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Abstract

Feature matters for salient object detection. Existing meth-
ods mainly focus on designing a sophisticated structure to in-
corporate multi-level features and filter out cluttered features.
We present Progressive Feature Polishing Network (PFPN),
a simple yet effective framework to progressively polish the
multi-level features to be more accurate and representative.
By employing multiple Feature Polishing Modules (FPMs)
in a recurrent manner, our approach is able to detect salient
objects with fine details without any post-processing. A FPM
parallelly updates the features of each level by directly in-
corporating all higher level context information. Moreover,
it can keep the dimensions and hierarchical structures of the
feature maps, which makes it flexible to be integrated with
any CNN-based models. Empirical experiments show that our
results are monotonically getting better with increasing num-
ber of FPMs. Without bells and whistles, PFPN outperforms
the state-of-the-art methods significantly on five benchmark
datasets under various evaluation metrics. Our code is avail-
able at: https://github.com/chenquan-cq/PFPN.

Introduction

Salient object detection, which aims to extract the most at-
tractive regions in an image, is widely used in computer vi-
sion tasks, including video compression (Guo and Zhang
2010), visual tracking (Borji et al. 2012), and image re-
trieval (Cheng et al. 2017).

Benefitting from the hierarchical structure of CNN, deep
models can extract multi-level features that contain both
low-level local details and high-level global semantics. To
make use of detailed and semantic information, a straight-
forward integration of the multi-level context information
with concatenation or element-wise addition of different
level features can be applied. However, as the features
can be cluttered and inaccurate at some levels, this kind
of simple feature integrations tends to get suboptimal re-
sults. Therefore, most recent attractive progress focuses on
designing a sophisticated integration of these multi-level
features. We point out the drawbacks of current methods
in three folds. First, many methods (Zhang et al. 2018b;
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Figure 1: Illustration of results with progressively pol-
ished features. (a) Original images. (f) Ground truth. (b)-(e)
Saliency maps predicted by PFPN with T = 0 ∼ 3 FPMs,
respectively.

Liu, Han, and Yang 2018) employ the U-Net (Ronneberger,
Fischer, and Brox 2015) like structure in which the infor-
mation flow from high level to low level during feature ag-
gregation, while BMPM (Zhang et al. 2018a) uses a bidirec-
tional message passing between consecutive levels to incor-
porate semantic concepts and fine details. However, these
integrations, performed indirectly among multi-level fea-
tures, may be deficient because of the incurred long-term
dependency problem (Bengio et al. 1994). Second, other
works (Zhuge, Zeng, and Lu 2019; Zhang et al. 2018a;
Hou et al. 2017) recursively refine the predicted results
in a deep-to-shallow manner to supplement details. How-
ever, predicted saliency maps have lost the rich informa-
tion and the capability of refinement is limited. Furthermore,
although valuable human priors can be introduced by de-
signing sophisticated structures to incorporate multi-level
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features, this process can be complicated and the structure
might lack generality.

To make full use of semantic and detailed informa-
tion, we present a novel Progressive Feature Polishing Net-
work (PFPN) for salient object detection, which is simple
and tidy, yet effective. First, PFPN adopts a recurrent man-
ner to progressively polish every level features in parallel.
With the gradually polishing, cluttered information would be
dropt out and multi-level features would be rectified. As this
parallel structure could keep the feature levels in backbone,
some common decoder structures can be easily applied. In
one feature polishing step, each level feature is updated with
the fusion of all deeper level features directly. Therefore,
high level semantic information can be integrated directly
to all low level features to avoid the long-term dependency
problem. In summary, the progressive feature polishing net-
work greatly improves the multi-level representations, and
even with the simplest concatenation feature fusion, PFPN
works well to detect salient objects accurately. Our contri-
butions are as follows:
• We propose a novel multi-level representation refine-

ment method for salient object detection, as well as a simple
and tidy framework PFPN to progressively polish the fea-
tures in a recurrent manner.
• For each polishing step, we propose the FPM to refine

the representations, which preserves the dimensions and hi-
erarchical structure of the feature maps. It integrates high
level semantic information directly to all low level features
to avoid the long-term dependency problem.
• Empirical evaluations show that our proposed method

significantly outperforms state-of-the-art methods on five
benchmark datasets under various evaluation metrics.

