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Abstract

This work deals with backward stochastic differential equation (BSDE) with random
marked jumps, and their applications to default risk. We show that these BSDEs are
linked with Brownian BSDEs through the decomposition of processes with respect to
the progressive enlargement of filtrations. We prove that the equations have solutions if
the associated Brownian BSDEs have solutions. We also provide a uniqueness theorem
for BSDEs with jumps by giving a comparison theorem based on the comparison for
Brownian BSDEs. We give in particular some results for quadratic BSDEs. As appli-
cations, we study the pricing and the hedging of a European option in a market with
a single jump, and the utility maximization problem in an incomplete market with a
finite number of jumps.

Keywords: Backward SDE, quadratic BSDE, multiple random marked times, progressive
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1 Introduction

In recent years, credit risk has come out to be one of most fundamental financial risk. The
most extensively studied form of credit risk is the default risk. Many people, such as Bi-
elecki, Jarrow, Jeanblanc, Pham, Rutkowski (3], 4, [17, 18, 21l 29]) and many others, have
worked on this subject. In several papers (see for example Ankirchner et al. [I], Bielecki
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and Jeanblanc [5] and Lim and Quenez [24]), related to this topic, backward stochastic
differential equations (BSDEs) with jumps have appeared. Unfortunately, the results rel-
ative to these latter BSDEs are far from being as numerous as for Brownian BSDEs. In
particular, there is not any general result on the existence and the uniqueness of solution
to quadratic BSDEs, except Ankirchner et al. [I], in which the assumptions on the driver
are strong. In this paper, we study BSDEs with random marked jumps and apply the
obtained results to mathematical finance where these jumps can be interpreted as default
times. We give a general existence and uniqueness result for the solutions to these BSDEs,
in particular we enlarge the result given by [1] for quadratic BSDEs.

A standard approach of credit risk modeling is based on the powerful technique of
filtration enlargement, by making the distinction between the filtration F generated by the
Brownian motion, and its smallest extension G that turns default times into G-stopping
times. This kind of filtration enlargement has been referred to as progressive enlargement of
filtrations. This field is a traditional subject in probability theory initiated by fundamental
works of the French school in the 80s, see e.g. Jeulin [19], Jeulin and Yor [20], and Jacod
[16]. For an overview of applications of progressive enlargement of filtrations on credit risk,
we refer to the books of Duffie and Singleton [12], of Bielecki and Rutkowski [3], or the
lectures notes of Bielecki et al. [4].

The purpose of this paper is to combine results on Brownian BSDEs and results on
progressive enlargement of filtrations in view of providing existence and uniqueness of solu-
tions to BSDEs with random marked jumps. We consider a progressive enlargement with
multiple random times and associated marks. These marks can represent for example the
name of the firm which defaults or the jump sizes of asset values.

Our approach consists in using the recent results of Pham [29] on the decomposition of
predictable processes with respect to the progressive enlargement of filtrations to decompose
a BSDE with random marked jumps into a sequence of Brownian BSDEs. By combining
the solutions of Brownian BSDES, we obtain a solution to the BSDE with random marked
times. This method allows to get a general existence theorem. In particular, we get an
existence result for quadratic BSDEs which is more general than the result of Ankirchner
et al [I]. This decomposition approach also allows to obtain a uniqueness theorem under
Assumption (H) i.e. any F-martingale remains a G-martingale. We first set a general
comparison theorem for BSDEs with jumps based on comparison theorems for Brownian
BSDEs. Using this theorem, we prove, in particular, the uniqueness for quadratic BSDEs
with a concave generator w.r.t. z.

We illustrate our methodology with two financial applications in default risk man-
agement: the pricing and the hedging of a European option, and the problem of utility
maximization in an incomplete market. A similar problem (without marks) has recently
been considered in Ankirchner et al. [I] and Lim and Quenez [24].

The paper is organized as follows. The next section presents the general framework
of progressive enlargement of filtrations with successive random times and marks, and
states the decomposition result for G-predictable and specific G-progressively measurable
processes. In Section 3, we use this decomposition to make a link between Brownian BSDEs
and BSDEs with random marked jumps. This allows to give a general existence result under



a density assumption. We then give two examples: quadratic BSDEs with marked jumps
for the first one, and linear BSDEs arising in the pricing and hedging problem of a European
option in a market with a single jump for the second one. In Section 4, we give a general
comparison theorem for BSDEs and we use this result to give a uniqueness theorem for
quadratic BSDEs. Finally, in Section 5, we apply our existence and uniqueness results to
solve the exponential utility maximization problem in an incomplete market with a finite
number of marked jumps.

2 Progressive enlargement of filtrations with successive ran-
dom times and marks
We fix a probability space (2,G,P), and we start with a reference filtration F = (F¢)¢>0

satisfying the usual conditionsﬂ and generated by a d-dimensional Brownian motion W.
Throughout the sequel, we consider a finite sequence (7x, (x)1<k<n, Where

— (Tk)1<k<n is a nondecreasing sequence of random times (i.e. nonnegative G-random
variables),

— (Ck)1<k<n is a sequence of random marks valued in some Borel subset E of R™.
We denote by i the random measure associated with the sequence (7%, Cx)1<k<n :
n
/,L([O,t] X B) = Z]l{katCkGB} s t> 0 s B e B(E) .
k=1

For each k = 1,...,n, we consider DF = (Df)tzo the smallest filtration for which
Tk is a stopping time and (. is ka-measurable. DF is then given by Df =o(l<s, 5 <
t)Vo(Ckls, <s, s <t). The global information is then defined by the progressive enlargement
G = (Gt)t>0 of the initial filtration F where G is the smallest right-continuous filtration

containing F, and such that for each £k = 1,...,n, 7 is a G-stopping time, and ( is
G-, -measurable. G is given by G; = g}, where Qt =FV Dtl V.- VDp forall t > 0.
We denote by Ay the set where the random k-tuple (71,...,7;) takes its values in
{Th < c0}:
Ap = {0, 0) e R)Y 1 01 <.. <O}, 1<k<n.

We introduce some notations used throughout the paper:

— P(F) (resp. P(G)) is the o-algebra of F (resp. G)-predictable measurable subsets
of @ x R4, i.e. the o-algebra generated by the left-continuous F (resp. G)-adapted
processes.

— PM(F) (resp. PM(G)) is the o-algebra of F (resp. G)-progressively measurable
subsets of (2 x R..

! Fo contains the P-null sets and F is right continuous: F; = Fy+ := Ne>tFs.



— For k = 1,...,n, PM(F, Ay, E¥) is the o-algebra generated by processes X from
Ry x Q x A x E¥ to R such that (X;(.))ep,s is Fs ® B([0,s]) @ B(Ag) ® B(EF)-
measurable, for all s > 0.

— For 6 = (04,...,0,) € A, and e = (eq,...,e,) € E™, we denote by
H(k) = (91,...,9k) and e(k) = (61,...,€k), 1§k§n
We also denote by 7y for (71,...,7) and () for (¢1,...,C), forallk =1,...,n.

The following result provides the basic decomposition of predictable and progressive
processes with respect to this progressive enlargement of filtrations.

Lemma 2.1. (i) Any P(G)-measurable process X = (X¢)i>0 is represented as

n—1

Xy = XMy<r + ZXf(T(k)7<(k))]lTk<t§‘rk+1 + X{(Tn), () Mt s (2.1)
k=1
for all t > 0, where X° is P(F)-measurable and X* is P(F) @ B(Ax) @ B(E¥)-
measurable for k=1,...,n.

(ii) Any cad-lag PM(G)-measurable process X = (Xy)i>0 of the form

¢
X, = Jt+//U5(e)p,(de,ds), t>0,
0 JE

where J is P(G)-measurable and U is P(G) ® B(E)-measurable, is represented as

n—1

Xy = X?]lt<7'1 + ZXg%T(k)? C(k))]lTkSt<7'k+1 + X?(T(n% C(n))]lTnSt > (2'2)
k=1

for all t > 0, where X° is PM(F)-measurable and X* is PM(F, Ay, EF)-measurable
fork=1,... n.

The proof of (i) is given in Pham [29] and is therefore omitted. The proof of (ii) is
based on similar arguments. Hence, we postpone it to the appendix.

Throughout the sequel, we will use the convention 79 = 0, 7,41 = 400, §p = 0 and
011 = +oo for any 6 € A, and XO(Q(O), e)) = X0 to simplify the notation.

Remark 2.1. In the case where the studied process X depends on another parameter x
evolving in a Borelian subset X" of RP, and if X is P(G) ® B(X), then, decomposition
is still true but where X* is P(F) @ B(Ax) ® B(E*) ® B(X)-measurable. Indeed, it is obvious
for the processes generating P(G) ® B(X) of the form Xy(w,z) = Li(w)R(x), (t,w,x) €
Ry x Q x X, where L is P(G)-measurable and R is B(X)-measurable. Then, the result is
extended to any P(G) ® B(X)-measurable process by the monotone class theorem.



We now introduce a density assumption on the random times and their associated
marks by assuming that the distribution of (71,...,7,C1,...,(,) is absolutely continuous
with respect to the Lebesgue measure dfl de on B(A,) ® B(E™). More precisely, we make
the following assumption.

(HD) There exists a positive P(F) @ B(A,) ® B(E™)-measurable map v such that for any
t>0,

]P)[(Tl,.. ey Ty C1y e ,Cn) S d@de\}}] = fyt(Gl,...,Gn,el,. . .,en)d91 ...dOpdey ... de, .

We then introduce some notation. Define the process v° by

fy,? = Pln>tF] = / Lg,~17:(0, e)dbde ,
ApxXE™

and the map ¥ a P(F) ® B(A) ® B(E¥)-measurable process, k = 1,...,n — 1, by
(01, .. Ok, e1,. .- ek)
= / ]19k+1>t’7t(917 ey Qn, €1... ,en)d0k+1 PN d9nd€k+1 PN den .
An—k x En—k
We shall use the natural convention 4" = . We obtain that under (HD), the random

measure p admits a compensator absolutely continuous w.r.t. the Lebesgue measure. The
intensity A is given by the following proposition.

Proposition 2.1. Under (HD), the random measure i admits a compensator for the fil-
tration G given by A\(e)dedt, where the intensity X is defined by

Ai(e) = Z)\f(eﬁ(k—n,C(k—1))]1¢k,1<tgrk , (2.3)
=1
with
k
v, (9 k—1 atae k—1 ,6)
A (e, 01y 1) = tk_(l po T (Oge—1):ts €—1), €) € Dpoy x Ry x EF

Tt (H(kfl)a e(kfl))
The proof of Proposition is based on similar arguments to those of [13]. We therefore
postpone it to the appendix.

We add an assumption on the intensity A which will be used in existence and uniqueness
results for quadratic BSDEs as well as for the utility maximization problem:

€ process tlejae 1S bounded on ,00) .
HBI Th Ae(e)d - is b ded 0
E t=>

We now consider one dimensional BSDEs driven by W and the random measure p. To
define solutions, we need to introduce the following spaces, where a,b € Ry with a < b,
and T' < oo is the terminal time:



— S, b] (resp. Sp°la,b]) is the set of R-valued PM(G) (resp. PM(F))-measurable
processes (Y;);c(q,) essentially bounded:

1Yl goofqp = esssup|¥i| < oo.
te[a,b]

— L%[a,b] (vesp. LZ[a,b]) is the set of R%valued P(G) (resp. P(F))-measurable pro-
cesses (Zt)efa,p SUch that

”Z”L2[a,b] = (E[/;\Ztlzdtbé < 00.

