sampling function in Line 2.

The algorithm also calculates the number of loadable blocks

per partition bPerP, the total number of blocks bNum, and

the total number of partitions pNum. In the Lines 6 to 8, PB

then defines the three main data structures: the order-array,

which stores the ordered list of record IDs, the blocks-array,

which holds the current partition of blocked records, and

the bPairs-list, which stores all recently evaluated block

pairs. Thereby, a block pair is represented as a triple

of 〈blockNr1, blockNr2, duplicatesPerComparison〉. We im-

plemented the bPairs-list as a priority queue, because the

algorithm frequently reads the top elements from this list. In

the following Line 10, the PB algorithm sorts the dataset

using the progressive MagpieSort algorithm. Afterwards,

the Lines 11 to 14 load all blocks partition-wise from disk

to execute the comparisons within each block.

After the preprocessing, the PB algorithm starts progres-

sively extending the most promising block pairs (Lines 15

to 23). In each loop, PB first takes those block pairs bestBPs

from the bPairs-list that reported the highest duplicate

density. Thereby, at most bPerP/4 block pairs can be taken,

because the algorithm needs to load two blocks per bestBP

and each extension of a bestBP delivers two partition block

pairs pBPs in Line 20. However, if such an extension

exceeds the maximum block range R, the last bestBP is

discarded. Having successfully defined the most promising

block pairs, Line 21 loads the corresponding blocks from

disk to compare the pBPs in Line 22. The compare(blocks,
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Algorithm 2 Progressive Blocking

Require: dataset reference D, key attribute K, maximum

block range R, block size S and record number N

1: procedure PB(D, K, R, S, N)

2: pSize ← calcPartitionSize(D)

3: bPerP ← ⌊pSize/S⌋
4: bNum ← ⌈N/S⌉
5: pNum ← ⌈bNum/bPerP⌉
6: array order size N as Integer

7: array blocks size bPerP as 〈Integer, Record[ ]〉
8: priority queue bPairs as 〈Integer,Integer,Integer〉
9: bPairs ← {〈1, 1, _〉 , ... , 〈bNum, bNum, _〉}

10: order ← sortProgressive(D, K, S, bPerP, bPairs)

11: for i ← 0 to pNum − 1 do

12: pBPs ← get(bPairs, i · bPerP, (i+1) · bPerP)

13: blocks ← loadBlocks(pBPs, S, order)

14: compare(blocks, pBPs, order)

15: while bPairs is not empty do

16: pBPs ← {}
17: bestBPs ← takeBest(⌊bPerP/4⌋, bPairs, R)

18: for bestBP ∈ bestBPs do

19: if bestBP[1] − bestBP[0] < R then

20: pBPs ← pBPs ∪ extend(bestBP)

21: blocks ← loadBlocks(pBPs, S, order)

22: compare(blocks, pBPs, order)

23: bPairs ← bPairs ∪ pBPs

24: procedure COMPARE(blocks, pBPs, order)

25: for pBP ∈ pBPs do

26: 〈dPairs, cNum〉 ← comp(pBP, blocks, order)

27: emit(dPairs)

28: pBP[2] ← |dPairs| / cNum

pBPs, order)-procedure is listed in Lines 24 to 28. For

all partition block pairs pBP, the procedure compares each

record of the first block to all records of the second block.

The identified duplicate pairs dPairs are then emitted in

Line 27. Furthermore, Line 28 assigns the duplicate pairs

to the current pBP to later rank the duplicate density of this

block pair with the density in other block pairs. Thereby,

the amount of duplicates is normalized by the number

of comparisons, because the last block is usually smaller

than all other blocks. In Line 23, the algorithm adds the

previously compared pBPs to the bPairs-list to use them

in the next progressive iteration. If the PB algorithm is not

terminated prematurely, it automatically finishes when the

list of bPairs is empty, e.g., no new block pairs within the

maximum block range R can be found.

4.3 Blocking Techniques

Block Size. A block pair consisting of two small blocks

defines only few comparisons. Using such small blocks,

the PB algorithm carefully selects the most promising

comparisons and avoids many less promising comparisons

from a wider neighborhood. However, block pairs based

on small blocks cannot characterize the duplicate density

in their neighborhood well, because they represent a too

small sample. A block pair consisting of large blocks, in

contrast, may define too many, less promising comparisons,

but produce better samples for the extension step. The block

size parameter S, therefore, trades off the execution of

non-promising comparisons and the extension quality. In

preliminary experiments, we identified 5 records per block

to be a generally good and not sensitive value.

Maximum Block Range. The maximum block range pa-

rameter R is superfluous when using early termination. For

our evaluation, however, we use this parameter to restrict

the PB algorithm to approximately the same comparisons

executed by the traditional Sorted Neighborhood Method.

We cannot restrict PB to execute exactly the same com-

parisons, because the selection of comparison candidates is

more fine-grained by using a window than by using blocks.

Nevertheless, the calculation of R as R =
⌊

windowSize
S

⌋

causes

PB to execute only minimally fewer comparisons.