Related Work
During the past decades, salient object detection has ex-
perienced continuous innovation. In earlier years, saliency
prediction methods (Itti, Koch, and Niebur 1998; Parkhurst,
Law, and Niebur 2002) mainly focus on heuristic saliency
priors and low-level handcrafted features, such as center
prior, boundary prior, and color contrast.

In recent years, deep convolutional networks have
achieved impressive results in various computer vision tasks
and also been introduced to salient object detection. Early at-
tempts of deep saliency models include Li (Li and Yu 2015)
which exploits multi-scale CNN contextual features to pre-
dict the saliency of each image segment, and Zhao (Zhao et
al. 2015) which utilizes both the local and global context to
score each superpixel. While these methods achieve obvi-
ous improvements over handcrafted methods, their scoring
one image patch with the same saliency prediction drops the
spatial information and results in low prediction resolution.
To solve this problem, many methods based on Fully Con-
volutional Network (Long, Shelhamer, and Darrell 2015) are
proposed to generate pixel-wise saliency. Roughly speaking,
these methods can be categorized into two lines.

Feature Integration

Although multi-level features extracted by CNN contain rich
information about both high level semantics and low level

details, the reduced spatial feature resolution and the likely
inaccuracy at some feature levels make it an active line of
work to design sophisticated feature integration structures.
Lin (Lin et al. 2017) adotps RefineNet to gradually merge
high-level and low-level features from backbone in bottom-
up method. Wang (Wang et al. 2018) propose to better local-
ize salient objects by exploiting contextual information with
attentive mechanism. Zhuge (Zhuge, Zeng, and Lu 2019)
employ a structure which embeds prior information to gen-
erate attentive features and filter out cluttered information.
Different from above methods which design sophisticated
structure to make information fusion, we use simple struc-
ture to polish multi-level features in recurrent manner and
in parallel. Meanwhile, the multi-level structure would be
kept and the polished multi-level features can be applied in
common decoder modules. Zhang (Zhang et al. 2018a) use
a bidirectional message passing between consecutive levels
to incorporate semantic concepts and fine details. However,
the incorporating the features in between adjacent feature
levels results in long-term dependency. Our method directly
aggregates features of all higher levels at each polishing step
and thus high level information could be fused to lower level
features sufficiently during multiple steps.

Refinement on saliency map

Another line focuses on progressively refining the predicted
saliency map by rectifying previous errors. DHSNet (Liu
and Han 2016) first learns a coarse global prediction and
then progressively refines the details of saliency map by in-
tegrating local context features. Wang (Wang et al. 2016)
propose to recurrently apply an encoder-decoder structure
to previous predicted saliency map to perform refinement.
DSS (Hou et al. 2017) adotps short connections to make
progressive refining on saliency maps. CCNN (Tang and
Wu 2019) cascads local saliency refiner to refines the de-
tails from initial predicted salient map. However, since the
predicted results have severe information loss than origi-
nal representations, the refinement might be deficient. Dif-
ferent from these methods, our approach progressively im-
proves the multi-level representations in a recurrent man-
ner instead of attempting to rectify the predicted results. Be-
sides, most previous refinements are performed in a deep-to-
shallow manner, in which at each step only the features spe-
cific to that step are exploited. In contrast to that, our method
polishes the representations at every level with multi-level
context information at each step. Moreover, many methods
utilize an extra refinement module, either as a part of their
model or as a post-process, to further recover the details of
the predicted results, such as DenseCRF (Hou et al. 2017;
Liu, Han, and Yang 2018), BRN (Wang et al. 2018) and
GFRN (Zhuge, Zeng, and Lu 2019). In contrast, our method
delivers superior performance without such modules.

Approach
In this section, we first describe the architecture overview
of the proposed Progressive Feature Polishing Net-
work (PFPN). Then we detail the structure of the Feature
Polishing Module (FPM) and the design of feature fusion
module. Finally we present some implementation details.

