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ABSTRACT The advent of social media and technologies augmenting social communication has

dramatically amplified the role of rumor spreading in shaping society, via means of misinformation

and fact distortion. Existing research commonly utilize contagion mechanisms, statistical mechanics frame-

works, or complex-network opinion dynamics models. In this paper, we incorporate information distortion

and polarization effects into an opinion dynamicsmodel based on information entropy, modeling imprecision

in humanmemory and communication, and the consequent progressive drift of information toward subjective

extremes. Simulation results predict a wide variety of possible system behavior, heavily dependent on the

relative trust placed on individuals of differing social connectivity. Mass-polarization toward a positive

or negative consensus occurs when a synergistic mechanism between preferential trust and polarization

tendencies is sustained; a division of the population into segregated groups of different polarity is also

possible under certain conditions. These results may aid in the analysis and prediction of opinion polarization

phenomena on social platforms, and the presented agent-based modeling approach may aid in the simulation

of complex-network information systems.

INDEX TERMS Information theory, behavioral sciences, social dynamics, information propagation,

information polarization, communicative distortion, agent interaction, complex networks.

I. INTRODUCTION

The information age is characterized by a distinct shift

towards computerization and interpersonal networking tech-

nology, with a natural consequence of vastly accelerated

information uptake and sharing by the average individual

[1], [2]. Non-hierarchical content distribution, common on

large-scale unrestricted social network platforms, have vastly

accentuated the role of rumor spreading in social communi-

cation, with potential implications including the skewing of

political alignments and election results [3]–[5], the molding

of public opinion in countries [6], [7], and even the manip-

ulation of financial markets [8], [9]. The pervasiveness of

information propagation has been exploited by companies
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to further commercial interests [10]; rumor mongering has

also led to the development of new algorithms applicable in

computer networking and peer-to-peer file sharing [11], [12].

The dynamics of social communication is an area of active

research [13]–[17], with realistic rumor-spreading models

carrying major theoretical and practical significance.

A standard model of rumor spreading, known as the

Daley-Kendall (DK) model [18], [19], is well-established

and has been used extensively in the study of opinion

dynamics. Various extensions of the model have since been

reported, including the incorporation of complex network

topologies [20]–[22], and the development of the stochas-

tic Maki-Thompson model variant [23], [24], with ana-

lytical solutions derived via means of interacting Markov

chains [25]. The effects of memory-facilitated opinion

contagion have also been investigated [26]–[29]; in the
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Sznajd model, in particular, statistical mechanics models of

ferromagnetic magnetization and phase change phenomena

were successfully utilized to simulate the evolution of binary

opinions [5], [30]–[32]. Many other relevant aspects, such

as confidence levels [33], information density and associated

majority-rule effects [34], [35], social network topology re-

wiring [36]–[38], and the inherent imprecision in interper-

sonal communication, have been considered individually in

numerous studies.

To facilitate the analysis of opinion dynamics in complex

multi-agent networks, rumors can simplistically be inter-

preted as objective descriptions of preceding incidents or

events. Such information can, in general, be categorized into

opposing polarities—for instance, factually correct or incor-

rect, subjectively positive or negative, and agreeing or oppos-

ing to a certain status quo. Rumor propagation can then be

studied with this binary categorization, interlinked closely

with linguistic characteristics; while the underlying interac-

tion mechanisms have received much attention [39]–[42],

the potential polarization of information during the propaga-

tion process and its dynamical effects on social networks have

been largely neglected. Cumulatively, information polariza-

tion may yield significant quantitative effects, including the

division of the population into segregated groups each of like

opinions, or the mass evolution of the population towards a

specific polarity. The effects of information polarization have

indeed been assessed as significant factors in the political and

governance mechanics of democracies [43], social stability

and welfare [44], [45], and the behavior of open economies

[46], [47], especially amidst volatility.

In the present study, we investigate the progressive

polarization of information in the process of dissemination

and its potential implications, via an information-entropic

complex topology framework greatly extended from our

previous study [48]. In addition to the comprehensive model,

we present the full diversity of behavioral regimes in the

framework and elucidate the mechanisms underlying the

different outcomes, thereby providing an understanding

of the combined dynamics of polarization, distortion, and

propagation.

