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1 Introduction

Fixed-charge capacitated multicommodity network design (CMND) models have been used to address
many important planning problems in a variety of applications, such as transportation, logistics, and
telecommunications, see [8] and [9]. In general terms, the CMND problem can be defined as follows:
one must design a network that will be used to distribute a given set of commodities from different
points of origin to different points of destination. The design decisions consist of choosing which
capacitated arcs to select (“open”) for inclusion in the network, considering that a fixed cost is paid
whenever an arc is used for the first time. Once the design decisions are made, the commodities can
be distributed through the network to satisfy the demands for transportation while respecting the
available capacity on the selected arcs. The objective of the CMND problem consists of finding a
design, i.e., a collection of arcs to be opened, which minimizes the total cost of the system computed
as the sum of the total fixed cost and the total distribution cost.

CMND problems have mainly been studied under the assumption that all necessary information
is available at the time when the design decisions are made, i.e., using deterministic CMND models.
Thus, for example, the demands for transportation are considered known when one is deciding which
arcs are to open. This assumption is rarely observed within realistic applications, however. One is
usually faced with the challenge of having to make decisions when only limited information is available
on the context prevailing at the time in the future when the designed network is to be used.

Stochastic programming [1] has been developed as a tool to explicitly introduce stochastic variability
within the parameters of an optimization problem. Following this approach, optimization problems are
formulated as having different decision stages according to when the uncertain information becomes
known. The basic two-stage stochastic model, as the name implies, is defined as having two decision
stages [1]. First stage decisions are made before the realization (occurrence) of the random events that
influence the value of a set of parameters within the model. Once these decisions are fixed and the
random events take place, all parameters become known. Second stage decisions are then used to adapt
the solution given by the first stage decisions to the observed realization of the random events. The
second stage decisions thus define the recourse actions that are available for the problem studied. The
overall objective of the two-stage formulation being to optimize the ”cost” of the first stage decisions
plus the expected ”cost” of the recourse given the probability distributions of the random variables.

Computing the recourse function, i.e., the expected cost of the recourse actions, is generally a
daunting task. An often used approach is to approximate the general stochastic problem through a
discretization of the probability distributions and the generation of a set of scenarios, each scenario
representing a possible realization of the random event. By modeling uncertainty through scenarios
for the CMND problem, the stochastic problem becomes a deterministic mixed integer linear program
(MIP) of generally very large dimensions. Many techniques, such as the sample average approximation
algorithm [6], use sampling iteratively to solve stochastic problems. To successfully apply such tech-
niques to network design problems, one must be able to solve efficiently the approximated problems
obtained [11]. The problem of identifying a set of representative scenarios will not be covered here.
We suppose that such a set is provided and our aim is to design an efficient algorithm to solve the
approximated, through the use of scenarios, stochastic CMND problem.

All parameters of CMND problems may display a stochastic nature in one application or another.
One which is observed in almost all contexts, is the demand for transportation. This is the scope of
this paper: the CMND problem with stochastic demands, addressed through a two-stage formulation,
design decisions making up the first stage, while a series of recourse decisions are made in the second
stage to distribute the commodities according to observed demands. Distribution costs are now de-
pendent on the latter and the objective becomes to find a design that minimizes the sum of the total
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fixed cost and the total expected distribution cost (the recourse function).

Deterministic CMND problems belong to the NP-hard complexity class [8] and are thus difficult to
solve in all but trivial cases. The difficulty in solving this type of problem is compounded when multiple
scenarios are used to represent the transportation demand. One could simply note that the size of
the associated MIP is generally beyond the reach of exact solution methods and that heuristic-based
methodologies are required. As is the case with many stochastic programming models, since one is
searching for a solution that is optimal, on average, one must plan for additional resources. Therefore,
in general terms, when considering stochastic CMND problems, this means that a different, most
likely larger, set of arcs has to be opened in order to hedge against the variability in the transportation
demands. Finding which set of arcs to open, given the trade-offs that exist between the fixed costs
incurred and the added flexibility and robustness for reducing the distribution costs and protecting
against significant variations in demand, respectively, is at the heart of the complexity for this type of
optimization problem.

In this paper, we use a metaheuristic framework inspired by the progressive hedging (PH) algorithm
of Rockafellar and Wets [10] to address efficiently stochastic CMND problems. Following this strategy,
scenario decomposition (SD) is used to separate the stochastic problem following the possible outcomes,
or scenarios, of the random event. Each scenario subproblem then becomes a deterministic CMND
problem to be solved. At this point, two main issues must be addressed: how should each scenario
subproblem be solved? and how to use globally the local information yielded by the subproblems,
particularly when scenarios do not agree on arc status, to guide the overall search mechanisms toward
a unique design vector? Rockafellar and Wets [10] proposed an augmented Lagrangean strategy that
converges to a global optimum in the case of continuous stochastic problems. At each iteration, an
estimation of the solution is computed as the expectation over the current solutions of the scenario
subproblems. The latter are then re-solved with adjusted penalties on the differences between the global
estimation and the local solution. Unfortunately, the approach proposed in [10] may not converge in
the integer case, and we therefore study a number of alternatives.

The contribution of this paper is twofold. First, we develop a metaheuristic framework based on
the PH strategy that takes advantage of specialized methods to solve deterministic CMND problems.
This type of general algorithmic framework was proposed in [7] and was successfully applied to the
problem of stochastic lot-sizing [3]. To our knowledge, this paper proposes the first such approach for
the case of stochastic CMND problems. Second, we propose and compare different strategies aimed
at penalizing non-consensus amongst scenario subproblems to approximate the global design. These
strategies are then embedded into a parallel solution method, which is numerically qualified on a set
of problem instances that also provide the means to examine the effects of demand correlations on the
behavior of the proposed algorithm.

This paper is organized as follows. Section 2 presents the stochastic CMND formulation addressed.
We describe how SD is applied to the case of stochastic CMND problems in Section 3, while Section
4 introduces the different strategies that are proposed to obtain consensus amongst the scenario sub-
problems. The particular implementation of this methodology we use in this paper is presented in
Section 5. Section 6 is dedicated to the presentation and analysis of the computational results. We
conclude in Section 7.

2
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2 The Stochastic CMND Model

In this section, we formulate the general stochastic CMND problem. Let G = (N ,A) be a network
with a node set N and a directed arc set A. Assume A is the union of a set of design arcs Aa

(for simplicity of presentation, we assume all arcs to be design arcs) and a set of dummy arcs Ad

linking each pair of origin and destination nodes for which demand is defined. In many applications, in
telecommunications, transportation and logistics, for example, these dummy arcs stand for the choice
of using resources outside the system being planned. In a stochastic setting, they will also be part of
the recourse strategy introduced later in this section.