— L?(u) is the set of R-valued P(G) ® B(E)-measurable processes U such that

T (E[/OT/E|Us(e)]2,u(de,ds)])% < .

We then consider BSDEs of the form: find a triple (Y, Z,U) € S&[0,T] x L&[0,T] x L*(p)
such that?]

T T T
Y, = §+/ f(s,YS,ZS,Us)ds—/ ZSdWS—/ /Us(e),u(de,ds), 0<t<T, (24)
t t t JE
where

— £ is a Gp-measurable random variable of the form:

§ = ka(T(k),C(k))]lrkgT<rk+1, (2.5)

k=0

with €0 is Fr-measurable and &F is Fr ® B(Ax) ® B(E¥)-measurable for each k =
1,...,n,

— fis map from [0,7] x Q x R x R? x Bor(E,R) to R which is a P(G) ® B(R) ®
B(R%) @ B(Bor(E,R))-B(R)-measurable map. Here, Bor(FE, R) is the set of borelian
functions from E to R, and B(Bor(E,R)) is the borelian o-algebra on Bor(E,R) for
the pointwise convergence topology.

To ensure that BSDE (2.4]) is well posed, we have to check that the stochastic integral w.r.t.
W is well defined on L%[0,7T] in our context.

Proposition 2.2. Under (HD), for any process Z € L%[0,T], the stochastic integral
T Z,dW is well defined.

Proof. Consider the initial progressive enlargement H of the filtration G. We recall that
H = (H¢)e>0 is given by

Ht == ]:t\/O'(Tl,...,Tn,Cl,...,Cn), tZO

2The symbol fst stands for the integral on the interval (s,¢] for all s,¢t € Ry.

6



We prove that the stochastic integral fOT ZsdWy is well defined for all P(H)-measurable
process Z such that EfOT |Zs|?ds < co. Fix such a process Z.
From Theorem 2.1 in [16], we obtain that W is an H-semimartingale of the form

t
Wy = Mt—i-/CLS(T(n),C(n))dS, t>0,
0

where a is P(F) ® B(A,) ® B(E™)-measurable. Since M is a H-local continuous martingale
with quadratic variation (M, M), = (W, W); =t for t > 0, we get from Lévy’s characteri-
zation of Brownian motion (see e.g. Theorem 39 in [30]) that M is a H—Brownian motion.
Therefore the stochastic integral fOT ZsdM, is well defined and we now concentrate on the

T
term fO ZSGS(T(n), C(n))ds
From Lemma 1.8 in [16] the process v(6, e) is an F-martingale. Since F is the filtration
generated by W we get from the representation theorem of Brownian martingales that

t
v(0,) = 70(9,6)—|—/ Tu(0,e)dWs, 30,
0

Still using Theorem 2.1 in [16] and since (6, €) is continuous, we have

t
(6.0 W) = [ 6,00 0.ds t20
0
for all (0,e) € A,, x E™. Therefore we get
[s(f0,e) = 7s(0,e)as(f,e), s>1

for all (0,e) € A, x E™. Since (6, ¢) is an F-martingale, we obtain (see e.g. Theorem 62
Chapter 8 in [11]) that

T
/ 17s(60,e)as(6,¢e)|’ds < 4oo, P—a.s. (2.6)
0
for all (0,e) € A, x E". Consider the set A € Fr ® B(A,) ® B(E"™) defined by
T
A = {(w,&,e) €EQXA, xE" : / 1vs(8, €)as (8, e)|>ds = +o0 ,} .
0

Then, we have P(Q) = 0, where
Q= {we: (wrw), (W) eA}.
Indeed, we have from the density assumption (HD)
PO) = E[La(w,r@),(w)] = E[E[La(w,7(w),¢w)|Fr]]
- /Aan" E[HA(w, 0, e)y7(6, e)}d@de . (2.7)
From the definition of A and (2.6]), we have

]lA(.,H,e)VT(G,e) = 0, P-—a.s.
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for all (A,e) € A, x E™. Therefore, we get from (2.7), P(Q) = 0 or equivalently

T
/ ‘73(7'1,...,Tn,Cl,...,Cn)as(Tl,...,Tn,Cl,...,Cn)|2d8 < 400, P—as. (2.8)
0

From Corollary 1.11 we have ~(71,...,7n,C1,...,(n) > 0 for all £ > 0 P-a.s. Since

Y71y yTn,C1y .-+, () 1S continuous we obtain
inf ~vs(71,. sy Clye oy Cn) > 0, P—a.s. (2.9)
s€[0,7

Combining (2.8)) and ([2.9), we get
T 2
/ ‘a5(7—17'"7Tn7<17"'7C7’L)‘ ds < +OO, P—a.s.
0

Since Z satisfies EfOT |Zs|?ds < oo, we obtain that

T
/ ‘ZS(LS(TL...,Tn,Cl,...,Cn)’dS < 400, P-—a.s.
0

Therefore fOT Zsas(T1y oy Ty Cly- -+, Go)ds is well defined. O

3 Existence of a solution

In this section, we use the decompositions given by Lemma [2.1] to solve BSDEs with a finite
number of jumps. We use a similar approach to Ankirchner et al. [I]: one can explicitly
construct a solution by combining solutions of an associated recursive system of Brownian
BSDEs. But contrary to them, we suppose that there exist n random times and n random
marks. Our assumptions on the driver are also weaker. Through a simple example we first
show how our method to construct solutions to BSDEs with jumps works. We then give
a general existence theorem which links the studied BSDEs with jumps with a system of
recursive Brownian BSDEs. We finally illustrate our general result with concrete examples.

3.1 An introductory example

We begin by giving a simple example to illustrate the used method. We consider the
following equation involving only a single jump time 7 and a single mark ( valued in
E ={0,1}:
Yr = clper + M7, Olrsr
—dYy = f(Up)dt—UdH;, 0<t<T,

where H; = (H(0), Hy(1)) with Hy(i) = L,<¢¢—; for t > 0 and i € E. Here c is a real
constant, and f and h are deterministic functions. To solve BSDE (3.1]), we first solve a
recursive system of BSDEs:

(3.1)

Y (0,e) = h(B,e)+ f0,00(T —t), OANT <t<T,

T
v = c+/ FYl (5,00 =Y Y] (s,1) = YD)ds, 0<t<T.
t
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Suppose that the recursive system of BSDEs admits for any (6,e) € [0,7] x {0,1} a couple
of solution Y!(#,e) and Y. Define the process (Y,U) by

Vi = Yl + Y (1 Olizr, t€[0,7T),
and
Ui(i) = (Yt i) — Y4y , t€[0,T), i=0,1.
We then prove that the process (Y, U) is solution of BSDE . By It6’s formula, we have
Y, = AV e + V7 Ol )

_ d(YtO(l — Hy(0) — Hy(1)) + /Ot h(s,0)dH,(0)

t
+/Vmﬁwmuw<mmwzmwﬁmm@w)
0
This can be written

dYy = —[(1— He(0) — Hy(1))f (Y, (£,0) = ¥, Y, (t,1) = Y,°) + (H(0) + He(1)) £(0,0)] dt
+[h(t,0) + (T — ) £(0,0) — Y] dH(0) + [h(t, 1) + (T — ) £(0,0) — Y,°|dH,(1) .

From the definition of U, we get
Yy = —f(Uy)dt+ UdH, .

We also have Y = Ly, +h(7,()1r>,, which shows that (Y, U) is solution of BSDE (3.1]).

3.2 The existence theorem

To prove the existence of a solution to BSDE ([2.4)), we introduce the decomposition of the

coefficients ¢ and f as given by (2.5) and Lemma
From Lemma (i) and Remark we get the following decomposition for f

f(t)y’zvu) = Zfk(tvyaZ>u77—(k:))C(k))]lTk§t<Tk+1 ) (32)
k=0
where f0 is P(F) ® B(R) ® B(R?) ® B(Bor(E,R))-measurable and f* is P(F) ® B(R) ®
B(R%) @ B(Bor(E,R)) ® B(Ay) ® B(E¥)-measurable for each k = 1,...,n.

In the following theorem, we show how BSDEs driven by W and p are related to a
recursive system of Brownian BSDEs involving the coefficients ¢* and f*, k=0,...,n.

Theorem 3.1. Assume that for all (6,¢e) € A, x E™, the Brownian BSDE

T
Y/ (0,¢) = 5n(e,e)+/t 1" (5,Y2(0,€), Z20,¢),0,0,¢ ) ds

T
—/ ZM0,e)dWy, O, AT <t<T, (3.3)
t

9



admits a solution (Y™(0,¢), 2"(0,e)) € S&0n AT, T) x L&[0,, AT, T), and that for each
k=0,...,n—1, the Brownian BSDE
Tk k k
YF Oy eq) = € Oy ew) + /t f <S,Ys Ok er))s Zs (O(ry ery)
YE 01y, 5, €0y -) — Yo (Oiys e))> O e(k;))ds (3.4)
T
—/ Zf(ﬁ(k),e(k))dWS , O NANT <t<T,
t
admits a solution (Y*(Ouy,ew)), Z Oy, er))) € Sglk AT, T] x L&[0) AT, T]. Assume
moreover that each Y* (resp. Z%) is PM(F) @ B(Ag) ® B(EX)-measurable (resp. P(F) @

B(Ay) ® B(E¥)-measurable).
If all these solutions satisfy

k
(:};g) HY (9(k)7 e(k’)> HS"O[Qk/\T,T] < 00, (35)

and

E[/ (/Ww“d Z/GMAT )[2ds )y (6, e)dbd
s+ ,e S|y e el < 00,
ApXE™ 0 (%) 4

then, under (HD), BSDE (2.4) admits a solution (Y, Z,U) € S[0,T] x L&[0,T] x L*(u)
given by

n
V; = VPler, + Z}Qk(T(kz)»C(k))]lTkSKTkﬂ ’
k=1
n
Jy = Z?]ltgfrl + Z Zf(T(k)v C(k))]lTk<t§7’k+1 ) (36)
k=1
Ul.) = () Li<s +2Ut T(k)> C(k)s ) Lme<t<ri s

\
with Utk(T(k), Clkyr ) = YtkH(T(k),t, Clkyr ) — Y[ (Tk), C(y) for each k=0,...,n— 1.
Proof. To alleviate notation, we shall often write ¥ and f*(t,v, z, u) instead of §k(9(k), (k)

and f*(t,y, z, u, Oy, (), and Y/[(t, e) instead of Ytk(Q(k,l),t, €(k—1)»€)-
Step 1: We prove that for ¢t € [0,T7], (Y, Z,U) defined by (3.6) satisfies the equation

Y, = f—i—/ stS,ZS,U)ds—/ ZsdWs — / / p(de, ds) . (3.7)
t
We make an induction on the number k of jumps in (¢, 7.
e Suppose that £ = 0. We distinguish two cases.