II. MODEL

In this section, we present a rumor propagation framework

based on information entropy. The formalism is extended

from our previous study [48], with key additions on imperfect

memory and communication, and stochastic bias when con-

veying information. These are important features to enable

more realistic modeling of complex socio-physical phenom-

ena encompassing information distortion and polarization,

as is the focus of this paper.

In the current model, individuals are modeled as nodes

in a Barabási-Albert (BA) scale-free [49], [50] network G

of size N , with the links between nodes represent-

ing a social connection between agents. The spread of

information is considered as occurring in three consecu-

tive phases—information spreading, information acceptance,

and information consolidation. We first detail the relevant

mathematical preliminaries and definitions, followed by a

description of the three-phase propagation of information

adopted in our model. A summary of model parameters is

given in Table 1. Though beyond the scope of the present

study, plausible methods of characterizing these parameters

for application to real-world networks are also discussed in

Section IV.

TABLE 1. List of parameters of the information propagation and
polarization model. Of the six parameters, the first three (N , s and L)
define the size and the per-agent characteristics of the network, and the
last three (K , β and γ ) define the interaction behavior between agents.

A. MODEL PRELIMINARIES

To begin, we define the information representation in our

model (Section II-A.1) and the characteristic behaviors of the

human agents in the network (Section II-A.2–II-A.4).

1) INFORMATION POLARIZATION REPRESENTATION

For simplicity, each packet of information is considered to

be a binary string of length s. For instance, for s = 5,

a candidate binary string might be 11011. In such a binary

representation, there are 2s distinct subtypes of information,

where each subtype is labeled with an integer 0 ≤ i ≤ 2s−1.

These binary strings can be taken to encode any type of real-

world data, including, for instance, opinions being propa-

gated through social platforms, pieces of news, or potentially

distorted or inaccurate facts.

The binary magnitudes of the information strings are taken

as a measure of the associated degree of polarization. In par-

ticular, it is taken that the smaller the value, the more negative

the information is perceived to be; conversely, the larger the

value, themore positive the perception is. Information charac-

terized by 00000 and 11111 bit strings, therefore, correspond

to the two extreme polarization states (most negative andmost

positive). In the present model, we take s to be time-invariant

and homogeneous throughout the network, thus reflecting

the propagation and polarization of a single information

type.

2) MEMORY CAPACITY

Realistically, the human agents involved in the propagation

of information possess some ability to remember and repro-

duce previously-encountered information. We assume that

every individual has the same memory capacity, denoted L,

such that they can remember up to L pieces of information

each.
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3) ENTROPY-DEPENDENT INFORMATION DISTORTION

It is known that there is inherent imprecision in social com-

munication. When information and rumors spread, states

of strong emotional response, in combination with failures

in cognition and transmission, may cause the propagated

information to be distorted. Individuals realistically do not

have perfect control over the reproduction and distribution of

information—a phenomenon termed the ‘‘trembling hand’’

effect [51]. It is therefore important to model the poten-

tial distortion of propagated information pieces within our

information-entropic framework.

In our proposed model, the propensity for each agent to

distort information is taken to be related to the entropy of

the information stored in their memory. The greater the infor-

mation entropy, the more uncertain their memory is, and the

more prone they are to errors in recalling and reproducing

information. Such a relation can be heuristically justified by

noting that information entropy is, in most cases, a measure

of the complexity of the represented content; higher entropy

may thus reasonably be associated with tendencies of confu-

sion or inaccurate reproduction.

We let Hn denote the classical Shannon information

entropy for individual An ∈ V (G), defined as

Hn = −
∑

i

fi log2 fi, (1)

where fi is the frequency of occurrence of the ith subtype of

information within the memory of An. The average infor-

mation entropy of the population H , reflecting the level of

information noise in the entire social network, can be written

as

H =
1

N

N
∑

n=1

Hn. (2)

The probability of information distortion by individual An

can now be defined as

Pn =

[

exp

(

Hmax − Hn

Hmax
· K

)

+ 1

]−1

, (3)

where K , termed the conservation factor, represents an antag-

onizing control force against information distortion, and

Hmax is the maximum possible information entropy, reached

when fi = 1/2s. The larger K is, the stronger the ability of

the individual to mitigate information distortion. Suchmay be

presumed to be the result of, say, a more conservative social

culture, or a more well-informed populace. Information

distortion is taken to occur through a bit-wise mechanism,

where a random bit in the information string is flipped, and

the distorted information persists within the memory of the

individual.