Let K denote the set of commodities to be distributed using this network, and let the random vector
d define the distribution demands within the problem. In the second stage, we consider that a number
of random events ω ∈ Ω may be observed. For a given realization ω, the distribution demands are
fixed to d(ω) (i.e., d = d(ω)). Let i and j be the node indexes. The stochastic arc-based formulation
of the CMND problem can then be written as follows:

min
∑

(i,j)∈A
fijyij + Ed[Q(y, d(ω))] (1)

s.t. yij ∈ {0, 1},∀(i, j) ∈ A, (2)

where the binary variables yij , ∀(i, j) ∈ A, represent the design decisions. Variable yij takes value
one if arc (i, j) ∈ A is selected in the final design (to simplify the presentation, we assume yij =
1, ∀(i, j) ∈ Ad). Otherwise, it is fixed to zero. Define value fij , for (i, j) ∈ A, as the fixed cost that is
incurred if arc (i, j) is opened, with fij = 0, ∀(i, j) ∈ Ad. Then, (1) consists of minimizing the sum of
both the total fixed costs (i.e.,

∑
(i,j)∈A

fijyij) and the average distribution costs (i.e., Ed[Q(y, d(ω))],

where function Q(y, d(ω)) is set to equal the total distribution cost given design y and demands d(ω)).
Constraints (2) impose the integrality requirements of the design variables.

In problem (1)-(2), the function Q(y, d(ω)), which is dependent on both the design decisions that
are taken (i.e., y) and the demands that are observed (i.e., d(ω)), represents the recourse cost that is
incurred in the second stage. In order to properly formalize this function, let us first define how the
random events influence the demands within the problem that is considered. In the case of deterministic
CMND problems, transportation demands are expressed as follows: vk units of commodity k ∈ K
must be distributed from a single node of origin o(k) ∈ N to a single node of destination s(k) ∈ N .
Several types of uncertainty may be observed relative to this demand: volumes may vary, some forecast
demands might not materialize, or an “unexpected” demand might pop up for an origin-destination not
previously considered. In this paper, we focus on the first case, which is the most frequent and which
also includes the second case when appropriate value ranges are considered. Then, if one considers
that a random event ω ∈ Ω influences the demand of a particular commodity k ∈ K, for the problem
under study, this influence involves the volume to be distributed (i.e., vk(ω)). Therefore, ∀i ∈ N and
∀k ∈ K, for a given random event ω ∈ Ω, the demand value dk

i (ω) is defined as follows:

dk
i (ω) =


vk(ω) if i = o(k)
−vk(ω) if i = s(k)
0 otherwise.

Once the first stage decisions are made (i.e., design y is fixed), and demands become known (i.e.,
vector d(ω) is fixed), in the second stage, one must decide how to distribute the commodities to satisfy
all constraints. In general terms, the distribution decisions are based on a series of possible recourse
strategies, which, in turn, define the recourse cost Q(y, d(ω)). When developing a stochastic model,

3
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one of the more important concepts to formulate is the recourse strategies that are available given the
problem that is studied. In the case of CMND problems, several recourse strategies may be considered,
from the simple observe-and-pay-if-not-what-planned-for, to complex procedures modifying the design
and the flow distribution over a number of stages. The choice is often determined by the application
under study. In this paper, we consider a single-stage, network recourse expressed as flow decisions to
be made, which combines 1) using the network designed in Stage 1 as well as possible, and 2) call upon
extra capacity (from the dummy arcs) at a (unit) price. Such a strategy is adequate when first-stage
design decisions cannot be readily altered such as, for example, transportation systems with published
schedules and telecommunication systems. The function Q(y, d(ω)) can then be formulated as follows:

Q(y, d(ω)) = min
∑
k∈K

∑
(i,j)∈A

ck
ijx

k
ij (3)

s.t.
∑

j∈N+(i)

xk
ij −

∑
j∈N−(i)

xk
ji = dk

i (ω), ∀i ∈ N ,∀k ∈ K (4)

∑
k∈K

xk
ij ≤ uijyij , ∀(i, j) ∈ A (5)

xk
ij ≥ 0, ∀(i, j) ∈ A,∀k ∈ K. (6)

In (3)-(6), variable xk
ij defines the amount of flow of commodity k ∈ K that is routed through

arc (i, j) ∈ A. Let value ck
ij be the routing cost of one such unit of flow. Therefore, the objective

(3) consists of minimizing the total distribution costs. Given vector d(ω), if N+(i) and N−(i) are
respectively the sets of outward and inward neighbors of node i, then equations (4) define the network
flow conservation constraints that require that the demands on all nodes be satisfied. As for equations
(5), they impose the capacity restrictions on all arcs of the network. If arc (i, j) ∈ A is chosen in
the design (i.e., yij = 1), then the total amount of flow that is routed through this arc cannot exceed
capacity uij . Otherwise, if arc (i, j) ∈ A is not chosen (i.e., yij = 0), then capacity uij is unavailable.
In this formulation, dummy arcs in Ad have no capacity restrictions. Finally, constraints (6) impose
non-negativity on the flow variables. It should be noted that problem (3)-(6) represents a capacitated
multicommodity minimum cost flow problem.

3 Applying SD to Stochastic CMND Problems

We begin this section by reformulating the general stochastic CMND problem. Let S define a set of
possible scenarios for the random event (i.e., S ⊆ Ω). Using set S, one can approximate the original
stochastic CMND problem by using the following deterministic equivalent model:

min
∑

(i,j)∈A
fijyij +

∑
s∈S

ps

( ∑
k∈K

∑
(i,j)∈A

ck
ijx

ks
ij

)
(7)

s.t.
∑

j∈N+(i)

xks
ij −

∑
j∈N−(i)

xks
ji = dks

i ∀i ∈ N ,∀k ∈ K,∀s ∈ S (8)∑
k∈K

xks
ij ≤ uijyij ∀(i, j) ∈ A,∀s ∈ S (9)

yij ∈ {0, 1} ∀(i, j) ∈ A (10)
xks

ij ≥ 0 ∀(i, j) ∈ A,∀k ∈ K,∀s ∈ S, (11)

where ps defines the probability associated with scenario s ∈ S and xks
ij represents the flow amount

of commodity k ∈ K on arc (i, j) ∈ A if scenario s ∈ S is observed. Problem (7)-(11) is a large-scale
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mixed integer problem with a block-diagonal structure. Each block defined by constraints (8) and
(9) represents a capacitated multicommodity minimum cost flow problem for s ∈ S. Constraints (10)
and (11) define the integrality and non-negativity restrictions on the decision variables. By solving
problem (7)-(11), one finds a single design yij ∈ {0, 1}, ∀(i, j) ∈ A, that minimizes the sum of both
the fixed costs and the average distribution costs overall scenarios included in S.