Case 1: there are n jumps before t. We then have 7,, < ¢ and from (3.6) we get Y; = Y;".
Using BSDE (3.3)), we can see that

T
Y, = &+ f”sY” Z".0 )ds—/ ZrdW, .
t

10



Since 7, < T, we have £" = ¢ from . In the same way, we have Y, = Y, Z; = Z7
and Us = 0 for all s € (¢,7] from (3.6). Using (3.2), we also get f"(s,Y",Z2,0) =
f(s,Ys, Z5,Us) for all s € (t,T]. Moreover, since the predictable processes Z1. . and
Z™1,, <. are indistinguishable on {7, < t}, we have from Theorem 12.23 of [14], ftT ZgdWy =
ftT Z"dWy on {7, < t}. Hence, we get

Y, = §+/ stS,ZS,U)ds—/t Z.dW, — // u(de, ds) |

on {1, <t}.
Case 2: there are i jumps before ¢ with i < n hence Y; = Y. Since there is no jump
after t, we have Yy = Y, Zs = 7, Ui() Yi+1( ) =Y € =¢ and fi(s, Y, ZL UL =

s L g

f(s,Ys, Zs,Us) for all s € (t,T], and ft J5 Us(e)p(de,ds) = 0. Since the predictable pro-
cesses Z1;,« <7, , and A ]ln<‘§n+1 are 1ndlst1ngulshable on {r; <t}N{T < 7541}, we have
from Theorem 12.23 of [14], ftT ZdWy = ftT ZidWs on {1; <t} N{T < 7;11}. Combining
these equalities with , we get

Y, = §+/ stS,ZS,U)ds—/t ZydW, — // pi(de, ds)

on {1 <t}N{T < 7111}

e Suppose equation holds true when there are k jumps in (¢, 7], and consider the case
where there are k + 1 jumps in (¢, 7.

Denote by i the number of jumps in [0, ¢] hence Y; = Y. Then, we have Z, = Z, Ui(.) =
Yitl(s,.) = Y for all s € (t,741], and Yy = Y and f(s,Ys, Zs, Us) = fi(s,YE, Z8,UY) for
all s € (t,7;41). Using (3.4), we have

Y, = Y ml Y., Z [Ty
t = f(87 D) S’Us)ds ZSdWs
t t

Tz+1

Tit1 T
= Yvrl:_i +/ [(s,Ys, Zs,Us)ds — / Z;]ln<s§n+1dWs
t

/ o / s(de, ds) .

Since the predictable processes Z1,,< <., and Ziﬂn<,§ﬂ. .1 are indistinguishable on {m <
t < Tit1 Y Tigkt1 < T < Tigpta}, we get from Theorem 12.23 of [14], that ftT Zé]ln<s§n+1dWs =
ftT Zi s, cs<r,,, dW;. Therefore, we get

Ti+1 Ti+1 Ti+1
Y, = Y+ / f(s, Y;,ZS,U)ds—/ ZydW, — / / Ju(de,ds) , (3.8)
t t

on {r; <t <7it1} N{Tisk+r1 <T < Titky2}. Using the induction assumption on (71,7,
we have

Yla(r) = (§+/T7}(S,YS,ZS,Us)d /ZdW // ded8> a(r)
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for all r € [0, T, where
A= {(w, ) €Qx[0,T] : Tit1(w) < s < Tigo(w) and Tj4pp1(w) < T < Ti+k+2(w)} .

Thus, the processes Y1 4(.) and (§+i:¢f(s,}§, Zs,Us)ds— f sAWs— [ fE Yu(de, ds)) ()
are indistinguishable since they are cad-lag modifications of the other. In partlcular they
coincide at the stopping time 7,41 and we get from the definition of Y

T T
Y. =Yt = ¢4 f(s,YS,Zs,Us)ds—/ ZydW,

Ti+1 Ti+1
Ti4+1 Tit+1

/ﬁ 1 / 1(de, ds) (3.9)

Combining ((3.8]) and ., we get .

Step 2: Notice that the process Y (resp. Z, U) is PM(G) (resp. P(G), P(G) ® B(E))-
measurable since each Y* (resp. Z¥) is PM(F) @ B(Ax) ® B(E¥) (vesp. P(F) @ B(Ag) ®
B(E*))-measurable.

Step 3: We now prove that the solution satisfies the integrability conditions. Suppose that
the processes Y*, k=0, ...,n, satisfy (3.5). Define the constant M by

M = sup HY(

> €k) | goc
(k00) (k)N goo 9, AT T]

and consider the set A € Fr ® B(A, N[0,T]") ® B(E™) defined by

— n n . k
A = {(w,@,e)EQx(Anﬁ[O,T] ) x E" OrgggntesfélpTH ¢ Oy ew)) < M}

Then, we have P() = 1, where

Q = {w €Q: (w,7(w),¢(w)) € A} :
Indeed, we have from the density assumption (HD)
PO) = E[lae(w,7(@), ()] = E[E[Lac(w, m(w),¢(w)|F7]]

_ / E[Lac(w,0,¢)yr(0, )] dode (3.10)

(AnN[0,T]7)x En
From the definition of M and A, we have
]lAc(.,H,e)’yT(H, e) = 0, P—a.s.,

for all (,e) € (A, N[0,T]") x E"™. Therefore, we get from (3.10), P(Q°) = 0. Then, by

definition of Y, we have

Vil < [V Lean + D Y (rrys o) [ L
k=1

12



Since P(Q) = 1, we have
1Y/ ( (T S|zt < M, 0<k<n, P-—as. (3.11)
Therefore, we get from
i < (n+1)M, P-—a.s.,
for all t € [0,7T]. Since Y is cad-lag, we get
[Yllsepr < (n+1)M.

In the same way, using (HD) and the tower property of conditional expectation, we get

T O AT 9k+1/\T
E[/O |Zs|2ds} :E[/Aann (/0 |Z0? ds+2/k/\T H(k e))l dS)’)/T(Q e)d@de] .

Thus, Z € L%[0,T] since the processes ZF, k=0,...,n, satisfy

E[/AnXEn (/091/\T|Z0 2d5+z/9k+1AT ) €(k) )| ds)’yT(Q e)d@de} < 0.

Ou AT

Finally, we check that U € L?(u). Using (HD), we have

U2y = > /A XEnE[Df@’z(e(k),e(k))—n’;—lw@*n,e<k,1>>\2fyT<e7e>}d0de

< 23 (IV* Oy, ) 2igenrizy + IV Oy, e 1) E o,y ariry)
k=1
< 0.
Hence, U € L?(p). O

Remark 3.1. From the construction of the solution of BSDE (2.4)), the jump component
U is bounded in the following sense

sup |U(e)[[seor) < 00
ecE
In particular, the random variable esssup; ¢)cpo, 11z |Ut(€)| is bounded.

3.3 Application to quadratic BSDEs with jumps

We suppose that the random variable £ and the generator f satisfy the following conditions:

(HEQ1) The random variable £ is bounded: there exists a positive constant C' such that

€] < C, P—as.
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(HEQ2) The generator f is quadratic in z: there exists a constant C' such that
ftyzul < C(1rlyl+ 1+ [ Ju@le)de)
E

for all (t,y,z,u) € [0,T] x R x R% x Bor(E,R).

(HEQ3) For any R > 0, there exists a function mcé such that lim._,o mcﬂ(s) =0 and

|ft(y7 Z, (u(e) - y)eeE) - ft(y/a 2/7 (u(e) - y)eEE)‘ < mcé(a) )

for all (t,y,1/, 2, ', u) € [0,T] x [RP? x [RP x Bor(E,R) st. [yl |z, Iy} 2] < R
and ly — |+ ]z — 2| <e.

Proposition 3.1. Under (HD), (HBI), (HEQ1), (HEQ2) and (HEQ3), BSDE (2.4)) admits
a solution in SF[0,T] x LL[0,T] x L?(p).

Proof. Step 1. Since ¢ is a bounded random variable, we can choose ¢* bounded for each
k=0,...,n. Indeed, let C be a positive constant such that |{| < C, P—a.s., then, we have

n
ok
& =) &G G <ran,
k=0

with €8 (71, ..o s Gy ooy G) = (E5(T1s o Ty Gl Ce) AC)V (=C), for each k =0, ..., n.

Step 2. Since f is quadratic in z, it is possible to choose the functions f*, k =0,...,n,
quadratic in z. Indeed, if C' is a positive constant such that |f(¢,y, z,u)| < C(1 + |y| +
2|2+ [5; [u(e)|Ae(e)de), for all (t,y,z,u) € [0,T] x R x R? x Bor(E,R), P—a.s. and f has
the following decomposition

f(tv Y, =z, ’LL) = Z fk(tv Yy,z,u, T(k)7 C(k))ﬂTk§t<Tk+1 )
k=0

then, f satisfies the same decomposition with f* instead of f* where
fk(ta Y,z U, H(k)a 6(k)) = fk(ta Y,z u, e(k)a e(k)) A (C<]‘ + |y| + ‘Z|2 + /E |u(e)|)\t(e)de>)
V(= (Ut + R+ [ Ju@lende) ).
E

for all (t,y,2,u) € [0,T] x R x R? x Bor(E,R) and (,¢e) € A, x E".

Step 3. We now prove by a backward induction that there exists for each £k =0,...,n—1
(resp. k = n), a solution (Y*, Z*) to BSDE (3.4) (resp. (3.3)) s.t. Y* is a PM(F) ®
B(Ay) ® B(E¥)-measurable process and Z* is a P(F) ® B(Ay) ® B(E*)-measurable process,
and

sup IY* (O €00l goo + 125 Oy e < 00.
Oty ey A x (k)> C(k) Ml soo 9, AT, T (k) €(R) ) L2(g, AT T
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e Choosing £"(0,), €(»)) bounded as in Step 1, we get from (HEQ3) and Proposition
and Theorem 2.3 of [23] the existence of a solution (Y (6(,),e(n)), Z"(0(n), €n))) to BSDE
B3).

We now check that we can choose Y™ (resp. Z") as a PM(F) @ B(A,) ® B(E"™)
(resp. P(F)® B(A,)® B(E™))-measurable process. Indeed, we know (see [23]) that we can
construct the solution (Y, Z™) as limit of solutions to Lipschitz BSDEs. From Proposition
we then get a P(F) @ B(A,,) ® B(E™)-measurable solution as limit of P(F) ® B(A,) ®
B(E"™)-measurable processes. Hence, Y (resp. Z") is a PM(F) @ B(A,) @ B(E™) (resp.
P(F) ® B(A,) ® B(E™))-measurable process. Applying Proposition 2.1 of [23] to (Y™, Z™),
we get from (HEQ1) and (HEQ?2)

sup  |[Y"(0n < 00.

(0,e)eA xEN - HZTL(H(H) ‘

e(TL )Hsoo 0 /\TT] n))HL2[9n/\T,T]

e Fix kK < n —1 and suppose that the result holds true for k& + 1: there exists (YkH, Zk“)
such that

k+1
sup {HY (6(k+1)7e(k+l))“$°°[0k+1ATT}
(O(k+1):8(k41)) EAL+1 x Fk+1 )

H1Z5 Oy ) 2oy nrm <

Then, using (HBI), there exists a constant C' > 0 such that
‘fk(syy,Z,KkHW(k), 8,€(k)s+) — y)?‘g(k)ye(k))’ <SCA+ Iyl + 12 .

Choosing ¢* (0(k), €(k)) bounded as in Step 1, we get from (HEQ3) and Proposition
and Theorem 2.3 of [23] the existence of a solution (Y*(0k), e))s Z*(Oky, er)))-

As for k = n, we can choose Y* (resp. Z*) as a PM(F) ® B(Ar) ® B(E¥) (resp.
P(F) ® B(Ar) ® B(E*))-measurable process.