12129



Label

+

Conv-1
128 x 128 x 64

Res-2
64 x 64 x 256

Res-3
32 x 32 x 512

Res-4
16 x 16 x 1024

Res-5
8 x 8 x 2048

Backbone TM1 TM2

Prediction+

+

+

+

FPM1

FPM1-1
128 x 128 x 256

FPM1-2
64 x 64 x 256

FPM1-3
32 x 32 x 256

FPM1-4
16 x 16 x 256

FPM1-5
8 x 8 x 256 +

+

+

+

+

FPM2

FPM2-1
128 x 128 x 256

FPM2-2
64 x 64 x 256

FPM2-3
32 x 32 x 256

FPM2-4
16 x 16 x 256

FPM2-5
8 x 8 x 256

64 x 64 x 256

Conv BN

8 x 8 x 256

Conv BN

256 x 256 x 160

Conv BN

256 x 256 x 160

Concat

FM

Up Conv BN

256 x 256 x 32

Up Conv BN

256 x 256 x 32

Up Conv BN

256 x 256 x 32

Up Conv BN

256 x 256 x 32

Up Conv BN

256 x 256 x 32

64 x 64 x 256

Conv BN

64 x 64 x 256

Conv BN

64 x 64 x 256

Conv BN

256 x 256 x 160

Conv BN

Conv

Conv

1x1 filter

3x3 filter

UpsampleUp

Image

Figure 2: Overview of the proposed Progressive Feature Polishing Network (PFPN). PFPN is a deep fully convolutional net-
work composed of four kinds of modules: the Backbone, two Transition Modules (TM), a series of T Feature Polishing Mod-
ules (FPM) and a Fusion Module (FM). An implementation with ResNet-101 (He et al. 2016) as backbone and T = 2 is
illustrated. For an input image with the size of 256x256, the multi-level features are first extracted by the backbone and trans-
formed to same dimension by the TM1. Then the features are progressively polished by passing through the two FPMs. Finally,
they are upsampled to the same size by TM2 and concatenated to locate the salient objects in FM.

Overview of PFPN

In this work, we propose the Progressive Feature Polishing
Network (PFPN) for salient object detection. An overview
of this architecture is shown in Fig. 2. Our model consists of
four kinds of modules: the Backbone, two Transition Mod-
ules (TM), a series of T Feature Polishing Modules (FPM),
and a Fusion Module (FM).

The input image is first fed into the backbone network to
extract multi-scale features. The choice of backbone struc-
ture is flexible and ResNet-101 (He et al. 2016) is used in
the paper to be consistent with previous work (Zhuge, Zeng,
and Lu 2019). Results of VGG-16 (Simonyan and Zisserman
2014) version is also reported in experiments. Specifically,
the ResNet-101 (He et al. 2016) network can be grouped
into five blocks by a serial of downsampling operations with
a stride of 2. The outputs of these blocks are used as the
multi-level feature maps: Conv-1, Res-2, Res-3, Res-4, Res-
5. To reduce feature dimensions and keep the implementa-
tion tidy, these feature maps are passed through the first tran-
sition module (TM1 in Fig. 2), in which the features at each
level are transformed in parallel into a same number of di-
mensions, such as 256 in our implementation, by 1x1 con-
volutions. After obtaining the multi-level feature maps with
the same dimension, a series of T Feature Polishing Mod-
ules (FPM) are performed on these features successively to
improve them progressively. Fig. 2 shows an example with
T = 2. In each FPM, high level features are directly intro-
duced to all low level features to improve them, which is
efficient and notably reduces information loss than indirect
ways. The inputs and outputs of FPM have the same dimen-
sions and all FPMs share the same network structure. We
use different parameters for each FPM in expectation that
they could learn to focus on more and more refined details
gradually. Experiments show that the model with T = 2

outperforms the state-of-the-art and also has a fast speed of
20 fps, while the accuracy of saliency predictions converges
at T = 3 with marginal improvements over T = 2. Then
we exploit the second transition module (TM2 in Fig. 2),
which consists of a bilinear upsampling followed by a 1x1
convolution, to interpolate all features to the original input
resolution and reduce the dimension of them to 32. At last, a
fusion module (FM) is used to integrate the multi-scale fea-
tures and obtain the final saliency map. Owing to the more
accurate representations after FPMs, the FM is implemented
with a simple concatenation strategy. Our network is trained
in an end-to-end manner.