Extension Strategy. The extend(bestBP) function in

Line 20 of Algorithm 2 returns some block pairs in the

neighborhood of the given bestBP. In our implementation,

the function extends a block pair (i, j) to the block pairs

(i + 1, j) and (i, j + 1) as shown in Figure 2. More eager

extension strategies that select more block pairs from the

neighborhood increase the progressiveness, if many large

duplicate clusters are expected. By using a block size S

close to the average duplicate cluster size, more eager

extension strategies have, however, not shown a significant

impact on PB’s performance in our experiments. The ben-

efit of detecting some cluster duplicates earlier was usually

as high as the drawback of executing fruitless comparisons.

MagpieSort. To estimate the records’ similarities, the PB

algorithm uses an order of records. As in the PSNM

algorithm, this order can be calculated using the progres-

sive MagpieSort algorithm. Since each iteration of this

algorithm delivers a perfectly sorted subset of records, the

PB algorithm can directly use this to execute the initial

comparisons. In this way, the entire initialization loop listed

in Lines 11-14 can be integrated into the sorting step.

5 ATTRIBUTE CONCURRENCY

The best sorting or blocking key for a duplicate detection

algorithm is generally unknown or hard to find. Most

duplicate detection frameworks tackle this key selection

problem by applying the multi-pass execution method.

This method executes the duplicate detection algorithm

multiple times using different keys in each pass. However,

the execution order among the different keys is arbitrary.

Therefore, favoring good keys over poorer keys already

increases the progressiveness of the multi-pass method.

In this section, we present two multi-pass algorithms that

dynamically interleave the different passes based on in-

termediate results to execute promising iterations earlier.

The first algorithm is the Attribute Concurrent PSNM (AC-

PSNM), which is the progressive implementation of the

multi-pass method for the PSNM algorithm, and the second

algorithm is the Attribute Concurrent PB (AC-PB), which

is the corresponding implementation for the PB algorithm.
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Algorithm 3 Attribute Concurrent PSNM

Require: dataset reference D, sorting keys Ks, window size

W, enlargement interval size I and record number N

1: procedure AC-PSNM(D, Ks, W, I, N)

2: pSize ← calcPartitionSize(D)

3: pNum ← ⌈N/(pSize−W + 1)⌉
4: array orders dimension |Ks| × N as Integer

5: array windows size |Ks| as Integer

6: array dCounts size |Ks| as Integer

7: for k ← 0 to |Ks| − 1 do

8: 〈orders[k], dCounts[k]〉 ← sortProgressive(D, I,

Ks[k], pSize, pNum)

9: windows[k] ← 2

10: while ∃ w ∈ windows : w < W do

11: k ← findBestKey(dCounts, windows)

12: windows[k] ← windows[k] + 1
13: dPairs ← process(D, I, N, orders[k],

windows[k], pSize, pNum)

14: dCounts[k] ← |dPairs|

5.1 Attribute Concurrent PSNM

The basic idea of AC-PSNM is to weight and re-weight all

given keys at runtime and to dynamically switch between

the keys based on intermediate results. Thereto, the algo-

rithm precalculates the sorting for each key attribute. The

precalculation also executes the first progressive iteration

for every key to count the number of results. Afterwards,

the algorithm ranks the different keys by their result counts.

The best key is then selected to process its next iteration.

The number of results of this iteration can change the

ranking of the current key so that another key might

be chosen to execute its next iteration. In this way, the

algorithm prefers the most promising key in each iteration.

Algorithm 3 depicts our implementation of AC-PSNM. It

takes the same five parameters as the basic PSNM algorithm

but a set of keys Ks instead of a single key.

First, AC-PSNM calculates the partition size pSize and

the overall number of partitions pNum. During execution,

each key is assigned an own state. To encode these states,

the algorithm defines three basic data structures in Lines 4

to 6: an orders-array, which stores the different orders,

a windows-array, which stores the current window range

for each key, and a dCounts-array, which stores the keys’

current duplicate counts. To initialize these data structures,

Line 7 iterates all given keys. For each key, the algorithm

uses MagpieSort in Line 8 to create the corresponding or-

der. Simultaneously, it calculates and counts the duplicates

of the key’s first progressive iteration. In Line 9, AC-PSNM

then stores the number 2 as the recently used window range

for the current key.

After initialization, AC-PSNM enters the main loop in

Line 10. This loop continues until the maximum window

size W has been reached with all keys. In the loop’s body,

the algorithm first selects the key k that delivered the most

duplicates in the last iteration by consulting the dCounts-

Algorithm 4 Attribute Concurrent PB

Require: dataset reference D, sorting keys Ks, maximum

block range R, block size S and record number N

1: procedure AC-PB(D, Ks, R, S, N)

2: pSize ← calcPartitionSize(D)

3: bPerP ← ⌊pSize/S⌋
4: bNum ← ⌈N/S⌉
5: pNum ← ⌈bNum/bPerP⌉
6: array orders dimension |Ks| × N as Integer

7: array blocks size bPerP as 〈Integer, Record[ ]〉
8: list bPairs as 〈Integer, Integer, Integer, Integer〉
9: for k ← 0 to |Ks| − 1 do

10: pairs ← {〈1, 1, _, k〉 , ..., 〈bNum, bNum, _, k〉}
11: orders[k] ← sortProgressive(D, Ks[k], S, bPerP,

pairs)

12: bPairs ← bPairs ∪ pairs

13: « see Algorithm 2 Lines 15 to 23 »

array in Line 11. To execute the next progressive iteration

for k, the algorithm first increases the corresponding win-

dow range by one. Then, it calls the process(...) function

that runs the PSNM algorithm with only the specified rank-

distance. Afterwards, Line 14 updates the duplicate count of

the current key with the amount of newly found duplicates.