4) INFORMATION ACCEPTANCE

Human agents are, in general, not entirely trusting of one

another, especially in large networks. When an individual

Am ∈ G receives a piece of information from another

individual An ∈ G, individual Am will not always believe

the information received. Rather, acceptance of information

depends on how trustworthy individual Am considers indi-

vidual An, which is taken to be related to the relative social

status (as measured by number of connections) ofAm among

the neighbors of An. The more trustworthy An is, the higher

the probability ηmn that individual Am will accept the infor-

mation, as given by

ηmn =
k

β
n

maxl∈nbd(m) k
β
l

, (4)

in which nbd(m) denotes the neighbor set of Am, kn denotes

the degree of node An (in other words, the number of

social connections that person An has with other individ-

uals), kl denotes the degree of each neighbor Al , and β

is a parameter termed the confidence factor. A range of

β > 0 indicates that individuals will tend to trust neighbors

of a greater network degree, and vice versa for β < 0.

In the former case, information conveyed by individuals of a

greater number of social followers is preferentially accepted

over competing counterparts, reflecting a bandwagon-like

social behavior tendency in individuals, whereas the latter

case reflects an opposite tendency of preferentially accepting

information from low-profile social associates. The special

case of β = 0 reflects equivalent trust amongst all neighbors.

B. THREE-PHASE INFORMATION PROPAGATION

The three consecutive phases of information propagation

in our model—spreading (Section II-B.1), acceptance

(Section II-B.2), and updating (Section II-B.3)—can now be

defined.

1) SPREADING PHASE

All individuals An ∈ G begin to disseminate information.

Out of all the pieces of information currently remembered by

each individual, the most salient subtype (the subtype i that

occurs with the highest frequency fi within thememory ofAn)

is selected for transmission, with random selection should

there be two or more subtypes of information with maximum

saliency. This piece of information, potentially distorted due

to imperfect memory integrity, is spread to all neighbors

of An. In addition, we introduce a probability of polariza-

tion ξ , describing the information polarization tendencies

by individuals during communication. With probability ξ ,

individuals distort rumors by applying an increment operation

(adding a binary value of 00001) on the most salient binary

information string; and with probability (1 − ξ ), individu-

als apply a decrement operation (subtracting a binary value

of 00001) to the most salient information string. When the

information strings have reached the minimum or maximum

extreme states of polarization (00000 and 11111 respec-

tively), no further distortion occurs.
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The probability of positive polarization ξm by individ-

ual Am may be defined as

ξm =
k

γ
m

maxj∈{1,2,...,N } k
γ

j

, (5)

where γ is termed the polarization bias factor, and km and kj
are the degree of node Am and node Aj respectively. With

γ < 0, individuals with few social connections (small-degree

nodes) tends to be positively polarizing, distorting informa-

tion towards the positive extreme, and individuals with a large

number of social connections (large-degree nodes) tends to be

negatively polarizing, distorting information towards the neg-

ative extreme. Conversely, with γ > 0, small-degree nodes

tend to be negatively polarizing, and large-degree nodes tend

to be positively polarizing. In the real-world, these types of

polarization behavior may manifest as a result of intentional

hyperbole, for political reasons or otherwise, or unintentional

bias when communicating.

2) ACCEPTANCE PHASE

Upon the receipt of a piece of information from one of

their neighbors, each agent decides on whether to accept

the information and commit it to memory, as detailed in

Section II-A.4.

3) UPDATING PHASE

The finite memory bank of each individual is modeled as a

first-in-first-out (FIFO) queue, with newly accepted pieces of

information displacing the oldest pieces within memory once

the maximum capacity has been reached. Memory updates

are taken to be synchronous across the network—at every

time-step t of the process, all individuals attempt to spread

the most salient subtype of information currently known to

their neighbors, following which all individuals decide on

information acceptance, and their memories are updated to

reflect a new set of values at time t + 1. The information

propagation cycle then repeats.

III. RESULTS

To provide a sufficient diversity of information subtypes,

the length of the binary information strings was set to

s = 5, giving 25 = 32 subtypes in total. Barabási-Albert

(BA) scale-free networks of size N = 3000 were randomly

generated, on which simulations of the presented information

propagation model were run. The simulation model assumes

a memory capacity of L = 320.