Feature Polishing Module

The Feature Polishing Module (FPM) plays a core role in
our proposed PFPN. FPM is a simple yet effective module
that can be incorporated with any deep convolutional back-
bones to polish the feature representation. It keeps the multi-
level structure of the representations generated by CNNs,
such as the backbone or preceding FPM, and learns to up-
date them with residual connections.

For N feature maps F = {fi, i = 1, ..., N}, FPM will
also generate N polished features maps F

p = {fp
i , i =

1, ..., N} with the same size. As is shown in Fig. 2, FPM
consists of N parallel FPM blocks, each of which corre-
sponds to a separate feature map and is denoted as FPM-k.
Specifically, a series of short connections (Hou et al. 2017)
from deeper side to shallower side are adopted. As a result,
higher level features with global information are injected di-
rectly to lower ones to help better discover the salient re-
gions. Taking the FPM1-3 in Fig. 2 as an example, all fea-
tures of Res-3, Res-4, Res-5 are utilized through short con-
nections to update the features of Res-3. FPM also takes ad-
vantage of residual connections (He et al. 2016) so that it can
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Figure 3: Illustration of the detail implementation of a FPM
block with a residual connection, which is formally formu-
lated by Eq. 1. This is an example of N = 5, k = 3, i.e.
FPM1-3 and FPM2-3 in Fig. 2.

update the features and gradually filter out the cluttered in-
formation. This is illustrated by the connection surrounding
each FPM block in Fig. 2.

The implementation of FPM-k block is formally formu-
lated as Eq. 1:

cj = ReLU(BN(Conv(fj)))

for j = k, k + 1, .., N

uj =

{

Upsample(cj) j > k
cj j = k

pk = BN(Conv(Concat(uk, uk+1..., uN )))

f
p
k = ReLU(pk + fk)

(1)

It takes in N − k + 1 feature maps, i.e. {fj , j = k, ..., N}.
For feature map fj , we first apply a convolutional layer with
a 3x3 kernel followed by a batch normalization and a ReLU
non-linearity to capture context knowledge, and interpolate
it bilinearly to the size of fk. These features are then com-
bined with a concatenation along channels and fused by a
1x1 convolutional layer to reduce the dimension, obtaining
pk. Finally, pk is used as a residual function to update the
original feature map fk to compute the f

p
k with element-

wise addition. An example of this procedure with k = 3 is
illustrated in Fig. 3.

Fusion Module

We use the Fusion Module (FM) to finally integrate the
multi-level features and detect salient objects. As result of
our refined features, the FM can be quite simple. As is illus-
trated in Fig. 2, the multi-level features from TM2 are first
concatenated and then fed into two successive convolutional
layers with 3x3 kernels. At last, a 1x1 convolutional layer
followed by a sigmoid function is applied to obtain the final
saliency map.

Implementation Details

We use the cross-entropy loss between the final predicted
saliency map and ground truth to train our model end-to-
end. Following previous works (Hou et al. 2017; Liu, Han,
and Yang 2018; Zhuge, Zeng, and Lu 2019), side outputs are
also employed to calculate auxiliary losses. In detail, 1x1
convolutional layers are performed on the multi-level fea-
ture maps before the Fusion Module to obtain a series of
intermediate results. The total loss is as follows:

Ltotal = L(s, g) + 0.5L(s1, g) + 0.3

N
∑

i=2

L(si, g) (2)

where s is the final result of our model, si denotes the i-th
intermediate result, and g represents the ground truth. The
weights are set empirically to bias towards the final result.

We implement our method with Pytorch (Adam et al.
2017) framework. The last average pooling layer and fully
connected layer of the pre-trained ResNet-101 (He et al.
2016) are removed. We initialize the layers of backbone with
the weights pre-trained on ImageNet classification task and
randomly initialize the rest layers. We follow source code
of PiCA (Liu, Han, and Yang 2018) given by author and
FQN (Li et al. 2019) and freeze the BatchNorm statistics of
the backbone.