Due to the update, AC-PSNM might select another best key

in the next iteration. In this way, the algorithm dynamically

re-ranks the sorting keys.

Note that the process(...) function in Line 13 handles

record comparisons slightly different than MagpieSort in

Line 8. Since the initialization uses the keys in arbitrary

order, MagpieSort counts all duplicates that are found in

the first iterations to treat all keys equally. Afterwards, the

process(...) function reports only new duplicates that have

not been found before with a different key. This change in

behavior guarantees that the progressive main loop always

chooses the currently most promising key. Counting only

new duplicates also causes the algorithm to automatically

rank those keys last, whose orders are subsumed by other

keys’ orders. For instance, “postcode” might displace “city”

as a key in an address dataset, because it usually generates

a similar but more fine-grained order.

5.2 Attribute Concurrent PB

Instead of scheduling progressive iterations of different

keys, AC-PB directly schedules the bPair-comparisons of

all keys: AC-PB first calculates the initial block pairs

and their duplicate counts for all keys (see Figure 2 in

Section 4.1); then, it takes all block pairs together and ranks

them regardless of the key, with which the individual blocks

have initially been created. This approach lets AC-PB rank

the comparisons even more precisely than AC-PSNM.

Algorithm 4 shows the implementation of our AC-PB al-

gorithm. Basically, AC-PB works like the already presented

PB algorithm with only a few changes: It takes the same

five input parameters as the PB algorithm, except that it

now takes a set of sorting keys Ks. Furthermore, AC-PSNM
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needs to allocate an array of orders holding one order

for each given sorting key (Line 6). This key-separation

is not needed for the bPairs-list in Line 8, because AC-

PB merges all block pairs based on any order in this list.

To match a block pair with its corresponding order, AC-

PB implements the block pairs as quadruples containing

their sorting key’s number in the fourth field. Lines 9

to 11 initialize the three data structures orders, blocks, and

bPairs by iterating all sorting keys. Line 10 creates the

initial block pairs and directly assigns the corresponding

key k to them. Afterwards, the AC-PSNM algorithm uses

MagpieSort to calculate the order for the current key. As in

the PB algorithm, the progressive sorting also evaluates the

initial block pairs and stores the resulting duplicate counts

within them. Having finished the initialization, AC-PSNM

holds the orders of all sorting keys and one list containing

all block pairs. In Line 13, the algorithm then starts to

progressively process the block pairs by simply executing

the PB algorithm.

The main loop interleaves the enlargements and com-

parisons of all block pairs by always choosing the most

promising block pairs. In this way, the algorithm exploits

the different strengths and weaknesses of each key indi-

vidually. For instance, one key might be good in grouping

records of duplicate cluster A and another key might group

records of cluster B more efficiently.

6 TRANSITIVE CLOSURE

Due to careful pair-selection and the use of similarity

thresholds, the result of a duplicate detection run is usually

not transitively closed: the record pairs (a, b) and (b, c)
might be recognized as duplicates but (a, c) is (yet) missing

in the result. Traditional duplicate detection algorithms,

therefore, calculate the transitive closure of all results in

the end [16]. As this calculation is blocking in nature, it

hinders progressivity. Therefore, we propose to calculate

the transitive closure incrementally while the detection

algorithm is running.

A suitable incremental transitive closure algorithm has

already been introduced by Wallace and Kollias [17]. The

proposed algorithm incrementally adds new duplicates,

which are given as pairs of record identifiers, to an internal

data structure that serves to calculate transitive relations

from current results. The proposed data structure comprises

two sorted lists of duplicates – one sorted by first records

and one sorted by second records. If n is the number of

records in the result, the proposed data structure exhibits an

insert complexity of O(n+ log(n)) and a read complexity

of O(log(n)). As these complexities would introduce a

significant performance drawback to our progressive work-

flow, we instead store the duplicates in an index structure:

We directly map each record identifier to a set of record

identifiers representing a duplicate cluster. To add a new

duplicate, we lookup the two contained records and point

them to the same cluster, in which we add both records.

Because of the map’s overhead, this data structure requires

approximately 75% more memory. However, inserts and

reads can be done in amortized constant time.

7 MEASURING PROGRESSIVENESS

In the previous sections, we presented the two progressive

pair-selection algorithms PSNM and PB, complemented

them with respective multi-pass methods, and finalized their

results by incrementally calculating the transitive closure.

To measure their performance in the next section, we now

introduce our novel quality measure. As this measure is

sensitive to the system running the duplicate detection

process, we first discuss four exemplary system types and

then lead over to the definition.

7.1 Range of system types

The following system types differ in their availability

of computational resources. Duplicate detection in these

systems must, hence, serve individual requirements:

Fluctuating System. The load on many systems fluctuates.