Applying Proposition 2.1 of [23] to (Y* (84, e)): Z%(0k): €))), we get from (HEQI)
and (HEQ2)

sup Y503, e

+ 12501y, €
(1) e(r)) EAR X EF (k)

k))HLQ[Qk/\T,T] < .

)) ||soo [0x AT, T
Step 4. From Step 3, we can apply Theorem We then get the existence of a solution
to BSDE ([2.4)). O

Remark 3.2. Our existence result is given for bounded terminal condition. It is based on
the result of Kobylanski for quadratic Brownian BSDEs in [23]. We notice that existence
results for quadratic BSDEs with unbounded terminal conditions have recently been proved
in Briand and Hu [6] and Delbaen et al. [9]. These works provide existence results for solu-
tions of Brownian quadratic BSDEs with exponentially integrable terminal conditions and
generators and conclude that the solution Y satisfies an exponential integrability condition.

Here, we cannot use these results in our approach. Indeed, consider the case of a single
jump with the generator f(t,y,z,u) = |2|?>+|u|. The associated decomposed BSDE at rank
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0 is given by

T T
Yo = 50+/ [\ZS|2+|n1<s>—n0|]ds—/ 20W,, te0.T].
t t

Then to apply the results from [6] or [9], we require that the process (Y!(s))sejo) satisfies
some exponential integrability condition. However, at rank 1, the decomposed BSDE is
given by

T T
Y = 51(0)+/t \Z;(G)Fds—/t ZNoyaw,, telo,T], 6€]0,T],

and since ¢! satisfies an exponential integrability condition by assumption we know that
Y1(6) satisfies an exponential integrability condition for any € [0,T], but we have no
information about the process (Y;'(s))sepo,r)- The difficulty here lies in understanding the
behavior of the “sectioned” process {Y!(#) : s = 6} and its study is left for further
research.

3.4 Application to the pricing of a European option in a market with a
jump

In this example, we assume that W is one dimensional (d = 1) and there is a single random
time 7 representing the time of occurrence of a shock in the prices on the market. We
denote by H the associated pure jump process:

We consider a financial market which consists of

— a non-risky asset S°, whose strictly positive price process is defined by
dsp = rSPdt, 0<t<T, S)=1,
with 7, > 0, for all ¢ € [0,T7,
— two risky assets with respective price processes S' and S? defined by
s} = SL(bdt+ o dWi+ BdH), 0<t<T, Sj=sp,
and
dS; = SE(bydt+a6dWy), 0<t<T, S5=sZ,

with o; > 0 and 6; > 0, and 3 > —1 (to ensure that the price process S' always
remains strictly positive).

We make the following assumption which ensures the existence of the processes S°, S, and
S2:
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(HB) The coefficients r, b, b, 0, &, + and 1 are bounded: there exists a constant C' s.t.

Qi|—

1
o

_ 1 1
rel + bl + Bl + ol + loel + | —| +|=| < €, 0<t<T, P-aus.
t t

We assume that the coefficients r, b, b, ¢ and & have the following forms

re =1y +r () sy,
by = 0" ser + b (T)Linr
by = b"Licr + b (T)Linr
(1)
(1)

1

0
or=0 lier +0(7)Li>r,

_ 0 _1
(0t =0 Licr + 0 (7)le>r,

for all t > 0.
The aim of this subsection is to provide an explicit price for any bounded Gp-measurable
European option £ of the form

f = 501T<7' + 51 (T)]ITST s

where ¢° is Fr-measurable and ¢! is Fr ® B(R)-measurable, together with a replicating

strategy 7™ = (70, 7!, 72) (7} corresponds to the number of share of S held at time ¢). We

assume that this market model is free of arbitrage oppotunitity (a necessary and sufficient
condition to ensure it is e.g. given in Lemma 3.1.1 of [§]).

The value of a contingent claim is then given by the initial amount of a replicating
portfolio. Let 7 = (7%, 7!, 72) be a P(G)—measurable self-financing strategy. The wealth
process Y associated with this strategy satisfies

Y, = w0SP+wlSt4+nlSE, 0<t<T. (3.12)
Since 7 is a self-financing strategy, we have
dY; = 7w0dSY +n}dS! +72dSE, 0<t<T.
Combining this last equation with , we get

d}/t = (Tt}/t“_ (bt —rt)7rt15’t1 + ([_)t —’I"t)7Tt25t2)dt
+(mi oS} + m75¢S7)dWy + i BS)dH,, 0<t<T. (3.13)

Define the predictable processes Z and U by
_ 1l 2- @2 _ lpqal
Zy =mp0S; + oSy and Uy =785, 0<t<T. (3.14)

Then, (3.13) can be written under the form

—b —b —b
dy, — [nYt—”, tzt_(” e oulre - t))Ut}dt—i—thWt—i—Utht, 0<t<T.
o B pot
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Therefore, the problem of valuing and hedging of the contingent claim £ consists in solving
the following BSDE

Y = [k (5t - 20, -y ae
—Z,dW, — UydH, , 0<t<T, (3.15)
Yy = €.

The recursive system of Brownian BSDEs associated with (3.15]) is then given by

{ ~av) ) =[O A) Oy O]a -zl @av, e<i<T. o
Yi0) = &£40),
and
T 0.0 r0_p0
—ay = [Pz (23 - 2 ) - v - o0 at
—Zy dWy,  0<t<T, (3.17)
Y2 = ¢,

Proposition 3.2. Under (HD) and (HB), BSDE (3.15) admits a solution in Sg°[0,T] x
LZ[0,T] x L*(p).

Proof. Using the same argument as in Step 1 of the proof of Proposition (3.1 we can
assume w.l.o.g. that the coefficients of BSDEs and are bounded. Then, BSDE
is a linear BSDE with bounded coefficients and a bounded terminal condition. From
Theorem 2.3 in [23], we get the existence of a solution (Y1(6), Z1(0)) in Sg°[0,T] x L2[0, T
to for all 6 € [0, T]. Moreover, from Proposition 2.1 in [23], we have

sup HYl(‘g)st[a,T] < 00. (3.18)

0€[0,T7]

Applying Proposition with X = [0,7T] and dp(0) = v0(0)df we can choose the solution
(Y1, Z1) as a P(F) ® B([0,T])—measurable process.

Estimate gives that BSDE is also a linear BSDE with bounded coefficients.
Applying Theorem 2.3 and Proposition 2.1 in [23] as previously, we get the existence of a
solution (Y?, Z%) in §5°[0, 7] x L2[0, T to . Applying Theorem we get the result.

O

Since BSDEs (3.16|) and (3.17)) are linear, we have explicit formulae for the solutions.
For Y'1(6), we get:

YN0 = mE[EOrhe)|F],  e<t<T,

with T'1(6) defined by

i) — b1 (0 11746) — b1 ()2
rio) = e (SOt g =g o). osisr
For YV, we get :
0 1 010 T 0
Y0 — FgE[fFT-i-/t cSFsds’]-}], 0<t<T,
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with I'? defined by

t 1 t t
o = exp(/ ddeS—/ |d5]2ds+/ asds), 0<t<T,
0 2 0 0

where the parameters a, d and c are given by

( 0 7“0 o bO UO(TO _ 60)
at:_r_< 3 Ba° >’
TO 71‘)0
dt = 77
7,0 _ bO UO(TO _ BO) L
e = CR— RAGE

The price at time ¢ of the European option ¢ is equal to Y, if ¢ < 7 and Y,!(7) if t > 7.
Once we know the processes Y and Z, a hedging strategy m = (7%, 7!, 72) is given by (3.12)

and (319).

Under no free lunch assumption, all the hedging portfolios have the same value, which
gives the uniqueness of the process Y. This leads to the uniqueness issue for the whole
solution (Y, Z,U).

4 Uniqueness

In this section, we provide a uniqueness result based on a comparison theorem. We first
provide a general comparison theorem which allows to compare solutions to the studied
BSDEs as soon as we can compare solutions to the associated system of recursive Brow-
nian BSDEs. We then illustrate our general result with a concrete example in a convex
framework.

4.1 The general comparison theorem

We consider two BSDEs with coefficients (f,€) and (f, &) such that

— £ (resp. &) is a bounded Gp-measurable random variable of the form

£ = > &y S ln<reny,
k=0

(resp.§ = ng(T(k)vC(k))]l’TkST<Tk+1)7
k=0

where £° (resp. €°) is Fr-measurable and §k (resp. &%) is Fr @ B(Ay) ®@ B(EY)-
measurable for each k=1,...,n,

— f (resp. f) is map from [0,7] x Q x R x R? x Bor(E,R) to R which is a P(G) ®

B(R) ® B(R?) @ B(Bor(E,R))-B(R)-measurable map.
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We denote by (Y, Z,U) and (Y, Z,U) their respective solutions in S[0, T x L&[0,T] x
L?(). We consider the decomposition (Zk)ogkgn (resp. (Y/k)ogkgn, (Zk)ogkgm (Zk)ogkgn,
(Qk)ogkgn, (Uk)ogkgn Yof Y (vesp. Y, Z, Z, U, U) given by Lemma For ease of
notation, we shall write F¥(t,y, z) and F¥(t,y, z) instead of f(t,y, Z,XfH(T(k),t, Cikys ) —Y)
and f(t,y, z, YtkH(T(k), t,¢(k),-) —y) foreach k = 0,...,n—1, and F"(t,y, 2) and F(t,y,2)
instead of f(t,y,2,0) and f(t,y,2,0).

We shall make, throughout the sequel, the standing assumption known as (H)-hypothesis:

(HC) Any F-martingale remains a G-martingale.

Remark 4.1. Since W is an F—Brownian motion, we get under (HC) that it remains a
G—Brownian motion. Indeed, using (HC), we have that W is a G-local martingale with
quadratic variation (W, W), = t. Applying Lévy’s characterization of Brownian motion
(see e.g. Theorem 39 in [30]), we obtain that W remains a G-Brownian motion.