The intrinsic relationship between polarization probabil-

ity ξ and the bias factor γ is first explored in Section III-A,

thereby providing a basis to facilitate the qualitative under-

standing of the various phenomena emergent from the

propagation model. Information polarization phenomena are

then described in Section III-B, with emphasis on the

effects of the confidence factor β and the bias factor γ

on propagation dynamics and polarization behavior in the

network.

A. DISTRIBUTION OF POLARIZATION PROBABILITY ξ

Figure 1 presents the relationship between the propensity of

individuals to information distortion, encoded in the polariza-

tion probability ξ , and the bias factor γ . The mean value and

variance of ξ are denoted E(ξ ) and D(ξ ) respectively.

FIGURE 1. Relationship between the propensity of individuals to
information distortion, encoded in the polarization probability ξ , and the
bias factor γ . E(ξ ) and D(ξ ) denote the mean value and variance of ξ

respectively.

In the range −10 ≤ γ ≤ 0, it is observed that an

increase in γ yields a gradual increase in ξ from an initial

value of approximately 1/2, representing a balanced prob-

ability of polarization towards either extremum, simultane-

ously accompanied by a decrease in variance of ξ . This

indicates that a large number of small-degree nodes in the

population has clustered into a ξ > 1/2 positively-polarizing

group, with a small number of large-degree nodes clustering

into a ξ < 1/2 negatively-polarizing group. Increases in

γ lead to expansions in the size of the positively-polarizing

cluster, due to the continued addition of new nodes aligned

with ξ > 1/2; simultaneously, the average ξ within the

cluster also increases. At γ = 0, all individuals within the

population has ξ = 1, in effect skewed towards positive

polarization with absolute certainty.

When γ > 0, the average ξ within the population decreases

as γ increases, accompanied by a largely decreasing trend

in ξ variance. This reflects that the probability of nega-

tive polarization in small-degree nodes is increasing, leaving

behind very few remaining nodes with a positive polarization

tendency.

B. INFORMATION POLARIZATION

To start the simulation, a node from the network is randomly

selected as the information source, and one piece of informa-

tion is set in its memory. This source information string was

taken to be 01110, and the memories of all other nodes in

the network were initialized to be empty. Simulations of the

presented model are then run, to investigate the information

propagation dynamics and emergent polarization patterns.
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FIGURE 2. Evolution charts for β = 1, γ = −4 and K = 0.1, showing (a) the dynamics of information entropy H , (b) the dynamics of δ0, and (c) the
dynamics of δi where the x-axis denotes time and the y-axis denotes opinion subtype, and the value of δi is represented by color.

FIGURE 3. Evolution charts for β = 1, γ = 0 and K = 0.1, showing (a) the dynamics of information entropy H , (b) the dynamics of δ31, and (c) the
dynamics of δi where the x-axis denotes time and the y-axis denotes opinion subtype, and the value of δi is represented by color.

We consider an individual to hold the opinion i if the most

salient piece of information in their memory, that is, the piece

of information with maximal fi is of subtype i. Let Di be

the total number of individuals with opinion i. Then we can

define

δi = Di/N , i ∈ {0, 1, . . . , 31}, (6)

as the proportion of individuals who hold the opinion i.

By analyzing how δi changes for each opinion over time,

we can study the effects of information polarization across

the population.

1) CONFIDENCE FACTOR β = 1

Figure 2 presents the simulation results obtained, with con-

fidence factor β = 1 and bias factor γ = −4. A cross-

examination with Figure 1 reflects that at γ = −4,

the positively-polarizing cluster comprises primarily of

small-degree nodes and is small in size, and the population

average of the polarizing probability ξ is slightly above 0.5.

Such a result suggests that the distortion driving force towards

a positive polarization extremum of 11111 is weak. At the

same time, due to the negative bias factor, the large-degree

nodes tend towards negative polarization; and with β = 1,

individuals have comparatively greater trust in these large-

degree nodes, thus creating a strong driving force towards a

negative polarization of 00000 within the population. Under

the competition of these antagonistic factors, negative polar-

ization tendencies overwhelm the influence of the small

positively-polarizing clusters, and the final polarization state

of the population is therefore expected to be a negative 00000,

as indeed observed in the presented simulation.