As data cleansing consumes resources, a fluctuating system

has to perform data cleansing tasks at time intervals when

its load is low. As the duration of available resources is

unpredictable, progressive duplicate detection makes most

use of that time.

Pipeline System. Database and ETL systems use pipeline

strategies to process their input data. In these systems,

data is passed through multiple operators. Since a dupli-

cate detection component executes many complex record

comparisons, it might lower the pipeline’s execution speed

significantly. Progressive duplicate detection algorithms

tackle this issue by maximizing the component’s output

performance especially in the starting phase.

Timeslot System. Sometimes, the operation mode of a

system is very strict or follows clear structures. In those

systems, we observe well known, fixed sized timeslots of

lower and higher system load. A typical timeslot system is

the ERP-System of a non-globalized company. At night and

on weekends the systems load decreases for a predictable

period of time and resources become available for data

cleansing. In any of these timeslots, progressive algorithms

can maximize the output of duplicate detection processes.

Economic System. From the economic point of view,

every IT-System is a cost factor in a company, because the

usage of hardware resources must be paid and the system’s

execution time might prevent other jobs from being done.

The quality of these systems is, hence, measured using a

cost-benefit calculation. Especially for traditional duplicate

detection processes, it is difficult to meet a budget limita-

tion, because their runtime is hard to predict. By delivering

as many duplicates as possible in a given amount of time,

progressive processes optimize the cost-benefit ratio.

7.2 Quality Measure

We now define a novel metric to measure efficiency over

time. The efficiency of a duplicate detection algorithm is

defined by its cost-benefit ratio, where the costs correspond

to the algorithm’s runtime and the benefit to the number of

found duplicates. Hence, the measure focuses on recall and



9

not on precision. Precision is a property of the similarity

function, which we do not evaluate in this paper.

Definition 1: Progressive quality: Given the total num-

ber of duplicates N in a dataset, a weighting function ω(t)
over time, and the result function r(t) for the number of

duplicates found in the time interval (t − 1, t], then the

progressive quality Q(T ) of a duplicate detection algorithm

for the measurement time T is defined by the discrete

sampling function:

Q(T ) =
1

N
·

T
∑

t=1

(ω(t) · r(t)) (1)

Functions ω(t) and r(t) are formally defined later. All

results that an algorithm delivers later than T are ignored

for its evaluation. In particular, once the fastest (progressive

or non-progressive) algorithm terminates, further results of

any other algorithm are worthless. Hence, we define T as

follows:

Definition 2: Measurement time: Given n duplicate de-

tection algorithms with individual overall runtimes Ti on

the same dataset and hardware, the measurement time T
for the progressive quality measure Q(T ) is defined as

T = min{T1, T2, ...Tn}

In Definition 1, N is used to normalize the quality

values so that Q(T ) ∈ [0, 1]. Furthermore, r(t) gives the

number of newly found duplicates in the time interval

(t− 1, t]. This function is evaluated in discrete, equidistant

intervals. Generally, we can choose any sampling rate for

the measurement intervals, but the higher the sampling rate

is chosen, the more precise the final quality value is. In

Formula (1), each duplicate measurement is also weighted

by a system-specific, time-dependent weighting function

ω(t). One may interpret ω(t) as the probability that the

algorithm is still running at time t and that it has not been

terminated before. We define this function as follows:

Definition 3: Weighting function: Given a measurement

time T , the weighting function ω(t) for a progressive qual-

ity measure can be any function satisfying the following

three conditions:

1) ω(t) : {t | 0 < t ≤ T} −→ {w | 0 ≤ w ≤ 1}
2) ω(t) ≥ ω(t+ 1)
3) ω(1) = 1

Firstly, ω(t) has to be defined for the entire measurement

time T to be used for the calculation of Q(T ). Thereby,

ω(t) weakens the result counts of r(t) by assigning weights

between 0 and 1. This condition guarantees a final quality

≤ 1. As ω(t) is used to weight progressiveness, the second

condition states that the weighting function must mono-

tonically decrease, ensuring that early results are never

weighted lower than later results. The last condition speci-

fies that the first weight must be 1 for any ω(t)-function: an

ideal progressive algorithm, which immediately reports all

results right at the beginning, shall achieve a quality of 1,

regardless of the concrete weighting function.

The weighting function of choice depends on the given

use case. We propose four possible weighting functions for

previously introduced system types in Figure 3.

Figure 3. Weighting functions for our system types

The special economic weighting function ω(t) =

max(1− (t−1)
T

, 0) makes Q(T ) equivalent to the area under

the curve of the result graph. Furthermore, the weighting

function ω(t) = 1 leads to Q(T ) =
1

N
·

T
∑

t=1
r(t), which is

the definition of recall. These two measures are often used

to evaluate the performance of an algorithm, but they are

only two possible instances of our more general measure

and have not been applied to evaluate progressiveness, yet.

8 EVALUATION

In the previous sections, we presented two progressive

duplicate detection algorithms namely PSNM and PB, and

their Attribute Concurrency techniques. In this section, we

first generally evaluate the performance of our approaches

and compare them to the traditional Sorted Neighbor-

hood Method (SNM) and the Sorted List of Record Pairs

(SLORP) presented in [1]. Then, we test our algorithms

using a much larger dataset and a concrete use case. The

graphs used for performance measurements plot the total

number of reported duplicates over time. Each duplicate is

a positively matched record pair. For better readability, we

manually marked some data points from the many hundred

measured data points that make up a graph.