Definition 4.1. We say that a generator g : Qx [0,7] x R x R? — R satisfies a comparison
theorem for Brownian BSDEs if for any bounded G-stopping times v > v, any generator
g Qx[0,T] xR xR? = R and any G,,-measurable r.v. ¢ and ¢’ such that g < ¢’ and
¢ < (resp. g > ¢ and ¢ > ('), we have Y <Y’ (resp. Y > Y’ ) on [v1,vs]. Here, (Y, Z)
and (Y’, Z') are solutions in S°[0,T] x LZ[0,T] to BSDEs with data (¢, g) and (¢, ¢'):

12} v2
Y;f = <+/ g(s,YS,ZS)ds—/ ZSdW87 V1§t§7/2;
t t
and
1] v2
Y, = c’+/ d(s,Y! Z)ds —/ ZdW,, v <t<u.
t ¢
We can state the general comparison theorem.
Theorem 4.1. Suppose that § < €, P-a.s. Suppose moreover that for each k =0,...,n
Ek(tayv’z> < Fk(ta Y, Z)? V(t,y, Z) € [07T] xR x Rda P—a.s. )

and the generators F* or F* satisfy a comparison theorem for Brownian BSDEs. Then, if
Uy =U, =0 fort > 7,, we have under (HD) and (HC)

Y, < Y, 0<t<T, P-—as

Proof. The proofis performed in four steps. We first identify the BSDEs of which the terms
appearing in the decomposition of Y and Y are solutions in the filtration G. We then modify
Y* and Y* outside of [ry, Thy1) to get cad-lag processes for each k = 0,...,n. We then
compare the modified processes by killing their jumps. Finally, we retrieve a comparison
for the initial processes since the modification has happened outside of [7j, Tx11) (Where
they coincide with Y and Y).
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Step 1. Since (Y, Z,U) (resp. (Y, Z,U)) is solution to the BSDE with parameters (¢, f)
(resp. (&, f)), we obtain from the decomposition in the filtration F and Theorem 12.23 in
[14] that (Y™, Z™) (resp. (Y™, Z™)) is solution to

T
Y (Tn), Cm)) = §+/t F”(S,K"(T(n)7C(n)),Z?(T(n),C(n)))dS

T
—/ Z:(T(n)a C(n))dWs , T ANT<t<T, (4.1)
t

T
(resp. Y (T(n):Cn)) = f—i—/t ETL(s,X?(T(n),C(n)),Zg(T(n),C(n))>ds
T
—/ Z(T(n),Cn))dWs , Tn AT <t <T) (4.2)
t

and (Y*, Z¥) (resp. (Y*, Z¥)) is solution to

Y, Cwy) = [V Ty Cry) = Unis (Ge) ] Lryy <0 + €y 5
A ok Sk
+/ F (&YS (Tk) C(k))s Zs (T(k)7<(k))>ds
t

Tk+1/\T _
—/ ZE(y, Cay)dWs s T AT <t <71 AT, (4.3)
t

(resp.  Yi(T):Ce)) = [YEIL Ty Corr)) = Uy (Ge)) Ly <0 + €l 5
A k k
+/ F (&XS(T(k)vC(k))aZs(T(k)7C(k))>ds
t

Tk+1/\T
—/ ZE () C))AWs , Te AT <t < 7y AT ) (4.4)
t

foreach kK =0,...,n — 1.

= K
Step 2. We introduce a family of processes (Y*)o<r<n (resp. (Y )o<k<n). We define it
recursively by

Y = Y7y Gy lizr, (resp. Yi = Y1), () lizr,), 0<t<T,
and for k=0,...,n—1

VFE = Y, ) lnsten, + Y lior
~k = k+1
(reSp. Xt = Xf(T(k)ﬂ C(k))]]‘TkSt<Tk+1 +Xt ]ltz‘l'k+1) ) 0 S t S T.
These processes are cad-lag with jumps only at times 75, [ = 1,...,n. Notice also that Yy

(resp. Y, vk, zk) satisfies equation lb (resp. , , 7).

Step 3. We prove by a backward induction that Yy" < Y™ on [T, AT, T] and Xk < Y* on
[Tk AT, 1 ANT), for each k = 0,...,n — 1.

e Since § < £, F" < F™ and F™ or F" satisfy a comparison theorem for Brownian
BSDEs, we immediately get from and

Y! < Y, mAT<t<T.
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e Fix k£ < n — 1 and suppose that zfﬂ < }:/tkH for t € [Tg41 AT, Tir2 AT). Denote
by Pyt (resp. Pf) the predictable projection of v (resp. Xl) for [ = 0,...,n. Since the
random measure p admits an intensity absolutely continuous w.r.t. the Lebesgue measure
on [0,T7, v (resp. Xl) has inaccessible jumps (see Chapter IV of [10]). We then have

Y} = Y. (resp. PY, = Y, ), 0<t<T.

From equations 1) and 1) and the definition of Y (resp. Xl), we have for [ = k

Tk+1

Sk S k1 : T Skook
PY’t = Py ]]-Tk+1§T + g]lTk+1>T + / F (571’ Y., Z (T(k)v C(k)))ds
¢

Tr1 AT _
—/ ZE(0y, Cay)dWs . T AT <t <1 AT . (4.5)
t

—Tk+1

py* pyFHl T ok ok
(resp. Xt = Y ]lkarlST +§]]‘Tk+1>T+ ; E (S, XS7ZS(T(k)7<(k))>dS
Tk+1/\T &
—/ Z(Teys Ce))dWs , e AT <t <71 AT) (4.6)
t
Since f@iﬂ > Xf;fl, we get ”isziLl > pz’::r 11. This together with conditions on &, &, F*

and F* give the result.

Step 4. Since Y* (resp. zk

result. O

) coincides with Y (resp. Y) on [ri AT, 7x11 A T), we get the

Remark 4.2. It is possible to obtain Theorem 4.1 under weaker assumptions than (HC).
For instance, it is sufficient to assume that W is a G-semimartingale fo the form

W = M—i—/.asds,
0

with M a G-local martingale and a a G-adapted process satisfying

E[exp(—/OTades—;/OT\as\gdsﬂ = 1. (4.7)

Indeed, we first notice that (M;)cjo,r) is @ G-Brownian motion since it is a continuous G-
martingale with (M, M), =t for ¢ > 0. Then, from we can apply Girsanov Theorem
and get that (W),co,r) is a (Q, G)-Brownian motion where Q is the probability measure
equivalent to P defined by

dQ T 1T,
i . = exp ( —/0 asdMg — 2/0 |as| dS) .
T

Therefore we can prove Theorem under Q. Since Q is equivalent to P the conclusion
remains true under P.
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4.2 Uniqueness via comparison

In this form, the previous theorem is not usable since the condition on the generators of
the Brownian BSDEs is implicit: it involves the solution of the previous Brownian BSDEs
at each step. We give, throughout the sequel, an explicit example for which Theorem
provides uniqueness. This example is based on a comparison theorem for quadratic BSDEs
given by Briand and Hu [7]. We first introduce the following assumptions.

(HUQ1) The function f(t,y,.,u) is concave for all (¢,y,u) € [0,7] x R x Bor(E,R).
(HUQ2) There exists a constant L s.t.
[ty 2, (u(e) = y)ecr) = F(t,1 s 2, (u(e) = ¢y)ecr)| < Lly—y/|
for all (¢t,y,%/,z,u) € [0,T] x [R]> x R? x Bor(E,R).

(HUQ3) There exists a constant C' > 0 such that
ezl < (1l + 1R+ [ o)

for all (¢,y,z,u) € [0,T] x R x R% x Bor(E,R).
(HUQ4) f(t,.,u) = f(t,.,0) for all u € Bor(E,R) and all t € (1, AT, T].

Theorem 4.2. Under (HD), (HBI), (HC), (HUQ1), (HUQ2), (HUQ3) and (HUQ4),
BSDE (2.4) admits at most one solution.

Proof. Let (Y, Z,U) and (Y, Z',U’) be two solutions of (2.4)) in S&[0, T]x L [0, T] x L? ().
Define the process U (resp. U’) by

Ui(e) (resp. Ut'(e)) = Ugle)li<s, (resp. Uj(e)li<s,), (t,e)€[0,T]xE .

Then, U = U and U’ = U’ in L?(u). Therefore, from (HUQ4), (Y, Z,U) and (Y', Z2',U")
are also solutions to (2.4) in S[0,7] x L[0,T] x L?(p).
We now prove by a backward induction on k =n,n —1,...,1,0 that

}/lf]lTkSt = Yz-f/ILTkSt RS [O7T] )
e Suppose that k = n. Then, (Yilr, <¢, Zils, <, (Ui4+Y-) s, <i<r,) and (Y/ 1y, <i, Z{1r, <, (Uf+
Y; )1, ,<t<r,) are solution to

T T T
Y, = §]lTn<T+/ ]lTn<5f(s,Y;,Zs,0)ds—/ ZSdWS—/ / Us(e)u(de,ds), te€[0,T].
t t t JE

Using Remark and Theorem 5 in [7], we obtain that the generator 1, - f satisfies a
comparison theorem in the sense of Definition We can then apply Theorem [.1] with

F(t,y,z,u) = F(t,y,z,u) = 1, f(t,y,20), (ty,zu)€0,T] xR xR?x Bor(E,R),

and we get that Y1, <« =Y'1, <.
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e Suppose that Y1, < = Y'l; <. We can then choose Y7 and Y/ appearing in the
decomposition of the processes Y and Y’ given by Lemma (ii) such that

Y/ (0G),e) = Y04 e0)

for all (A,e) € A, x E™ and j = k+1,...,n. Therefore, we get that (Y1, <¢, Zi1r, <t (Ur+
Y- Li<r ) 1r,  <t) and (Y1, <4, Zi1;, <4, (U] + Y- 1i<r )1, <¢) are solution to

Y, = f]lTkST+/ F(s, YS,Z)ds—/ ZdWy — / / w(de,ds), tel0,T],
t t

where the generator F' is defined by
t Y, 2 Z ]17k<t<Tk+1 (ta Y, Z) + ]lTn<tFn(t7 Y, Z) 5

where

FF(ty,2) = f(tjy,Z,KkH(T(k),S,C(k), D= y,T(kyC(k))

Fn(t7y7z) = f(t,y,Z,O)

for all (¢,y,2) € [0,T] x R x R, Using Remark [4.1) and Theorem 5 in [7], we obtain that
the generator F' satisfies a comparison theorem in the sense of Definition We can then
apply Theorem and we get that Y1, < =Y'1, <.

e Finally the result holds true for all K =0,...,n which gives Y =Y".

e We now prove that Z = Z’ and U = U’. Identifying the finite variation part and the
unbounded variation part of Y we get Z = Z’. Then, identifying the pure jump part of Y we
get U =U". Since U = U (vesp. U' = U" ) in L*(u), we finally get (Y, Z,U) = (Y', Z',U").

O

5 Exponential utility maximization in a jump market model

We consider a financial market model with a riskless bond assumed for simplicity equal to
one, and a risky asset subjects to some counterparty risks. We suppose that the Brownian
motion W is one dimensional (d = 1). The dynamic of the risky asset is affected by other
firms, the counterparties, which may default at some random times, inducing consequently
some jumps in the asset price. However, this asset still exists and can be traded after the
default of the counterparties. We keep the notation of previous sections.

Throughout the sequel, we suppose that (HD), (HBI) and (HC) are satisfied. We
consider that the price process S evolves according to the equation

t
St=50+/5 (bdu+0udW +/6u dedu)), 0<t<T.
0

All processes b, ¢ and (8 are assumed to be G-predictable. We introduce the following
assumptions on the coefficients appearing in the dynamic of S:
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(HS1) The processes b, o and [ are uniformly bounded: there exists a constant C s.t.

be] 4+ |oe| + [Bile)] < C, 0<t<T,ecE, P-as.

(HS2) There exists a positive constant ¢, such that

or>cy, 0<t<T, P-—a.s.

(HS3) The process S satisfies:

Bile) >—-1, 0<t<T, eckE, P-—a.s.

(HS4) The process ¢ defined by 9y = g—i, t € [0,7T], is uniformly bounded: there exists a
constant C' such that

| < C, 0<t<T, P—a.s.

We notice that (HS1) allows the process S to be well defined and (HS3) ensures it to be
positive.