One should note that constraints (9) link the first stage variables to the second stage variables.
Considering the approximation of Ω provided by set S, these constraints impose that ∀s ∈ S, the flow
distribution can only be made on the arcs that were opened in the first stage (i.e., yij = 1). Constraints
(9) prevent the problem from being scenario separable. To apply the SD scheme, we first define the
following vectors: ys

ij ∈ {0, 1}, ∀(i, j) ∈ A and ∀s ∈ S. In doing so, a copy of the first stage variables
is created for each scenario s ∈ S. Model (7)-(11) can now be rewritten as follows:

min
∑
s∈S

ps

( ∑
(i,j)∈A

fijy
s
ij +

∑
k∈K

∑
(i,j)∈A

ck
ijx

ks
ij

)
(12)

s.t.
∑

j∈N+(i)

xks
ij −

∑
j∈N−(i)

xks
ji = dks

i ∀i ∈ N ,∀k ∈ K,∀s ∈ S (13)∑
k∈K

xks
ij ≤ uijy

s
ij ∀(i, j) ∈ A,∀s ∈ S (14)

ys
ij = yt

ij ∀s, t ∈ S, s 6= t (15)
ys

ij ∈ {0, 1} ∀(i, j) ∈ A,∀s ∈ S (16)

xks
ij ≥ 0 ∀(i, j) ∈ A,∀k ∈ K,∀s ∈ S. (17)

Equations (15) are referred to as the non-anticipativity constraints. These constraints are used to
make sure that the design decisions are not tailored according to the scenarios considered in S. All
scenario designs (i.e., ys

ij , ∀(i, j) ∈ A,∀s ∈ S) must be equal to each other to produce what is referred
to as a single implementable (see [10]) design. One can now make the important observation that if
constraints (15) are relaxed, then problem (12)-(17) becomes scenario separable. However, it should
be noted that the number of constraints defined in (15) may become quite large given the size of S.
Therefore, there are other ways of expressing the non-anticipativity constraints.

If yij ∈ {0, 1}, ∀(i, j) ∈ A, is defined as the overall design vector (i.e., the design for all scenarios
considered), then the following constraints are equivalent to (15):

ys
ij = yij ∀(i, j) ∈ A,∀s ∈ S, (18)

yij ∈ {0, 1} ∀(i, j) ∈ A. (19)

Constraints (18) impose that each scenario design must be equal to the overall design (i.e., yij , ∀(i, j) ∈
A). As for (19), they are simply the required integrality conditions on the overall design. By using this
particular formulation for the non-anticipative requirements, when Lagrangean relaxation is applied
on (18), one can penalize individually the difference between the scenario solutions and the overall
solution for each arc within the network. Therefore, the methodological approach proposed in this
paper will be applied using (18)-(19).

Following the original decomposition scheme proposed in [10], constraints (18) are relaxed using
an augmented Lagrangean strategy. We thus obtain the following objective for the overall problem:

min
∑
s∈S

ps

( ∑
(i,j)∈A

fijy
s
ij +

∑
k∈K

∑
(i,j)∈A

ck
ijx

ks
ij +

∑
(i,j)∈A

λs
ij(y

s
ij − yij) +

1
2

∑
(i,j)∈A

ρ(ys
ij − yij)

2

)
, (20)

where λs
ij , ∀(i, j) ∈ A and ∀s ∈ S, define the Lagrangean multipliers for the relaxed constraints and

ρ is a penalty ratio. Within function (20), let us consider the quadratic term:
∑

(i,j)∈A
ρ(ys

ij − yij)2.

5
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When calculated, this term becomes:
∑

(i,j)∈A
ρ(ys

ij)
2 − 2ρyijy

s
ij + ρ(yij)2, which can be expressed as:∑

(i,j)∈A
ρys

ij − 2ρyijy
s
ij + ρyij , given the binary requirements for the design variables. Therefore, the

objective of the relaxed problem can be formulated as follows:

min
∑
s∈S

ps

( ∑
(i,j)∈A

(
fij + λs

ij − ρyij +
ρ

2
)
ys

ij +
∑

(i,j)∈A

∑
k∈K

ck
ijx

ks
ij

)
−

∑
(i,j)∈A

λs
ijyij +

∑
(i,j)∈A

1
2
ρyij . (21)

Given the constraints of the model and considering the objective function (21), the relaxed problem
is not scenario separable. However, if the overall design yij , ∀(i, j) ∈ A, is fixed to a given value vector
(i.e., [0, 1]|A|), then the model decomposes according to the scenarios included in set S. All scenarios
subproblems (i.e., ∀s ∈ S) can then be expressed as follows:

min
∑

(i,j)∈A

(
fij + λs

ij − ρyij + ρ
2

)
ys

ij +
∑

(i,j)∈A

∑
k∈K

ck
ijx

ks
ij (22)

s.t.
∑

j∈N+(i)

xks
ij −

∑
j∈N−(i)

xks
ji = dks

i ∀i ∈ N ,∀k ∈ K,∀s ∈ S (23)∑
k∈K

xks
ij ≤ uijy

s
ij ∀(i, j) ∈ A,∀s ∈ S (24)

ys
ij ∈ {0, 1} ∀(i, j) ∈ A,∀s ∈ S (25)

xks
ij ≥ 0 ∀(i, j) ∈ A,∀k ∈ K,∀s ∈ S. (26)

For all scenarios s ∈ S, within the subproblems (22)-(26), the Lagrangean multipliers λs
ij , ∀s ∈ S,

and the value ρ, are used to penalize, for all arcs (i, j) ∈ A, the differences that may exist between
the scenario designs and the fixed overall design, which serves as a reference point. Therefore, these
penalties can be adjusted in order to drive all scenario subproblems to converge to a single design
that is defined by yij , ∀(i, j) ∈ A. An important observation that must be made here is that when
adjustments are made on the penalties, the subproblems (22)-(26) are reduced to deterministic CMND
problems with modified fixed costs. From a methodological perspective, this turns out to be very
interesting since one is now able to use some of the more efficient algorithms (either heuristic or exact)
that have been developed for the deterministic case of the problem under study. However, how one is
able to construct an overall design yij , ∀(i, j) ∈ A, to be used as reference remains to be determined.
Furthermore, in general terms, the objective functions (22) suggest that by adjusting the fixed costs of
the design variables within subproblems (22)-(26), one can search for consensus amongst all scenario
designs. How should these adjustments be made is also a question yet to be answered.

4 Obtaining Consensus amongst Scenario Subproblems

In order to produce a general solution strategy for stochastic CMND problems using the decomposition
scheme presented within the previous section, one must now develop iterative strategies to both define
the general design that is used to separate the large scale problem and to fix the penalties when
non-consensus is observed amongst the scenario subproblems. The different such strategies that are
used within the solution approach that is proposed in this paper will now be presented. This section
is divided in two subsections. In the first subsection, we present how the overall design is defined
iteratively. As for the second subsection, it is used to present the different strategies for penalty
adjustments.