8.1 Experimental setup

To evaluate the performance of our algorithms, we chose

three real-world datasets with different characteristics (see

Table 1). Since only the CD-dataset comes with an own

true gold-standard, we computed duplicates in the DBLP-

and CSX-dataset by running an exhaustive duplicate detec-

tion process using our fixed and reasonable (but for our

evaluation irrelevant) similarity measure.

Table 1

Real-world datasets and their characteristics

Name CD DBLP CSX

Records 9,763 1,268,017 1,385,532
Duplicates 277 67,586 195,042
Threshold 0.7 0.85 0.85
Best Key Track01 Title Title

The CD-dataset1 contains various records about music

and audio CDs. The DBLP-dataset2 is a bibliographic index

1. www.hpi.de/naumann/projects/data-quality-and-cleansing/dude

2. www.informatik.uni-trier.de/~ley/db/
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on computer science journals and proceedings. In contrast

to the other two datasets, DBLP includes many, large

clusters of similar article representations. The CSX-dataset3

contains bibliographic data used by the CiteSeerX search

engine for scientific digital literature. CSX also stores the

full abstracts of all its publications in text-format. These

abstracts are the largest attributes in our experiments.

Our work focuses on increasing efficiency while keep-

ing the same effectiveness. Hence, we assume a given,

correct similarity measure; it is treated as an exchange-

able black box. For our experiments, however, we use

the Damerau-Levenshtein similarity [18]. This similarity

measure achieved an actual precision of 93% on the CD-

dataset, for which we have a true gold standard.

The first part of our evaluation is executed on a DELL

Optiplex 755 comprising an Intel Core 2 Duo E8400 3 GHz

and 4 GB RAM. We use Ubuntu 12.04 32 bit as operating

system and Java 1.6 as runtime environment. The evaluation

of Sec. 8.6 uses a different machine, explained there.

Memory limitation. We assume that many real-world

datasets are considerably larger than the amount of available

main memory,e.g., in our use case described in Sec. 8.6.

Therefore, we limit the main memory of our machine to

1 GB so that the DBLP- and CSX-dataset do not fit into

main memory entirely. 1 GB of memory corresponds to

about 100 000 records that can be loaded at once. The

artificial limitation actually degrades the performance of

our algorithms more than the performance of the non-

progressive baseline, because progressive algorithms need

to access partitions several times. As our experiments show,

using more memory significantly increases the progressive-

ness of both PSNM and PB. Sec. 8.6 further shows that all

results on 1 GB main memory can be extrapolated to larger

datasets being processed using more main memory.

Quality measure. To evaluate the progressiveness of our al-

gorithms, we use the quality measure proposed in Sec. 7.2.

For the weighting function, we generally choose ω(t) =

max(1 − (t−1)
T

, 0), i.e., the area under the curve of the

corresponding result graph. In this way, the calculated

quality values are visually easy to understand.

Baseline approach. The baseline algorithm, which we use

in our tests, is the standard Sorted Neighborhood Method

(SNM). This algorithm has been implemented similar to

the PSNM algorithm so that it may use load-compare paral-

lelism as well. In our experiments, we always execute SNM

and PSNM with the same parameters and optimizations to

compare them in a fair way.

8.2 Optimizations in PSNM

Before we compare our PSNM algorithm to the PB al-

gorithm and existing approaches, we separately evaluate

PSNM’s different progressive optimizations. We use a

window size of 20 in all these experiments.

Window Interval. The window interval parameter I is a

trade-off parameter: Small values close to 1 favor pro-

3. csxstatic.ist.psu.edu/about/data

gressiveness at any price while large values close to the

window size optimize for a short overall runtime. In all our

experiments, I = 1 performs best, achiebing, for instance,

67% progressiveness on the DBLP-dataset. On the same

dataset, the performance reduces to 65% for I = 2, to 62%

for I = 4 and to 48% for I = 10. Hence, we suggest to set

I = 1 if early termination can be used.

Partition Caching. Although eventually PSNM executes

the same comparisons as the traditional SNM approach,

the algorithm takes longer to finish. The reason for this ob-

servation is the increased number of highly expensive load

processes. To reduce their complexity, PSNM implements

partition caching. We now evaluate the traditional SNM

algorithm, a PSNM algorithm without partition caching

and a PSNM algorithm with partition caching on the

DBLP-dataset. The results of this experiment are shown in

Figure 4 in the left graph. The experiment shows that the

benefit of partition caching is significant: The runtime of

PSNM decreases by 42% minimizing the runtime difference

between PSNM and SNM to only 2%.