A self-financing trading strategy is determined by its initial capital x € R and the
amount of money 7, invested in the stock, at time ¢ € [0,7]. The wealth at time ¢ associated
with a strategy (z,m) is

¢ t t
X7 o=z +/ msbsds +/ M50 sdW +/ / msBs(e)u(de,ds), 0<t<T.
0 0 0o JE

We consider a contingent claim, that is a random payoff at time T described by a Gr-
measurable random variable B. We suppose that B is bounded and satisfies

B = ZBk(T(k)7<(k))]lTk§T<Tk+1;
=0

where B is Fr-measurable and B* is Fr@B(Ay) @ B(E*)-measurable for each k = 1,...,n.
Then, we define

Vi) = supE[ — exp(—a(X7" — B))] , (5.1)
meA
the maximal expected utility that we can achieve by starting at time 0 with the initial
capital z, using some admissible strategy m € A (which is defined throughout the sequel)
on [0,7] and paying B at time 7. « is a given positive constant which can be seen as a
coefficient of absolute risk aversion.
Finally, we introduce a compact subset C of R with 0 € C, which represents an eventual
constraint imposed to the trading strategies, that is, m(w) € C. We then define the space
A of admissible strategies.
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Definition 5.1. The set A of admissible strategies consists of all R-valued P(G)-measurable
processes ™ = (m;)o<t<7 Which satisfy EfOT |7Tt0t|2dt+Ef0T [ |meBi(e)| Mi(e)dedt < oo, and
m € C, dt ® dP — a.e., as well as the uniform integrability of the family

{ exp (— aX?™) : T stopping time valued in [0, T]} .

We first notice that the compactness of C implies the integrability conditions imposed
to the admissible strategies.

Lemma 5.1. Any P(G)-measurable process m valued in C satisfies m € A.

The proof is exactly the same as in [25]. We therefore omit it.

In order to characterize the value function V' (z) and an optimal strategy, we construct,
as in [I5] and [25], a family of stochastic processes (R(™),c4 with the following properties:

(i) R = —exp(—a(XE™ — B)) for all 7 € A,
(ii) R(()Tr) = Ry is constant for all 7 € A,

(iii) R™ is a supermartingale for all 7 € A and there exists # € A such that R(™) is a
martingale.

Given processes owning these properties we can compare the expected utilities of the strate-
gies m € Aand 7 € A by

E[ —exp (—a(X7" = B))] < Ro(z) = E[—exp(— OC(X;JAF - B))] = V(a),
whence 7 is the desired optimal strategy. To construct this family, we set
R = —exp(—a(Xf™—Yy), 0<t<T,wcA,

where (Y, Z,U) is a solution of the BSDE

T T T
Y, = B+/ f(s,Zs,US)ds—/ ZSdWS—/ /Us(e)u(de,ds), 0<t<T. (52)
t t t E

We have to choose a function f for which R(™ is a supermartingale for all 7 € A, and
there exists a 7 € A such that R(™ is a martingale. We assume that there exists a triple

(Y, Z,U) solving a BSDE with jumps of the form ({5.2), with terminal condition B and with
a driver f to be determined. We first apply Itd’s formula to R(™ for any strategy m:

() () a’ 2
dr(™ = R [( —a(f(t, 20, Up) +mibe) + 5 (w0t — Zy) )dt — a(moy — Z)dW,

+ [ (exp (- almbile) - V(o)) - Da(de, )
E
Thus, the process R(™ satisfies the following SDE:

dR” = RMaM{™ + RWdA . 0<t<T,
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with M (™ a local martingale and A(™ a finite variation continuous process given by

( th(ﬂ) = — a(moy — Zy)dWy + /E (exp (— a(mpBle) — Ui(e))) — 1) au(de, dt),
2

dAg”) = ( — a(f(t, Zy, Up) + Wtbt) + %(Wtat - Zt)Q

+ /E (exp (— a(mpBi(e) — Us(e))) — l)At(e)de>dt .

It follows that R(™ has the multiplicative form
Rg”) = Réﬂ)(’f(]\/[(”))t exp (Agﬂ)) ,

where (M (™) denotes the Doleans-Dade exponential of the local martingale M (™). Since
exp(—a(mfB(e) — Ui(e))) — 1 > —1, P — a.s., the Doleans-Dade exponential of the dis-
continuous part of M (™ is a positive local martingale and hence, a supermartingale. The
supermartingale condition in (iii) holds true, provided, for all = € A, the process exp(A(™)
is nondecreasing, this entails

a?
—a(f(t, Zy, Up) + 7rtbt) + ?(mat — Z;)? —|—/ (exp ( — a(ﬂ'tﬂt(e) — Ut(e))) — 1))\t(e)de >0.
E

This condition holds true, if we define f as follows

f(t,z,u) = inf {%‘ﬂat - (z + ﬁ) ‘2 + /E exp(afu(e) = mhi(e))) = 1/\t(e)de}

melC o [0

9
2
recall that ¥y = b/oy for t € [0,T].
Theorem 5.1. Under (HD), (HBI), (HC), (HS1), (HS2), (HS3) and (HS4), the value
function of the optimization problem s given by

—’l9tZ

V(z) = —exp(—a(z—Yp)), (5.3)

where Yy is defined as the initial value of the unique solution (Y,Z,U) € Sg°[0,T] x
L%[0,T) x L*(uu) of the BSDE

T T T
Y, = B —|—/ f(s, Zs,Ug)ds —/ ZsdW —/ / Us(e)u(de,ds), 0<t<T, (54)
¢ ¢ t JE
with

f(t,z,u) = inf {g‘ﬂat = (z + &) ‘2 + /E exp(afu(e) = mhi(e))) = 1/\t(e)de}

meC L 2 o o
_ o
2a0
for all (t,z,u) € [0,T] x R x Bor(E,R). There exists an optimal trading strateqgy & € A
which satisfies

7y € argmin {%‘ﬂat - (z + ﬁ) ’2 + /E expla(ule) = mhil(e))) = 1)\t(e)de} , (5.5)

—19tZ

el « «

for all t € [0, 7).
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Proof. Step 1. We first prove the existence of a solution to BSDE (5.4). We first check

the measurability of the generator f. Notice that we have f(.,.,.,.) = inf cc F(m,.,.,.,.)
where F' is defined by
9 — -1
F(m,t,y,z,u) = g‘wat — (z—i— t)‘ +/ expla(ufe) = mhi(e))) Ae(e)de
2 o} E o}

for all (w,t,m,y,z,u) € Qx[0,T]xCxRxRxBor(E,R). From Fatou’s Lemma we have that
u— [pu(e)de is Ls.c. and hence measurable on Bor(E,Ry) := {u € Bor(E,R) : u(e) >

0, Vee E} Therefore F(x,.,.,.,.) is P(G) ® B(R) ® B(R) ® B(Bor(E,R))-measurable
for all # € C. Since F(.,t,y,z,u) is continuous for all (¢,y,z,u) we have f(.,.,.,.) =
infrecng F(m,.,.,.,.), and fis P(G) ® B(R) ® B(R) ® B(Bor(E,R))-measurable.

We now apply Theorem Let o, 9% and 8%, k = 0,...,n, be the respective terms
appearing in the decomposition of o, 9 and /3 given by Lemma Using (HS1) and (HS4),
we can assume w.l.o.g. that these terms are uniformly bounded. Then, in the decomposition

of the generator f, we can choose the functions f*, k=0,...,n, as
n . v (0, e)\ |2 n 970, )|
(it z,u,0,e) = ;IEIE{Q‘W% (0,e) — (z+T>‘ }—ﬁt(ﬁ,e)z—T,

and

95 (0 k), 6(k))> ’2

. [0}
fk(t, z,u,H(k),e(k)) = inf {5‘71'05(9(@,6(@) - (Z + a

el

eXp<a(u(€/) - W/Bk(e k)» €(k 76/))) -1
+/ t (k)> (k) )\f+1(e/’0(k)7e(k))del}
E (6%

k 2

gk _ 1956w, ew)”

V5 (O()s €y )2 o ,
for k=0,...,n—1and (0,e) € A, x E".
Notice also that since B is bounded, we can choose B*, k = 0, ..., n, uniformly bounded.

We now prove by backward induction on k that the BSDEs (we shall omit the dependence

n (6,¢))
T
yr o= By /f”sZ” ds—/ Z0AW,, G AT <t<T, (k=n) (5.)
t
and
T
vF = Bk+/ fr(s, 2k, vE L (s,) — YF)ds
t
T
—/ ZEaW,, O AT <t<T, (k=0,...,n—1) (5.7)
t

admit a solution (Y*, Z%) in SZ[0x A T,T] x LA[0x A T,T] such that Y* (vesp. Z*) is
PM(F) @ B(Ar) @ B(E*) (resp. P(F) @ B(Ar) ® B(EF))-measurable with

sup  |[Y*(O), ey s pountr) + 112500y, e )l r2ponrr) < 00,
(6,e)EALXE™
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forall k =0,...,n.
e Since 0 € C, we have

971 &2
9 <t < Z|z.
t % 20 — f (7270)— 2|Z|

Therefore, we can apply Theorem 2.3 of [23], and we get that for any (0,e) € A,, x E",
there exists a solution (Y"(6,¢),Z"(6,¢€)) to BSDE in 80, AT, T) x L2[0, AT, T).
Moreover, this solution is constructed as a limit of Lipschitz BSDEs (see [23]). Using
Proposition we get that Y (resp. Z") is PM(F) ® B(A,) ® B(E™) (resp. P(F) ®
B(A,) ® B(E™))-measurable.

Then, using Proposition 2.1 of [23], we get the existence of a constant K such that

sup Y0, €)lswpp nrry + 1270 )l L2 nrry = K-
(976)6ANXETL

e Suppose that BSDE (/5.7) admits a solution at rank £+ 1 ( £ <n — 1) with

k+1
oS (V51 Oy )l iy

+”Zk+1 (e(k-i—l)a e(k:-l-l)) ||L2[9k+1/\T7T]} < 0. (58)
We denote g the function defined by
Gty 2, 0py.em) = 2 YT O, tiewmy ) — v, 0y ery)

for all (t,y,2) € [0,T] x R xR and (0, ¢e) € A, x E™. Since g has an exponential growth in
the variable y in the neighborhood of —oo, we can not directly apply our previous results.
We then prove via a comparison theorem that there exists a solution by introducing another
BSDE which admits a solution and whose generator coincides with g in the domain where
the solution lives.