6
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4.1 Defining the overall design

To solve problem (7)-(11) using the SD scheme previously described, one must be able to utilize
the local information provided by the scenario design solutions to produce a general design to be
used over all scenarios. Let ν define an index count on the number of iterations made by a general
algorithm that sequentially solves subproblems (22)-(26) ∀s ∈ S and then, produces a general design
yν

ij , ∀(i, j) ∈ A using an aggregation operator on ysν
ij , ∀s ∈ S and ∀(i, j) ∈ A (i.e., the solutions

obtained for each scenario subproblem). The aggregation operator is simply defined as the general
function that is used to combine the scenario solutions into a single general solution given a weight
(or importance) for each scenario in set S. Originally in [10], the average function was used as the
aggregation operator. Therefore, in this case, the weights considered were simply the probabilities
associated with the scenarios. When this idea is transposed to the present problem, one obtains the
following aggregation operator:

yν
ij =

∑
s∈S

psy
sν
ij , ∀(i, j) ∈ A. (27)

It should be noted that (27) does not necessarily produce a general feasible design. For a given
arc (i, j) ∈ A, considering all solutions ysν

ij , ∀s ∈ S, if one has consensus for all scenarios then one
obtains yν

ij ∈ {0, 1}. Otherwise, there is non-consensus and one observes 0 < yν
ij < 1, which is

infeasible given the integrality requirements on the design variables. It was observed in [10] that, by
using the average function as the aggregation operator in the case of non-convex problems, the overall
solution strategy may not converge to an optimal solution. Therefore, by simply using (27) in the case
of stochastic CMND problems, one cannot guarantee that a good (or even feasible) solution will be
obtained. However, this aggregation operator may still be used to guide the overall solution process.
When there is non-consensus for a given arc (i, j) ∈ A, the value yν

ij provides information concerning
the general trend amongst the scenario designs. If the value yν

ij is low (i.e., close to zero), then there
is incentive in closing arc (i, j) within the general design. Otherwise, if value yν

ij is high (i.e., close to
one), then the incentive is in opening arc (i, j) in the general design. Therefore, (27) will be used as a
reference point within a first search phase with the objective of identifying the subset of arcs for which
consensus is possible. A second search phase will then be applied on the restricted problem obtained
by fixing all consensus arcs within the general design.

To produce a feasible solution using values yν
ij , ∀(i, j) ∈ A, one can always apply a worst-case

analysis and find what we refer to as the max design:

yMν
ij =

∨
s∈S

ysν
ij , ∀(i, j) ∈ A. (28)

Within the max design, all arcs that are opened in some scenario design are included in the overall
design. This guarantees that the values yMν

ij , ∀(i, j) ∈ A, define a feasible design for problem (7)-(11).
Therefore,

∑
(i,j)∈A

fijy
Mν
ij +

∑
s∈S

psQ(yMν , ds), where vectors yMν and ds include respectively the values

(28) and the demands for scenario s ∈ S, defines an upper bound on the optimal value of problem (7)-
(11). If the max design is calculated iteratively, then a best upper bound can be kept throughout the
first search phase. It should be noted that although the max design can be used as the reference point
within the SD scheme, whenever consensus is low within the scenario designs, (28) may overestimate
the number of arcs that have to be opened within the overall design. Since the fixed costs are then
adjusted to penalize non-consensus with respect to the reference point, this strategy may create a bias
in the search process towards producing unnecessarily large overall designs. Therefore, solutions (28)
are only used to produce the upper bound.
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4.2 Strategies for penalty adjustments

As was previously observed, once the SD scheme is applied to problem (7)-(11), one is left with the task
of having to solve a deterministic CMND problem for each scenario s ∈ S. Given the scenario designs
obtained and using the aggregation operator, as defined in the previous subsection, one generates a
reference point that serves as the global design. To induce consensus amongst the scenario subproblems,
the fixed costs are then adjusted within each subproblem to penalize non-concordance between the
scenario designs obtained and the reference point generated. In this subsection, we present the two
different strategies that are proposed to perform these adjustments.

4.2.1 Progressive hedging

The first strategy is the one originally proposed in [10]. Let us recall that within the SD scheme
presented, an augmented Lagrangean relaxation is applied to the non-anticipativity constraints. Con-
sidering the algorithm that is performed in the first phase, for a given iteration ν, let λsν

ij define the
value of the Lagrangean multiplier associated with the relaxed non-anticipativity constraint for the
design decision on arc (i, j) ∈ A for scenario s ∈ S and let ρν define the value of the ratio for the
quadratic penalty. When the strategy proposed in [10] is applied to the case of stochastic CMND
problems, then the values λsν

ij and ρν are updated as follows, ∀(i, j) ∈ A and ∀s ∈ S:

λsν
ij ← λsν−1

ij + ρν−1(ysν
ij − yν−1

ij ) (29)

ρν ← αρν−1 (30)

where α > 1 is a given constant, ρ0 is fixed to a positive value to ensure that ρν →∞ as the number
of iterations ν increases, ysν

ij is the current value of the design decision associated with arc (i, j) and
yν−1

ij is the obtained value for arc (i, j) within the previous reference point.

Considering (29), for a particular s ∈ S, there are three possible adjustments. If ysν
ij < yν−1

ij ,
then the fixed cost associated with arc (i, j) ∈ A is reduced in the objective function of the scenario
subproblem (i.e., λsν

ij < 0). In this case, the arc is closed in the scenario design (i.e., ysν
ij = 0) but there

was previously non-consensus (i.e., 0 < yν−1
ij < 1). Therefore, the fixed cost is adjusted so as to give an

incentive in opening the arc within the scenario design. If ysν
ij > yν−1

ij , then the fixed cost associated
with arc (i, j) ∈ A is augmented in the objective function of the scenario subproblem (i.e., λsν

ij > 0). In
this case, the arc is opened in the scenario design (i.e., ysν

ij = 1) and, once again, there was previously
non-consensus (i.e., 0 < yν−1

ij < 1). Therefore, the fixed cost is adjusted so as to give an incentive in
closing the arc within the scenario design. Finally, if ysν

ij = yν−1
ij , then there is consensus amongst the

scenario designs and the fixed cost remains unchanged. As for update (30), it simply states that the
value of the penalty ratio is steadily increased as the number of iteration grows.