Next, Figure 3 presents a set of simulation results for

γ = 0. This is an extreme case, in that all nodes are

characterized by a perfect polarizing probability of ξ = 1,

analytically deductible from Eq. (5). There is no antago-

nistic factor present towards positive polarization, and the

final polarization state is therefore 11111, as can be clearly

observed.

Figure 4 presents simulation results for γ = −0.5. In com-

bination with Figure 1, it is observed that at γ = −0.5,

the positive cluster formed by small-degree nodes is signif-

icant, and the population average of polarization probabil-

ity ξ is also large, therefore resulting in the presence of a

strong driving force towards the positive polarization state

of 11111. At the same time, large-degree nodes tend towards

negative polarization, and the preferential trust amongst the

population towards these individuals result in the emergence

of a negative polarization driving force. Under the com-

petition of these two forces, a division of the population

between negative 00000 and positive 11111 polarization
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FIGURE 4. Evolution charts for β = 1, γ = −0.5 and K = 0.1, showing (a) the dynamics of information
entropy H , (b) the dynamics of the number of information subtypes in the network, (c) the dynamics of
δ0 and δ31, and (d) the dynamics of δi .

states is observed. The proportion of the 11111 state remains

significantly smaller than that of the 00000 state, indicating

that the status-dependent acceptance of information plays a

key role in controlling the spread of rumors.

A contrasting set of results is presented in Figure 5, for

a bias factor of γ = 0.5. In such a scenario, the popu-

lation average of ξ is small, reflecting that a large num-

ber of small-degree nodes have positive polarization prob-

abilities close to zero. These small-degree nodes form a

large number of negatively polarizing clusters, resulting

in a driving force towards the 00000 negative polarization

state. Simultaneously, the positive polarization probability ξ

amongst large-degree nodes is relatively large, and β = 1

creates a preferential trust towards these individuals, resulting

in a strong positive driving force. Similar to the γ = −0.5

scenario, a co-existence of negative 00000 and positive 11111

polarization states is observed, but here the proportion of the

latter is significantly greater than the former.

2) CONFIDENCE FACTOR β = −3

We now examine scenarios with the confidence factor set

to β = −3. Figure 6 presents a set of simulation results

with γ = −1. Examined in conjunction with Figure 1,

it is deduced that in such a configuration, the size of the

positive cluster formed by small-degree nodes is relatively

large, with a large average polarization probability ξ within

the population. The population is hence driven towards the

positive polarization state 11111. The low confidence factor

of β = −3 creates preferential trust towards small-degree

nodes, further aiding the propagation of positively-polarized

information, therefore resulting in a final state of positive

11111 polarization as is indeed observed in the simulation

results.

In Figure 7, the bias factor is set to γ = 0.5, and the

mean ξ within the population is small, indicating that a

large number of small-degree nodes tend to be negatively

polarizing. This creates a driving force towards the 00000

negative polarization state. The confidence factor of β = −3

reflects preferential trust towards small-degree nodes, aiding

the propagation of the negatively-polarized information from

the small-degree nodes and resulting in a final state of

00000 polarization, as is observed.

3) FINAL POLARIZATION DISTRIBUTIONS IN β–γ SPACE

The simulation results presented in Sections III-B.1

and III-B.2 indicate that the bias factor γ and confidence

factor β influence the propagation of polarized information

profoundly. In this subsection, we examine the terminal prob-

ability distributions of the two extreme polarization states

(δ0 and δ31) in β–γ parameter space, for a spectrum of

differing conservation factors K .

The simulation results are presented in Figures 8(a)–(h).

In these figures, we present the terminal probability distri-

butions of the two extreme polarization states within the

populations, for differing values of the conservation factor K .
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FIGURE 5. Evolution charts for β = 1, γ = 0.5 and K = 0.1, showing (a) the dynamics of information
entropy H , (b) the dynamics of the number of information subtypes in the network, (c) the dynamics
of δ0 and δ31, and (d) the dynamics of δi .

FIGURE 6. Evolution charts for β = −3, γ = −1 and K = 0.1, showing the dynamics of (a) information entropy H , (b) frequency δ31, and (c) frequency δi .

It can be observed that with a low conservation factor K ,

the propagated information can be polarized into the negative

00000 state; the conditions for this to occur can be divided

into two regimes. The first regime is of confidence factor

β > 0 and bias factor γ < 0; the second regime is of

confidence factor β < 0 and bias factor γ > 0. The

qualitative principles for these conditions can be deduced.