Look-Ahead. To optimize the selection of comparison can-

didates, PSNM’s look-ahead strategy dynamically executes

comparisons around recently identified duplicates. In the

following experiment, we evaluate the gain of this opti-

mization. As in the previous experiment, we compare the

look-ahead optimized PSNM to the non-optimized PSNM

on the DBLP-dataset. As the results in the right graph of

Figure 4 show, the look-ahead strategy clearly improves

the progressiveness of the PSNM algorithm: The measured

quality increases from 37% to 64%. This is a quality gain

of 42%. On the CSX-dataset, however, the performance

increases by only 7% from 70% to 75%. The reason

is that the benefit of the look-ahead optimization greatly

depends on the number and the size of duplicate clusters

contained within a dataset. The CSX-dataset contains only

few large clusters of similar records and, therefore, exhibits

a very homogeneous distribution of duplicates, which is

why the look-ahead strategy achieves only a small gain in

progressiveness on that dataset.

Load-Compare Parallelism. By parallelizing the load

phase and the compare phase, the load time for parti-

tions should ideally no longer affect the performance. The

following experiments evaluate this assumption for our

PSNM. Since the load-compare parallelism also improves

the traditional SNM, the experiment runs SNM with and

without parallelization as well. Figure 5 illustrates the

results of the experiment.

On the DBLP-dataset, load-compare parallelism per-

forms almost perfectly: the entire load-time is hidden by the

compare-time so that the optimized PSNM algorithm and

the optimized SNM algorithm finish nearly simultaneously.

This is due to the fact that the latency hiding effect

reduced the runtime of the PSNM algorithm by 43% but

the runtime of the SNM algorithm by only 5%. On the

larger CSX-dataset, however, the load-compare parallelism

strategy reduces the runtime of the SNM algorithm by

11% and the runtime of the PSNM algorithm by only
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Figure 4. Effect of partition caching and look-ahead

25%. This is a remarkable gain, but since the load phases

are much longer than the compare phases on this dataset,

the optimization cannot hide the full data access latency:

the CSX-dataset contains many enormously large attribute

values that increase the load time a lot.

Figure 5. Evaluation of the Load-Compare Parallelism

Although the load-compare parallelism improves the

PSNM algorithm, all further experiments do not use this

optimization; the comparisons would become unfair using

parallelization for some algorithms and no parallelization

on some other algorithms, in particular those of [1].

8.3 Comparison to related work

In the following experiment, we evaluate our algorithms

PSNM and PB on all four datasets. We use the traditional,

non-progressive SNM algorithm as baseline to measure the

real benefit of PSNM and PB. Furthermore, the experiment

includes an implementation of the Sorted List of Record

Pairs (SLORP) hint [1], which we consider to be the best

progressive duplicate detection algorithm in related work.

For fairness, SLORP also uses partition caching, because

text-files had not been considered as input format in that

work. The experiment uses a maximum window size of 20

for PSNM, SNM, and SLORP. In accordance with Sec. 4.3,

we set both PB’s block size and PB’s block range to 5. So,

the PB algorithm executes 11% fewer comparisons on each

dataset than the three other approaches. The results of the

experiment are depicted in Figure 6.

Low latency. On all datasets PSNM and PB start reporting

first results about 1-2% earlier than SNM and SLORP. This

advantage is a result of our progressive MagpieSort. For the

non-progressive algorithms, we use an implementation of

the Two-Phase Multiway Merge Sort (TPMMS), which is

a popular approach for external memory sorting. Although

TPMMS is highly efficient, Magpie-Sorting slighly outper-

forms this approach regarding progressiveness.

PSNM. In all three test runs, PSNM achieves the best

performance, approximately doubling the progressiveness

of the SNM baseline algorithm. PSNM also significantly

outperforms the SLORP algorithm. In our experiment,

PSNM exhibits a 6% (CSX) to 29% (DBLP) higher pro-

gressiveness than SLORP.

PB. The PB algorithm is the second best algorithm in

this experiment. As the progressiveness of this algorithm

highly benefits from more and larger duplicate clusters,

it shows its best performance on the DBLP-dataset. In

general, PB reports first duplicates in the starting phase

clearly slower than the PSNM, because running a window

of size 1 is initially more efficient than running the first

block comparisons. In the following phases, however, PB

resolves duplicate clusters extremely fast. Overall, PSNM

is still 3% more progressive than PB on the DBLP-dataset.

Thereby, we need to consider that PB executes 11% fewer

comparisons than PSNM and, therefore, finds 4% fewer

duplicates. Hence, PB actually competes well with PSNM

on skewed datasets but loses on uniformly distributed

duplicates in single-pass settings.

I/O-Overhead. For a given dataset, the tasks of sorting,

candidate generation, and record comparison all have the

same runtime in both progressive and non-progressive algo-

rithms. However, the progressive algorithms require more

I/O operations if the data does not fit into main memory.

This causes their overall runtimes to increase, which then

reduces their progressivity. Figure 6 shows these runtime

differences especially for the large CSX-dataset. If the data

fits into main memory, e.g., for the CD-dataset, this effect

cannot be observed.

Pairs Quality. To show how precise comparison candidates

are chosen, we evaluated the pairs quality PQ [19] of

PSNM, PB, and SNM over time. The PQ of a duplicate

detection algorithm at time t is the number of identified

duplicates at t divided by the number of comparisons

that were executed to find these duplicates. So the perfect

duplicate detection algorithm comparing only those record

pairs that in fact are duplicates yields PQ=1. Figure 7

depicts the PQ-value curves for the CSX-dataset (left chart).