Let (Xk(H(k), e(k)),zk(H(k), e(k))) be the solution in S0k AT, T] x L§[0 AT, T] to the
linear BSDE

T
Yi(Owyew) = B’“(G(k),e(k))Jr/t 9" (5, Y, 200y, eqay ) ds
T
—/ ZE Oy ew)dWs . O ANT <t<T,
t

where

I (O k), er))

gk (t7 Y, z, 9(1@)’ e(k)) = _197]? (a(k)v e(k))z - 20 )

for all (t,y,2) € [0,T] x R x R. Since B* and ¥* are uniformly bounded, we have

sup ||Xk(9 i)> €)oo < 00 (5.9)
(O(k)-€(k)) EAR X EF (k) “(k) s [0x AT, T

Then, define the generator §* by
7"ty 2,00 e) = 9"y V YEOwem) 2 00y ey »
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for all (¢t,y,z) € [0,7] x R x R and (0,¢) € A,, x E™.
Moreover, since 0 € C, we get from (5.8) and ([5.9) the existence of a positive constant
C' such that

‘§k<t’y7zve(k)ae(k))‘ < C(l + |Z’2) )

for all (t,y,2) € [0,T] x R x R and (0,¢e) € A,, x E™. We can then apply Theorem 2.3 of
[23], and we obtain that the BSDE

T
Y;fk(e(k)? e(k;)) = Bk(e(k)y e(k)) + / f]k(s, szk, Zf)(@(k), €(k))d8
t
T
t

admits a solution (17’“(9(@,e(k)),Zk(Q(k),e(k))) € S0k AT, T) x L6y A T,T]. Using
Proposition 2.1 of [23], we get

sup IY* Ok, el s ppnrr) < 00
(Q(k),e(k))EAkXEk

Then, since §* > gk and since gk is Lipschitz continuous, we get from the comparison theo-
rem for BSDEs that Y* > Y*. Hence, (Y*, Z¥) is solution to BSDE . Notice then that
we can choose Y* (resp. Z¥) as a PM(F) @ B(Ay) @ B(EF) (resp. P(F) ® B(Ay) @ B(EF))-
measurable process. Indeed, these processes are solutions to quadratic BSDEs and hence
can be written as the limit of solutions to Lipschitz BSDEs (see [23]). Using Proposition[C.1]
with X = Ay x E* and dp(0, e) = v0(0, e)dfde we get that the solutions to Lipschitz BSDEs
are P(F)®B(A) @ B(E*)—measurable and hence Y* (resp. Z%) is PM(F)Q@B(A,) @ B(EF)
(resp. P(F) ® B(Ay) ® B(E*))-measurable.

Step 2. We now prove the uniqueness of a solution to BSDE (5.4). Let (Y, Z!,U') and
(Y2, Z2,U?) be two solutions of BSDE (5.4) in S[0, T x L&[0,T] x L*(u).
Applying an exponential change of variable, we obtain that (Y7, Z% U?) defined for
i1=1,2 by
Vi = exp(aY)),
Zi o~ avizi,
Uite) = Yi(exp(ali(e) ~1)

for all ¢ € [0, 77, are solution in S[0,7] x L4[0,T] x L*(u) to the BSDE

Y, = exp(aB)+ /f Z )ds—/t ZydW, — // p(de, ds)

where the generator f is defined by
~ 2
Ftwz) = it { S prouly - amou(e+ o)+ [ [ u(e) +) - y]nte)de]}
E

el
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We then notice that
o f satisfies (HUQ1) since it is an infimum of linear functions in the variable z,

o f satisfies (HUQ2). Indeed, from the definition of f we have

itz =) = Ferfzu) =) = int {( =)0 + Groamant (v =) [ Mfepde.

for all (¢,z,u) € [0,T] x R x Bor(E,R) and y,y’ € R. Since C is compact, we get from
(HBI) the existence of a constant C' such that

f(tvyvzau_y)_f(taylvz7u_y/) > _C|y_y,|

Inverting y and 3’ we get the result.

o f satisfies (HUQ3). Indeed, since 0 € C, we get from (HBI) the existence of a constant C
such that

ft.zm) < Oy —i—/E]u(e)\/\t(e)de> by, zu) €0,T] X R x R x Bor(E,R) .

We get from (HBI), there exists a positive constant C' s.t.

_ 2

f(ty,zu) = inf { Sirorf?y - amor(z + V) |
welC 2

+ inf {/Ee‘”ﬁt(e) (u(e) + y))\t(e)de} —Cly| .

wel

Then, from (HS1), (HS2) and the compactness of C, we get

ftnz) = ~C(1+ll+ L+ [ u@(ede) . (tzw) € 0.7] xR xR x Bor(E.R)

o f satisfies (HUQ4) since at time ¢ it is an integral of the variable u w.r.t. A;, which

vanishes on the interval (7, c0).

Since f satisfies (HUQ1), (HUQ2), (HUQ3) and (HUQ4), we get from Theorem [4.2
that (Y1, Z1,U") = (Y?2,22,0?) in SF[0,T] x L&[0,T] x L?(1). From the definition of
(Y, Z2, U for i = 1,2, we get (Y1, Z',UY) = (Y?2,22,U?) in SL[0,T] x L&[0,T] x L*(p).

Step 3. We check that M) is a BMO-martingale. Since C is compact, (HS1) holds and U
is bounded as the jump part of the bounded process Y, it suffices to prove that fo ZsdW
is a BMO-martingale.

Let M denote the upper bound of the uniformly bounded process Y. Applying Itd’s
formula to (Y — M)?2, we obtain for any stopping time 7 < T'

T
E[/ \Z,|2ds

G| = E[(¢-MP|g,] - ¥, — MP

+2E[/T(YS — M) f(s, Zs,U,)ds

G|
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The definition of f yields

-0 2 — W - a/E)\t(e)de < f(ta Zy, Ut) >

for all t € [0,T]. Therefore, since (HBI) and (HS4) hold, we get

]E[/T\ZSst

T

G| < C(HE[/ |Z, + 1|ds

T

1 T
< 0+2E[/ |Z,[2ds

Hence, fo ZsdWy is a BMO-martingale for £k =0,...,n.

g|)

G| -

Step 4. It remains to show that R(™ is a supermartingale for any 7 € A. Since m € A, the
process €(M (”)) is a positive local martingale, because it is the Doleans-Dade exponential
of a local martingale whose the jumps are grower than —1. Hence, there exists a sequence
of stopping times (6, )nen satisfying lim, oo 6, = T, P — a.s., such that (M) x5 is a

positive martingale for each n € N. The process A(™ is nondecreasing. Thus, R =

tAOn
Ro&(M ™) ps. exp(AS\zsn) is a supermartingale, i.e. for s <t
() (m)
E[Rt/\én|g5] = Rs/\6n :
For any set A € G5, we have
B[R, 1a] SE[RT; 14] (5.10)

On the other hand, since
REW) = —exp ( —a(X" - Yt)) ,

we use both the uniform integrability of (exp(—aXj™™)) where § runs over the set of all
stopping times and the boundedness of Y to obtain the uniform integrability of

{R'™ . 7 stopping time valued in [0, T]}.
Hence, the passage to the limit as n goes to oo in (5.10) is justified and it implies
E[R™14] <E[R{M1,] .

7r)‘

We obtain the supermartingale property of R(
To complete the proof, we show that the strategy 7 defined by is optimal. We first
notice that from Lemma we have # € A. By definition of #, we have A = 0 and
hence, Rgﬁ) = Ro&(M®),. Since C is compact, (HS1) holds and U is bounded as jump
part of the bounded process Y, there exists a constant 6 > 0 s.t.

AMT = M - MP > 146

- =
Applying Kazamaki criterion to the BMO martingale M) (see [22]) we obtain that
¢(M @) is a true martingale. As a result, we get

sup E(R) = Ry = V(x) .
TeA

Using that (Y, Z,U) is the unique solution of the BSDE (|5.4), we obtain the expression
(5.3) for the value function. O
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Remark 5.1. Concerning the existence and uniqueness of a solution to BSDE , we
notice that the compactness assumption on C is only need for the uniqueness. Indeed, in the
case where C is only a closed set, the generator of the BSDE still satisfies a quadratic growth
condition which allows to apply Kobylanski existence result. However, for the uniqueness
of the solution to BSDE , we need C to be compact to get Lipschitz continuous de-
composed generators w.r.t. y. We notice that the existence result for a similar BSDE in
the case of Poisson jumps is proved by Morlais in [25] and [26] without any compactness
assumption on C.

Appendix
A Proof of Lemma (ii)
We prove the decomposition for the progressively measurable processes X of the form
t
X = Jt—l—/ Us(e)u(de,ds), t>0,
0

where J is P(G)-measurable and U is P(G)®B(E)-measurable. To prove the decomposition
(2.2), it sufficies to prove it for the process J and the process V defined by

t
Vi = /Us(e)y(de,ds), t>0.
0

e Decomposition of the process J.
Since J is P(G)-measurable, we can write

o= Jler + Z‘]t T(k) Ck)) Lrp<t<rirs >

for all t > 0, where J° is P(F)-measurable, and J* is P(F) ® B(A;) ® B(E*)-measurable,
for k =1,...,n. This leads to the following decomposition of J:

Joo= T DT (T ) rstms
k=1

T Oy emy) = JFOwsew) + (T 0p-1), eg—1)) — JF (Ok)> €))L=ty »

for k=1,...,n and (64, e)) € Ak x E¥. Since J* is P(F) @ B(Ay) ® B(E*)-measurable
for all k =0,...,n, we get that (JF)e(o5 is Fs ® B([0, 5]) @ B(Aj) ® B(E*)-measurable for
all s > 0.
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e Decomposition of the process V.
Since U is P(G) ® B(E)-measurable, we can write

Ut(') = Uz?(‘)]ltﬁﬁ + Z Utk(T(k)a C(k)v ')]lTk<t§Tk+1 )
k=1

for all t > 0, where U is P(F) ® B(E)-measurable, and U* is P(F)@B(A) @ B(E*) 2 B(E)-
measurable, for k = 1,...,n. This leads to the following decomposition of V:

Vi = ZUfkil(T(k—l)vg(k))]lTkSt
k=1
n k

= > ( > UL (-, C(j))ﬂrj§t> Loy <t<ris

k=1 j=1

3

= ‘/;k(T(k‘)?C(k))]lTkSt<Tk+1 )
k=1

where V* is defined by V% = 0 and
V (H(k ZUJ 1 ] 1)) €35 ))]lgjgt, t>0, (H(k),e(k)) GAkXEk,

for k=1,...,n. We now check that for all s >0, (V/(.))seo,5 is Fs @ B([0, s]) ® B(Ag) ®
B(E*)-measurable. Since U7 is P(F) ® B(A;) ® B(E?)-measurable, we get that (Uj (. ))te[O o]
is .7-" ® B([0,s]) ® B(Aj) ® B(E?)-measurable. Therefore (t,0(;),e(;)) € [0,5] X Aj x B/ —
Ue (9(] 1) e)) le;<t is Fs@B([0, s]) @ B(A;) @ B(E) for j = 0,...,n. From the definition

J

of V¥ we get that (V/(.))seqo,¢ is Fs @ B([0, s]) ® B(Ag) ® B(E*)-measurable. O

B Proof of Proposition

We first give a lemma which is a generalization of a proposition in [13]. Throughout the
sequel, we denote

&G Bi-ry ein) = / Loi>(E[G(0w), e)|Ft)dbi .. dBidei .. ey,

Ap_jp1 X EF—11

for any Foo ® B(A) ® B(E¥)-measurable function G and any integers i and k such that
1<i<k<n.