In the first regime, β > 0 and γ < 0 reflects preferential trust

and negatively-polarizing tendency on large-degree nodes

respectively, and these circumstances are clearly synergistic

in driving negative polarization throughout the population;

and in the second regime, β < 0 and γ > 0 reflects pref-

erential trust and negatively-polarizing tendency on small-

degree nodes respectively, again conducive for the spread of

negatively-polarized information.

In contrast, the necessary conditions for the propagated

information to be polarized into the positive 11111 state is

encompassed within a narrow strip in β–γ parameter space,

primarily in proximity around γ = 0. In very limited regions

of γ < 0 and β < 0, and γ > 0 and β > 0, positive polariza-

tion of the majority of the population is possible, via means

of an analogous synergistic mechanism responsible for the
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FIGURE 7. Evolution charts for β = −3, γ = 0.5 and K = 0.1, showing the dynamics of (a) information entropy H , (b) frequency δ0, and (c) frequency δi .

previously-discussed negative polarization phenomenon; but

outside of these narrow regions, there is essentially negligible

polarization.

It is also observed that mass polarization of the population

becomes increasingly difficult as the conservation factor K

increases. This is fully expected, asK suppresses information

distortion in individuals (Section II-A.3).

IV. DISCUSSION

In the present study, the semantics of propagated information

is taken to be categorizable into binary opposing extrema,

in particular, a negative polarization extreme represented

as an information bit string of minimal value, and a pos-

itive polarization extreme represented as one of maximal

value. The mapping of propagated data as information strings

enables much generality—the strings may, for instance, rep-

resent opinions shared on social media or news pieces. A bias

factor γ has been introduced to characterize relations between

the degree size of a node, analogously the size of an individ-

ual’s social circle, and its polarizing tendencies. The mechan-

ics of information acceptance are also considered, which are

assumed to be dependent on the social standing of the infor-

mation source in our model; a confidence factor β character-

izes such aspects. In this manner, the dynamics of information

propagation and polarization have been analyzed.

A diversity of phenomena have been observed in our pro-

posed model. At a low conservation factor of K = 0.1,

numerous behavioral regimes may be observed. Firstly, when

there is preferential trust towards large-degree nodes (β = 1)

and the bias factor is low (γ = −4), the entire popula-

tion is swayed towards the negative polarization extremum

due to the strong influence of large-degree nodes. In con-

trast, an intermediate bias factor of −0.5 ≤ γ ≤ 0.5

in general divides into clusters of differing polarizations,

resulting in a long-term co-existence of both polarization

extrema. Secondly, when there is preferential trust towards

small-degree nodes (β = −3), the large number of small-

degree nodes within the population become overwhelmingly

important in the dissemination of information. As such, when

γ = −1, the positive polarizing tendencies of the small-

degree nodes drive the entire population towards the 11111

polarization state; and when γ = 0.5, their negative polariz-

ing tendencies drive the population towards the 00000 state.

These cases illustrate the antagonistic, competitive nature of

information sources in driving polarization, and the synergis-

tic mechanism between polarization tendencies and preferen-

tial trust in aiding the propagation of polarized information.

In light of the profound effects of the confidence factor β

and bias factor γ on information polarization phenomena,

the terminal polarization distributions had been investigated

in β–γ parameter space, across a spectrum of conservation

factor K values. The population exhibits mass negative polar-

ization in two regimes, of β > 0, γ < 0, and β < 0, γ > 0;

in contrast, mass positive polarization is only observed within

a narrow strip of β–γ space close to γ = 0, with either

β > 0, γ > 0 or β < 0, γ < 0. In the remaining regions,

polarization effects are insignificant. In addition, the polar-

ization of information is suppressed when K increases. When

K > 10, the system no longer exhibits appreciable polar-

ization phenomena. These presented results span the range

of realizable phenomena in the model comprehensively, and

model sensitivity to remaining parameters has been found to

be weak.

While the presented model differs from existing statistical

mechanics-based approaches, for instance the Sznajd model

and generalizations [5], [30]–[32], certain important simi-

larities in results are observed. In the Sznajd model and its

generalizations to higher-dimensional topologies, agents are

typically assumed to be arranged in lattices; whereas in the

current model, more realistic scale-free network topologies

are used [52], [53]. Furthermore, in the generalized Sznajd

and contagion models [28], interactions between agents are

typically very simplified, in contrast to the current modeling

incorporating effects of agent memory, varying confidence

towards other agents, and information distortion tendencies.