As the curves show, the two progressive approaches choose

their comparison candidates much more carefully: The

PSNM algorithm detects a new duplicate with every 12th

and PB with every 20th comparison in the first few minutes.

The baseline approach, in contrast, reports fewer than one

duplicate in 100 comparisons. In the end, all algorithms

have executed (almost) the same comparisons, so that their

PQ curves converge to the same value.

Precision and Recall. The proposed progressive algorithms

enhance the efficiency and usability of duplicate detection

processes, but do not change their effectiveness. Of course,

the similarity function used to determine duplicates must

match the characteristics of the used sorting key(s). But

both similarity function and keys are irrelevant for the

progressiveness of our algorithms. In other words: If the

similarity function is poor, we obtain the same poor results

from progressive and non-progressive algorithms.
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Figure 6. Performance comparison of the traditional SNM and the progressive PB, PSNM, and PB algorithms

To illustrate this behavior, we evaluated the change in

precision and recall on the CD-dataset, which is the only

dataset for which a true gold-standard is given. As the

right chart in Figure 7 shows, the recall curves correspond

to the previous duplicate curves. The precision curves, on

the other hand, give the following insights: First, the final

precision of 93% is relatively high, which underlines the

suitability of the used similarity function. Second, both

SNM and PSNM have very similar values in precision,

which verifies the irrelevance of the similarity measure

for progressiveness. Third, the progressive algorithms find

fewer false positive matches in relation to true positive

matches in the beginning, as the precision graphs show.

Figure 7. Evaluation on pairs quality PQ (left) and

precision and recall (right)

8.4 Attribute Concurrency

Our Attribute Concurrency algorithms AC-PSNM and AC-

PB progressively execute the multi-pass method for the

PSNM algorithm and PB algorithm, respectively, favoring

good keys over poor keys by dynamically ranking different

passes using their intermediate results. In the following,

we compare AC-PSNM and AC-PB to the common multi-

pass execution model, which resolves the different keys

sequentially in random order. The experiment uses three

different keys, which are {Title}, {Authors}, and

{Description}. Since a common multi-pass algorithm

can execute the different passes in any order, it might acci-

dentally choose the best or worst order of keys. Therefore,

we run the traditional, sequential multi-pass algorithm with

the optimal key Sequence 1, two mediocre key Sequences 2

and 3 and the worst key Sequence 4. The corresponding

Figure 8. Attribute Concurrency on the DBLP-dataset

graphs are depicted in Figure 8. The fifth graph in both

charts shows the AC-strategy for the respective algorithm.

First of all, both charts show that the AC-approaches

need about 10% more time to finish. This is because

the ranking of intermediate results and the scheduling of

different keys takes some additional time. Moreover, both

approaches need to store all orders simultaneously in main

memory, which decreases the size of their partitions.

We first evaluate the results for the AC-PSNM algorithm.

With a progressiveness of 79%, Sequence 1 is the best

approach. Our AC-PSNM algorithm, then, delivers the

second best result with 76% followed by all other results.

Thereby, the worst sequence achieves a progressive quality

of only 59%.

Due to the overhead of creating all orders and lots of

initial block pairs, the PB approach loses much time early

on. But after 18 minutes runtime, the attribute concurrent

PB algorithm outperforms all other multi-pass approaches,

because it has finished the initial runs and can now si-

multaneously use the benefits of all orders. Therefore, its

overall progressiveness of 90% is almost as good as the

progressiveness of the best sequence, which is 91%. The

worst sequence of sorting keys, in contrast, achieves only

62% progressive performance, which is about 1
3 less than

the best two approaches.

In summary, both attribute concurrent approaches offer

a good progressive quality. Although they might not find

the most progressive multi-pass configurations, they always

produce reliable execution orders for the different passes.

We also see that PB outperforms PSNM in multi-pass

settings. Finally, it is worth noting that due to dynamically

generated execution orders only little expert knowledge is

needed in creating good sorting or blocking keys.
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8.5 Incremental Transitive Closure

In this experiment, we evaluate the computational overhead

caused by the incremental calculation of the transitive

closure. We take a result set of one million duplicates (a

subset of duplicates found in the use case of Sec. 8.6),

submit it to the transitive closure algorithm and measure

the time after each insert. Figure 9 plots the resulting curve.

Figure 9. The incremental transitve closure overhead

The left chart shows that the proposed sorted lists of

duplicates data structure does not scale well with the

result set’s size. However, the incremental transitive closure

algorithm by Wallace and Kollias [17] scales linearly with

the number of identified duplicates if we use an index

structure on the identified duplicates. The measurements

further show that the overhead of calculating the transitive

closure is negligible: Identifying one million duplicates

took more than 30 minutes, but calculating the transitive

closure on them takes only 1.4 seconds.

8.6 Examining a concrete use case

Progressive duplicate detection is an efficient and con-

venient solution for many data cleansing use cases. In

cooperation with plista (www.plista.com), a company of-

fering target-oriented online advertisement, we used our

progressive algorithms to detect persona in web server

log data. A persona is a user with a certain interest area.

Hence, the same user is and should be reflected by different

persona, if her interests differ. Compared to the number

of entity duplicates in traditional data cleansing tasks, we

expect many more persona duplicates in this dataset.