Let fsν
ij refer to the adjusted fixed cost of arc (i, j) ∈ A in the objective of the subproblem associated

with scenario s ∈ S at iteration ν. We then obtain Algorithm 1, by casting (29) and (30) within the
iterative algorithm used for the first search phase, Within Algorithm 1, the scenario subproblems are
solved iteratively with the fixed costs being updated using values (29) and (30). To apply the procedure,
one still has to specify how each deterministic CMND problem (i.e., the scenario subproblems) is solved.
Furthermore, stopping criterion have also to be defined. These questions are addressed in Section 5.
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Algorithm 1 First phase using progressive hedging
Initialization

ν ← 0

λsν
ij ← 0 ∀(i, j) ∈ A,∀s ∈ S

ρν ← ρ0

for all s ∈ S do

fsν
ij ← fij , ∀(i, j) ∈ A

solve the corresponding CMND subproblem

yν
ij ←

P
s∈S

psysν
ij , ∀(i, j) ∈ A

calculate and evaluate yMν

bestSolution← yMν

while stopping criterion are not met do

ν ← ν + 1

for all s ∈ S do

fsν
ij ← fij + λsν−1

ij − ρν−1yν−1
ij + ρν−1

2
, ∀(i, j) ∈ A

solve the corresponding CMND subproblem

Update

yν
ij ←

P
s∈S

psysν
ij

λsν
ij ← λsν−1

ij + ρν−1(ysν
ij − yν−1

ij )

ρν ← αρν−1

calculate and evaluate yMν

update bestSolution if yMν gives current best
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4.2.2 Heuristic strategy

Since one has to solve a series of deterministic CMND problems with modified fixed costs when SD is
applied to problem (7)-(11), it appears interesting to see how other strategies may be used to penalize
non-consensus. In this section, we present a new heuristic penalty adjustment strategy that quickly
targets the arcs for which the level of consensus amongst the scenario designs is high. At the end of
iteration ν, one obtains values yν

ij , which, as was observed earlier, can be viewed as defining a trend
amongst the scenario designs to either open or close arc (i, j). A lower value of yν

ij translates the fact
that arc (i, j) is opened only in a small portion of the scenario designs, while a higher value means that
arc (i, j) is opened within a majority of scenario designs. Therefore, one can argue that if value yν

ij is
less than a given threshold clow, then increasing the fixed cost of arc (i, j) may drive the subproblems
to avoid using it. On the other hand, if value yν

ij is more than a given threshold chigh, in order to
attract the subproblems to use arc (i, j), the fixed cost should be lowered. Therefore, one can define
the following adjustment strategy:

fν
ij =


βfν−1

ij if yν−1
ij < clow

1
β fν−1

ij if yν−1
ij > chigh

fν−1
ij otherwise,

(31)

where β is a constant larger than 1, clow and chigh are two constants such that 0 < clow < 0.5 and
0.5 < chigh < 1, and fν

ij represents the modified fixed cost of arc (i, j) at iteration ν.

The above adjustment is referred to as being global, since the fixed cost modifications are made
for all scenarios. Keeping in mind that the ultimate aim of the search procedure in the first phase is
to obtain a unanimous design, this heuristic modification can be pushed even further by modifying
the fixed costs locally within the scenario subproblems. For a given scenario s ∈ S, if the difference
between values ysν

ij and yν
ij is large, then one may be interested in emphasizing the adjustment to the

fixed cost within the objective function of this particular scenario subproblem. This modification is
considered to be local in the sense that it only affects the subproblem of scenario s at the current
iteration. One thus defines the following update:

fsν
ij =


βfν

ij if |ysν−1
ij − yν−1

ij | ≥ cfar and ysν−1
ij = 1

1
β fν

ij if |ysν−1
ij − yν−1

ij | ≥ cfar and ysν−1
ij = 0

fν
ij otherwise,

(32)

where 0.5 < cfar < 1 and β > 1 are two given constant parameters, and fsν
ij stands for the modified

local fixed cost of arc (i, j) for scenario s at iteration ν. In (32), parameter cfar defines the threshold
at which point a local adjustment to the fixed cost is applied.

Using a similar idea, one can apply a variable fixing strategy to reduce the size of the subproblems
being solved. If for scenario s, one observes that |ysν−1

ij − yν−1
ij | ≤ cnear, then the decision on the

arc status should be kept by fixing ysν
ij to ysν−1

ij . In this case, if one has sufficient consensus, which
is expressed using threshold 0 < cnear < 0.5, on the status of arc (i, j), then the design decision for
this arc is fixed locally. When both the adjustment strategies (31) and (32) as well as the variable
fixing strategy are used within the iterative algorithm performed in the first search phase, one obtains
Algorithm 2.
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Algorithm 2 First phase using heuristic strategy
Initialization

ν ← 0

for all s ∈ S do

fsν
ij ← fij , ∀(i, j) ∈ A

solve the corresponding CMND subproblem

yν
ij ←

P
s∈S

psysν
ij , ∀(i, j) ∈ A

calculate and evaluate yMν

bestSolution← yMν

while stopping criteria are not met do

ν ← ν + 1

∀(i, j) ∈ A, modify fν
ij globally using equation (31)

for all s ∈ S do

∀(i, j) ∈ A, modify fsν
ij locally using equation (32)

fix some ysν
ij if needed

solve the corresponding CMND subproblem

Update

yν
ij ←

P
s∈S

psysν
ij , ∀(i, j) ∈ A

calculate and evaluate yMν

update bestSolution if yMν gives current best
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5 Implementations

A number of algorithmic components need to be specified for a complete description of the method-
ology implementation used to perform the computational experiments reported in the next section,
principally, how subproblems are addressed, how the algorithms are stopped, and the parallel imple-
mentation.

For each scenario and iteration, the resulting subproblem is a deterministic CMND with possibly
modified fixed costs. To address these problems, we use one of the currently best procedures for the
CMND, the Cycle-based tabu search of Ghamlouche, Crainic, and Gendreau [2], which explores the
space of the arc-design variables by re-directing flow around cycles and closing and opening design arcs
accordingly. The initial solution is simply obtained by opening all arcs, solving the related minimum
cost network flow problem (capacitated, multicommodity), and closing the unused arcs. Later, at each
iteration of the global algorithm, each subproblem is solved starting from the solution of the previous
iteration.

As indicated earlier on, there are not, yet, theoretical criteria for the convergence of the PH
algorithm in integer cases. Meta-heuristics usually stop on maximum limits on CPU time, number of
iterations, number of consecutive iterations without improvement, and so on. Yet, letting the method
simply stop on such criteria might result in a “solution” where consensus has not been obtained for all
design arcs. We proceed therefore in two phases. The first corresponds to the algorithms introduced in
the previous section, which stop either when (if) consensus is achieved for all design arcs, or, once one
of the following criteria is satisfied: 50 iterations, 10 consecutive non-improving iterations, 10 hours of
CPU time. The second phase then solves the restricted stochastic CNMD obtained by fixing all design
arcs for which consensus has been achieved. In the current implementation, this problem is solved by
branch-and-bound using cplex.

One of the major issues in addressing stochastic CNMD through scenario decomposition, as most
other combinatorial optimization problems, is the size of the corresponding deterministic problem.
Parallel computation can and has been used to address this issue and it is adopted here as well. In
the current version, we use a simple master-slave synchronous strategy, where the master controls the
search, computes the global design, and performs the parameter updates, while the slave processors
modify the fixed costs according to the information received from the master and solve the resulting
scenario subproblems. Synchronization is performed at each iteration, that is, once all scenarios have
been addressed.