Experiments

Datasets and metrics

We conduct experiments on five well-known benchmark
datasets: ECSSD, HKU-IS, PASCAL-S, DUT-OMRON and
DUTS. ECSSD (Yan et al. 2013) consists of 1,000 images.
This dataset contains salient objects with complex struc-
tures in multiple scales. HKU-IS (Li and Yu 2015) con-
sists of 4,447 images and most images are chosen to con-
tain mutliple disconnected salient objects. PASCAL-S (Li
et al. 2014) includes 850 natural images. These images are
selected from PASCAL VOC 2010 segmentation challenge
and are pixel-wise annotated. DUT-O (Yang et al. 2013) is a
challenging dataset in that each image contains one or more
salient objects with fairly complex scenes. This dataset has
5,168 high-quality images. DUTS (Wang et al. 2017a) is a
large scale dataset which consists of 15,572 images, which
are selected from ImageNet DET (Deng et al. 2009) and
SUN (Xiao et al. 2010) dataset. It has been split into two
parts: 10,553 for training and 5,019 for testing. We evaluate
the performance of different salient object detection algo-
rithms through 4 main metrics, including the precision-recall
curves (PR curves), F-measure, mean absolute error(MAE),
S-measure (Fan et al. 2017). By binarizing the predicted
saliency map with thresholds in [0,255], a sequence of pre-
cision and recall pairs are calculated for each image of the
dataset. The PR curve is plotted using the average precision
and recall of the dataset at different thresholds. F-measure is
calculated as a weighted combination of Precision and Re-
call with the formulation as follows:

Fβ =
(1 + β2)Precision+Recall

β2Precision+Recall
(3)

where β2 is usually set to 0.3 to emphasize Precision more
than Recall as suggested in (Yang et al. 2013).
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Table 1: Quantitative comparisons with different methods on 5 datasets with MAE (smaller is better), max/mean F-measure
score (larger is better) and S-measure (larger is better). The best three results are shown in bold, italicized and underlined text.
The results of our method with T = 2 based on both ResNet101 (He et al. 2016) and VGG16 (Simonyan and Zisserman 2014)
are reported.

Method
ECSSD HKU-IS DUT-O DUTS-TE PASCAL-S

MAE max F mean F S MAE max F mean F S MAE max F mean F S MAE max F mean F S MAE max F mean F S

VGG (Simonyan and Zisserman 2014)

RFCN (Wang et al. 2016) 0.107 0.890 0.811 0.852 0.079 0.892 0.805 0.859 0.111 0.742 0.656 0.764 0.091 0.784 0.728 0.794 0.118 0.837 0.785 0.804
DHS (Liu and Han 2016) 0.059 0.907 0.885 0.883 0.053 0.890 0.867 0.869 - - - - 0.067 0.807 0.777 0.817 0.094 0.842 0.829 0.802
RAS (Chen et al. 2018) 0.056 0.921 0.900 0.893 0.045 0.913 0.887 0.887 0.062 0.786 0.762 0.813 0.060 0.831 0.803 0.838 0.104 0.837 0.829 0.785
Amulet (Zhang et al. 2017) 0.059 0.915 0.882 0.893 0.052 0.895 0.856 0.883 0.098 0.742 0.693 0.780 0.085 0.778 0.731 0.804 0.098 0.837 0.838 0.822
DSS (Hou et al. 2017) 0.052 0.916 0.911 0.882 0.041 0.910 0.904 0.879 0.066 0.771 0.764 0.787 0.057 0.825 0.814 0.824 0.096 0.852 0.849 0.791
PiCA (Liu, Han, and Yang 2018) 0.047 0.931 0.899 0.913 0.042 0.921 0.883 0.905 0.068 0.794 0.756 0.820 0.054 0.851 0.809 0.858 0.088 0.880 0.854 0.842
BMPM (Zhang et al. 2018a) 0.045 0.929 0.900 0.911 0.039 0.921 0.888 0.905 0.064 0.774 0.744 0.808 0.049 0.851 0.814 0.861 0.074 0.862 0.855 0.834
AFN (Feng, Lu, and Ding 2019) 0.042 0.935 0.915 0.914 0.036 0.923 0.899 0.905 0.057 0.797 0.776 0.826 0.046 0.862 0.834 0.866 0.076 0.879 0.866 0.841
CPD (Wu, Su, and Huang 2019) 0.040 0.936 0.923 0.910 0.033 0.924 0.903 0.904 0.057 0.794 0.780 0.817 0.043 0.864 0.846 0.866 0.074 0.877 0.868 0.832
MLMS (Wu et al. 2019) 0.044 0.928 0.900 0.911 0.039 0.921 0.888 0.906 0.063 0.774 0.745 0.808 0.048 0.846 0.815 0.861 0.079 0.877 0.857 0.836
ICTBI (Wang et al. 2019) 0.041 0.921 - - 0.040 0.919 - - 0.060 0.770 - - 0.050 0.830 - - 0.073 0.840 - -
ours 0.040 0.938 0.915 0.916 0.035 0.928 0.902 0.909 0.063 0.777 0.753 0.805 0.042 0.868 0.836 0.864 0.071 0.891 0.866 0.834