Yet, the special-case phenomenon of the eventual division

of a populace into distinct sectors of opposing opinions is

observed in both these models and in the current study,

and the mechanism for reaching these outcomes, in which

small ‘seed’ regions expand and compete with neighboring

domains for influence, are likewise qualitatively similar. This

suggests a sort of universal behavior across topologies and
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FIGURE 8. Final probability distributions of positive and negative extreme polarization states for different values of K in
β–γ parameter space.

varying degrees of model complexity, and also serves as a

form of validation for the presented model. Outside of this

common regime, model behavior diverges between these var-

ious works, as is expected from the fundamentally different

degrees of freedom conferred.

The behavioral regimes of the current model may be

linked with corresponding analogues in the real world.

In particular, in contexts where sources of a large social

connectivity are preferentially trusted by the public, the accu-

racy and agency of information spread by them become

of vital importance. Such sources may typically include

news agencies and celebrities, the latter encompassing both

professional artistes and ‘self-made’ counterparts on social

media, or individuals with highly-rated personas on trust-

driven forum platforms such as StackOverflow [54] orReddit.

On the other hand, in situations where small-degree

connectivity is preferentially trusted, the chain propagation

of distorted information can lead to the eventual polarization
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of a majority of the population. Balanced influence between

large-degree and small-degree connectivities carry elevated

risks of population division between different opinions.

Relevance of the model to the real-world is hence established,

with a wide variety of scenarios encompassed within the

present framework.

To enable the application of the presented framework on

real-world networks, it is imperative that the various inde-

pendent model parameters (summarized in Table 1) be mea-

surable. Here, we provide a plausible methodology. N can be

straightforwardly determined from the size of the examined

network, s can be taken as the average size of messages

exchanged, and L can either be adapted fromwell-established

human cognition studies [55]–[58] or characterized from the

shift of trends in the history of exchanged messages. The

remaining conservation factor K , confidence factor β, and

polarization bias factor γ are most easily characterized by

calibration on the examined system, with appropriate β and γ

determined by regression over node degree, and K deter-

mined by regression over all agents. The characterization of

these parameters then allows the model to be used to predict

the future evolution of the social system, or to be applied

to another network reasonably assumed to be described by

similar parameter values.

This study represents a significant development over the

previously reported information-entropic model for rumor

propagation, in which polarization effects were not examined.

The structure of the proposed information-entropic

framework is intrinsically conducive for the addition of

polarization effects, with natural means of modeling the

imprecision of human-to-human communication, polariza-

tion evolution, memory depth, and the probabilistic tenden-

cies for individuals to reject information based on subjective

confidence. The proposed model provides a realistic,

generalizable framework for research into propagative and

polarization dynamics in networked information systems,

with the fundamental mechanisms and the emergent dynam-

ics being of potential relevance to social platform design,

policy-making, and sociophysics.

V. METHODS & MATERIALS

The proposed information-entropic model had been pro-

grammatically implemented, and all presented results were

obtained from the implemented numerical simulations.

The simulation process begins with the construction of a

Barabási-Albert (BA) scale-free network [49], [50] model-

ing the inter-agent connectivity, with the polarization bias

factor γ and confidence factor β specified. The agent char-

acteristics in the information spreading and information

acceptance phases (Sections II-B.1 and II-B.2) are then

calculated, in particular the agent-specific constants ξm and

ηmn. The propagation of information can then be initiated at

time t = 0—a random node is picked and seeded with a spec-

ified source information string. A synchronous three-phrase

information propagation process (Section II-B), entailing

information spreading, information acceptance, and memory

updating in order, is then iteratively executed, incrementing t

each cycle. In each iteration, the entropy-dependent prob-

ability of information distortion Pn is computed for each

individual, and the distortion outcome is stochastic, imple-

mented programmatically via a pseudorandomnumber gener-

ator. Individuals not yet exposed to information from adjacent

neighbors are taken to be idle and do not partake in the

propagation process, until first exposure occurs. Statistical

indicators such as δi (Section III-B) are also evaluated at each

iteration to aid in data visualization.
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