6 Numerical Results

In this section, we report the experimental results and analyze the performance of the different proposed
algorithms. Two instance sets, denoted respectively S and R, are used to perform the experiments.
There are 16 problems included in set S. These problems are derived from the instances used in [4]
for the time-dependent stochastic service network design problem. In order to obtain instances for
our problem setting, we first dropped the time periods from the problems for which the associated
network is a complete graph. The vehicle capacity defined in [4] was then used as the capacity for all
non-dummy arcs in the network. Since all arcs have the same capacity, a unique value was assigned
to all fixed costs. For each commodity, only the origin and destination nodes were used within the
stochastic CMND instances created. Both the available time period and the time period at which the
commodity is required were simply ignored. An artificial arc between the origin and destination nodes
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was added for each commodity in the problem. Finally, concerning the size of the instances in set S, it
should be noted that they are based on networks of 16 and 30 nodes, with 14, 40 and 80 commodities
and 10, 20, 60 and 90 scenarios.

Table 1: Attributes of R instances
Name |N | |A| |K|
r04 10 60 10
r05 10 60 25
r06 10 60 50
r07 10 82 10
r08 10 83 25
r09 10 83 50
r10 20 120 40
r11 20 120 100

A second set of stochastic instances was obtained from the deterministic CMND problem set R
used in [2]. Eight deterministic instances were selected from set R (r04 to r11 inclusively), along
with five different combined levels of fixed cost and capacity ratios (1, 3, 5, 7 and 9). Attributes of
these instances are described in Table 1. To generate stochastic versions, it was first assumed that
the demands for the problems followed triangular distributions. To define such distributions, three
parameter values need to be specified: min a, max b and mode c. For each commodity k ∈ K, the mode
c, which represents the most likely outcome, was fixed to be the original deterministic value for the
volume associated with the demand (i.e., c = vk). We then set the other two parameters: a = 0 and
b = 1.25c. Demands were then assumed to be linearly correlated and three different levels of positive
correlations were considered to create different instances. The scenario trees were generated using the
procedure proposed in [5], and instances for which the total number of scenarios was set to 16, 32 and
64 were created. A total of 360 instances were obtained in this second set.

All programs are coded in C++. Numerical experiments were conducted on a Sun Fire X4100
cluster of 16 computers, each computer having two 2.6 GHz Dual-Core AMD Opteron processors and
8192 Megabytes of RAM, operating under Solaris 2.10. The parallel implementation used four slave
processors and communications were implemented using OpenMP. Finally, it should be specified that
cplex version 10.1.1 was used to solve the capacitated multicommodity network flow problems within
the cycle-based tabu search and for the branch-and-bound applied to the complete multi-scenario
deterministic problem and the restricted S-CMND on Phase II.

To obtain the numerical results presented in this section, the algorithms formalized in subsection
4.2 are first applied to the problem set S and compared to cplex. Given the complexity of solving
the complete multi-scenario deterministic problems in set S, a maximum time of 600 minutes CPU
time (with the exception of one instance for which the maximum time was doubled) was imposed on
the solution process of cplex, which serves here as the benchmark for all comparisons. Overall, these
first results are used to analyze the general performance of the proposed strategies. In a second set
of tests, all algorithms are used to solve the instances of set R. Once again, cplex is applied on the
complete multi-scenario deterministic problems with a maximum alloted time of 500 minutes CPU
time. The results obtained on set R are used to better compare the different proposed algorithms. In
particular, we analyze the impact on the solutions obtained by the heuristics when local adjustments
(32) are made within the fixed costs. Furthermore, we look at how results vary according to both the
correlation level of the demands and with the combined levels of fixed cost and capacity ratios.

Concerning the implementations that are tested, it should be noted that Tabu-PH and Tabu-HC
refer to the meta-heuristics that use the cycle-based tabu search procedure of [2] to solve the CMND
subproblems and that apply, respectively, the progressive hedging and heuristic strategies to adjust

13

Progressive Hedging-Based Meta-Heuristics for Stochastic Network Design

CIRRELT-2009-03



the penalties. As for the parameter values, in the case of Tabu-PH, α is set to 1.1 and ρ0 is set to
1 + log(1 + D0), where D0 is the inconsistency level (i.e., the number of arcs for which there is non-
consensus amongst the scenario solutions) after the initialization phase. For Tabu-HC, both global
and local fixed cost adjustments are performed with a penalizing ratio of β = 1.1 and thresholds are
set to chigh = 0.8, clow = 0.2 for global adjustments, and cfar = 0.7, cnear = 0.2 for local adjustments.
Finally, it should be noted that all parameters defined for the cycle-based tabu search procedure are
set to the values originally used in [2].

Table 2: Results on set S: cplex vs. Hedging strategies
Problems cplex Tabu-PH Tabu-HC

|N | |K| |S| L.B. U.B. Gap Time Val. Gap Time Val. Gap Time
16 14 10 4909.3 4909.3 0.00% 0.19 4909.3 0.00% 0.34 4909.3 0.00% 0.34
16 14 20 4990.1 4990.1 0.00% 0.79 4990.1 0.00% 0.66 4990.1 0.00% 0.65
30 14 10 5198.6 5198.6 0.00% 0.18 5198.6 0.00% 2.69 5198.6 0.00% 2.58
30 14 20 5218.6 5218.6 0.00% 0.43 5218.6 0.00% 5.96 5218.6 0.00% 5.88
16 40 20 15184.9 15184.9 0.00% 76.16 15243.1 0.38% 4.07 15243.1 0.38% 3.79
16 40 60 15112.8 15244.7 0.87% 600.11 15196.3 0.55% 11.45 15196.3 0.55% 12.40
16 40 90 15103.9 15204.8 0.67% 600.32 15194.3 0.60% 18.53 15194.3 0.60% 20.28
30 40 20 14056.5 14301.0 1.74% 600.17 14498.9 3.15% 133.65 14321.9 1.89% 132.61
30 40 60 13409.3 14723.1 9.80% 600.48 14350.1 7.02% 199.98 14317.9 6.78% 201.96
30 40 90 12787.0 14723.0 15.14% 600.81 14321.4 12.00% 230.03 14287.8 11.74% 232.61
16 80 20 26773.0 27167.5 1.47% 600.23 27464.4 2.58% 5.71 27359.9 2.19% 13.25
16 80 60 26330.8 28621.4 8.70% 600.51 27272.0 3.57% 216.30 27190.2 3.26% 513.33
16 80 90 25709.6 28621.1 11.32% 600.55 27347.4 6.37% 522.49 27371.2 6.46% 524.64
30 80 20 29303.9 31408.3 7.18% 600.46 31010.6 5.82% 217.06 30913.5 5.49% 217.28
30 80 60 27491.8 31412.7 14.26% 600.86 30874.2 12.30% 317.47 30829.7 12.14% 346.34
30 80 90 27473.0 31412.4 14.34% 1201.78 30704.5 11.76% 287.27 30627.4 11.48% 312.68

Average 16815.82 18021.34 5.34% 455.25 17737.11 4.13% 135.85 17698.11 3.94% 158.79

In Table 2 are reported the detailed results obtained by all algorithms when applied to problem set
S. It should be specified that L.B., U.B., Gap, and Time values reported for cplex refer, respectively,
to the best lower and upper bounds found by the procedure, the optimal gap obtained with these
values, and the total computation time expressed in minutes. For Tabu-PH and Tabu-HC, Val., Gap
and Time represent the value of the best solution obtained by the meta-heuristic, the optimal gap of
this solution, which is calculated using the lower bound of cplex, and again the total computation
time expressed in minutes, respectively.