To arrange target-oriented advertisements, plista collects

anonymized web log data for visitors of their customer’s

web pages. The huge amount of constantly growing data

comprises information about user’s software, geographic

location, query terms, and categories, to mention only a few

attributes. We refer to this dataset as the plista dataset [20].

For the task of finding persona, we consider a subset of the

IMPRESSION-table comprising 100 million records and 63

attributes, which corresponds to 150 GB in total.

Although primarily used to create recommendations for

advertisement, plista also analyzes the dataset to identify

users. Currently, users are identified by their session ID –

not recognizing different users that, for instance, share the

same device or same users that maintain multiple sessions.

To identify users more accurately, domain experts at plista

defined a similarity measure for web log records that

deduplicates personas. The similarity measure compares

17 of the 63 attributes by either edit-distance, numerical

distance, or exact matching and returns a final similarity as

the weighted sum of the individual similarities.

To run the persona detection, we use a Dell PowerEdge

R620 with two Intel Xeon E5-2650 2.00 GHz CPUs and

128 GB DDR3-1600 RAM. Note that although the server

provides 16 cores, the current implementations of all al-

gorithms are single-threaded and, therefore, utilize only

one core. Hence, all algorithms can further be improved

by parallelization. The server’s main memory of 128 GB

can hold 15 million records of the given plista-dataset,

which leads to seven partitions overall. Due to the size

of the dataset and the high number of expected duplicates,

we also increase the maximum window size to 50 for the

SNM-approaches and the block size to 6 and maximum

block range to 8 for the PB algorithm. The results of this

experiment are shown in Figure 10.

Figure 10. Duplicates found in the plista-dataset

The traditional Sorted Neighborhood Method takes al-

most seven days to finish the persona detection. Not only

must the user wait this long for results, the algorithm

also reserves significant server resources during these days.

In combination with early termination, both progressive

algorithms significantly reduce this effort. Although the

two algorithms require more time to completely finish, they

deliver almost same results in a much shorter time: PSNM

identifies 71% and PB identifies 93% of all duplicates

already in the first two days. So if we accept a slightly

less complete result, we can run the deduplication in two

instead of seven days.

With 56%, SNM exhibits an above average progressive

performance. However, PSNM still outperforms this quality

with 73% and PB with even 88%. These results are compa-

rable to the results that we measured in Sec. 8.3 on smaller

datasets using less memory. The reason for PB significantly

outperforming PSNM on the plista dataset is that the dataset

contains many duplicate clusters, which was foreseeable for

the use case at hand. We also show the quality for other

weighting functions ω(t) with L = 1 and t in days for this

experiment: As the first two rank the results similar, the

last function puts so much weight on the few very early

results that PSNM is ranked highest here. So PSNM might

be preferable in a pipeline-scenario.

In the analysis, we found out that the plista dataset

contains about 135 million duplicate pairs (wrt. the expert’s

similarity measure definition of a persona). After merging
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all these duplicates, we ended up with 61.4 million distinct

personas in the 100 million web log records. Among those,

55 million were singletons, i.e., had no duplicate. So

each persona visited about 1.6 web-pages containing plista

advertisement on average. Furthermore, the average size of

a duplicate cluster (excluding the singletons) is 21, which

corresponds to seven records for the same persona. So most

personas visit only one web-page with plista advertisement

(the singletons), but if a persona visits more than one

page, then she visits seven pages on average. By further

inspecting the identified personas, however, data mining

specialists might discover more insights.

In summary, executing a full, traditional duplicate de-

tection run on plista’s massive amount of log data turned

out to be extremely time and resource consuming. Using

progressive duplicate detection techniques, on the contrary,

renders this process feasible: As the result of the persona

detection must not necessarily be complete, the progressive

analysis can be stopped at any point in time and still

maximizes the output.

9 CONCLUSION AND FUTURE WORK

This paper introduced the Progressive Sorted Neighborhood

Method and Progressive Blocking. Both algorithms increase

the efficiency of duplicate detection for situations with lim-

ited execution time; they dynamically change the ranking

of comparison candidates based on intermediate results to

execute promising comparisons first and less promising

comparisons later. To determine the performance gain of

our algorithms, we proposed a novel quality measure for

progressiveness that integrates seamlessly with existing

measures. Using this measure, experiments showed that our

approaches outperform the traditional SNM by up to 100%

and related work by up to 30%.

For the construction of a fully progressive duplicate

detection workflow, we proposed a progressive sorting

method, Magpie, a progressive multi-pass execution model,

Attribute Concurrency, and an incremental transitive clo-

sure algorithm. The adaptations AC-PSNM and AC-PB

use multiple sort keys concurrently to interleave their

progressive iterations. By analyzing intermediate results,

both approaches dynamically rank the different sort keys

at runtime, drastically easing the key selection problem.

In future work, we want to combine our progressive

approaches with scalable approaches for duplicate detection

to deliver results even faster. In particular, Kolb et al.

introduced a two phase parallel SNM [21], which executes

a traditional SNM on balanced, overlapping partitions.

Here, we can instead use our PSNM to progressively find

duplicates in parallel.
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