ResNet (He et al. 2016)

SRM (Wang et al. 2017b) 0.054 0.917 0.896 0.895 0.046 0.906 0.881 0.886 0.069 0.769 0.744 0.797 0.059 0.827 0.796 0.836 0.085 0.847 0.847 0.830
PiCA (Liu, Han, and Yang 2018) 0.047 0.935 0.901 0.918 0.043 0.919 0.880 0.904 0.065 0.803 0.762 0.829 0.051 0.860 0.816 0.868 0.077 0.881 0.851 0.845
DGRL (Wang et al. 2018) 0.041 0.922 0.912 0.902 0.036 0.910 0.899 0.894 0.062 0.774 0.765 0.805 0.050 0.829 0.820 0.842 0.072 0.872 0.854 0.831
CAPS (Zhang et al. 2019) - - - - 0.057 0.882 0.865 0.852 - - - - 0.060 0.821 0.802 0.819 0.078 0.866 0.860 0.826
BAS (Qin et al. 2019) 0.037 0.942 0.927 0.916 0.032 0.928 0.911 0.908 0.056 0.805 0.790 0.835 0.047 0.855 0.842 0.865 0.084 0.872 0.861 0.824
ICTBI (Wang et al. 2019) 0.040 0.926 - - 0.038 0.920 - - 0.059 0.780 - - 0.048 0.836 - - 0.072 0.848 - -
CPD (Wu, Su, and Huang 2019) 0.037 0.939 0.924 0.918 0.034 0.925 0.904 0.905 0.056 0.797 0.780 0.824 0.043 0.865 0.844 0.869 0.078 0.876 0.865 0.835
DEF (Zhuge, Zeng, and Lu 2019) 0.036 - 0.915 - 0.033 - 0.907 - 0.062 - 0.769 - 0.045 - 0.821 - 0.070 - 0.826 -
ours 0.033 0.949 0.926 0.932 0.030 0.939 0.912 0.921 0.053 0.820 0.794 0.842 0.037 0.888 0.858 0.887 0.068 0.892 0.873 0.851

ECSSD HKU-IS DUT-O DUTS-TE PASCAL-S

Figure 4: PR curves with different thresholds of our method and other state-of-art methods on five benchmark datasets.

Training and Testing

Following the conventional practice (Liu, Han, and Yang
2018; Zhang et al. 2018a; 2018a), our proposed model is
trained on the training set of DUTS dataset. We also per-
form a data augmentation similar to (Liu, Han, and Yang
2018) during training to mitigate the over-fitting problem.
Specifically, the image is first resized to 300x300 and then a
256x256 image patch is randomly cropped from it. Random
horizontal flipping is also applied. We use Adam optimizer
to train our model without evaluation until the training loss
convergences. The initial learning rate is set to 1e-4 and the
overall training procedure takes about 16000 iterations. For
testing, the images are scaled to 256x256 to feed into the
network and then the predicted saliency maps are bilinearly
interpolated to the size of the original image.

Comparison with the state-of-the-art

We compare our proposed model with 16 state-of-the-art
methods. For fair comparison, the metrics of these 16 meth-
ods are obtained from a public leaderboard (Feng 2018) or
their original papers, and we evaluate our method in the
same way as (Feng 2018). We report the results of our model
with ResNet-101 (He et al. 2016) as backbone and two
FPMs (i.e. T = 2) if not otherwise mentioned. The saliency

maps for visual comparisons are provided by the authors.