When analyzing the results reported in Table 2, one first observes that the complexity associated
with the solution of the complete multi-scenario deterministic problem becomes significantly higher as
the number of commodities to be distributed through the network increases. The cplex procedure
solves efficiently (i.e., in less than one minute of computation time) those instances for which |K|
= 14. When comparing these results with those obtained by Tabu-PH and Tabu-HC, one observes
that the meta-heuristics both find the optimal solutions using slightly more computation time (i.e.,
up to six minutes of computation time). Although, the meta-heuristics are slower than cplex on
these instances, it should noted that these remain easy instances that all algorithms are able to solve
efficiently. When |K| increases to 40, the instances become harder to solve using cplex. When
considering those instances for which |N | = 16, cplex is able to solve only one in the maximum
alloted time. On the two other instances, the procedure comes close but is unable to complete the
search in 600 minutes of computation time. In contrast, one observes that both the Tabu-PH and
Tabu-HC meta-heuristics find near optimal solutions (i.e., with a gap that is less than one percent),
using a fraction of the time (the average CPU times of cplex, Tabu-PH, and Tabu-HC are 425.53,
11.35, and 12.16 minutes, respectively, for these instances).

For all other instances, cplex failed to solve the complete multi-scenario deterministic problem in
the maximum time allowed and, in all but two cases, was outperformed by both Tabu-PH and Tabu-HC
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Table 3: Results on set R: cplex vs. Hedging strategies (without local adjustments)

cplex Tabu-PH Tabu-HC
Corr. |S| L.B. U.B. Sol. Gap Time Val. Gap Time Val. Gap Time

16 410810 458704 31 4.31% 157.47 424509 1.60% 67.53 424593 1.64% 63.59
0 32 403121 471938 27 8.46% 194.85 455834 5.44% 139.21 455725 5.47% 135.76

64 385601 484601 22 15.94% 256.35 464468 10.93% 186.98 462378 10.47% 186.79
16 414214 459218 30 4.10% 159.94 428347 1.59% 62.28 428429 1.62% 52.41

0.2 32 406689 473296 26 7.89% 196.47 453816 4.80% 139.15 453655 4.80% 132.99
64 387049 488098 24 16.10% 249.54 462564 10.54% 187.81 460963 10.25% 188.34
16 408172 458136 31 4.62% 144.81 423953 1.75% 67.85 423743 1.72% 66.94

0.8 32 407050 476565 27 8.31% 195.38 459702 5.39% 141.31 459061 5.36% 130.43
64 391023 487397 22 14.38% 270.52 469979 10.11% 193.65 469038 10.03% 194.71

in less computation time. Considering these instances, on average, cplex obtained a solution gap of
9.33% in 667.32 minutes CPU time, compared to the average solution gaps of Tabu-PH and Tabu-HC
which were, respectively, of 7.18% and 6.83%, for average CPU times of 236.66 and 277.19 minutes.
These results seem to show that both meta-heuristics are more efficient addressing the instances of
problem set S when compared to a direct solution approach using cplex. As to which of the two
strategies works best, one observes that while Tabu-HC obtains, on average over all instances, the
better results (i.e., a gap of 3.94% compared to 4.13% for Tabu-PH), it does so using, on average, more
computation time (i.e., 158.79 minutes compared to 135.85 minutes for Tabu-PH).

Tables 3 and 4 display aggregated results on problem set R for the hedging strategy variants without
and with local adjustments, respectively. Most column headings for these tables have a meaning similar
to those in Table 2. In both tables, results are averaged out for the 40 R instances generated for each
of the three correlation levels (Corr.) and each of the three sizes of the set of scenarios (|S|). Column
“Sol.” indicates how many of the 40 instances considered were solved to optimality by cplex within
500 minutes of CPU time.

A first conclusion that can be drawn from these tables is that the inclusion of local adjustments in
the hedging strategies seems to have very little impact both on the quality of the solutions obtained
and on the CPU times observed. This impression is confirmed by a comparison of results obtained
on individual instances (available from the authors), which reveals that both variants always perform
very similarly. The remainder of our analysis will thus focus on the variant without local adjustments.

Table 4: Results on set R: cplex vs. Hedging strategies (with local adjustments)

cplex Tabu-PH Tabu-HC
Corr. |S| L.B. U.B. Sol. Gap Time Val. Gap Time Val. Gap Time

16 410810 458704 31 4.31% 157.47 424523 1.60% 71.31 424656 1.67% 61.00
0 32 403121 471938 27 8.46% 194.85 456010 5.46% 139.36 455693 5.44% 136.32

64 385601 484601 22 15.94% 256.35 464683 10.82% 185.66 464305 10.69% 185.03
16 414214 459218 30 4.10% 159.94 428347 1.59% 59.45 428439 1.62% 52.09

0.2 32 406689 473296 26 7.89% 196.47 453815 4.80% 141.40 453466 4.74% 126.27
64 387049 488098 24 16.10% 249.54 462557 10.53% 187.95 460963 10.25% 187.34
16 408172 458136 31 4.62% 144.81 423587 1.71% 69.62 423743 1.72% 66.35

0.8 32 407050 476565 27 8.31% 195.38 459702 5.39% 139.64 459145 5.37% 129.63
64 391023 487397 22 14.38% 270.52 469970 10.11% 195.07 470405 10.28% 190.62

Further analysis of the results of Table 3 indicates that the correlation level between scenarios has
very little impact overall on the difficulty to address the instances, while increasing the number of
scenarios |S| makes the problems much more difficult for all solution techniques. In 500 minutes of
CPU time, cplex is able to solve 2/3 of the 120 instances generated for each correlation level, but no
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more than 60% of those with 64 scenarios. Tabu-PH and Tabu-HC perform significantly better than
cplex independently of the correlation level and the number of scenarios; their performance is quite
similar with a slight advantage for Tabu-HC for the instances with 64 scenarios. One may be concerned
about the rather large gaps observed for the problems with 64 scenarios: around 15% for cplex and
10% for Tabu-PH and Tabu-HC. One possible explanation for this might be the poor quality of the
lower bounds returned by cplex, but this issue warrants further investigation. Another issue that
warrants further investigation is the spread of running times for any given (Corr., |S|) combination: it
is surprising to notice that a third of all instances are not solved by cplex in 500 minutes, but that
the average running time of cplex for all instances is below 220 minutes. This clearly indicates that
some instances are solved rather quickly and that there is a huge variability in running times.