Lemma B.1. Fiz t,s € Ry such that t < s. Let X be a positive Fs @ B(A,) ® B(E™)-
measurable function on Q x A, x E™, then

ghit1, n(X%)(T(,) C(‘))
EX(TH)Cn)gt ]lTl<t Ti t trLn o
[X (), Cn))|G2] Z; D CATE ey
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Proof. Let H be a positive and G;-measurable test random variable, which can be written

n

1=0

where H' is F; ® B(A;) ® B(E?)-measurable for i = 0,...,n. Using the joint density v,(0, e)
of (7,(), we have on the one hand

B[l <t<r HX(T(n), Cm))] = E{/(Oﬂ_w Cg(i)de(i)Hf(%),e(i))c‘f’”l’”(Xys)(r(i),gi))}.
71 7(>< 1

On the other hand, we have

E[1,< & ’m’n(X%)(vaC(i))]
T <t<T; ;
I +1 giF,z—i-l,n (%) (T(i)7 C(i))
[ ; &I (X ) (T1y, Sy
= E|Lln<tern H'(76), C0) —Fiin
L +1 5F7 +1, (’Yt)(T(z)ag(z)) }
] _ ERTIR (XY By, ey) s
= E/ A0y de oy Hi (00, e()) — 5 DT (1) By eqiy)
oo cm@ e iCo o) grmmn oy o o e () By o)
= E[]lTiSt<Ti+1HX(T(n)7C(n))] :

a

We now prove Proposition To this end, we prove that for any nonnegative P(G) ®
B(E)-measurable process U, any T > 0 and any t € [0,7T], we have

E[/tT/EUS(e)M(de,ds))gt} - E[/tT/EUS(e))\S(e)deds‘gt] , (B.1)

where ) is defined by (2.3]).
We first study the left hand side of (B.1). From Lemma and Remark we can

write
Ut(e) = Z ]]-Tk<t§Tk+1Utk(T(k)7 C(k)? 6) ) (tv 6) € [OvT] x E )
k=0

where U* is a P(G) ® B(Ax) ® B(E**!)-measurable process for k = 0,...,n. Moreover,
since U is nonnegative, we can assume that U*, k = 0, ..., n, are nonnegative. Then, from
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Lemma [B.1] we have:

/ / w(de, ds) ‘Qt} = ZE[]lt<Tk§TU7]—€k_1(T(k—1)aC(k))‘gt]
k=1

n grtn (1t<0k§TUé€;1(‘9(k—1)> e ) (b, 6’)) (TG)» e(@y)
- Z Z ]l’rift<7'7;+1

F,i+1,n
k=1 i=0 & * (’Yt)(T(i)ve(i))

gl <]1t<9k+1§TU0kk+l (Oky» €(kt1)) V0111 (0 6)) (T()s €5))
= Z ]lTl<t<7'H,1

- EF’HL” (%) (T(ys €(3y)

1l EFit+1k+1 (

S Licop 1 <7UE  (Ok), ers) 0, Okt €(k:+1))> (T4)» e@y)
= T <t<Tit+1 EF,i+1,n (’Yt)(T(i), e(i)) .

We now study the right hand side of (B.1)):

n—1 T
/ / )deds‘gt} - ZE[/t/E]lTk<S§TkHUf(T(k),C(k)))\1§+1(€,7'(k)aC(k))deds‘gt]
k=0
gFitln ( I Loy <s<p UE(O(1ys €)XY, 01y e 75 (0 e)de’dS) (T): C))

F,i+1
g,z—&-,n

— t
== 7 <t<T;
kz:: Z:: o t (’Yt) (T(i), €(i))

gLk < S Loy <sUE (B ays €)X (€0 0y €)VE (Bt e(k))de'ds) (7(3), S(@))

EC (1) (70 ea))

= E ]lTl<t<7'L+1
L
S

E]Fzﬂk(ft Je 16, <sUE (01, e ())75“(9(1@),Sye(k),el)de'd8>
5%““’” () (T()» €4))

Y

- E ]lTl<t<7'1+1
Z
S

where the last equality comes from the definition of A\*. Hence, we get (B.1]).

C DMeasurability of solutions to BSDEs depending on a pa-
rameter

C.1 Representation for Brownian martingale depending on a parameter

We consider X a Borelian subset of RP and p a finite measure on B(X). Let {{(z) : = € X'}
be a family of random variables such that the map £ : Qx X — R is Fp®B(X)—measurable
and satisfies [, E|¢(z)[*p(dz) < oo. In the following result, we generalize the representa-
tion property as a stochastic integral w.r.t. W of square-integrable random variables to the
family {{(z) : x € X}. The proof follows the same lines as for the classical It6 representa-
tion Theorem which can be found e.g. in [27]. For the sake of completeness we sketch the
proof.
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Theorem C.1. There exists a P(F)QB(X)-measurable map Z such that [ fOT E|Zs(x)|?dsp(dx)
< 0o and

T
f(z) = E[g(x)H—/o Zy(2)dWs, P®p—ac. (1)

As for the standard representation theorem, we first need a lemma which provides a
dense subset of L?(Fr ® B(X),P ® p) generated by easy functions.

Lemma C.1. Random variables of the form

exp (/OT h(2)dW; — ;/OT\ht(x)th) , (C.2)

where h is a bounded B([0,T]) ® B(X)—measurable map span a dense subset of L*(Fr ®
B(X),P® p).

Sketch of the proof. Let A € L?(Fr ® B(X),P ® p) orthogonal to all functions of the
form (C.2)). Then, in particular, we have

G(ah'"?a’n) = / E[Aexp(alwtl + - +Oénth>]dp =0 )
X

for all a,...,ap, € R and all ¢y,...,t, € [0,7]. Since G is identically equal to zero on R"
and is analytical it is also identically equal to 0 on C"™. We then have for any B(X)®B(RP)—
measurable function ¢ such that ¢(z,.) € C°°(R") with compact support for all z € X

/X E[Yé(z, Wy,,..., W, )ldp(z) =

/ QB(JU, aty. .., ozn)IE[A exp(ay Wy, + -+ + anth)]dp(x)dal ..o.day = 0,
R xX

where qg(x, .) is the Fourier transform of ¢(z,.). Hence, A is equal to zero since it is
orthogonal to a dense subset of L?(Fr ® B(X)). O

Sketch of the proof of Theorem First suppose that £ has the following form:

E(x) = exp (/OT hi(z)dWy — ;/OT |ht(x)|2dt> ,

with h a bounded B([0,7]) ® B(X)—measurable map. Then, applying Itd’s formula to the
process exp (fo he(2)dWy — 5 [ \ht(x)Pdt), we get that ¢ satisfies (C.1) where the process
Z is given by

Zi(x) = h(x)exp (/Ot hs(z)dWs — ;/Ot ]hs(x)\2d3> , (t,z) €[0,T] x X .

Now for any ¢ € L?(Fr ® B(X),P ® p), there exists a sequence (£"),en such that each &"
satisfies

T
e'(z) = E[g"(2)] + /0 Z0)dW, . P& p—ae.
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and (£"),en converges to ¢ in L2(Fr@B(X),PRdt®p) . Then, using Itd’s Isometry, we get
that the sequence (Z"),en is Cauchy and hence converges in L?(P(F) ® B(X),P ® dt ® p)
to some Z. Using again the It6 Isometry, we get that ({"),en converges to E[¢(x)] +
fOT Z(x)dWs in L*>(Fr @ B(X),P® p). Identifying the limits, we get the result. O

Corollary C.1. Let M be a P(F) ® B(X)—measurable map such that (Mi(x))o<i<r is
a martingale for all x € X and [, E|Mp(z)|?p(dz) < co. Then, there exists a P(F) @
B(X)—measurable map Z such that f(;[ [3 E|Zs(x)*p(dz)ds < oo and

¢
M(z) = My(x) +/ Zs(x)dWs .
0
The proof is a direct consequence of Theorem as in [27] so we omit it.

C.2 BSDEs depending on a parameter

We now study the measurability of solutions to Brownian BSDEs whose data depend on
the parameter x € X. We consider

— a family {¢(x) : x € X'} of random variables such that the map £ : Q2 x X — R is
Fr ® B(X)—measurable and satisfies [, E|¢(x)[*p(dz) < oo,

— afamily {f(.,z) : € X} of random maps such that the map f : Qx[0,7]xRxR?x
X — Ris P(F)@B(R)2B(RY)®@B(X)—measurable and satisfies fOT [+ Elf(5,0,0,z)*p(dz)ds <
0.

We then consider the BSDEs depending on the parameter x € X'

T T

Yi(z) = &(x) +/ f(s,Ys(x), Zs(x), x)ds —/ Zs(x)dWs , (t,z)€[0,T] x X .(C.3)
t t

Lemma C.2. Assume that the generator f does not depend on (y,z) i.e. f(t,y,z,x) =

f(t,x). Then, BSDE (C.3) admits a solution (Y,Z) such that Y and Z are P(F) ®
B(X)—measurable.

Proof. Consider the family of martingales {M (z) : = € X}, where M is defined by

My(z) = E[g(x)Jr/OTf(s,x)ds\ft}, (t,z) € [0,T] x X .

Then, from Corollary |C.1] there exists a P(F) ® B(R?)—measurable map Z such that
[T [vE|Zs(2)[?p(dx)ds < oo and

t
My(z) = Mpy(zx) —I—/ Zs(x)dWs, (t,z)€[0,T] x X .
0
We then easily check that the process Y defined by
t
Yi(z) = My(x) —/ f(s,2)ds, (ta)€[0,T] x &,
0
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is P(F) ® B(X)—measurable and that (Y, Z) satisfies ((C.3)). O

We now consider the case where the generator f is Lipschitz continuous: there exists a
constant L such that

!f(t,y,z,x) - f(t,y,,zlal')‘ S L(|y - y/’ + ’Z - Z/|) 9 (04)
for all (t,, 1/, 2 7)€ [0,T] x [R]? x [RI]2

Proposition C.1. Suppose that f satisfies (C.4). Then, BSDE (C.3) admits a P(F) ®
B(X)—measurable solution (Y, Z) such that ]EfOT S (Vs (@) ]2 + | Zs(2)]?) p(da)ds < oo.

Proof. Consider the sequence (Y, Z"),cn defined by (Y°, Z%) = (0,0) and for n > 1

T T
V) = g+ [ f60@. 22w - [ 2 @, () € (0.7 x X
t t
From Lemma we get that (Y",Z") is P(F) ® B(X)—measurable for all n € N.
Moreover, since f satisfies (C.4), the sequence (Y",Z"),cn converges (up to a subse-
quence) a.e. to (Y, Z) solution to (C.3)) (see [28]). Hence, the solution (Y, Z) is also
P(F) ® B(X)—measurable. O

D A regularity result for the decomposition

Proposition D.2. Let p > 1 and (fi(z))@z)cp0,1)xre be a P(G) ® B(RP)-measurable map.
Suppose that f;(.) is locally uniformly continuous (uniformly inw € Q). Then fF(., 0 (k)» €(k))
is locally uniformly continuous (uniformly in w € Q) for O <t and k=0,...,n.

Proof. For sake of clarity, we prove the result without marks, but the argument easily
extends to the case with marks. Fix k € {0,...,n} and for R > 0, denote by mcé the
modulus of continuity of f on Bgs (0, R). Then for any ék > > 51 >0and hy,...,hy, >0

we have from the definition of mcé and (HD)

1 /
hy--- th[Vt(‘/E) — fulz )’]lng{ée—heﬁﬂzﬁéedﬁwﬂ} ]:t} <

6 0,
. : / / /
mep(e)——— dfq ... df 0)dbBpyq ...dOy, )
Rl )hl"'hk AR k< Ve(0)dbp11 )

for x,2’ € Bre(0, R) s.t. |x — 2’| < e. Using the decomposition of f we have

R =

1 b z k k(o
_— doy ... 0 — 0 0.e)db ...d0, )do; .
o [ e /ék_hm (@.009) ~ SOl ([ 0(0. )b .. a8, ) doy

G1—h

1 /
hy--- th [|ft(x) ~ filz )|lﬁéﬁk{ée—he§75§§g<téw+1}

Sending each hy to zero we get

(2, 00) — FE 00)] < meh(e) .
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