Quantitative Evaluation. The quantitative performances
of all methods can be found in Table 1 and Fig. 4. Ta-
ble 1 shows the comparisons of MAE and F-measure.
Note that maxFβ is adopted by almost all methods ex-
cept DEF (Zhuge, Zeng, and Lu 2019), which only reports
mean Fβ . We report the MAE, F-measure and S-measure
of our method for a direct comparison. Our ResNet based
model achieves best results and consistently outperforms
all other methods on all five datasets under different mea-
surements, demonstrating the effectiveness of our proposed
model. Moreover, our VGG based model also ranks the top
among VGG based methods. This confirms that our pro-
posed feature polishing method is effective and compatible
with different backbone structures. In Fig. 4, we compare the
PR curves and F-measure curves of different approaches on
five datasets. We can see that the PR curves of our method
show better performance than others with a significant mar-
gin. In addition, the F-measure curves of our method locate
consistently higher than other methods. This verifies the ro-
bustness of our method.

Visual Comparison. Fig. 5 shows some example results
of our model along with other six state-of-the-art methods
for visual comparisons. We observe that our method gives
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Figure 5: Visual comparison with different methods in various scenarios.

superior results in complex backgrounds (row 1-2) and low
contrast scenes (row 3-4). And it recovers meticulous details
(row 5-6, note the suspension cable of Golden Gate and the
legs of the mantis). From this comparison, we can see that
our method performs robustly facing these challenges and
produces better saliency maps.

Ablation Study

Backbone. VGG-16 (Simonyan and Zisserman 2014) is a
commonly used backbone by previous works (Zhang et al.
2018a; Liu, Han, and Yang 2018). To demonstrate the ca-
pability of our proposed method to cooperate with different
backbones, we introduce how it is applied to the multi-level
features computed from VGG-16. This adaption is straight-
forward. VGG-16 contains 13 convolutional layers and 2
fully connected layers, along with 5 max-pooling layers
which split the network into 6 blocks. The 2 fully connected
layers are first transformed to convolutional layers, and then
the 6 blocks generate outputs with decreasing spatial resolu-
tions, i.e. 256, 128, 64, 32, 16, 8, if the input image is set to
the fixed size of 256x256. These multi-level feature maps are
fed into PFPN as described in Section to obtain the saliency
map. Table 1 shows the comparisons with other VGG based
state-of-the-art methods and Table 2 shows the evaluations
of various number of FPMs. We can see that our method
based on VGG-16 also shows excellent performance, which
confirms that our method is effective for feature refining and
generalizable to different backbones.

Feature Polishing Module. To confirm the effectiveness
of the proposed FPM, we conduct an ablation evaluation by
varying the number of FPM employed. The results with T
ranging from 0 to 3 on ECSSD and DUTS-TE are shown

Table 2: Ablation evaluations of PFPM with different T , the
number of FPMs. The numbers in (·) denote the value of
T . PFPN-V denotes the models with VGG (Simonyan and
Zisserman 2014) as backbone. PFPN (2 FPM)‡ denotes the
FPMs the same share weights. Full metrices are given in
supplementary materials.

Settings
ECSSD DUTS-TE

MAE max F mean F S MAE max F mean F S

PFPN (0 FPM) 0.048 0.928 0.894 0.911 0.052 0.851 0.811 0.862
PFPN (1 FPM) 0.036 0.946 0.921 0.928 0.040 0.884 0.848 0.883
PFPN (2 FPM)‡ 0.041 0.944 0.914 0.924 0.043 0.876 0.840 0.884
PFPN (2 FPM) 0.033 0.949 0.926 0.932 0.037 0.888 0.858 0.887
PFPN (3 FPM) 0.032 0.950 0.929 0.932 0.037 0.888 0.862 0.889