Table 5: Aggregated results set R: Corr: 0.2, cplex vs. Hedging strategies (without local adjustments)

cplex Tabu-PH Tabu-HC
ratio |S| L.B. U.B. Sol. Gap Time Val. Gap Time Val. Gap Time

16 157719 158019 7 0.06% 63.67 158111 0.09% 5.75 158523 0.22% 6.86
1 32 157019 168161 7 2.07% 66.20 158258 0.23% 47.94 158355 0.28% 27.80

64 151662 168563 7 3.39% 80.02 167127 3.11% 67.85 158083 1.31% 66.99
16 371528 522747 5 13.30% 234.88 413942 4.28% 88.16 413942 4.29% 78.99

3 32 354420 544883 4 20.82% 287.27 492793 13.59% 222.55 491877 13.31% 198.99
64 311073 579702 3 41.51% 334.19 504508 25.47% 269.31 505724 25.80% 269.35
16 331942 392183 5 5.70% 240.68 346561 2.09% 121.171 346561 2.09% 118.10

5 32 314445 412844 4 12.92% 266.24 386151 7.52% 227.087 386151 7.52% 227.15
64 286783 442630 4 28.14% 350.06 402844 17.80% 263.033 402844 17.80% 263.06
16 351726 352379 7 0.19% 68.79 352370 0.27% 30.13 352370 0.27% 18.22

7 32 355225 355929 7 0.21% 90.81 355917 0.20% 70.66 355917 0.20% 70.87
64 352889 356607 7 1.13% 129.23 354837 0.59% 90.84 354857 0.64% 92.15
16 858157 870762 6 1.26% 191.68 870750 1.23% 66.19 870750 1.23% 39.87

9 32 852338 884663 4 3.41% 271.85 875958 2.47% 127.53 875972 2.68% 140.12
64 832838 892986 3 6.33% 354.22 883504 5.71% 248.03 883305 5.69% 250.13

To further investigate this issue, we now report results on the instances with correlation level 0.2
in Table 5. In this Table, results on each line correspond to averages for each of the 8 instances with a
given fixed cost and capacity ratio (indicated in the column “ratio”) and the same number of scenarios
|S|. As expected, this table shows a great variability in the average running times for different groups
of problems. It is surprising to observe that the instances that are the most difficult to solve are
not the ones with the highest fixed cost and capacity ratio, an observation that is often made for
deterministic CMND problems, but those with intermediate ratios. While it is extremely satisfying to
note that Tabu-PH and Tabu-HC achieve excellent results in short running times for the easier groups
of instances (e.g., those with ratios of 1, 7 or 9, and 32 scenarios or less), it is probably more significant
to highlight their substantial superiority over cplex on the very difficult instances. In order to do so,
we now report in Table 6 the results obtained for the 8 instances with ratio 3 and 64 scenarios. As
can be seen from the Table, three of the 8 instances (r04, r07 and r08) are solved to optimality by
cplex and the hedging strategies rather quickly. It is interesting to note that Tabu-PH and Tabu-HC
are able to find the optimal solutions of r04 and r07 in less than one minute, which clearly shows
that these are “easy” problems, and in 21 minutes for the significantly more difficult r08, compared
to 138 minutes for cplex. On the r05 instance, the hedging strategies find a slightly better solution
than cplex and they take only a quarter of the time that it spends. The more spectacular results are
obtained on instances r09 for which both hedging strategies find a solution whose cost is less than 64%
of the cost of the cplex solution. Tabu-PH and Tabu-HC also clearly outperform cplex on instance
r10 and r11. Regarding this last instance, one must not be misled by the huge gap recorded for the
hedging strategies: this is clearly an instance whose lower bound is very poor.

Globally, the hedging strategies are able to find excellent solutions rather quickly for the easier
instances and much better ones than cplex for the more difficult ones. In fact, it seems quite obvious
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Table 6: Detailed results set R: Corr: 0.2, ratio 3 and |S| = 64, cplex vs. Hedging strategies (without
local adjustments)

cplex Tabu-PH Tabu-HC
Problem L.B. U.B. Gap Time Val. Gap Time Val. Gap Time

r04.3-0.2-64 57062.9 57062.9 0.00% 8.72 57062.9 0.00% 0.43 57062.9 0.00% 0.44
r05.3-0.2-64 182387 193001 5.82% 500.08 191284 4.88% 125.37 191284 4.88% 125.40
r06.3-0.2-64 430373 502238 16.70% 500.15 487600 13.30% 500.94 487600 13.30% 500.93
r07.3-0.2-64 55513.8 55518.2 0.01% 25.90 55518.2 0.01% 0.37 55518.2 0.01% 0.38
r08.3-0.2-64 150400 150404 0.00% 138.28 150404 0.00% 21.19 150404 0.00% 21.12
r09.3-0.2-64 310667 582334 87.45% 500.10 371875 19.70% 501.07 371875 19.70% 501.09
r10.3-0.2-64 366978 549234 49.66% 500.12 451527 23.04% 501.77 461259 25.69% 502.16
r11.3-0.2-64 935206 2.54782e+06 172.43% 500.20 2.27079e+06 142.81% 503.31 2.27079e+06 142.81% 503.25

that resorting to cplex is not an effective solution approach for the larger and more difficult instances.
While it is not possible to assess exactly the quality of the solutions produced by Tabu-PH and Tabu-
HC on these instances, the huge gap observed between these solutions and the solutions returned by
cplex suggests that they must be pretty good ones.

7 Conclusions

In this paper, we have developed a series of meta-heuristic solution strategies for stochastic network
design problems. These strategies, which are based on progressive hedging principles, were shown to
be very efficient to solve a series of stochastic CMND problems when compared to a direct solution
approach using the latest version of cplex. Given the quality of the results obtained, one can now work
towards extending and refining the proposed solution approach. In doing so, an interesting avenue of
research would be to further improve the way consensus is driven within the algorithms by using the
progressive hedging strategy in a recursive fashion (i.e., where the decomposition approach is applied
to subsets of scenarios, which are themselves tackled by a progressive hedging-based solution method).
Furthermore, from a general methodological perspective, developing more involved parallel solution
strategies also appears promising within the present context, since one could possibly exploit more
fully the decomposition of the second-stage problem according to scenarios. We plan to investigate
these avenues in the near future.
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