PFPN-V (0 FPM) 0.057 0.911 0.883 0.890 0.058 0.825 0.793 0.837
PFPN-V (1 FPM) 0.045 0.931 0.905 0.908 0.046 0.853 0.825 0.862
PFPN-V (2 FPM) 0.040 0.938 0.915 0.916 0.042 0.868 0.836 0.864
PFPN-V (3 FPM) 0.040 0.939 0.915 0.920 0.043 0.868 0.839 0.873

in Table 2. For T = 0, two transition modules are directly
connected without employing FPM, and for T > 0, FPM
is applied T times in between the two transition modules,
as illustrated in Fig. 2. Other settings, including the loss
and training strategy, are kept the same for these evalua-
tions. For ResNet based models, we can see that FPM signif-
icantly boosts the performance than the plain baseline with
no FPM, and the performances increase gradually with us-
ing more FPMs. Actually the PFPN with 1 FPM and 2 FPMs
both have great improvement progressively. When it comes
to T = 3, the lift of accuracy converges and the improve-
ment is marginal. Similar phenomena can be observed with
the VGG based PFPN. This supports our argument that mul-
tiple FPMs progressively polish the representations so as
to improve the final results. We suppose the accuracy con-
verges due to the limited scale of current dataset. And we
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also conduct an experiment that a PFPN with 2 FPMs share
the same weights. The conclusion is that compared to PFPN
(0 FPM), it has great improvement. However, compared to
PFPN (1 FPM) and PFPN (2 FPMs), the performance de-
cay. Although PFM can refine multi-level features, separate
weights make FPM learning to refine features better accord-
ing to different refinement stages.

Table 3: Quantitative comparison of the models with or with-
out dense conditional random field (DenseCRF) as a post-
process. Full metrices are given in supplementary materials.

Settings
DUTS-TE

MAE max F mean F S

DSS (Hou et al. 2017) 0.056 0.825 0.814 0.824
PiCA (Liu, Han, and Yang 2018) 0.051 0.860 0.816 0.868
PiCA+crf 0.041 0.866 0.855 0.862
PFPN 0.037 0.888 0.858 0.887
PFPN+crf 0.037 0.871 0.866 0.858

DenseCRF. The dense connected conditional random
field (DenseCRF (Krähenbühl and Koltun 2011)) is widely
used by many methods (Hou et al. 2017; Liu, Han, and Yang
2018) as a post-process to refine the predicted results. We
investigate the effects of DenseCRF on our method. The re-
sults are listed in Table 3. DSS (Hou et al. 2017) reports the
results with DenseCRF. Both results with or without Dense-
CRF are reported for PiCA (Liu, Han, and Yang 2018) and
our method. We can see that previous works can benefit from
the long range pixel similarity prior brought by DenseCRF.
Furthermore, even without DenseCRF post-processing, our
method performs better than other models with DenseCRF.
However, DenseCRF does not bring benefits for our method,
where we find that DenseCRF only improves the MAE on a
few datasets, but decreases the F-measure on all datasets.
This indicates that our method already sufficiently captures
the information about the saliency objects from the data, so
that heuristic prior fails to provide more help.

Visualization of feature polishing

In this section, we present an intuitive understanding of the
procedure of feature polishing. Since directly visualizing
the intermediate features are not straightforward, we instead
compare the results of our model with different numbers
of FPMs. Several example saliency maps are illustrated in
Fig. 1 and Fig. 6. We can see that the quality of predicted
saliency maps is monotonically getting better with increas-
ing number of FPMs, which is consistent with quantitative
results in Table 2. Specifically, the model with T = 0 can
roughly detect the salient objects in the images, which ben-
efits from rich semantic information of multi-level feature
maps. As more FPMs are employed, more details are recov-
ered and cluttered results are eliminated.

Conclusion

We have presented a novel Progressive Feature Polishing
Network for salient object detection. PFPN focuses on im-
proving the multi-level representations by progressively pol-
ishing the features in a recurrent manner. For each polishing

(a) (b) (c) (d) (e) (f)

Figure 6: Saliency maps predicted by our proposed PFPN
with various numbers of FPMs. (a) Original images. (f)
Ground truth. (b)-(e) Saliency maps predicted by PFPN with
T = 0 ∼ 3 FPMs, respectively.

step, a Feature Polishing Module is designed to directly inte-
grate high level semantic concepts to all lower level features,
which reduces information loss. Although the overall struc-
ture of PFPN is quite simple and tidy, empirical evaluations
show that our method significantly outperforms 16 state-of-
the-art methods on five benchmark datasets under various
evaluation metrics.
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